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ON ESTIMATES FOR OSCILLATORY INTEGRALS WITH

PHASE DEPENDING ON PARAMETERS

SH.A. MURANOV

Abstract. We consider estimates for the Fourier transforms of measures supported on
analytic hypersurfaces involving a damping factor. As a damper, we naturally take a power
of the Gaussian curvature of the surface. It is known that if the exponent in this power is a
sufficiently large positive number, then the Fourier transform of the corresponding measure
has an optimal decay. C.D. Sogge and E.M. Stein formulated a problem on a minimal
power of the Gaussian curvature ensuring an optimal decay for the Fourier transform. In
the paper we resolve the problem by C.D. Sogge and E.M. Stein on an optimal decay for
the Fourier transform with a damping factor for a particular class of families of analytic
surfaces in the three-dimensional Euclidean space. We note that the power we provide
is sharp not only for the families of analytic hypersurfaces but also for a fixed analytic
hypersurface. The proof of main result is based on the methods of the theory of analytic
functions, more precisely, on the statements like a preparation Weierstrass theorem. As
D.M. Oberlin showed, similar statements fail for infinitely differentiable hypersurfaces.
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1. Introduction

In connection with the problem on bounding maximal operators associated with a hyper-
surface 𝑆 ⊂ R𝑛+1, S.D. Sogge and I.M. Stein [1] introduced the following damped oscillating
integrals: ̂︀𝜇𝑞(𝜉) :=

∫︁
𝑆

𝑒𝑖(𝜉,𝑥)|𝐾(𝑥)|𝑞𝜓(𝑥)𝑑𝜎(𝑥), (1.1)

where 𝐾(𝑥) is the Gaussian curvature of the hypersurface at a point 𝑥 ∈ 𝑆, 𝜓 ∈ 𝐶∞
0 (𝑆) is a

smooth non-negative compactly supported function, (𝑥, 𝜉) is a scalar product of the vectors 𝑥
and 𝜉, 𝑑𝜎(𝑥) is the surface measure. They showed that if 𝑞 > 2𝑛, then integral (1.1) decays as
𝑂(|𝜉|−𝑛

2 ) as |𝜉| → +∞, that is, it decays optimally. We observe that if the Gaussian curvature
does not vanish, the Fourier transform of the surface measure decays as 𝑂(|𝜉|−𝑛

2 ) as |𝜉| → +∞
and for a non-zero measure, it can not decay faster and this indicates the optimality of the decay
rate. For a family of smooth hypersurfaces 𝑆(𝜂) ⊂ R𝑛+1 smoothly depending on parameters
𝜂 ∈ R𝑚, the measure 𝑑𝜇(𝜂) := 𝜓(𝑥, 𝜂)𝑑𝜎(𝑥, 𝜂) is naturally defined as well as the following
oscillating integrals with a damping factor:

̂︀𝜇𝑞(𝜉) =

∫︁
𝑆(𝜂)

𝑒𝑖(𝑥,𝜉)|𝐾(𝑥, 𝜂)|𝑞𝜓(𝑥, 𝜂)𝑑𝜎(𝑥, 𝜂), (1.2)

where for each fixed 𝜂 and 𝑑𝜎(𝑥, 𝜂) is the surface measure 𝑆(𝜂).
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Formulation of problem Find a minimal 𝑞 ensuring the following estimate:

|̂︀𝜇𝑞(𝜉)| 6 𝐴|𝜉|−
𝑛
2 .

A similar problem for a fixed hypersurface 𝑆 was posed in work [1] by Sogge and Stein. The
solution for the formulated problem in one-dimensional case, namely, as 𝑆 is a curve defined
by a polynomial, follows the results by D. Oberlin [2]. In fact, the results by D. Oberlin are
related with a family of curves.

In the present work we provide a solution to the problem of S.D. Sogge and I.M. Stein for a
particular class of analytic surfaces in a three-dimensional space depending on parameters.

A function (𝑥, 𝜏) |𝑆(𝜂)
, where 𝜏 ∈ 𝑆2, that is, 𝜏 is an arbitrary vector belonging to the unit

sphere centered at the origin, is the restriction of the family of functions (𝑥, 𝜏) depending on 𝜏
and 𝜂 on a surface 𝑆(𝜂) ⊂ R3 called a phase function.

For instance, if 𝑆 = {(𝑥1, 𝑥2,Ψ(𝑥1, 𝑥2, 𝜂))}, where Ψ(𝑥1, 𝑥2, 𝜂) = 𝑥21 + 𝑥42 + 𝜂𝑥22, then
(𝑥, 𝜏) |𝑆(𝜂)

= 𝜏1𝑥1 + 𝜏2𝑥2 + 𝜏3Ψ(𝑥1, 𝑥2, 𝜂) is the phase function corresponding to 𝑆.

Let 𝑦 = Φ(𝑥), 𝑥 ∈ R𝑛, be some function with a critical point 𝑥 = 𝑥0. If in some neighbour-
hood Ω(𝑥0) of the point 𝑥0, there exists a diffeomorphic change 𝜙 : Σ ↦→ Ω(𝑥0), where Σ ⊂ R𝑛

is a neighbourhood of the zero, the function Φ(𝑥) is reduced to the form

Φ(𝜙(𝑧)) = Φ(𝑥0) ± 𝑧𝑘+1
1 ± 𝑧22 ± 𝑧23 ± · · · ± 𝑧2𝑛,

then 𝑥 = 𝑥0 is called a critical point of type 𝐴𝑘 [3].
The next theorem was proved in work [4], see also [5].

Theorem 1.1. Let 𝑞 > 1 be a fixed real number and 𝑆(𝜂) ⊂ R3 be a family of analytic
hypersurfaces depending on a parameter 𝜂 ∈ R𝑚. If the phase function corresponding to the
hypersurface 𝑆(0) has a singularity of type 𝐴𝑘, 1 6 𝑘 < ∞, at the point (0, 0, 0) ∈ 𝑆(0),
then there exists a neighbourhood of the zero 𝑉 × 𝑈 ⊂ R3 × R𝑚 such that for each function
𝜓 ∈ 𝐶∞

0 (𝑉 × 𝑈), integral (1.2) satisfies the following estimate:

|̂︀𝜇𝑞(𝜉)| 6
𝐶‖𝜓(·, 𝜂)‖𝐶2

|𝜉|
,

where 𝐶 is fixed positive number.

The main result of the present work is the following theorem.

Theorem 1.2. Let 𝑞 > 1 be a fixed real number, 𝑆(𝜂) ⊂ R3 be a family of analytic hyper-
surfaces satisfying the following conditions:

1. The hypersurface 𝑆(0) contains the origin in R3 and at least one of the principal curvatures
of the surfaces 𝑆(0) is non-zero at the origin.

2. The Gaussian curvature 𝐾(𝑥, 𝜂) on the hypersurface 𝑆(𝜂) obeys the condition 𝐾 ̸≡ 0.
Then there exists a neighbourhood of the origin 𝑉 ×𝑈 ⊂ R3×R𝑚 such that for each function

𝜓 ∈ 𝐶∞
0 (𝑉 × 𝑈) integral (1.2) satisfies the following estimate:

|̂︀𝜇𝑞(𝜉)| 6
𝐶‖𝜓(·, 𝜂)‖𝐶2

|𝜉|
,

where 𝐶 is a fixed positive number.

2. Auxiliary statements

According the assumptions of Theorem 1.2, we can suppose that 𝜓(𝑥, 𝜂) has a sufficiently
small support. Moreover, we assume that 𝑆(𝜂) is a graph of some analytic function 𝑥3 =
𝑓(𝑥1, 𝑥2, 𝜂) defined in a small neighbourhood of the origin:

𝑆(𝜂) := {(𝑥1, 𝑥2) ∈ 𝑉1 ⊂ R2 : 𝑥3 = 𝑓(𝑥1, 𝑥2, 𝜂), 𝜂 ∈ 𝑈},
and

𝑓(0, 0, 0) = 0, ∇𝑥𝑓(0, 0, 0) = 0.
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Indeed, let 𝑆(𝜂) be a family of analytic hypersurfaces depending on 𝜂 ∈ 𝑈 ⊂ R𝑚. Then, after a
possible motion, we can assume that 𝑆(0) contains the origin and the tangential plane 𝑇0𝑆(0)
at the origin is given by the equation 𝑥3 = 0.

This is why, in the vicinity of the point (0, 0, 0), the surface 𝑆(0) is described by the equation
𝐹 (𝑥1, 𝑥2, 𝑥3) = 0, where 𝐹 is a real-analytic function satisfying the conditions

𝐹 (0, 0, 0) = 0,
𝜕𝐹 (0, 0, 0)

𝜕𝑥1
=
𝜕𝐹 (0, 0, 0)

𝜕𝑥2
= 0 and

𝜕𝐹 (0, 0, 0)

𝜕𝑥3
̸= 0.

According the implicit function theorem, in the vicinity of zero, the equation 𝐹 (𝑥1, 𝑥2, 𝑥3) = 0
possesses an analytic solution 𝑥3 = Φ(𝑥1, 𝑥2). Hence, Φ(𝑥1, 𝑥2) is an analytic function obeying
the conditions Φ(0, 0) = 0, ∇Φ(0, 0) = 0. In the same way, for the family 𝑆(𝜂), there exists a
function 𝑓(𝑥1, 𝑥2, 𝜂) such that in the vicinity of zero, the surface 𝑆(𝜂) is defined by the equation
𝑥3 = 𝑓(𝑥1, 𝑥2, 𝜂) and 𝑓(𝑥1, 𝑥2, 𝜂) satisfies the condition 𝑓(𝑥1, 𝑥2, 0) = Φ(𝑥1, 𝑥2); for more details
see [6].

We note that the function (𝑥, 𝜏) has no stationary points as 𝜏 ̸= 0 since (𝑥, 𝜏)𝑥 = 𝜏 . But its
restriction on 𝑆 has stationary (critical), see [7, Ch. III, Sect. 4]. These are the points 𝑥(𝜏), at
which the hypersurface (𝑥, 𝜏) = 𝑐𝑜𝑛𝑠𝑡 touches 𝑆.

Lemma 2.1. A stationary point 𝑥(𝜏) ∈ 𝑆 is non-degenerate if and only if the Gaussian
curvature of the hypersurface 𝑆 at this point is non-zero.

This lemma was proved in [7, Ch. III, Sect. 4].
We note that if the Gaussian curvature obeys 𝐾(0, 0, 0) ̸= 0, then according Lemma 2.1, in a

small neighbourhood of the point (0, 0, 0), the phase function (𝑥, 𝜏)
⃒⃒
𝑆(𝜂)

has only non-degenerate

critical points since if the Gaussian curvature is non-zero in the neighbourhood of zero 𝑉 × 𝑈 ,
then |𝐾(𝑥, 𝜂)|𝑞𝜓(𝑥, 𝜂) ∈ 𝐶∞

0 (𝑉 ×𝑈). This is why, according Morse lemma, see [7], it is reduced
to the sum of squares and the integral ̂︀𝜇𝑞(𝜉) satisfies the relation: ̂︀𝜇𝑞(𝜉) = 𝑂(|𝜉|−1) as |𝜉| → ∞.
Therefore, in this case, Theorem 1.2 holds true. In what follows we assume that 𝐾(0, 0, 0) = 0.

Before we proceed to proving Theorem 1.2, we consider some needed auxiliary statements.

Lemma 2.2. Let 𝑔 = 𝑔(𝑥) be a real continuously differentiable function defined on [𝑐, 𝑑]. If
for (𝑥, 𝜂) ∈ [𝑐, 𝑑] × 𝑈 the inequality |𝑔′| > 𝛿 > 0 holds and the functions 𝑎(·, 𝜂), 𝑔′(·, 𝜂) have a
bounded variation on [𝑐, 𝑑], then the following estimate holds:⃒⃒⃒⃒

⃒⃒
𝑑∫︁

𝑐

𝑒𝑖𝜆𝑔(𝑥,𝜂)𝑎(𝑥, 𝜂)𝑑𝑥

⃒⃒⃒⃒
⃒⃒ 6 𝐶‖𝑎(·,𝜂)

𝑔′
‖𝑉

|𝜆|
, (2.1)

where ‖𝑎(·, 𝜂)‖𝑉 := |𝑎(𝑐, 𝜂)|+𝑉 𝑑
𝑐 [𝑎(·, 𝜂)] and 𝑉 𝑑

𝑐 [𝑎(·, 𝜂)] is a total variation of the function 𝑎 on
[𝑐, 𝑑].

Proof. First we write integral as∫︁ 𝑑

𝑐

𝑒𝑖𝜆𝑔(𝑥,𝜂)𝑎(𝑥, 𝜂)𝑑𝑥 =

∫︁ 𝑑

𝑐

𝑎(𝑥, 𝜂)

𝑖𝜆𝑔′(𝑥, 𝜂)
𝑑
(︀
𝑒𝑖𝜆𝑔(𝑥,𝜂)

)︀
.

Employing the integration by parts for the Stieltjes integral, we obtain the estimate⃒⃒⃒⃒∫︁ 𝑑

𝑐

𝑒𝑖𝜆𝑔(𝑥,𝜂)𝑎(𝑥, 𝜂)𝑑𝑥

⃒⃒⃒⃒
6

⃒⃒⃒⃒
𝑎(𝑑, 𝜂)

𝑖𝜆𝑔′(𝑑, 𝜂)
𝑒𝑖𝜆𝑔(𝑑,𝜂) − 𝑎(𝑐, 𝜂)

𝑖𝜆𝑔′(𝑐, 𝜂)
𝑒𝑖𝜆𝑔(𝑐,𝜂)

⃒⃒⃒⃒
+

⃒⃒⃒⃒
1

𝑖𝜆

∫︁ 𝑑

𝑐

𝑒𝑖𝜆𝑔(𝑥,𝜂)𝑑

(︂
𝑎(𝑥, 𝜂)

𝑔′(𝑥, 𝜂)

)︂⃒⃒⃒⃒
.

Finally, we observe that max
𝑥∈[𝑐,𝑑]

|𝑎(𝑥, 𝜂)| 6 ‖𝑎(·, 𝜂)‖𝑉 and this is why, if 𝑎(𝑥, 𝜂) and 𝑔′(𝑥, 𝜂) are

the functions with a bounded variation, we arrive at estimate (2.1).

Lemma 2.2 is an analogue of Statement II in Proposition 2 in monograph [8], see also [9],
[10].

In this work we employ the following technical lemmata proved in work [11]:
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Lemma 2.3. Let a function 𝑓 ̸≡ 0 be real-analytic at zero R × R𝑚 such that 𝑓(0, 0) = 0.
There exists a real-analytic manifold 𝑌 and a mapping 𝜋 : 𝑌 ↦→ R𝑚 being proper such that
for each point 𝑦0 ∈ 𝑌 there exists a chart (𝜙1, . . . , 𝜙𝑚) centered at the point 𝑦0, for which the
relation

𝑓(𝑥2, 𝜋(𝑦)) = 𝜙𝛼1
1 (𝑦)𝜙𝛼2

2 (𝑦) . . . 𝜙𝛼𝑚
𝑚 (𝑦)𝑏(𝑥2, 𝑦)𝑝(𝑥2, 𝑦) (2.2)

holds, where 𝑏(𝑥2, 𝑦), 𝑏(0, 𝑦0) ̸= 0, is a real-analytic function, 𝑝(𝑥2, 𝑦) is an unitary pseudo-
polynomial, that is,

𝑝(𝑥2, 𝑦) = 𝑥𝑚1
2 + 𝜏1(𝑦)𝑥𝑚1−1

2 + 𝜏2(𝑦)𝑥𝑚1−2
2 + · · · + 𝜏𝑚1(𝑦).

Here functions 𝜏1, . . . , 𝜏𝑚1 are real-analytic at the point 𝑦0 and 𝜏ℓ(𝑦
0) = 0, ℓ = 1, . . . ,𝑚1.

Lemma 2.4. Let a function 𝑓 : (R × R𝑚, 0) ↦→ (R, 0) be real-analytic at the origin. There
exists a neighbourhood of the zero 𝑊 × 𝑈 ⊂ R × R𝑚 such that for each fixed positive number
𝑞, the function |𝑓(·, 𝜂)|𝑞 has a bounded variation in 𝑊 and a total variation of this function
𝑉𝑊 [|𝑓(·, 𝜂)|𝑞] is a bounded function in 𝑈 .

We shall also make use of the following lemma.

Lemma 2.5. Let a function 𝑓(𝑥, 𝜂) be real-analytic function at the origin and 𝑞 > 1 be a
fixed number. Then there exists a neighbourhood of the zero 𝑊 × 𝑈 in R × R𝑚, in which the
identity

|𝑥|𝑔(𝑥, 𝜂) = |𝑓(𝑥, 𝜂)|𝑞 − |𝑓(0, 𝜂)|𝑞,
holds, where the function 𝑔(𝑥, 𝜂) has a bounded variation in 𝑊 and its total variation is bounded
in 𝑈 .

Proof. In fact, Lemma 2.5 is an analogue of Lemma 3.3 in work [11]. For the reader’s conve-
nience, we provide here a detailed proof of this lemma.

We first assume that 𝑓(𝑥, 𝜂) is a polynomial. We assume that

𝑓(𝑥, 𝜂) := 𝑄(𝑥, 𝜂) = 𝑥ℓ + 𝜂1𝑥
ℓ−1 + · · · + 𝜂ℓ

and the coefficients of the polynomial are bounded; |𝜂| 6 1.
We are going to show that the function

𝑔(𝑥, 𝜂) =
|𝑄(𝑥, 𝜂)|𝑞 − |𝜂ℓ|𝑞

|𝑥|
has a bounded variation over the segment [−1, 1] and its total variation 𝑉 1

−1[𝑔(·, 𝜂)] is bounded
by a constant depending only on ℓ and 𝑞. It is easy to show that 𝑔(𝑥, 𝜂) is a piece-wise monotone
function. Indeed, let 𝑥 > 0 and 𝑄(𝑥, 𝜂) > 0. Then the numerator and the denominator are
differentiable. We calculate the derivative of the function 𝑔(𝑥, 𝜂) in 𝑥 and we obtain

𝑔′(𝑥, 𝜂) =
𝑥𝑞(𝑄(𝑥, 𝜂))𝑞−1𝑄′(𝑥, 𝜂) − ((𝑄(𝑥, 𝜂))𝑞 − |𝜂ℓ|𝑞)

𝑥2
.

Let us show that the numerator has at most 2ℓ zeroes. We calculate the derivative of the
numerator and equate it at zero and we obtain:

𝑞𝑥(𝑄(𝑥, 𝜂))𝑞−2((𝑞 − 1)(𝑄′(𝑥, 𝜂))2 +𝑄(𝑥, 𝜂)𝑄′′(𝑥, 𝜂)) = 0.

The latter equation has at most 2ℓ− 2 zeroes since 𝑄′(𝑥, 𝜂))2 +𝑄(𝑥, 𝜂)𝑄′′(𝑥, 𝜂) is a polynomial
of degree 2ℓ− 2.

This is why the numerator can have at most 2ℓ − 2 zeroes as 𝑄 > 0. In the same way we
consider the case 𝑄(𝑥, 𝜂) < 0 and 𝑥 < 0. This implies that equation 𝑔′(𝑥, 𝜂) = 0 has at most
4ℓ− 4 zeroes.

Since 𝑞 > 1, then for 𝑥, 𝑦 ∈ [−1, 1] we have an obvious inequality:

‖𝑥|𝑞 − |𝑦|𝑞| 6 𝐶(𝑞)|𝑥− 𝑦|,
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where 𝐶(𝑞) is some positive number depending only on 𝑞 > 1. This implies that the function

𝑔(𝑥, 𝜂) is bounded by the number 𝐶(𝑞) ℓ(ℓ−1)
2

as |𝑥| 6 1. Indeed,

|𝑥‖𝑔(𝑥, 𝜂)| 6 ‖𝑄(𝑥, 𝜂)|𝑞 − |𝑄(0, 𝜂)|𝑞| 6 𝐶(𝑞)|𝑄(𝑥, 𝜂) −𝑄(0, 𝜂)| 6 𝐶(𝑞) max
−16𝜁61

|𝑄′(𝜁, 𝜂)‖𝑥|

and hence,

max
−16𝑥61

|𝑔(𝑥, 𝜂)| 6 𝐶(𝑞) max
−16𝜁61

|𝑄′(𝜁, 𝜂)| 6 𝐶(𝑞)
ℓ(ℓ− 1)

2
.

Then we have

𝑉 1
−1[𝑔(𝑥, 𝜂)] 6 (4ℓ− 4) max

[−1,1]
|𝑔(𝑥, 𝜂)| 6 𝐶(𝑞)2ℓ(ℓ− 1)2.

Thus, the total variation of the function 𝑔 over the segment [−1, 1] is estimated by a constant
depending only on ℓ and 𝑞.

Let 𝑓(𝑥, 𝜂) be an arbitrary real-analytic function. In this case, employing Lemma 2.3, we
reduce out function to the form

𝑓(𝑥, 𝜋(𝑦)) = 𝜙𝛼1
1 (𝑦)𝜙𝛼2

2 (𝑦) . . . 𝜙𝛼𝑚
𝑚 (𝑦)𝑏(𝑥, 𝑦)𝑄(𝑥, 𝑦),

where 𝑏 is a real-analytic function satisfying the condition 𝑏(0, 0) ̸= 0 and 𝑄(𝑥, 𝑦) is some
pseudo-polynomial. In this case we get the relation

|𝑏(𝑥, 𝑦)𝑄(𝑥, 𝑦)|𝑞 − |𝑏(0, 𝑦)𝑄(0, 𝑦)|𝑞 =|𝑄(𝑥, 𝑦)|𝑞(|𝑏(𝑥, 𝑦)|𝑞 − |𝑏(0, 𝑦)|𝑞)
+ |𝑏(0, 𝑦)|𝑞(|𝑄(𝑥, 𝑦)|𝑞 − |𝑄(0, 𝑦)|𝑞).

We observe that the function |𝑏(𝑥,𝑦)|𝑞−|𝑏(0,𝑦)|𝑞
|𝑥| has a bounded variation since 𝑏(0, 0) ̸= 0. And

also, according Lemma 2.4, the function |𝑄(𝑥, 𝑦)|𝑞 has a bounded variation in the coordinate
neighbourhood 𝑉 as 𝑞 > 1.

Finally, we observe that 𝜋 : 𝑌 ↦→ 𝑈 is a proper analytic mapping [13]. This is why
𝜋−1(𝑈) ⊂ 𝑌 is a compact set. Therefore, for each point 𝑦0 ∈ 𝜋−1(𝑈) we can find a coor-
dinate neighbourhood 𝑉 ⊂ 𝑌 of the point 𝑦0 such that as 𝑦 ∈ 𝑉 , we have the relation

𝑓(𝑥, 𝜋(𝑦)) = 𝜙𝛼1
1 (𝑦)𝜙𝛼2

2 (𝑦) . . . 𝜙𝛼𝑚
𝑚 (𝑦)𝑏(𝑥, 𝑦)𝑄(𝑥, 𝑦),

where (𝜙1, . . . , 𝜙𝑚) are local coordinates centered at 𝑦0, that is, 𝜙𝑗(𝑦
0) = 0, 𝑗 = 1, . . . ,𝑚,

𝑏(𝑥, 𝑦) is a real-analytic function satisfying the condition 𝑏(𝑥, 𝑦) ̸= 0 as (𝑥, 𝑦) ∈ 𝑊 × 𝑉 , and
𝑄(𝑥, 𝑦) is a pseudo-polynomial and 𝛼𝑗 > 0, 𝑗 = 1, . . . ,𝑚, are integer numbers.

According the proven facts, the function 𝑓(𝑥, 𝜋(𝑦)) satisfies the assumptions of Lemma 2.5 in
the vicinity 𝑊 ×𝑉 . Since 𝜋−1(𝑈) is a compact set, we can choose a finite covering 𝜋−1(𝑈) and
a neighbourhood of the zero 𝑊 ⊂ R such that the statement of Lemma 2.5 is true for (𝑥, 𝑦) ∈
𝑊 × 𝜋−1(𝑈). This is why, the statement of Lemma 2.5 holds on the set 𝑊 × 𝑈 ⊂ R×R𝑚.
This completes the proof of Lemma 2.5.

We provide an analogue of Erdélyi lemma [14].

Lemma 2.6. If 𝐹 (𝑥, 𝑠) is a smooth function defined in a small neighbourhood of the origin
𝑊 × 𝑈 ∈ R×R𝑚 and satisfying the conditions

𝐹 ′(0, 𝑠) = 0, 𝐹 ′′(0, 𝑠) ̸= 0 for each 𝑠 ∈ 𝑈 and 𝑎 ∈ 𝐶∞
0 (𝑊 × 𝑈),

then for 0 6 𝑞 6 1, the inequality holds:⃒⃒⃒⃒
⃒⃒

𝜀∫︁
−𝜀

|𝑥|𝑞𝑒𝑖𝜆𝐹 (𝑥,𝑠)𝑎(𝑥, 𝑠)𝑑𝑥

⃒⃒⃒⃒
⃒⃒ 6 𝐶𝑞‖𝑎(·, 𝑠)‖𝑉

|𝜆| 𝑞+1
2

,

where 𝜀 is a sufficiently small positive number.
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Proof. We employ Morse lemma with parameters, see [7]. According this lemma, there exists
a diffeomorphism 𝑥 = 𝑥(𝑦, 𝑠) mapping the segment 𝐼 = [−𝜀, 𝜀] into [−𝛿1(𝜀), 𝛿2(𝜀)] such that
the function 𝐹 (𝑥, 𝑠) reads as 𝐹 (𝑥(𝑦, 𝑠), 𝑠) = 𝐹 (0, 𝑠) ± 𝑦2 and 𝑥(0, 𝑠) ≡ 0. It follows from the
latter identity that 𝑥(𝑦, 𝑠) is written as 𝑥(𝑦, 𝑠) = 𝑦𝐺(𝑦, 𝑠) with a smooth function 𝐺(𝑦, 𝑠) and
𝐺(0, 0) ̸= 0.

We make the change of the variables 𝑥 = 𝑥(𝑦, 𝑠) in the integral∫︁ 𝜀

−𝜀

|𝑥|𝑞𝑒𝑖𝜆𝐹 (𝑥,𝑠)𝑎(𝑥, 𝑠)𝑑𝑥,

and we obtain:

𝐼𝑞(𝜆) = 𝑒𝑖𝜆𝐹 (0,𝑠)

∫︁ 𝛿2(𝜀)

−𝛿1(𝜀)

|𝑦|𝑞𝑒±𝑖𝜆𝑦2𝑎1(𝑦, 𝑠)𝑑𝑦,

where

𝑎1(𝑦, 𝑠) = |𝐺(𝑦, 𝑠)|𝑞(𝐺(𝑦, 𝑠) + 𝑦𝐺′(𝑦, 𝑠))𝑎(𝑦𝐺(𝑦, 𝑠), 𝑠)

and 𝑎1(𝑦, 𝑠) ∈ 𝐶∞
0 ([−𝛿1(𝜀), 𝛿2(𝜀)]).

We proceed to estimating the integral 𝐼𝑞(𝜆), which is written as 𝐼𝑞(𝜆) = 𝐼1(𝜆) + 𝐼2(𝜆) for
0 6 𝑞 6 1. First we shall estimate the integral

𝐼1(𝜆) :=

∫︁ 𝛿2(𝜀)

0

𝑦𝑞𝑒±𝑖𝜆𝑦2𝑎1(𝑦, 𝑠)𝑑𝑦,

and then the estimate for the integral

𝐼2(𝜆) :=

∫︁ 0

−𝛿1(𝜀)

𝑦𝑞𝑒±𝑖𝜆𝑦2𝑎1(𝑦, 𝑠)𝑑𝑦

can be obtained in the same way.
If 𝛿2(𝜀) 6 𝜆−

1
2 then by a trivial estimate for the integral we get

|𝐼1(𝜆)| 6
max𝑦∈[0,𝛿2(𝜀)] |𝑎1(𝑦, 𝑠)|

𝜆
𝑞+1
2

. (2.3)

Now we assume that 𝛿2(𝜀) > 𝜆−
1
2 . In this case the integral 𝐼1(𝜆) is written as a sum of the

following two integrals:

𝐼11(𝜆) =

∫︁ 𝜆− 1
2

0

𝑦𝑞𝑒±𝑖𝜆𝑦2𝑎1(𝑦, 𝑠)𝑑𝑦 and 𝐼12(𝜆) =

∫︁ 𝛿2(𝜀)

𝜆− 1
2

𝑦𝑞𝑒±𝑖𝜆𝑦2𝑎1(𝑦, 𝑠)𝑑𝑦.

It is obvious that 𝐼11(𝜆) obeys an estimate of form (2.3).
We integrate by parts in the integral 𝐼12(𝜆) and we obtain the following estimate:

|𝐼12(𝜆)| 6 𝜆−
𝑞+1
2 𝐶1𝑉

𝛿2
0 [𝑎1(·, 𝑠)]. (2.4)

Then, by means of inequalities (2.3) and (2.4), we get the estimate

|𝐼1(𝜆)| 6 𝐶‖𝑎1(·, 𝑠)‖𝑉
𝜆

𝑞+1
2

, 𝐶 = 𝑐𝑜𝑛𝑠𝑡.

Summing up the obtained estimate, we complete the proof.

Lemma 2.7. There exists a neighbourhood 𝑉1 × 𝑈 ⊂ R2 × R𝑚 of the origin such that for
each 𝑞 > 0, 𝜓 ∈ 𝐶∞

0 (𝑉1 × 𝑈) and max{|𝜉1|, |𝜉2|} > |𝜉3|, the following estimate holds:

|̂︀𝜇𝑞(𝜉)| 6
𝐶‖𝜓‖𝐶1

|𝜉|
.
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Proof. We observe that

𝐾(𝑥1, 𝑥2, 𝜂) =
Hess 𝑓(𝑥1, 𝑥2, 𝜂)

(1 + |∇𝑓(𝑥1, 𝑥2, 𝜂)|2)2
is an analytic function in a small neighbourhood of the origin, see [6]. Since |∇𝑥𝑓(0, 0, 0)| = 0,
there exists a neighbourhood of the origin 𝑉1 ×𝑈 such that for each point (𝑥1, 𝑥2, 𝜂) ∈ 𝑉1 ×𝑈 ,
the inequality holds: |∇𝑥𝑓(𝑥1, 𝑥2, 𝜂)| 6 1

2
. Without loss of generality we can assume that

|𝜉1| = max{|𝜉1|, |𝜉2|} > |𝜉3|. The case |𝜉2| = max{|𝜉1|, |𝜉2|} > |𝜉3| can be considered in the
same way. In this case the integral ̂︀𝜇𝑞(𝜉) is written as the following two-dimensional damped
oscillating integral:

̂︀𝜇𝑞(𝜉) =

∫︁
R2

𝑒𝑖(𝑥1𝜉1+𝑥2𝜉2+𝑓(𝑥1,𝑥2,𝜂)𝜉3)𝑎(𝑥1, 𝑥2, 𝜂)|Hess 𝑓(𝑥1, 𝑥2, 𝜂)|𝑞𝑑𝑥1𝑑𝑥2, (2.5)

where

𝑎(𝑥1, 𝑥2, 𝜂) =
𝜓(𝑥1, 𝑥2, 𝑓(𝑥1, 𝑥2, 𝜂))√︀

(1 + |∇𝑓(𝑥1, 𝑥2, 𝜂)|2)4𝑞−1
.

We employ the Fubini theorem for integral (2.5) and we obtain:

̂︀𝜇𝑞(𝜉) =

∫︁
R

̂︀𝜇0
𝑞(𝜉1, 𝜉3, 𝑥2)𝑒

𝑖𝜉3𝑠2𝑥2𝑑𝑥2,

where

̂︀𝜇0
𝑞(𝜉1, 𝜉3, 𝑥2) =

∫︁
R

𝑒𝑖𝜉1𝐹1(𝑥1,𝑥2,𝜉1,𝜉3,𝜂)𝑎(𝑥1, 𝑥2, 𝜂)|Hess 𝑓(𝑥1, 𝑥2, 𝜂)|𝑞𝑑𝑥1,

𝐹1(𝑥1, 𝑥2, 𝜉1, 𝜉3, 𝜂) =
𝜉3
𝜉1
𝑓(𝑥1, 𝑥2, 𝜂) + 𝑥1.

It is obvious that for each (𝑥1, 𝑥2, 𝜂) ∈ 𝑉1 × 𝑈 , the inequality holds:

|𝐹 ′
1𝑥1

(𝑥1, 𝑥2, 𝜉1, 𝜉2, 𝜂)| = |1 +
𝜉3
𝜉1
𝑓 ′
𝑥1

(𝑥1, 𝑥2, 𝜂)| > 1

2
.

According Lemma 2.4, the function |Hess 𝑓(𝑥1, 𝑥2, 𝜂)|𝑞 has a bounded variation in 𝑃𝑟1(𝑉1) and
its total variation is bounded in 𝑃𝑟2(𝑉1) × 𝑈 for each 𝑞 > 0, where 𝑃𝑟1(𝑉1) (𝑃𝑟2(𝑉1)) is its
projection on the axis R𝑥1 (R𝑥2). This is why, employing Lemma 2.6, we obtain the following
inequality:

|̂︀𝜇0
𝑞(𝜉1, 𝜉3, 𝑥2)| 6

𝐶1‖𝑎(·, 𝑥2, 𝜂)‖𝐶1

|𝜉1|
6

√
3𝐶1‖𝑎(·, 𝑥2, 𝜂)‖𝐶1

|𝜉|
.

Integrating the latter inequality over 𝑃𝑟2(𝑉1), for the integral ̂︀𝜇𝑞(𝜉) we find the estimate:

|̂︀𝜇𝑞(𝜉)| 6
𝐶‖𝜓‖𝐶1

|𝜉|
.

This completes the proof.

Corollary 1. Let 𝜀 > 0 be an arbitrary fixed positive number and Γ𝜀 ∈ R3 be the cone

Γ𝜀 := {𝜉 ∈ R3 : 𝜀|𝜉3| 6 𝑚𝑎𝑥{|𝜉1|, |𝜉3|}}.
There exist a neighbourhood 𝑉1 × 𝑈 of the origin and a positive number 𝐶𝜀 > 0 such that for
each 𝑞 > 0, 𝜓 ∈ 𝐶∞

0 (𝑉1 × 𝑈) and 𝜉 ∈ Γ𝜀 the following estimate holds:

|̂︀𝜇𝑞(𝜉)| 6
𝐶𝜀‖𝜓‖𝐶1

|𝜉|
.

Corollary 1 shows that ̂︀𝜇𝑞(𝜉) satisfies the desired estimate as 𝜉 ∈ Γ𝜀 for each 𝑞 > 0.
We proceed to studying the behavior of ̂︀𝜇𝑞(𝜉) as 𝜉 ∈ R3 ∖ Γ𝜀.
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3. Asymptotic behavior of ̂︀𝜇𝑞(𝜉)

In this section we study the behavior of ̂︀𝜇𝑞(𝜉) in the case 𝜉 ∈ R3 ∖Γ𝜀, where 𝜀 is a sufficiently
small fixed positive number. In this case ̂︀𝜇𝑞(𝜉) is written as the following two-dimensional
damped oscillating integral:

̂︀𝜇𝑞(𝜉) =

∫︁
R2

𝑒𝑖𝜉3𝐹 (𝑥1,𝑥2,𝑠1,𝑠2,𝜂)𝑎(𝑥1, 𝑥2, 𝜂)|Hess 𝑓(𝑥1, 𝑥2, 𝜂)|𝑞𝑑𝑥1𝑑𝑥2, (3.1)

where

𝑎(𝑥1, 𝑥2, 𝜂) =
𝜓(𝑥1, 𝑥2, 𝑓(𝑥1, 𝑥2, 𝜂))√︀

(1 + |∇𝑓(𝑥1, 𝑥2, 𝜂)|2)4𝑞−1
,

𝐹 (𝑥1, 𝑥2, 𝑠1, 𝑠2, 𝜂) = 𝑓(𝑥1, 𝑥2, 𝜂) + 𝑠1𝑥1 + 𝑠2𝑥2, 𝑠1 =
𝜉1
𝜉3
, 𝑠2 =

𝜉2
𝜉3
,

Hess 𝑓(𝑥1, 𝑥2, 𝜂) = 𝑑𝑒𝑡𝐷2𝑓(𝑥1, 𝑥2, 𝜂).

Choosing a small neighbourhood 𝑉1 × 𝑈 , we can assume that 𝜓 is an infinitely differentiable
function with a sufficiently small support.

We observe that if rank (𝐷2𝑓(0, 0, 0)) = 1, then one of the following inequalities holds:

𝜕2𝑓(0, 0, 0)

𝜕𝑥21
̸= 0 or

𝜕2𝑓(0, 0, 0)

𝜕𝑥22
̸= 0.

For the sake of definiteness, we can assume that

𝜕2𝑓(0, 0, 0)

𝜕𝑥21
̸= 0.

Then according the implicit function theorem, the equation

𝐹𝑥1(𝑥1, 𝑥2, 𝑠1, 𝑠2, 𝜂) = 𝑓𝑥1(𝑥1, 𝑥2, 𝜂) + 𝑠1 = 0

has a unique analytic solution 𝑥1 = 𝑥1(𝑥2, 𝑠1, 𝜂) in a small neighbourhood of the origin in
R𝑥1 ×R𝑠1 × 𝑈 .

According the Fubini theorem, integral (3.1) is written as

̂︀𝜇𝑞(𝜉) =

∫︁
R

̂︀𝜇1
𝑞(𝜉, 𝑥2)𝑒

𝑖𝜉3𝑠2𝑥2𝑑𝑥2,

where ̂︀𝜇1
𝑞(𝜉, 𝑥2) =

∫︁
R

𝑒𝑖𝜉3𝐹1(𝑥1,𝑥2,𝑠1,𝜂)𝑎(𝑥1, 𝑥2, 𝜂)|Hess 𝑓(𝑥1, 𝑥2, 𝜂)|𝑞𝑑𝑥1

and
𝐹1(𝑥1, 𝑥2, 𝑠1, 𝜂) = 𝑓(𝑥1, 𝑥2, 𝜂) + 𝑠1𝑥1.

Now we consider integral ̂︀𝜇1
𝑞(𝜉, 𝑥2).

Proposition 1. If an analytic function 𝑓(𝑥1, 𝑥2, 𝜂) satisfies the conditions

∇𝑓(0, 0, 0) = 0,
𝜕2𝑓(0, 0, 0)

𝜕𝑥21
̸= 0,

then there exists a neighbourhood 𝑉1 × 𝑈 ⊂ R2 × R𝑚 of the origin such that as 𝑞 > 1, the
integral ̂︀𝜇1

𝑞 satisfies the following asymptotic relation:

̂︀𝜇1
𝑞(𝜉, 𝑥2) =

√︃
2𝜋

|𝜉3|
𝑒
𝑖(𝜋

4
sgn (

𝜕2𝑓(0,0,0)

𝜕𝑥21
𝜉3)+𝜉3𝐹1(𝑥1(𝑥2,𝑠1,𝜂),𝑥2,𝑠1))

· |Hess 𝑓(𝑥1(𝑥2, 𝑠1, 𝜂), 𝑥2, 𝜂)|𝑞𝑎(𝑥2, 𝑠1, 𝜂) +𝑂

(︂
1

|𝜉|

)︂
as |𝜉| → +∞,
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where 𝑎(𝑥2, 𝑠1, 𝜂) := 𝑎(𝑥1(𝑥2, 𝑠1, 𝜂), 𝑥2, 𝜂)𝜑(𝑥2, 𝑠1, 𝜂). Here 𝜑 is some smooth function being

𝑂
(︁

1
|𝜉|

)︁
uniformly in small (𝑥2, 𝑠1, 𝜂), that is, there exists 𝐶 > 0 and a neighbourhood 𝑈1 of the

zero such that for all (𝑥2, 𝑠1, 𝜂) ∈ 𝑈1, the inequality⃒⃒⃒⃒
𝑂

(︂
1

|𝜉|

)︂⃒⃒⃒⃒
6

𝐶

|𝜉|
holds.

Proof. In the integral ̂︀𝜇1
𝑞, we change the variables

𝑥1 = 𝑋1 + 𝑥1(𝑥2, 𝑠1, 𝜂)

and we obtain: ̂︀𝜇1
𝑞(𝜉, 𝑥2) =

∫︁
R

𝑒𝑖𝜉3𝐹1(𝑋1+𝑥1(𝑥2,𝑠1,𝜂),𝑥2,𝑠1,𝜂)𝑎(𝑋1 + 𝑥1(𝑥2, 𝑠1, 𝜂), 𝑥2, 𝜂)

· |Hess 𝑓(𝑋1 + 𝑥1(𝑥2, 𝑠1, 𝜂), 𝑥2, 𝜂)|𝑞𝑑𝑋1.

We observe that Hess 𝑓(𝑋1 + 𝑥1(𝑥2, 𝑠1, 𝜂), 𝑥2, 𝜂) is a real-analytic function and since 𝑞 > 1, it
follows from Lemma 2.5 that

|Hess 𝑓(𝑋1 + 𝑥1(𝑥2, 𝑠1, 𝜂), 𝑥2)|𝑞 − |Hess (𝑥1(𝑥2, 𝑠1, 𝜂), 𝑥2)|𝑞 = |𝑋1|𝜗(𝑋1, 𝑥2, 𝑠1, 𝜂), (3.2)

where 𝜗(𝑋1, 𝑥2, 𝑠1, 𝜂) is a function with a bounded variation on 𝑋1 and its total variation
𝑉 𝛿
−𝛿[𝜗(·, 𝑥2, 𝑠1, 𝜂)] is a bounded function on (𝑥2, 𝑠1, 𝜂).
We write integral ̂︀𝜇1

𝑞(𝜉, 𝑥2) as

̂︀𝜇1
𝑞(𝜉, 𝑥2) =

∫︁
R

𝑒𝑖𝜉3𝐹1(𝑋1+𝑥1(𝑥2,𝑠1,𝜂),𝑥2,𝑠1,𝜂)𝑎(𝑋1 + 𝑥1(𝑥2, 𝑠1, 𝜂), 𝑥2, 𝜂)

· [|Hess 𝑓(𝑋1 + 𝑥1(𝑥2, 𝑠1, 𝜂), 𝑥2, 𝜂)|𝑞 − |Hess 𝑓(𝑥1(𝑥2, 𝑠1, 𝜂), 𝑥2, 𝜂)|𝑞] 𝑑𝑋1

+ |Hess 𝑓(𝑥1(𝑥2, 𝑠1, 𝜂), 𝑥2, 𝜂)|𝑞
∫︁
R

𝑒𝑖𝜉3𝐹1(𝑋1+𝑥1(𝑥2,𝑠1,𝜂),𝑥2,𝑠1,𝜂)

· 𝑎(𝑋1 + 𝑥1(𝑥2, 𝑠1, 𝜂), 𝑥2, 𝜂)𝑑𝑋1 = 𝐼1 + 𝐼2.

Employing relation (3.2), we can write 𝐼1 as an oscillating integral with a damping factor:

𝐼1 =

∫︁
R

𝑒𝑖𝜉3𝐹1(𝑋1+𝑥1(𝑥2,𝑠1,𝜂),𝑥2,𝑠1,𝜂)|𝑋1|𝑎1(𝑋1, 𝑥2, 𝑠1, 𝜂)𝑑𝑋1,

where
𝑎1(𝑋1, 𝑥2, 𝑠1, 𝜂) = 𝑎(𝑋1 + 𝑥1(𝑥2, 𝑠1, 𝜂), 𝑥2, 𝜂)𝜗(𝑋1, 𝑥2, 𝑠1, 𝜂)

and |𝑋1| serves as a damping. According Lemma 2.6, we obtain the inequality:

|𝐼1| 6
𝐶‖𝑎(·, 𝑥2, 𝑠1, 𝜂) · 𝜗(·, 𝑥2, 𝑠1, 𝜂)‖𝑉

|𝜉3|
6
𝐶1‖𝑎(·, 𝑥2, 𝑠1, 𝜂) · 𝜗(·, 𝑥2, 𝑠1, 𝜂)‖𝑉

|𝜉|
,

since |𝜉3| > 1√
3
|𝜉| and 𝐶1 =

√
3𝐶.

We consider the following one-dimensional oscillating integral:

𝐼2 = |Hess 𝑓(𝑥1(𝑥2, 𝑠1, 𝜂), 𝑥2, 𝜂)|𝑞
∫︁
R

𝑒𝑖𝜉3𝐹1(𝑋1+𝑥1(𝑥2,𝑠1,𝜂),𝑥2,𝑠1,𝜂)𝑎(𝑋1 + 𝑥1(𝑥2, 𝑠1, 𝜂), 𝑥2, 𝜂)𝑑𝑋1.

We note that the amplitude of the latter oscillating integral is a smooth function with a suffi-
ciently small support.

Thanks to the Morse lemma, there exists a neighbourhood R𝑦 ×R𝑥2 ×R𝑠1 ×𝑈 of the origin
and a diffeomorphism

(𝑋1, 𝑥2, 𝑠1, 𝜂) ↦→ (𝑋1(𝑦, 𝑥2, 𝑠1, 𝜂), 𝑥2, 𝑠1, 𝜂)
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such that the phase function 𝐹1(𝑋1 + 𝑥1(𝑥2, 𝑠1, 𝜂), 𝑥2, 𝑠1, 𝜂) is reduced to the form

𝐹1(𝑋1(𝑦, 𝑥2, 𝑠1, 𝜂) + 𝑥1(𝑥2, 𝑠1, 𝜂), 𝑥2, 𝑠1, 𝜂) = ±𝑦2 + 𝐹1(𝑥1(𝑥2, 𝑠1, 𝜂), 𝑥2, 𝑠1, 𝜂),

and the sign at 𝑦2 coincides with sgn
(︁

𝜕2𝑓
𝜕𝑥2

1
(0, 0, 0)

)︁
and (𝑋1(0, ·, ·, ·) ≡ 0. Hence, for the

oscillating integral 𝐼2 we have

𝐼2 =|Hess 𝑓(𝑥1(𝑥2, 𝑠1, 𝜂), 𝑥2, 𝜂)|𝑞𝑒𝑖𝜉3𝐹1(𝑥1(𝑥2,𝑠1,𝜂),𝑥2,𝑠1,𝜂)

·
∫︁
R

𝑒±𝑖𝜉3𝑦2𝑎(𝑋1(𝑦, 𝑥2, 𝑠1, 𝜂) + 𝑥1(𝑥2, 𝑠1, 𝜂), 𝑥2, 𝜂)
𝜕𝑋1(𝑦, 𝑥2, 𝑠1, 𝜂)

𝜕𝑦
𝑑𝑦.

Now we employ the standard stationary phase method [7], to obtain

𝐼2 =|Hess 𝑓(𝑥1(𝑥2, 𝑠1, 𝜂), 𝑥2, 𝜂)|𝑞𝑒𝑖𝜉3𝐹1(𝑥1(𝑥2,𝑠1,𝜂),𝑥2,𝑠1,𝜂)

·

(︃√︂
2𝜋

𝜉3
𝑒±𝑖𝑠𝑔𝑛(𝜉3)

𝜋
4 𝑎(𝑥2, 𝑠1, 𝜂) +𝑂

(︃
1

|𝜉3|
3
2

)︃)︃
,

where

𝑎(𝑥2, 𝑠1, 𝜂) = 𝑎(𝑥1(𝑥2, 𝑠1, 𝜂), 𝑥2, 𝜂)
𝜕𝑋1(0, 𝑥2, 𝑠1, 𝜂)

𝜕𝑦
.

As a result, for the oscillating integral ̂︀𝜇1
𝑞(𝜉, 𝑥2) we have:

̂︀𝜇1
𝑞(𝜉, 𝑥2) =

√︃
2𝜋

|𝜉3|
𝑒𝑖(±

𝜋
4
𝑠𝑔𝑛(𝜉3)+𝜉3𝐹1(𝑥1(𝑥2,𝑠1,𝜂),𝑥2,𝑠1,𝜂))

· |Hess 𝑓(𝑥1(𝑥2, 𝑠1, 𝜂), 𝑥2, 𝜂)|𝑞𝑎(𝑥2, 𝑠1, 𝜂) +𝑂

(︂
1

|𝜉|

)︂
,

where
𝐹1(𝑥1(𝑥2, 𝑠1, 𝜂), 𝑥2, 𝑠1, 𝜂) = 𝑠1𝑥1(𝑥2, 𝑠1, 𝜂) + 𝑓(𝑥1(𝑥2, 𝑠1, 𝜂), 𝑥2, 𝜂).

This completes the proof.

Corollary 2. Let 𝑓(𝑥1, 𝑥2, 𝜂) satisfies the assumptions of Proposition 1, then there exists a
neighbourhood of the zero 𝑉1 × 𝑈 ⊂ R2 × R𝑚 such that, as 𝑞 > 1, the integral ̂︀𝜇𝑞 satisfies the
asymptotic formula:

̂︀𝜇𝑞(𝜉) =

√︃
2𝜋

|𝜉3|
𝑒

𝜋
4
𝑖sgn (

𝜕2𝑓(0,0,0)

𝜕𝑥21
𝜉3)

·
∫︁
𝑒𝑖𝜉3(𝐹1(𝑥1(𝑥2,𝑠1,𝜂),𝑥2,𝑠1)+𝑠2𝑥2)|𝐻𝑒𝑠𝑠𝑓(𝑥1(𝑥2, 𝑠1, 𝜂), 𝑥2, 𝜂)|𝑞𝑎(𝑥2, 𝑠1, 𝜂)𝑑𝑥2

+𝑂

(︂
1

|𝜉|

)︂
as |𝜉| → +∞),

where
𝑎(𝑥2, 𝑠1, 𝜂) := 𝑎(𝑥1(𝑥2, 𝑠1, 𝜂), 𝑥2, 𝜂)𝜑(𝑥2, 𝑠1, 𝜂).

Here 𝜑 is some smooth function being 𝑂
(︁

1
|𝜉|

)︁
uniformly with respect to the small parameters

𝜂.

This corollary follows immediately Proposition 1.
The next lemma is proved by straightforward calculations, see [15].

Lemma 3.1. Let 𝐹 (𝑥1, 𝑥2, 𝑠1, 𝑠2, 𝜂) be a smooth function depending on the parameters
(𝑠1, 𝑠2, 𝜂) and

𝐹 ′
𝑥1

(0, 0, 0, 0, 0) = 0, 𝐹 ′′
𝑥1

(0, 0, 0, 0, 0) ̸= 0.
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If 𝑥1 = 𝑥1(𝑥2, 𝑠1, 𝑠2, 𝜂) is a smooth solution of the equation 𝐹 ′
𝑥1

(𝑥1, 𝑥2, 𝑠1, 𝑠2, 𝜂) = 0, then the
second derivative of the function 𝐹 (𝑥1(𝑥2, 𝑠1, 𝑠2, 𝜂), 𝑥2, 𝑠1, 𝑠2, 𝜂) with respect to 𝑥2 obeys the
following identity:

𝜕2𝐹 (𝑥1(𝑥2, 𝑠1, 𝑠2, 𝜂), 𝑥2, 𝑠1, 𝑠2, 𝜂)

𝜕𝑥22
=

Hess𝐹 (𝑥1(𝑥2, 𝑠1, 𝑠2, 𝜂), 𝑥2, 𝑠1, 𝑠2, 𝜂)
𝜕2𝐹 (𝑥1(𝑥2,𝑠1,𝑠2,𝜂),𝑥2,𝑠1,𝑠2,𝜂)

𝜕𝑥2
1

.

Since Hess𝐹1(𝑥1, 𝑥2, 𝑠1, 𝜂) = Hess 𝑓(𝑥1, 𝑥2, 𝜂), then by Lemma 3.1 we have:

𝜕2𝐹1(𝑥1(𝑥2, 𝑠1, 𝜂), 𝑥2, 𝑠1)

𝜕𝑥22
=
𝐻𝑒𝑠𝑠𝑓(𝑥1(𝑥2, 𝑠1, 𝜂), 𝑥2)

𝜕2𝑓(𝑥1(𝑥2,𝑠1,𝜂),𝑥2,𝜂)

𝜕𝑥2
1

.

Hence, it is sufficient to consider the behavior of the following one-dimensional oscillating
integral with the damping factor:

𝐼𝑞(𝜉3) =

∫︁
𝑒𝑖𝜉3(𝐹1(𝑥2,𝑠1,𝜂)+𝑥2𝑠2)̃︀𝑎(𝑥2, 𝑠1, 𝜂)|𝐹 ′′

1 (𝑥2, 𝑠1, 𝜂)|𝑞𝑑𝑥2, (3.3)

where ̃︀𝑎(𝑥2, 𝑠1, 𝜂) = 𝑎(𝑥2, 𝑠1, 𝜂)| 𝜕
2

𝜕𝑥21
𝑓(𝑥1(𝑥2, 𝑠1, 𝜂), 𝑥2)|𝑞

and 𝐹1(𝑥2, 𝑠1, 𝜂) is an analytic function. If 𝐹1(𝑥2, 𝑠1, 𝜂) is a polynomial, then by Oberliner
theorem [2], as 𝑞 > 1

2
, for integral (3.3) we obtain:

𝐼𝑞(𝜉3) = 𝑂

(︃
1

|𝜉3|
1
2

)︃
as |𝜉3| → ∞.

In what follows, we shall prove an analogue of Oberliner theorem for analytic functions; this
theorem is of an independent interest. The proof of main theorem 1.2 is reduced to problem
on estimating one-dimensional oscillating integrals with an arbitrary analytic phase depending
on the parameters, which is a more general result. As D.M. Oberliner showed [2], a similar
statement fails for the functions in the class 𝐶∞.

4. Proof of Theorem 1.2

Now we consider the following one-dimensional oscillating integral:

𝐼𝑞(𝜉3) =

∫︁
𝑒𝑖𝜉3𝐹 (𝑥2,𝜂)𝑎(𝑥2, 𝜂)|𝐹 ′′(𝑥2, 𝜂)|𝑞𝑑𝑥2, (4.1)

where 𝐹 (𝑥2, 𝜂) is real-analytic function in the vicinity of zero 𝑊 × 𝑈 ⊂ R×R𝑚 satisfying the
conditions 𝐹 (𝑥2, 𝜂) ̸≡ 0, 𝐹 (0, 0) = 0 and 𝑎(𝑥2, 𝜂) ∈ 𝐶∞

0 (𝑊 × 𝑈).
We begin with an auxiliary lemma.

Lemma 4.1. Let 𝐹 (𝑥2, 𝜂) a function real-analytic on the set 𝑊 × 𝜋−1(𝑈). Then for each
point 𝑦0 ∈ 𝜋−1(𝑈) there exists a neighbourhood 𝜔 ⊂ R𝑚 such that for each 𝑞 > 1

2
, the integral

𝐼𝑞(𝜉3) satisfies the following estimate

|𝐼𝑞(𝜉3)| 6
𝐶‖𝑎(·, 𝑦)‖𝑉

|𝜉3|
1
2

,

where 𝜔 ⊂ R𝑚 is a corresponding neighbourhood of the origin in R𝑚.

Proof. In the proof, we employ a covering of the set 𝜋−1(𝑈) by finitely many neighbourhoods
𝜔𝑗 of the points 𝑦𝑗 ∈ 𝜋−1(𝑈).

Let 𝑦0 be some fixed point in 𝜋−1(𝑈). Since 𝜙𝛼(𝜙𝛼 = 𝜙𝛼1
1 (𝑦)𝜙𝛼2

2 (𝑦) . . . 𝜙𝛼𝑚
𝑚 (𝑦)) is bounded in

some neighbourhood of the point 𝑦0, the function 𝐹1(𝑥2, 𝑦) reads as

𝐹1(𝑥2, 𝑦) = 𝜙𝛼𝐹2(𝑥2, 𝑦),

where 𝐹2(𝑥2, 𝑦) = 𝑏(𝑥2, 𝑦)𝑝(𝑥2, 𝑦).
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It follows from Lemma 2.3 that for each point 𝑦0 ∈ 𝑌 of this manifold there exists a coordinate
neighbourhood 𝜔 such that 𝐹2(𝑥2, 𝑦) is a function real-analytic at the point (0, 𝑦0) and the
condition holds 𝐹2(𝑥2, 𝑦

0) ̸≡ 0. This is why we can apply a Weierstrass preparation theorem to
the function 𝐹2(𝑥2, 𝑦).

We note that 𝜙𝛼 is bounded in the neighbourhood 𝜔. Employing Proposition 2.1 in work [4]
and applying standard methods for the analysis for 𝑞 > 1

2
, we arrive at the following estimate:

|𝐼𝑞(𝜉3)| 6
𝐶

|𝜉3|
1
2

. (4.2)

Since 𝜋−1(𝑈) is a compact set, reproducing the above arguing for each set 𝜔𝑗, we get estimate
(4.2). Finally, these local estimates allow us to obtain the desired estimate for 𝜋−1(𝑈). The
proof is complete.

Now we are going to prove the following proposition.

Proposition 2. Let 𝐹 (𝑥2, 𝜂) be afunction real-analytic at zero. Then there exists a neigh-
bourhood 𝑊 × 𝑈 ⊂ R × R𝑚 of the origin such that for each real number 𝑞 > 1

2
, the following

estimate holds true:

|𝐼𝑞(𝜉3)| 6
𝐶‖𝑎‖𝑉
|𝜉3|

1
2

.

Proof. If the function 𝐹 (𝑥2, 𝜂) satisfies the assumptions of the Weierstrass preparation theo-
rem [16], that is, 𝐹 (𝑥2, 0) ̸≡ 0, then we obtain the result of work [4] since in this case the
function 𝐹 (𝑥2, 0) has a singularity of type 𝐴𝑘. This condition is equivalent to the following: at
the point 𝑥2 = 0, the function 𝐹 ′

𝑥2
(𝑥2, 0) has a root of multiplicity 𝑘 < ∞ under the condition

𝐹 ′
𝑥2

(0, 0) = 0.
We consider the case, when the function 𝐹 (𝑥2, 𝜂) does not satisfy the assumptions of the

Weierstrass preparation theorem [16]. More precisely, we consider the case, when 𝐹 (𝑥2, 0) ≡ 0
although 𝐹 ̸≡ 0. We note that as it was shown in the classical work by W. Osgood [17, Sect.
2], no analogues of Weierstrass theorem holds in this case.

In the case, when 𝐹 (𝑥2, 𝜂) is analytically continued to the set C × 𝐵, where 𝐵 ⊂ C𝑚 is
some ball centered at the origin, we can employ Lemma 3 of work [12]. However, as the Osgood
counterexample indicates [17, Sect. 2], in the general case, Lemma 3 in work [12] fails. However,
we can employ Lemma 2.3 since 𝐹 (𝑥2, 𝜂) is a non-zero real analytic function on the set 𝑊 ×𝑈
and 𝐹 (0, 0) = 0. Then, applying Lemma 2.3, we construct a manifold 𝑌 and a proper analytic
mapping 𝜋 : 𝑌 ↦→ 𝑈 such that in local coordinates, the function 𝐹 (𝑥2, 𝜋(𝑦)) reads as

𝐹 (𝑥2, 𝜋(𝑦)) = 𝜙𝛼1
1 (𝑦)𝜙𝛼2

2 (𝑦) . . . 𝜙𝛼𝑚
𝑚 (𝑦)𝑏(𝑥2, 𝑦)𝑝(𝑥2, 𝑦),

where 𝑝(𝑥2, 𝑦) is a pseudo-polynomial and 𝜙(𝑦) are local coordinates. In this case, for each
point 𝑦0 ∈ 𝑌 there exist local coordinates (𝜙1, . . . , 𝜙𝑚) centered at this point and obeying the
conditions 𝜙𝑗(𝑦

0) = 0, 𝑗 = 1, . . . ,𝑚. We suppose that 𝜋−1(𝑈) ⊂ 𝑌 is some compact set on a
real-analytic manifold 𝑌 .

Therefore, integral (4.1) reads as

𝐼𝑞(𝜉3) =

∫︁
𝑒𝑖𝜉3𝐹1(𝑥2,𝑦)𝑎(𝑥2, 𝑦)|𝐹 ′′

1 (𝑥2, 𝑦)|𝑞𝑑𝑥2, (4.3)

where
𝐹1(𝑥2, 𝑦) = 𝜙𝛼1

1 (𝑦)𝜙𝛼2
2 (𝑦) . . . 𝜙𝛼𝑚

𝑚 (𝑦)𝑏(𝑥2, 𝑦)𝑝(𝑥2, 𝑦).

Since 𝜋 : 𝑌 ↦→ 𝑈 is a proper analytic mapping [13], we apply Lemma 4.1 and standard
methods from the analysis and this proves Proposition 2. Indeed, according Lemma 4.1, for
each point 𝑦0 ∈ 𝜋−1(𝑈) there exists a coordinate neighbourhood 𝑉 centered at the point 𝑦0

such that 𝐹 (𝑥2, 𝜋(𝑦)) is written as

𝐹 (𝑥2, 𝜋(𝑦)) = 𝜙𝛼1
1 (𝑦)𝜙𝛼2

2 (𝑦) . . . 𝜙𝛼𝑚
𝑚 (𝑦)𝑏(𝑥2, 𝑦)𝑝(𝑥2, 𝑦),



90 SH.A. MURANOV

where 𝑏(𝑥2, 𝑦) is a real-analytic function and 𝑏(𝑥2, 𝑦) ̸= 0 for each point (𝑥2, 𝑦) ∈ 𝑊 × 𝜔 and
𝑝(𝑥2, 𝑦) is unitary pseudo-polynomial.

Thus, we have the needed estimate as (𝑥2, 𝑦) ∈ 𝑊 × 𝜔. Since 𝜋−1(𝑈) is a compact set,

there exists a finite covering 𝜋−1(𝑈) ⊂
⋃︀𝑁

𝑗=1 𝜔𝑗 and neighbourhoods 𝑊𝑗 of the zero such that

in 𝑊𝑗 × 𝜔𝑗 we have the desired estimate. Finally, redenoting 𝑊 :=
⋂︀𝑁

𝑗=1𝑊𝑗 ̸= ∅, we get the
desired estimate in 𝑊 × 𝑈 and this completes the proof.

Proposition 2 completes the proof of Theorem 1.2.

In conclusion, the author expresses his deep gratitude to the referee for valuable remarks.
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4. Sh.A. Muranov. On estimates for oscillatory integrals with damping factor // Uzbek Math. J. 4,
112–125 (2018).

5. I.A. Ikromov, Sh.A. Muranov. Estimates of oscillatory integrals with a damping factor // Matem.
Zamet. 104:2, 236–251 (2018). [Math. Notes, 104:2 218–230 (2018).]

6. B.A. Dubrovin, A.T. Fomenko, S.P. Novikov. Modern geometry – methods and applications. Part
I. The geometry of surfaces, transformation groups, and fields. Editorial URSS, Moscow (1998).
[Graduate Texts in Mathematics. 93. Springer-Verlag, New York etc.]

7. M.V. Fedoryuk. Saddle-point method. Nauka, Moscow (1977). (in Russian).
8. E.M. Stein. Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals.

Princeton University Press, Princeton (1993).
9. G.I. Arkhipov, A.A. Karatsuba and V.N. Chubarikov. Trigonometric integrals // Izv. Akad. Nauk

SSSR Ser. Mat. 43:5, 971–1003 (1979). [Math. USSR-Izv. 15:2, 211–239 (1980).]
10. J.G. VanDer Corput. Zahlentheoretische Abschätzungen // Math. Ann. 84, 53–79 (1921). (in

German).
11. I.A. Ikromov. Damped oscillatory integrals and maximal operators // Matem. Zamet. 78:6, 833–

852 (2005). [Math. Notes. 78:6, 773–790 (2005).]
12. A.S. Sadullaev. Criteria for analytic sets to be algebraic // Funkts. Anal. Pril. 6:1, 85–86 (1972).

[Funct. Anal. Appl. 6:1, 78–79 (1972).]
13. Ed. Bierstone, P.D. Milman. Arc-analytic functions // Invent. Math. 101, 411–424 (1990).
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