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EXPANSION OF ITERATED STRATONOVICH
STOCHASTIC INTEGRALS BASED ON
GENERALIZED MULTIPLE FOURIER SERIES

D.F. KUZNETSOV

Abstract. The article is devoted to expansions of iterated Stratonovich stochastic inte-
grals of multiplicities 1-4 on the base of the method of generalized multiple Fourier series.
We prove the mean-square convergence of expansions in the case of Legendre polynomials
as well as in the case of trigonometric functions. The considered expansions contain only
one passage to the limit in contrast to its existing analogues. This property is very conve-
nient for the mean-square approximation of iterated stochastic integrals. It is well-known
that a prospective approach to numerical solving of It6 stochastic differential equations
being adequate mathematical models of dynamical systems of various physical nature is
one based on stochastic analogue of Taylor formula for the solutions to these equations.
The iterated stochastic Stratonovich integrals are parts of so-called Taylor-Stratonovich
expansion being one of the aforementioned stochastic analogues of Taylor formula. This is
why the results of the paper can be applied to constructing strong numerical methods of
convergence orders 1.0, 1.5 and 2.0 for It6 stochastic differential equations. The method of
generalized multiple Fourier series does not require a partitioning of the integration interval
for iterated stochastic Stratonovich integrals. This feature is essential since the mentioned
integration interval is small playing a role of the integration step in numerical methods for
1t6 stochastic differential equations.

Keywords: iterated Stratonovich stochastic integral, multiple Fourier series, Legendre
polynomial, expansion, mean-square convergence.
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1. INTRODUCTION

Suppose that we are given a fixed probability space (€2, F, P), a non-decreasing set of o-
algebras {F;, t € [0,7]} on this space and a F;-measurable for all ¢ € [0,T] m-dimensional
Wiener process f; with independent components ft(z), 1 = 1,...,m, and the process f;, o — f;
is independent of the events in the g-algebra F; for all ¢t > 0, A > 0. We assume that the
o-algebra F is complete with respect to the measure P, while the o-algebra Fy contains all
events of zero probability.

We consider a [to stochastic differential equation (SDE)

t t

Xy = Xo + /a(XT,T)dT + /B(XT,T>dfT, xg = x(0,w), w € Q. (1)
0 0

Here x,, 7 € [0,T], is a n-dimensional random process being a strong solution of It6 SDE
, the second integral in the right hand side is treated as a Ito stochastic integral, a :
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R™ % [0,T] = R™, B:R" x [0,T7] — R™™ are deterministic functions, for the right hand side
in is well-defined and satisfies standard conditions of existence and uniqueness of a strong
solution x,, 7 € [0, 7], to Ito SDE (1)) [1], xo and £, — £, 7 > 0, are assumed to be independent
and x, is a n-dimensional Fy-measurable random variable obeying M{|x,|*} < oo, M is the
expectation operator.

It is known [2]—[4] that one of the prospective approaches to a numerical integration of It6 SDE
is one based on stochastic analogues of the Taylor formula for solutions to these equations. This
approach employs a finite discretization of a time variable and supposes a numerical modelling
of the solution to Ito SDE at discrete times by means of stochastic analogue of Taylor formula.

An important feature of the stochastic analogues of Taylor formula [2]-[11] for solutions to [to
SDE is that they involve so-called It6 or Stratonovich iterated stochastic integrals (ISI), which
are functionals of the components of the Wiener process and have a complicated structure.

In one of the most general form, the mentioned It6 and Stratonovich ISIs read as

T to
T W)p, = / Ur(te) . .. / D (t)dwi . dw®) (2)
t t
«T *to
T ) = / AN / Gr(t)dw™ . dw®), (3)
t t
where ¢;(7), [ = 1,..., k, are continuous on the segment [¢t,T] deterministic functions, w, is a
random vector with m -+ 1 components of the form: wi) = 9 ag 4 = 1,...,mand wl = T, the
quantities 7y, ..., 1y takes values 0, 1,...,m, fT(i), t=1,...,m are independent standard Wiener

processes, k is the multiplicity of ISI. In and , and also in what follows, to simplify the
writing, instead of J[w(’“)]%t”i’“ and J* [w(k)]’ﬁg'i’“ we write J[tp®)]r, and J*[¢y®)]1,, respectively.

We note that classical stochastic analogues of Taylor formula, so-called Taylor-It6 and Taylor-
Stratonovich expansions [2]-[6] involve respectively It6 and Stratonovich ISIs of form and
asw1<7'>, ...,Q/Jk(T)E 1 andil,...,ik:O,l,...,m.

Transformed analogues of the above expansions, so-called unified Taylor-Ito and Taylor-
Stratonovich expansions [7], [8] involve respectively It6 and Stratonovich ISIs of form and
as ()=t -7, ret,T)andiy=1,....,m,q=0,1,2....1=1,...,k.

In view of the said above, the systems of Ito and Stratonovich ISIs play an exceptionally
important role in resolving the problem on numerical integration of 1to SDEs.

At first glance, it could seem that ISIs can be approximated by iterated integral sums.
However, such approach supposes a partitioning of the integration interval [t, T for ISI and its
length T'—t is already rather small since it serves as an integration step in numerical methods
for I1t6 SDE. As numerical experiments show [9], this leads one to unacceptable computational
costs.

In [3], it was proposed to employ mean-square converging trigonometric Fourier expansions
for Wiener processes, by which ISI is constructed. In [3], this method was employed to obtain
expansions for It6 ISI of form as k=2 and ¢1(7),Ye(7) =1, 11,i2 =0,1,...,m.

An attempt to develop this idea for Stratonovich ISI of form as k = 3 and
Yr(7), o (7)), ¢s3(T) =1, 41,149,493 = 0,1,...,m was made in [2], [10].

In [11] there was proposed a more general method of mean-square approximation of
Stratonovich ISI of form based on generalized iteratied Fourier series, which allows one
to employ complete orthonormal systems of Legendre polynomials and trigonometric functions
in the space Lo([t, T]), due to its features, the method used in [3] admits the application of only
trigonometric basis functions.
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The methods employing the Fourier series and being proposed in [2]-[4], [10], [11] turned
out to be essentially more effective for a mean-square approximation of Stratonovich and It6
ISIs than the methods based on integral sums [9]. However, the Fourier methods considered
in [2]-[4], [10], [11] lead one to iterated series of standard Gaussian random variables, in which
the passage to the limit is made iteratively. This is opposite to the multiple series, in which
the passage to the limit is made just once. This fact is essential and gives rise to a series of
restrictions for the application of the methods from [2]-[4], [10], [11] to ISIs of form and
of multiplicity 3 and higher, here we mean at least three-multiple integration over Wiener
processes in ISI.

In [9], there was proposed a method of mean-square approximation for Itd ISI of form
(see Theorem 1 in what follows) based on multiple (not iterated) generalized Fourier series over
various complete orthonormal systems of basis functions in the space Ly([t, T]*). As a result, in
the mentioned method, the passage to the limit is made just once that ensures a correct choice
of the lengths for the sequences of standard Gaussian random variables needed for constructing
an approximation of Ito ISI. Moreover, the Fourier method provides new opportunities for
estimating and exact calculation of mean-square errors in approximations for It6 ISI [9].

The present paper is devoted to an adaption of the Fourier method [9] of expansion of 1td
IST of form to Stratonovich ISI of form . In the work we show that the expansions for
Stratonovich ISIs of form obtained by the method in [9] turn out to be essentially simpler
and having no additional rather complicated terms in comparison with its analogues obtained
first in [9] for 1to ISI of form (2)).

2. FORMULATION OF MAIN RESULTS

We provide a formulation of Fourier method [9].

Let {¢;(7)}32, be a complete orthonormal system of functions in the space Ly([t,T]), and
Y1(7), ..., ¥e(7) be deterministic functions continuous on [¢t,T]. We introduce the following
function:

K(ti,...,te) = ¥i(tr) - - Un(te) Lt < <ti ty, ... tg € [t,T], k> 2, (4)

and K(t;) =11 (t1), t1 € [t,T], where 14, is the indicator of the set A.

The function K (t1,...,t) is piece-wise continuous in the hyper-cube [t, T]¥ and this is why
a multiple Fourier series of the function K (ti,...,t,) € Lo([t, T]*) converges in the hyper-cube
[t, T)* in the square-mean sense, that is,

p1 Pk k 2
lim / <K(t1, at) =YD G [ (tl)) dty ... dt, =0, (5)
=1

P1;--sPEp—00 B :
[t,T]k 71=0 Jk=0

where

k
Cjkmjl = / K(tla e >tk) H ¢jl (tl)dtl .LLdty, (6)
=1

[t,T]k
and the Parseval identity holds:

p1 Pk
K2(ty, ... tp)dty ... dty = i AR
/ (1’ ; k) 1 k p1,.--}£clﬁooz Z(Ojk---h)
[t7T]k; Jj1=0 Jk=0

We consider a partition {7;}*_; of the segment [t, T] such that

t=1<...<17nv=T, Axy = max Atj =0 as N — oo, At =714 — 1. (7)
0<y<N -1
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Theorem 1. [9] Let {¢;(x)}52, be a complete orthonormal system of continuous functions in
the space Lo([t,T]), and 1;(1), i =1, 2,...,k, are continuous on the segment [t,T] functions.
Then It6 ISI J[v®]r, of form i1s expanded into a multiple series converging in the mean-
square sense:

J[w(k)]Tt phl {prkn—mo Z Z Cjk J1 (H v
=1

1=0  jp=0 (8)
~lim 3 4, (Tz1>AW5§1)-~¢jk(%)AW5§Z))’
(ll,.“,lk)GGk

where 1.i.m. s the limit in the mean-square sense,
Gk:Hk\Lk, Hk:{(ll,...,lk>2 ll,...,lk:O, 1,...,N—1},
:{(ll,...,lk): Ly oo oyly=0,1,....N—=1, [, #1, (9 #r), g,rzl,...,k},

T
= [ oot

are independent standard Gaussian random variables for different i or j if i # 0, and AWS—? =

and

WS—?_H — w%), 1=0, 1,...,m, {Tj};yzo is a partition of the segment [t,T] satisfying condition
It is easy to show that particular cases as k=1,...,4 are written as
1)
SVl =Lim, Z Cj g, (9)
J1=0
P1 P2 ( (
J[¢( : Tt o pllézriloo Z Z C]2J1 < UG - 1{i1:i2¢0}1{j1:j2}> J (10)
7 J1= 032 0
i ) (i2) ~(23)
J[¢(3)]T,t :pl,l l,prgnﬁ\oo Z Z Clsiain ( TG C ’
Jj1=0 J3=0 (11)

- 1{2'1:1‘2;&0}1{]'1:]'2%;;3) - 1{i2=i37é0}1{j2:j3}4}('f — 1g= 13#0}1&1—]3}%22))7

J[w(@]T’t Li lpl;n—>oo Z Z Cisin <H C] = Lii—iz0y 15 J2}CJZ3)C )

Jj1=0 Jja=0

— 1 =gy 15 ]3}Cj CJ4 — 1 =iy 15 J4}<(Z2C

(41) 12
_1{22 13?60}1{]2 J3}CJ CJ4 1{12 14750}1{J2 J4}C]1 <]3 ( )

(i2)

- 1{2‘3:1‘47&0}1{]'3:]4}C C +1{11 22750}1{]1 32}1{%3 24#0}1{35 =j4}

+ 14, =is203 151 =js} Lio=ia 0} Ljo=ja} + 1{1'1:1'47&0}1{jl=j4}1{z‘2=i37é0}1{j2=j3})-

We are in position to formulate the main results of the work, which show that analogues
of expansions — obtained for Stratonovich ISI of form turn out to be essentially
simpler than expansions —.

Theorem 2. Let {¢;(7)}52, be a complete orthonormalized system of Legendre polynomials
or a system of trigonometric functions in the space Lo([t, T]). Assume also that a function s(T)
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is continuously differentiable on the segment [t,T], and a function Y1 (7) is twice continuously
differentiable on this segment. Then the Stratonovich ISI J*[{P]r, of multiplicity 2 of form

(B) with iy,iy =1,...,m satisfies the following converging in the square-mean sense exrpansion
rr p2
) _ 11) 12)
[@b( e = Lim. Ciir G, ,
P1,p2—00
J1=072=0

where the notations are the same as in Theorem 1.

Theorem 3. Let {¢;(x)}32, be a complete orthonormal system of Legendre polynomials or
a system of trigonometric functions in the space Ly([t,T]). Assume also that a function s(s)
is continuously differentiable on the segment [t,T|, and function ¢ (s), ¥3(s) are twice contin-
uwously differentiable on this segment. Then the Stratonovich ISI J* [@/1(3)]T,t of multiplicity 3 of

form with i1,12,13 = 1,...,m satisfies the following converging in the square-mean sense
expansion
*1,1.(3) (i1) #(i2) ~(i3)
S W]y = 1p1_glo Z CJ3]2]1C ( js (13)
J1,32,33=0

where the notations are the same as in Theorem 1.

Theorem 4. Let {¢;(x)}32, be a complete orthonormal system of Legendre polynomials or a
system of trigonometric functions in the space Lo([t,T]). Assume also that ¥ (s),...,4(s) =1
Then the Stratonovich ISI J*[p* ]Tt of multiplicity 4 of form ( . with i1,12,13,74 = 0,1,...,m
satisfies the following converging in the square-mean sense expansion

p
. e (1) f(i2) ~(i3) -(ia)
T W, = Lim. > Ciiiik, I, (14)

J1,J2,93,34=0

where the notations are the same as in Theorem 1.

3. PRrROOF OF THEOREM 2

In view of the standard relation of Stratonovich and It6 integrals [2], the identity holds

J*[wm)]T,t = J[¢(2)]T,t + %1“’1:2'27&0} /¢1(t1)¢2(t1)dt1 (15)

with probability 1.
According , , Theorem 2 will be proved if we show that

/wl t)a(ty)dty = Z Ciiji- (16)

Jj1=0

We consider the function
1
K*(t1,t2) = K(t1,t2) + El{tlztg}wl(tl)w2(tl)> (17)

where t1,ty € [t,T], and K(t1,t5) is of form () as k = 2.
We expand the function K*(t1,t;) into the Fourier series on the interval (¢,7") with respect
to the variable ¢, for a fixed t9:

K*(ty,t2) = Z Cji (t2)dj, (11), th#t, t#T, (18)

Jj1=0
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where
T to
Cj (t2) = /K*(tla@)cbjl(tl)dtl :¢2(t2)/¢1(t1)¢jl(t1)dt1-

Identity is satisfied at each point in the interval (¢,7") with respect to the variable t;
for a fixed ty thanks to a piece-wise smoothness of the function K*(¢1,t5) in the variable ¢;
[12]-[14]. We also note that according the well-known properties of the Fourier series [12]-[14],
series converges as t; = t and t; = T. While obtaining , we have also employed the
fact [12]-[14] that the right hand side of converges as t; = t9, which is a point of a finite
jump of the function K*(t1,t3), to the quantity

1

5 (K*(t2 = 0,82) + K (12 + 0, 15)) = %m(@)%(tg) — K*(ta, t).

The function C}, (¢2) is continuously differentiable. We expand it into the Fourier series on
the interval (¢, 7T):

_71 t2 Z CJZJ1¢J2 t? t2 7£ ta t2 # T7 (19)

Jj2=0

where C},;, is of form @ as k = 2, while identity is satisfied at each point in the interval
(t,T), the right hand side of (19) converges as to = t, to = T [12]-[14].
We substitute into ((18)):

tlﬂ t2 Z Z 032]1 ¢J1 131 ¢]2 (t2) (tla t2) € (t7 T)2' (20)

J1=0j2=0

It is easy to see that letting ¢; = t5 in (20)), we obtain:

_@bl ty ¢2 tl Z Z CJ2J1¢J1 ty ijz(tl) (21)

J1=0 j2=0
By means we can formally write:

T

1
+ t J1=0 j2=0
—ZZ/%%m%w%
J1=07j2=07%
p1 p2
22
g 350 [ @
J1= 0]2 0
p1 p2
= p}iinoo pliinoo Z Z Oj2j1 1{j1=j2}
]120]220
min{p1,p2} 0o
:P}@m Plgnoo Z Cj2j1 B Z Ojljl.
71=0 Jj1=0

In what follows, by C', K, Cy, Ky, C, K1, ...we denote various constants.
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Let us clarify how we pass from the first line in to the second one, other arguing in ([22))
follows the orthonormality of the functions ¢;(s) on the segment [¢t,T]. We have:

p1
‘/Z C, (t1) ¢y, (t)dty — Z/ ()b, () dt | < /|¢2 t1)GP (ty)] dt,

0 (23)

O/|Gp1(t1)|dt1,
t

Jj1=0

where

def =
HCED Y EACTAETE)
J=p+1%
We consider the case of Legendre polynomials. We have:
Oo 2(t1)
|G (t))] (2j1+1) / %(U(y))le(y)dijl(Z(tl))‘, (24)
Jl P1+1 -1
where T - -
—1 +t +1 2
u(y) = 5 Y+ 5 z(s) = <S - T)mu (25)
and {P;(s)}%2, is a complete orthonormal system of Legendre polynomials in the space
LZ([_L 1])
Throughout the paper, for a rational ¢ we let
T x
def dS def dy def 1
J (t, T —_— I = | ——= = —
oD [ G W0 [ 0 ey
-1

t

It follows from (24]) and the formula [12]

Plo@) = Ply(@) = 2+ DP@),  j=1,2,..., (26)
where the prime denotes the derivative with respect to x, that
|GP* (1) = | > ((le+1(2(t1)) — Pj-1(2(t))) ¥ (t)
2(t1)
I [ B = Bt it ) Pt
<Co| Y (Pra(z(t) Py (2(t)) — lel(z(tl))le(Z(tl)))’
Ji=p1+1 (27)
T—t < / P 12(2(t1)) — Py (2(t))
K j1;+1 <w1(t1) ( 2p+3
2(t1)
Py (2(t1)) = Pj2(2(t) ) Tt Py v2(y) — P, (y)
B 21 — 1 )_ 2 /( 241 + 3

-1

Y

e e LI NE)
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where 9], 1] are the derivatives of the function ;(s) with respect to the variable u(y).
By (27 . and the estimate for the Legendre polynomials [12]

K
P’FL < Y

for t; € (t,T) we obtain:

y e (—1,1), n € N, (28)

n

|GP ()] <G| lim D (Paa(2(t)) Py (2(t) — lel(z(tl))le(Z(tl)))‘

D A (A EARITAS)
1, (P )P0~ B0 o ()|

+a Z]l () + Cary(1) )
<cotim (24 D))+ €y ) ii (7300 + oy 0)
<a((X +i ) +i Z10) <2 (1000 + £y 0).

where we have employed the inequality:

1 1
Z 2 S S p/ = o (30)

j1—p1+1

It follows from @ and @ that

p1
’/X:Cj1 t1) o, (t1)dt, — Z/ (8 g, (1) dt | <

Jj1=0 ]10

K <]1( )+I%(1)> —0 as p; — oo.

Hence,
T
[e.9]

T T
1 o
5 [ enttvattdn = [ 3 Cutton i = 3 / O (1) 5, (1)

t t j1=0 71=0

- Z / Z Oj2j1 ¢j2 (t1>¢j1 (tl)dtl (31)

71=0% Jj2=0
= Z Z/OJ2J1¢J2 t ¢J1(t1 dtl - Z ij
71=0 j2=0 71=0

In (31)) we have employed the fact that the Fourier-Legendre series
Z Cj2j1 ¢j2 (tl)
j2=0

of a smooth function C}, (t1) converges uniformly to this function on each segment [t +¢,T —¢]
for all € > 0, converges to this function at each point (¢,7") and converges to C}, (t + 0) and
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C; (T —0) as t; =t and t; = T, respectively [12], [14]. This completes the proof of relation
for the Legendre polynomials.
Let {¢;(7)}32, be a complete orthonormal system of trigonometric functions in the space

Lo([t, T]). We have:

p1
'/ZCM tl ¢]1 tl dtl - Z/ J1 tl ¢]1 tl dtl

71=0 71=07%

- / S (i) () / 01(0)6, (6)d0dt,

t Ji=p1+1
r 2
2 2 —t (6 — ¢
= —T_t‘/z/;g(tl (/1/)1 )sin 7T.71 )ds sin WJ}(it )
Ji=p1+1

2 219 —
/w1 7T]1 t)ds cos%)dh

! 01 2mi(ty —
) % /<¢1(t)w2(t1> . Z_H Eﬁﬂ%
. (32)
L Sk o (1
o t¢2<t1) j1§+1 _% (1/}1 (t) - 1%(75)605%

t1
271 —t 2mg1(ty — ¢
— /sin—m%(i ; ) 1(s)ds sin—m}(_1 ; )

t

27Tj1(8 — t) " 27Tj1 (tl — t)
/cos? 1(s)ds cos T3 dt,
t

T
1 . 2wt —t C
<Gy /¢2(t1) Z —S j%(_lt )dtl =2
t Ji=p1+1 jl D1
2 C.
= Cl /wg tl S1n ﬂ-jl( )dtl + p_2’
1

S| 2w (t — ¢t
where the last step is implied by the uniform convergence of the series ) —sin M

J1=1 n T—1
by Dirichlet-Abel test [13].
By we get:
‘/ Z Yo (t1)0j, (4 /1/11 )0;, (0)dOdt,

t Jji=p1+1 . (33)
=1 27151 (s — t C, K
<aif 3 (0 -~ [l o)+ S <2,
ji=p1+1 71 y r—t P P
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The further consideration of this case is similar to the proof of relation for the Legendre
polynomials. The proof of Theorem 2 is complete.

4. PROOF OF THEOREM 3

First we consider the case of Legendre polynomials. It follows from formula (1) with p; =
p2 = p3 = p and standard relations between stochastic It6 and Stratonovich integrals [2] that
Theorem 3 is true provided

T s
L 3 Ol = / s(s) / Yl (51)dsy ™), (34

J1=0j3=0
1pl—glo Z Z 0333331 (“ = /¢3 wZ /7/]1 31 df i) (35)
J1=073=0
h_glo Z Z Clirain S =0, (36)
P =0 45=0
Let us prove . By Theorem 1 for £ = 1, see also @, we get:
1f / L
L[ o) [ntonpintonasnde® = Diim 3 6,0,
t t J3=0
where
T s
Cio = [ 0n(ohins) [ vntsr)un(si)dsias.
t t
We have:
V(D3 SMEEED SRy
Jj1=073=0 j3=0
1 (is) 2 p p 1 -~ 2
:M(( (Z O]s]l]l - § )C ) ) = Z (Z Oj3j1j1 - §OJ3)
j3=0 \j1=0 j3=0 \j1=0
D S S1
= (Z/ §)Pja (s )/%(31)%(51)/%(32)%(32)61326131053
J3=0 “j1 Ot t

——/% DLINE /% s1)2( 31)d31d3)2
(/% $)Pjs (s /(Z Ya(s1) @5, (51 /1/11 $2) 0, (s2)ds2

71=0

_§¢1(51)¢2(51))d31d3)2.
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Letting t; = t; = s1 in ((18)), we obtain that for each s; € (¢,7):
Z% $1)9j (51 /1/11 $2) @) (s2)ds2 = —@/11(31)@/)2(51) (38)

J1=0

It follows from and that

2
(/% $)bjs (s / Z Va(s1)0j, (51 /wl $2) 0, 52)d32d31d3) : (39)

J3=0 1 Ji=p+1

By and we obtain
B, <0, (/wﬁ (130 + 1e6) ) < (/wmww)

J30
e
Z/% .

J3=07%

M\»—‘

as p — oo. This completes the proof of .
We proceed to proving . By 1to formula we find

/ws )ta(s /% )df; “)ds = /wl S1 / )by (s )dsdfs(lil)

with probability 1.
Applying Theorem 1 with £ = 1 and @, we get:

1
Pi(s (51)a(51)ds dfl) = = . ]1,
/ 1 / 1)¥2(51)asy 2 ]12:0
where
T T
C;l = /wl(s)gbjl(s)/¢3(31)¢2(51)d81d8. (40)
We have

(41)

<<i<zom—2 e >>=z<z o

71=0 “j3=0 =0
T s
Clsgsin /wS ¢Js /w2<51)¢j3<31>/¢1<52)¢j1(52)d52d51d5
t , - (42)
/¢1(52)¢j1(s2)/%(31)%(51)/¢3(3)¢j3(3)d5d81d82-

t

S2 S1



60 D.F. KUZNETSOV

By — we find:

(/1/11 $2)j, (52 /(JX:O% 51)¢js (51 /¢3 $)js (s

j1=0 (43)
2
—§¢3(31)¢2(81))d81d82> :
Let us show that for all s; € (t,7), the identity holds:
S il ) (o1 / Us(5)05, (8)ds = Zoba(sn)s(sr). (44)

Jj3=0

We denote
1
K7 (t1,t2) = ¥o(t1)vs(te) Ly <t0y + 51{t1:t2}¢2(t1)¢3(t1)> t,to € [t,T).

We expand the function K7j(t1,t2) into the Fourier-Legendre series in the interval (¢,7") with
respect to the variable ¢, assuming that ¢, is fixed:

K* tl,tQ Z 1/)2 tl /¢3 ¢]3 )dS ¢]3 (tg) (tQ 7é t, tg 7é T (45)

J3=0

Letting t1 =ty = s1 in (45]), we obtain , see also the proof of formula .

By (43) and . we obtain:
(/¢1 §2)0j (52 / Z Ya(s1) @5 (51 /% §)hjs (s d8d81d82) : (46)

71=0 Ja=p+1

Arguing as in the proof of estimate (| ., for a twice continuously differentiable function 3(s)
we obtain the following inequality:

Z qb]a 51 /¢3 ¢]3 )dS

Jjs=p+1

where sy € (t,T). The rest of the proof of (35)) is similar to the proof of (3 .
We proceed to proving (36). We have

[ =Ry ((Z Z oo ¢li2) )2) _ zp: (zp: Oj1j3j1) 2, (48)

j1=0 j3=0 J3=0 *71=0

< — (fl (s1) + f1 (81)) (47)

T s S1
Croimis = / $a()6(5) / bal1)(51) / 1 (52) 5, (52) dsadsr ds

T

- / Uo(51)65(51) / n(s2)0, (s2)dsa [ ()0, (s)dsds.

S1

We substitute into (48]):

El = ( / Py(s1)bj, (51) Z / 1 (0) 0, (0)d0 / U3(s)j, (5 dsdsl) : (50)

J3=0 1=07%
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Let K (t1,t5) = (t1) L <t L1y t2 € [t, T']. We expand the function K (t1, ;) into the Fourier-
Legendre series on the interval (t,T") with respect to the variable ¢; for a fixed ts:

o0

tl,tg Z/ ¢]1 dS ¢]1 (tl) tl 75 tQ. (51)

Employing , we obtain:

ﬂZO / 1 (6)¢,(0)d6 / a(5)65, (s)ds = / (s (ZO¢ / 006,000 ) s

Joo(s

Z(bjl /wl ngl )do — Z Qb]l /w1 <Z5]1 d@)ds

J1=0 Ji=p+1
(52)
/@DS ¢1 1{s<s1}d8_/1/}3 Z ¢Jl /¢1 ¢J1 d@ds
Ji=p+1
/ 0al) 3 s / $1(0)6, (0)d6ds.
Ji=p+1
We substitute into (50)):
Bl = ( / ba(51)6 (51 / Uals) S (s / 51 (0)65, (6 dedsdsl>
J3=0 Ji=p+1
P N-1
—Z(Nl P (ug)djs (ug /¢3 Z G5 (s /%Ul )¢5, (0 deSAul) (53)
Jjz=0 =0 Ji=p+1
P N-1
- (nganwQ WD) 3 / () (s / $1(0)5,(0 deAul) ,
J3=0 = Ji=p+1;
where
t=uy<u <...<uny="T, Aup = upq — uy,

u} is the point of the minimum of the function (1 — (2(s))?)™® (0 < a < 1) in the interval
[ug, ugy1], and

max Au; =0 as N — oo, [=0,1,...,N — 1.
0<I<SN—1

The last step in is made on the base of the uniform convergence of the Fourier-Legendre
series for the function K(s,u;) on the segment [u; 4+ ¢, — ¢] for all € > 0 since K(s,u;) =0
as s € [uf,T] [12], [14].
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We have

[ oo as =EZICRED [ gyiuiyyay

= m(( Pirir (2(2) = Py (2(2))) 1 (2) (54)

L (B~ Pt i),

-1

where x € (,T), ji = p+ 1, 2(z) and u(y) are given by identities (25)), v’ is the derivative of
the function v (s) With respect to the variable u(y).
We note that in we have employed the well-known property of the Legendre polynomials:

Pii(—1) = —Pj(— 1) =0, 1, 2, ... and (20).
By (28 . and . we ﬁnd

\ / () (5)ds

Similar to and in view of the identities P;(1) = 1, j = 0, 1, 2,..., for the integral
similar to one in the left hand side of but with the integration limits x and 7" we obtain
an estimate of form . Combining estimate and its analogue for the integral with the
integration limits x and T', we get:

’]wl(s)%(s)ds/T%(S)Gﬁjl(s)ds

We estimate the right hand side in by employing :

N-1 2
E) SC’Z( lim Z|¢]3 uy)| Z ( —|—K1> Aul>
1=0

< % (fi(x) +Cl> . e (t,T) (55)

<%(f§(:z:)+f(1>, ve(nT). (56)

J3=0 = 7 P+1
C R 2
é—;Z(}\}l_r)nooz (f“ u +K1f1(ul)> AUl)
p Jj3=0 I= (57)
Cix~ (. 2 O <& 2
< _G
<5 ]ZO (Jim (J3(t.7) + Ky, (1.7))) 3 (76.7) + K1y (1,7))
Co(T —t)*p e
:14—]92 <Ig(1)+K1]i(1)) \?2—>0 as  p — 00.

This proves and this completes the proof of Theorem 3 for the Legendre polynomials.
We proceed to proving Theorem 3 for trigonometric functions. Similar to inequality we

obtain:

Z Vo(51) 05, (51 /@/)3 5)@j,(s)dsds| < %, (58)

Jjs=p+1
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)

Cbgl S1 /% 52 ¢Jl 52 d52d$1

where s, is fixed. Employing and , we obtain:

P
E, SKZ(/‘/ Z o(s1)d5, (51 /% $2)0j, (S2)dsadsy |d

J3=0 Jji=p+1

Aul> (59)

P N_lK 2 K& C
<KZ(lim Z—lAul> g—jZ(T—t)Qg— —0 as p— oo,

N
gm0 N T P L p
where
t=ug<u; <...<uny=T, Aup = up g — uy, uf € [ug, upgl,
max Au; —0 as N — oo, [=0,1,...,N — 1.
0<ISN—1

In the same way, employing and , we obtain that £ — 0 as p — oo.
It is easy to see that in the considered case, the estimate holds:

’/x¢1(5>¢jl(5)d5/T%(S)%(S)ds

It follows from and that

K )
< j_27 J1#0. (60)
1

p N—-1 oo 2
gy (Jm Y Y | [ v / 10)05 0106 )
J3=0 =0 ji=p+1 u?
D N-1 oo 1 2 K, p C
: 2
<K22<A}1_r>noo Z PAW> <FZ(T—1§) <5—>0 as p — oo.
J3=0 =0 j1=p+1 1 73=0

Here we have employed the same notations as in (59). This completes the proof of Theorem 3.

5. PROOF OF THEOREM 4
It follows from that

p
Lim. Y Chann G GGG =T + Lz AT
J1,J2,J3,34=0

+ Lnmipry A5 ™Y + Lm0y AS™
+ 1{i2=i3#0}A51i1i4) + 1{i2:¢4¢0}Aéi1i3) (61)
+ 1{1'3:2'4#0}14551'”2) — Liiy=ir20) L{ig=is20) B1
— L =iz 201 L {iy=is20) B2
— 1y =iy 20y L {iy=is 20} B3,
where J[¢p®)]r; is of form @ as 1(8),...,4(s) =1 and iy,...,i4, =0,1,...,m,

Agm“) = 1p1_>1110 Z CJUleJl ];3)@%4)’

J4,J3,51=0
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Ag”“) = Lim. Z ClijajaisCj o )gj%l)’

J4,53,52=0
(i2i3) _ - E (i2) ¢ (i)
AS = lpl—gé CJ4J3]2]4 J2 CjS ’
Ja,J3,52=0

Az(;m‘l) = l.i.m. Z CJ4J3J3]1 Ji )gﬂ%l)’

J4,J3,51=0

Agm):l.i.m Z Ciajajain Gy N gﬂs ’

p—0o0
J4,93,51=0
AW — 1 m, § ey i)z
6 ];_'>OO J3Js3j2Ji ]1 j2 7
73,32,71=0
B; = lim E C; B; = lim g C;
p—00 ]4J4]1]17 p—r00 ]3]4]3]47
J1,J4=0 Ja,53=0
Bs = lim E C;
p—ro0 ]4]3]3.74
Ja,J3=0

Interchanging the integration order in Riemann integrals and employing Theorem 1 for k = 2,
see , relation , Parseval identity and Ito6 formula, we obtain:

Agig’u) :l]éi_.glo Z /¢J4 /¢J3 S1 (/ ¢j, (82 d52> ds dsgj <J4
t

Ja,33,J1= 0

:1}_)1_,)102 Z /¢J4 /(bj3 51 (/ ¢J1 So dSQ) dSldSC]ZS)C(M
Ja:J3=0 % 71=0

:1]_)1__)1’5}) Z /¢J4 /(b]3 S1 < s1—t) — (/ ®j, (2 d$2> )dslds
Ja:J3=0 % Ji=p+1

(i3) +(ia)
) sts Cj4

:&,ijglo Z /¢J4 /¢93 51) (81 —if)dsldsg“(Z3 C(“ N

Ja,j3=0 t

1 . )
25//(81 — t)dwg‘f)dwg“‘)

+ = 1{13 —iuz0) im Z / ;4 (s / i (1) (51 — t)dsyds — Al

T s s1 T

:5///6&9 dw!™® dw ) 4 41{13 147&0}/(51 — t)ds; _Agzgm)
Lo

t

(62)
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with probability 1, where

P
A _115,1;%10' Z J4J3C ’ C]4 )

J3,Ja=0

51 (63)

a5, s :%/T¢j4(s)/s¢j3(81 Z (/fbh $9 d32) dsyds.

=p+1
We consider AY>™):

Aéizl&) :ll;i_'g}) < /¢]4 </ (bJS S1 d51) /¢]2 51 dSIdS

Ja,J3,72=0

-3 / 61 (5) / o) / ¢j3<sz>d82)2dslds
/ b;,(s / 5, (s3 ( / 014 (51 dsl) d53ds> ¢l
le.)i_.}or(l) ( / 0:,(s)(s — 1) / 5, (51)dsyds (64)

Ja,j2=0

_ %/%(3)/%(31)(51 — t)ds,ds

__/(bﬂ /¢J2 83 s—t—Ft—Sg)ngdS)C]; C4)

_ Ag”“) + Agm“) + Agzm
_ Aéim) +A§i2i4) +A§i2i4)
with probability 1, where
p
Lim. > 0G0 G,

Ja,j2=0

p
(i2ia) _ 4 (i2) ~(ia)
A?’ _1'1_'}0%' Z C§4j2<j2 <j4 )
Ja,j2=0
T
1
Viaja = §/¢J4 (/ Pjs (81 dSl) /¢gz s1)dsyds,
t jz=p+1
1432 = /¢J4 /¢J2 53) Z (/ ¢33 S1 d81> dssds.

Jj3=p+1

Aéi2i4)

i’_‘
g E
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We consider Aéilig’) :

Aéilis) :lpLIo% Z /ijl 53 /¢j4 52 /¢]3 S1 /¢J4 d5d81d82d33

J4,J3,51=0

Yoiale) »

J3
=Lim. Z / ;. (53 / ;. (s / ;. (51 / ;. (59)dsyds dsdss

J4,J3,51=0

Yeiale) »
J3

=Lim. Z (%/Tqﬁjl(sff) (/T ¢j4(5)d3)2]¢j3(3)d8d83

J4,J3,51=0

- %/¢j1(83>i¢j3(3) </S ¢j4(81)d81>2dsds3
_%/T¢j1(53)/T¢j3(82)(/T¢j4(sl)dsl)2d52d33) (65)

il
J3

_1p1_>rg1o Z < /qﬁh s3)(T — s3 /¢]3 )dsdss

J3,J1=0

_ —/925;1 S5 /@3 s3)dsdss
__/¢]1 Ss /%3 $2)( —32)d32d83>@f CJS

— AP AT 4 Agm
_ _AfliliS) _|_Agt113) +Aé1113)

where

z113 —1i 2 : (11
= 1.1.1m.
p—r00 7371 ]1 Js ’

J3,51=0

p
AP <lim 3 o, (G

J3,31=0

djj, = / ¢, (83) } _p+1( / G, (s >2 /T ¢j,(s)dsdss,
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]3]1 - /¢j1 53 /¢]3 (/ ¢j4 51 dsl) d8d83)
Ja=p+1
o =Lim. Z B G,
J3,91=0
ml = /925]1 83 /%3 S9) Z (/ ju (51 dSl) dsadss
Jja=p+1
1
=3 ¢j3($2 ¢g4 s1)ds; ¢]1 s3)ds3ds;.
t p+1
Moreover,
. . ) (4 . p . (.
A+ AT =Ll Y (Ciaain + Chuuinia) 637G,
Ja,33,32=0
:lﬁ,}i_}r?o Z /@4 /qb]3 S1 /¢]2 S /¢J4 S3)dsgdsedsids
Ja,33,j2=0
C ZQ)C(13
=Lim. Z / s (51 / b, (59 / ¢, (53)ds3ds, / ;. (s)dsds,
Ja,33,32=0
C ZQ)C(ZJ
zlbi_.glo (/ b5 (51 /gbm S9 /(;5j4 S3 d33/q§]4 )dsdsads,
Ja,33,32=0
- / Brs(sn) / %(sﬁ( / Biu()d ) st )¢
T
:1p1_>g Z /¢j3 S1 /(,25]2 82 < — 81 </ ¢]4 83 ng) )d82d81
J3,Jj2=0 ja=0
C ZQ)C(Zg
—2A2")
with probability 1. This is why
Alizis) o A (1213) 4 (i2i3)
3 6 5 (66)

with probability 1.

:Az(lm‘g) _ Agizig) +Aéi2i3)
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We consider Affli‘*) :

A§i1i4) _ /¢j4 /¢j1 S3 /¢J3 So /gbjg S1 d81d82d83d8@ <j4
J4 :33,91=0
- lpl_glo Z /¢J4 /¢Jl 53) </ Gjs (82 ds?) d83d8CJ“)C
Ja,ji=0 % Jj3=0
i / e / B3 (35)(5 — su)dsgds¢P i — A

Ja,1=0 %

1 . )
= 5 //dwgll)d(Slde;‘l -+ 1{11 =is#0} <Z/ (b]4 /(b]4 S3 d53d5
t t 7a=0
S T s S S1
- Z/¢j4(5) /(53 —t>¢j4(33)d83d8) — ““ = ///dw s dw! 24) A““
Ja=07% f

(67)
with probability 1. We consider A{"?) :

Azm lpl_glo Z /(25]1 S3 /¢J2 52 /¢33 S1 /¢Js d3d51d52d$3cj Caz

J3,J2,J1=0
(/ ¢j3 ) d82d33<’(“ C(zz

=li.m. Z /(bjl S3 /(Zﬁh 32 _32)d82d83<(“ C(w . z1z2)

g 3 3o [

J1,52=0 % j3=0

p—00
J1,J2=0 t

=li.m. Z /¢]2 82 —82 /gb]l 83 ds3d32 (Zl C(zz . 1122) (68)

p—0o0
J1,J2= =0 t

T S92

1 , .
25/(T—82)/dwg‘;)dwgg")

t t

1 1%
+ 21{11 i27#0} Z /¢32 82 — 52 /¢J2 S3 ngdSQ A( 122)

J2=07%

T s1 89

///dw Zl)dW dSl —|— 41{11 127é0} /(T _ 52)d52 _ Aéilm)
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with probability 1.
We proceed to B, B, B3. We have:

B :1}.71_.}012> Z /qb]4 /¢J4 S1 (/ bj, (52 dsz) dsids
t

J1,74=0

p*)OO

_lplerono Z /¢J4 /¢J4 s1)(s1 — t)dsids — lim Z a]4]4 (69)
1
4 (31 - t)dsl - plggo Z a]4j4

t J4=0

The next formula is

T S3 s3
B, =lim E(% [ ontsn ( / ¢j4<s>ds)2 [ onsiyisuas
T S1 S92 9
~ 5 [onsn [ onton( [ oot ) dsaay
T S1 S1 9
_%/¢j3<51>/¢j3(5) </ ¢j4(82)d82> dsdsl)

_ Z /¢]3 53 53 _t /¢33 S1 d81d83 —plLIgOZ s (70)

Ja= 0 Jjs=0
p
3! / e / 2 = s (s2)dsadss + lim D" af
J3=0 t Jj3=0
—Z /% 5 /qus sl—t+t—s)dsdsl+plggoz p
.73 =0 t J3= =0
_plggozajsm +plggoz J3J3 plggoz FEVEN
Jj3=0 73=0 73=0
Moreover,
p
B+ By =Lim. > (Cisjainis + Cljaiass)
Ja,53=0
=l.i.m. Z /gbjg /¢j4 $1 /qu S /gb]g S3)dssdsadsyds
p—00 0
J4,J3=

:lbgrglo Z /¢j4 51 /ng S9 /qu S3 d33d32/gbj3 Ydsds

Ja,j3=0
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» T S1 T T
lim. ( D(1) [ S3253) [ Gn(sa)dsy [ 6(s)dsdssd
e ]go / 1 / S3 t/ 59)ds; 81/ s)dsdssdsy
T S1 T 9
—/%@V@&%/%w@dwﬂ

T
_Z/qﬁM s)(T — s1 /ng s3)dszds

Jja=0
_ Z / G, (s1)(T — 1 / ;. (53)dssds) + 2 11m Z D=2 phi?o Z P
Jja=0 Ja=0 Ja=0
This is why
P
'33“21332253 s~ Jim D J&n-—,kggiijcil;+,gg;j£j e (71)
J3=0 J3=0 J3=0 J3=0

Substituting relations f into , we obtain
p
Lim > Gl G = T

p—roo
J1,92,J3,J4=0

T s s1

1 o
+ 51{1‘1:12;&0}///dSdegf)dwg 4)
t t t

1 T s2 s1 1 T s1 s2 (72)
-+ 51{122157&0} / //dwg“)dSldeZ;) + 51{,'321'4750} / / / deZl)de?)dsl
t t t t t t
T s1
1
+ Zl{i1:i2¢0}1{i3:i4¢0} / / dssdsy + R = J* [1/1(4)]1“,15 + R
t t
with probability 1, where
R=- 1{i1:i2¢0}A§i3i4) + L =ig0} <_Ag2i4) + Agim) + Ag?m)
+ 1{11 0} (A(zzzs) Aéizi:s) + Aéi2i3)> . 1{12 zg;éo}A i144)
+ 1{7;2:7:4750} (—AELZIZS) + Aéilig) + Agli?, ) _ 1{@3 14750}A 1112
>
+ 1{1‘1:1'2750}1{1'3:1'4750} lim a? J
s s (73)
1{11 1,3750}1{22 =ia#0} ( lim Z ajs] + plg{.lo Z CP plggo Z Jsjs)
73=0 73=0 73=0

- 1{z‘1*i4¢0}1{z‘2—z‘3¢0}

(2 Jim Z foia — Jim Z @ — Jim Z g lim, Z m)

73=0 73=0 73=0 73=0
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It follows from (72)) and that we shall complete the proof of Theorem 4 if

Agjj ) =0 with probability 1 and
- (74)

Z 33]3 Z J3Jj3 ’ Z 05)3]3 — 0 Z J3J3 — 0 as b — o0,

Jja=0 Jj3=0 J3=0 j3=0

where k=1, 2,...,6,1,7 =0, 1,.
We consider the case of Legendre polynomlals We are going to prove that A 14) — () with
probability 1. We have:

p 2
(i3) +(ia)
M (< Z a§4j3cj33 <j44 > )

j37j4:0
p Js! 2 P 2
p P
- Z Z <2a3313a1§,9§ + ( J34 ) + 2a]3]'aJ§13 + (ajéjs) ) +3 Z (aj§j§> (75)
J4=073=0 74=0
P p J5—1 9 P 9
_ p P .
_<Z ajsj:s) T Z Z ( Tjagy T a]é]s) +2 Z <aj§,j§> ’ i3 =1ia 70,
33=0 J5=073=0 J4=0
P N2 P )
M(( X @) )= X @) aAuwatoato (@)
J3,54=0 j3,j4=0
( p 9
(T —1t) Z (af. )" as i3=0,is #0
P 2 ja=0
M(( a},; C“”é“”) ) = 4 2 ‘ . (77)
j3%::0 BRI (T —1t) Z (ab,,)” as is=0,i5#0
Jj3=0
(T — )% (a,)? as i3 =14 = 0.
We consider the case i3 = i4 # 0:
, T D [, ] NG :
@555 = 32 Pj4(y) Pj3(y1) Z (2]1 + 1) le<y2>dy2 dydy
1 1 Ji=p+1 1
_(T—1)*V/(2ja +1)(2j3 +1)
32
1 - 1
1
P 3 5 P = P )? [ B ),
1 Jji=p+1 J1 o
SO / 00) (Paa () = Paca (1)
SQW 1 ]4 1 1 Jat+1 1
[e'e) 1 , .
Y 5 (Puni(w) = Puoaw)dyr,  ja#0,
o~ 251 +1
Jji=p+1
(T —t)? \/ 2)3+1 - 1 2 .
gy = Py, (y1) (1 = y1) Z i+ 1 (Ph+1(y1) — Pi—1(y1))" dyr,  ja=0.

Ji=p+1



72 D.F. KUZNETSOV

By and the estimate |Pj,_1(y) — Pj,4+1(y)| < 2, y € [—1, 1] we obtain

Co ~—= 1 Ch .
af | < —= — I3(1) < = Ja # 0, (78
Gl < 75 2 F < )
=1 C, = 1 o
jab | <C Y 7 I5(1) < > jabol <C Y 7 1,(1) < o (79)
ji=p+1 Jji=p+1

Taking — into consideration, we write

M«i%&%ﬁ%@wi%)Exsﬂﬁz

J3,J4=0 Ja=1
p Jz—1 9 P 2
p 2
a 2 E at, . a
+ Z Z ( Wjagy, J§J3> T ( ( Jé]é) + (aoo) >
Jz=1J3=1 j4=1

. ,
1 1<~ 1\?2 K, Py (1 1

<K0<—+—§ —) + 2B S =
PP Vis p . ? VAR

p

1 1 [de\® K, K31

<Kol =+ = —) +—4+ =) —
O(I’) b \/E

1 2\ K, K d
gKO(—Jr—) +—1+—3(1+/—x>
PP j% P S

i Ky (p 1)
p p

A similar result for the cases , is implied by estimates , . This is why

=0 as p—oo, iz3=1i4#0.

Al — 0 with probability 1. (80)

It is easy to see that the formulae

AP =0, AP =0,  Af"™ =0 with probability 1 (81)

can be obtained similar to the proof of relation . Moreover, by estimates , we
obtain

p

pli)rglo Z as ;. = 0. (82)

Jj3=0

Similar to the proof of , we find:

;;ngoz i = 0, ]}ggloz by =0 (83)

Jjz=0 Jja=0

We consider Agﬂ“) :

A31224 A(ZQM + A (i2ia) A(i2i4) _ _Agim) (84)

7
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with probability 1, where

A71224 _lpl_>m Z gJ4J2 (lQ)CJ(ZZl)’

J2,J4a=0

Fiuia :/T¢j4(8)/¢j2(81 (/ b (59 dSQ/gb]l S dSQ)dSldS (35)
h=p+1
- Z /%4 /%1 2 d82/¢]2 51 /%1 S9)dsydsds.

Ji=p+17%

Identity is implied by the estimate:

1

<1 I (y K,
<K 2 y < —.
al <K 3 5 [ i L <X

We observe that

g§4j4 - (/ ¢J4 /(bjl 52 dS?dS) ) (86)

Ji=p+1

g§4j2 +g§2j4 = /¢J4 /¢j1 S2 d52d5/¢12 /%l So)dsads (87)

Ji=p+1%

and moreover, as j4, J2 < p,

[e.9]

p — )% /(2s + 1)(252 + 1) Z 1
N ‘2141

Gjsjo = 16
Y1

B (o) = Pra(w)) [ Prw) (Pyat) = Palw) dodn

-1

By the orthonormality of the Legendre polynomials we obtain

(T—=t)/(2ja+1)(2j2+ 1) i 1

D D
9jajo + jojs =

16 Pt 271+ 1
1 1
Pl (Pcsl0) = Prssn)) i [ Pat) (Pratt) = Pra(0)) dy
—1 —1 (88)
1
(T—t)*@2p+1) 1 9 g as Jo=Ja=p
B 16 2p+3 By n)dy, ) - 0 otherwise
A I as ja=ji=p
_4(2p +3)2p+1) |0 otherwise,
1 (T —t)? L as ja=p,
P —Z(qP. P = .
jaja = 9 (gjuz + 9]2]4) o 8(2p + 3)(2p+ 1) {0 otherwise. (89)
J2=ja




74 D.F. KUZNETSOV

By , and we obtain

(32 pusire)) =(5e) S 3 () 235 ()

J2,J4a=0 j3=0 =073=0 J4=0

T\ T
<(8<2p+3><2p+1>> 0 ”(8<2p+3><2p+1>) -0

as p — 00, ip = iy # 0.
We proceed to the case iy # 14, 1o # 0, ig # 0. It is easy to see that

gJ4J2 /¢J4 /¢J2 s1)F? (s, s1)dsids = / Kp(s,51)05,(5)P5,(51)ds1ds

[t,T]?
is the Fourier coefficients in the double Fourier-Legendre series of the function
KP(‘Sa Sl) - 1{81<8}Fp<87 Sl)v

where

FP(s,s) < Z /¢]1 So dsz/gbﬁ S2)dsa, FP(s, ) FP(s,s1).

Ji=p+1]

In this case, the Parseval identity reads as

T s

p}l_r}loo Z 9hi) 2: / (Kp(s,sl))2dsld5://(Fp(s,sl))2dslds.

J4,32=0 [t,T]2 t ot

By we obtain:

/1 p, <y>dy\

z(s1)
VT —t K

:W |Pji—1(2(81)) = Pj1(2(s1))] < I3 fﬁ

Employing and , we find:

T
’/ %(e)de‘ :%\/23'1 +1VT —t

P 2 g
(F7(s,51))" < S5

5f1(s)f1(s1), s, 51 € (t,T).

It follows from that |F?(s,s1)| < K/p in the domain

D.={(s,s1):s€t+¢e,T—¢|, s1 €[t+¢,s|},

where ¢ > 0 is a sufficiently small fixed number. Then the uniform convergence holds:

F_l’p(s, s1) — F1(s,51)

(90)

(91)

(93)

(94)

on the domain D, as p — oo. By the continuity of the left hand side in we get the continuity
of the limiting function in the right hand side in on the set D.. Employing this fact and
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(193)), we obtain:

T s T—e s
//(Fp(s,sl))2dslds: lim //(Fp(s,sl))zdslds
e—+0
t t+e t+e
c T s
<]76£T0 / fi(s / f(s1)dsids = o / £1(5) / f1(s1)dsids (95)
t+e t+e t t
1
C(T —t)?2 I (y) K,
= ) 1 (il/ < — -
(L) p
By and we get:
L 2 = 2 = 2 K,
0< Z (giu'z) <p}i£noo Z (95')43'2) = Z (9;)4]-2) <F_>O (96)
J2,ja=0 J2,ja=0 J2,ja=0

as p — oo. This completes the case g # iy4, 1o # 0, g # 0.

It is easy to obtain a similar result for the cases iy = 0, ig # 0; ig = 0, i3 # 0; and iy = 0,
iy = 0. Then A*™) =0 and A{**) = 0 with probability 1.

We consider AU%).

Aéili?’) = Affm) + Agli?’) - Agli?’) with probability 1,

where

A(“B) Lim. Z h]s]l ZI)C(st 3331 /¢]1 83 /¢33 "(s3, 8)dsdss.

p*)OO
J3,J1=0

(3113)

Similar to the above arguing, we obtain that Ag = 0 with probability 1. Here we employ
the function K, (s, s3) = 1s,<5) FP(s3,5) and the relation

Jsjl - / Ky (s, 53 ¢J1(S3)¢J3< )dsdss, iy #i3, i1 #0, d3#0.

[¢,T]?

In the case iy = i3 # 0, for h?ljl and hg’wl + hfm, we employ the right hand sides of the
formulae and , respectively, in which we replace 7, by js and js by 73, respectively.

Let us show that

Jim S (97)

Jj3=0

We have:
+d"

J3js gj3j3‘

(98)

Jajs 33]3
Similar to the second identity in (83]) we obtain

lim g =
p—roo J3J3

73=0
It follows from that

(T —t)?

0< 1 < i —0,
pggo;:ogm prrso 8(2p + 3)(2p + 1)
3
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that is, identity holds. This completes the proof of identities for the case of Legendre
polynomials.

We consider a trigonometric case. According to

aj,j, = /% s1) Z (/ b, (s9 d82) /qu )dsds;.

J1=p+1
Moreover,
S1 K

_ — 3
[ostsnss| <5220 / dols)ds = L
¢ (99)
|a§4j3| < — 2 S — <]4 7é 0)7 |a8,j3| S

Ja Ji=p+1 Ji pia P

By and we obtain that A{*") = 0 with probability 1. In the same way,
A(zm) _ 0 A i) () Ag (1%3) _ () with probability 1 and

,,ILIEO Z a?sjs =0, plggo Z jags 0, plggo Z Jsjs
Jj3=0 J3=0 Jjs=0
We consider Az(f?i“). In this case, as i5 = iy # 0, we employ — to get:
2ji(s — 1)
T, (s)1—cos———=)ds
\/_ /— J4a ( T . t I
/¢j4 /gzﬁjl So)dsads =

oM . 2mji(s —t)
t ¢]4(S) (—Sln? d87

where j; > p+1, 54 = 0, 1,...,p. By the orthonormality of the trigonometric functions we
obtain:

2T — lor0 as Ja=20
/92514 /%1 S9)dsads = \/_( 2 { ! . J1=zp+1 (100)

2771 0 otherwise,
It follows from (100) and (85)—(87) that
L (T—t)? (lor0  asjo=j1=0 K
Ginjo T Gjnia Z 27r2j% { 0 otherwise < 7’ (101)
Ji=p+1

2 (T —1t)? (Lor0 as ja=0 K

i .ZH 4252 { 0  otherwise Sop (102)
J1=p

By , and we obtain A, U214) — 0 and Agzi‘*) = 0 with probability 1 as i, =
iy # 0. Slmﬂar to the polynomlal case, A; (i) _ = 0 and A*™ = 0 with probability 1 as iy # is,
io # 0, iy # 0. The same arguing shows that AS”” = 0 with probability 1.

Taking into considerations and the relations

plggo Z jajs p].l)% Z Jajs

J3=0 J3=0
implied by the estimates

Kl Kl
+ X fp + dp < )
|51+ 1d5) < - | fool + |ol .
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we obtain

p p p
K,y
. I D . D . [t
,,1520 Z s = ;gfgo Z 9jsj» O Z}H{}O Z Gjsjs S pll{fjo b 0.
Jja=0 Jj3=0 Jjs=0
Thus, we arrive to in the trigonometric case. This completes the proof of relations in
the trigonometric case and the proof of Theorem 4.

6. CONCLUSION

The results obtained in Theorems 2—4 can be applied to the realization of strong [2], [4]
numerical methods of convergence order 1.0 (Milstein method [3]), of convergence orders 1.5
and 2.0 for It6 SDE of form (case of a multi-dimensional Wiener process and a function
B(x,t) depending not only on ¢, but also on x) based on Taylor-Stratonovich expansions [2],
[6], [8]. It should be noted that the set of Stratonovich ISIs of multiplicities 1-4 of form
employied in constructing of the mentioned numerical methods is universal for both explicit
one-step numerical methods and for implicit multi-step and finite-difference (of Runge-Kutta
type) modifications.
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