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STOCHASTIC ANALOGUE OF FUNDAMENTAL THEOREM

OF SURFACE THEORY FOR SURFACES OF BOUNDED

DISTORTION AND POSITIVE CURVATURE

D.S. KLIMENTOV

Abstract. In this paper, we prove a stochastic analogue of Gauss–Peterson–Codazzi equa-
tions and provide a stochastic analogue of the fundamental theorem in the theory of surfaces
for surfaces of a bounded distortion and a positive curvature. In 1956, I.Ya. Bakelman de-
rived the Gauss–Peterson–Codazzi equations for surfaces of bounded distortion, that is,
for the surfaces defined by functions with continuous first derivatives and square summable
second generalized derivatives in the sense of Sobolev. In 1988, Yu.E. Borovskii proved that
the Gauss–Peterson–Codazzi equations (derived by I.Ya. Bakelman) uniquely determined
the surface of a bounded curvature.

The aim of this paper is to present the results of I.Ya. Bakelman and Yu.E. Borovskii
in terms of the theory of random processes in the case of a surface of a positive bounded
distortion and a positive curvature.

By means of two fundamental forms of the surface, we construct two random processes
and derive a system of equations relating the characteristics (transition functions) of these
processes. The resulting system is a stochastic analogue of the system of Gauss–Peterson–
Codazzi equations and is a criterion determining uniquely the surface up to a motion. The
generators of random processes are second order operators generated by the fundamental
forms of the surface. For instance, if the surface metrics is given by the expression 𝐼 = 𝑑𝑠2 =
𝑔𝑖𝑗𝑑𝑥

𝑖𝑑𝑥𝑗 , then the generator of the corresponding process is 𝐴 = 𝑔𝑖𝑗𝜕𝑖𝜕𝑗 . We establish
a relationship between the transition functions of the random process and the generator
coefficients. The obtained expressions are substituted into the generalized Gauss–Peterson–
Codazzi equations, which leads us to the desired result.

Keywords: surface of bounded distortion, curvature, random process, transition function
of random process, Kolmogorov equation.

Mathematics Subject Classification: 60G99, 53A05

In this paper, we prove a stochastic analogue of Gauss–Peterson–Codazzi equations and
provide a stochastic analogue of the fundamental theorem in the theory of surfaces for surfaces
of a bounded distortion and a positive curvature. The present work is a continuation of works
[1] and [2]. It should be noted that this subject arose as an attempt to construct an analytic
geometry on two-dimensional manifolds of a bounded curvature. In what follows we suppose
that the curvature of a two-dimensional surface 𝐹 in a three-dimensional Euclidean space is
positive and the surface 𝐹 is simply-connected and conformally equivalent to a circle. The
condition of the a positiveness of the curvature is imposed due to features of constructing
diffusion process by a quadratic form. The first and second fundamental forms of the surface 𝐹
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are denoted by 𝐼 = 𝑔𝑖𝑗𝑑𝑥
𝑖𝑑𝑥𝑗 and 𝐼𝐼 = 𝑏𝑖𝑗𝑑𝑥

𝑖𝑑𝑥𝑗, respectively, where 𝑥1, 𝑥2 are local coordinates
on the surface.

The following fundamental theorem of surface theory is well-known [3]:
Gauss-Peterson-Codazzi equations are necessary and sufficient condition for two analytically

defined quadratic forms, one being positive definite, to serve as a first and second fundamental
forms for some surface, which they determine up to a motion; for its global version we refer to
[4].

In 1956, I.Ya. Bakelman in work [5] derived the Gauss–Peterson–Codazzi equations for
surfaces of bounded distortion, that is, for the surfaces defined by functions with continuous first
derivatives and square summable square generalized second derivatives in the sense of Sobolev.
In 1988, Yu.E. Borovsky proved in work [6] that the Gauss–Peterson–Codazzi equations (derived
by I.Ya. Bakelman) uniquely determined the surface of a limited curvature.

The paper is organized as follows. In the first section we provide some definitions from the
theory of random processes. In the second section part we provide needed information from
the theory of two-dimensional manifolds of a bounded curvature (Alexandrov spaces). In the
third section we formulate and prove a stochastic analogue of the fundamental theorem of the
surface theory for surfaces of a bounded distortion and a positive curvature.

1. Preliminaries from the theory of random processes

We suppose that the reader is familiar with the definitions of a random, Markov and strictly
Markov processes as well as of a diffusion process. We adopt the notations from [7]. For more
details on the issues discussed in this section can be found in [7], [8].

We assume that we are given a random space (Ω,F, 𝑃 ).
We consider a manifold (phase space) (𝐸,B), where B is a 𝜎-field of Borel sets in 𝐸. A

detailed definition of a random process on a manifold can be found in [8].
We give some notations needed in what follows.

Definition 1. [7] A function 𝑃 (𝑡, 𝑥,Γ), 𝑡 > 0, 𝑥 ∈ 𝐸, Γ ∈ B is called a transition function
if the following conditions are satisfied:

1. For fixed 𝑡 and 𝑥, the function 𝑃 (𝑡, 𝑥,Γ) is a measure on a 𝜎-algebra B.
2. For fixed 𝑡 and Γ, the function 𝑃 (𝑡, 𝑥,Γ) is a B-measurable function in the variable 𝑥.
3. 𝑃 (𝑡, 𝑥,Γ) 6 1.
4. 𝑃 (0, 𝑥, 𝐸 ∖ 𝑥) = 0.
5. 𝑃 (𝑠+ 𝑡, 𝑥,Γ) =

∫︀
𝐸
𝑃 (𝑠, 𝑥, 𝑑𝑦)𝑃 (𝑡, 𝑦,Γ)

Let 𝜇 be some measure in the phase space (𝐸,B).

Definition 2. [7] A function 𝑝(𝑡, 𝑥, 𝑦), 𝑡 > 0, 𝑥, 𝑦 ∈ 𝐸, is called a transition density if the
following conditions are satisfied:

1. 𝑝(𝑡, 𝑥, 𝑦) > 0.
2. For a fixed 𝑡, 𝑝(𝑡, 𝑥, 𝑦) is B×B-measurable function in the variables (𝑥, 𝑦).
3.

∫︀
𝐸
𝑝(𝑡, 𝑥, 𝑦)𝜇(𝑑𝑦) 6 1.

4. 𝑝(𝑠+ 𝑡, 𝑥, 𝑧) =
∫︀
𝐸
𝑝(𝑠, 𝑥, 𝑦)𝑝(𝑡, 𝑦, 𝑧)𝜇(𝑑𝑦).

It is easy to confirm [7] that if 𝑝(𝑡, 𝑥, 𝑦) is a transition density, then the formula

𝑃 (𝑡, 𝑥,Γ) =

∫︁
Γ

𝑝(𝑡, 𝑥, 𝑦)𝑑𝑦, 𝑡 > 0, 𝑃 (𝑡, 𝑥,Γ) = 𝜒Γ, 𝑡 = 0

defines a transition function.
Each transition function is associated with a contracting semigroup 𝑇𝑡 as follows [7]

𝑇𝑡𝑓(𝑥) =

∫︁
𝐸

𝑃 (𝑡, 𝑥, 𝑑𝑦)𝑓(𝑦),
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where 𝑓 ∈ 𝐵, 𝐵 is a set of all bounded measurable functions with natural linear operations
and the norm ‖𝑓‖ = sup𝑥∈𝐸 |𝑓(𝑥)|.

Definition 3. [7] An infinitesimal operator of a semigroup 𝑇𝑡 (of a transition function
𝑃 (𝑡, 𝑥,Γ)) is the operator 𝐴 acting according the rule

𝐴𝑓(𝑥) = lim
𝑡→+0

𝑇𝑡𝑓(𝑥) − 𝑓(𝑥)

𝑡
,

and the domain of the operator 𝐴 consists of the functions 𝑓 , for which there exists a limit in
the right hand side.

If the phase space is equipped with a structure of a smooth manifold, then the infinitesimal op-
erator restricted on twice continuously differentiable functions is called a generator of a random
process and in local coordinates (𝑥𝑖) it reads as

𝐴𝑓(𝑥) = 𝑎𝑖𝑗𝜕𝑖𝜕𝑗𝑓(𝑥) + 𝑏𝑖𝜕𝑖𝑓(𝑥) − 𝐶𝑓(𝑥),

where 𝜕𝑖 =
𝜕

𝜕𝑥𝑖
, 𝑎𝑖𝑗 is a semi-definite matrix.

A transition density is related with a generator of a random process by the inverse Kolmogorov
equation [7]:

𝜕𝑝

𝜕𝑡
= 𝐴𝑝,

where the operator 𝐴 is the generator of a random process introduced above.
It was shown in Chapters 1 and 2 in book [7] that to each Markov process, there are uniquely

associated a contracting semigroup, a transition function and an infinitesimal operator.

2. Preliminaries from differential geometry

A detailed presentation of the theory of two-dimensional manifold with a bounded curvature
can be found in book [9]; in this section we follow conventional notations from this book.

Definition 4. [5] A two-dimensional surface 𝐹 in a three-dimensional Euclidean space is
called a smooth surface of a bounded distortion if in a neighbourhood of each its points it can
be parametrized as

�⃗� = �⃗�(𝑥1, 𝑥2),

where �⃗�(𝑥1, 𝑥2) is a continuously differentiable vector function of its variables ranging in some
domain 𝐷 in the plane (𝑥1, 𝑥2); this function possesses all its generalized second derivatives
locally square summable in 𝐷 and |�⃗�𝑥1 × �⃗�𝑥2| ≠ 0 everywhere in 𝐷. In other words, the function
�⃗�(𝑥1, 𝑥2) and an element of 𝐶1 ∩𝑊 2

2 inside the mentioned domain.

Let 𝑅 be a metric space with a metrics 𝜌. If we are given a continuous mapping of a segment
0 6 𝑡 6 1 (𝑎 6 𝑡 6 𝑏) into the space 𝑅, we say that a curve is defined in a parametrization 𝑋(𝑡).
Different values 𝑡 can describe the same point 𝑋(𝑡). The segment 0 6 𝑡 6 1 is partitioned into
connected components 𝑘𝑡, each corresponding to the same point 𝑋(𝑡). Parametrizations 𝑋(𝑡)
and 𝑌 (𝑠) are called equivalent if there exist a strictly monotone one-to-one correspondence 𝜑
satisfying 𝑋(𝑘𝑡) = 𝑌 (𝜑(𝑘𝑡)).

Definition 5. [9] A curve is a class of equivalent parametrizations.

The length of the curve 𝑋(𝑡), 0 6 𝑡 6 1 in 𝑅 can be defined as

sup Σ𝑛
𝑖=1𝜌 (𝑋(𝑡𝑖−1), 𝑋(𝑡𝑖)) ,

where 0 = 𝑡0 < 𝑡1 < . . . < 𝑡𝑛 = 1 is an arbitrary partition of the segment [0, 1].

Definition 6. [9] A metrics 𝜌 is called internal if for each two points 𝑋, 𝑌 ∈ 𝑅, the distance
𝜌(𝑋, 𝑌 ) is equal to the infimum of the lengths of the curves connecting the points 𝑋, 𝑌 .
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Definition 7. [9] A shortest curve connecting points 𝑋, 𝑌 ∈ 𝑅 is one with the smallest
length among all curves with the same ends. A geodesics is a curve being shortest on each
sufficiently small part.

Definition 8. [9] A triangle 𝑇 = 𝐴𝐵𝐶 in the space 𝑅 is a set consisting three different
points 𝐴, 𝐵, 𝐶 called the vertices of the triangle and three shortest curves mutually connecting
these points; these curves are the sides of the triangle.

Suppose that in the space 𝑅, there exists an open in 𝑅 domain 𝐺, which is homeomorphic
to an open circle in the plane. Let a triangle 𝑇 lies in this domain and its sides form a simple
closed contour, that is, they envelop a domain in 𝐺. We add this domain to 𝑇 and we say that
𝑇 is a triangle homeomorphic to a circle.

Definition 9. [9] We say that a triangle 𝑇 is boundary convex if any two points of its contour
can not be connected by a curve outside 𝑇 shorter that a piece of the contour connecting these
points.

Definition 10. [9] A simple triangle in a domain 𝐺 is a boundary convex triangle homeo-
morphic to a circle. Two simple triangles are non-incumbent if they have no common internal
points.

Let 𝐿 and 𝑀 be two curves in 𝑅 originating from a same point 𝑂. Let 𝑋 and 𝑌 be two
points moving along 𝐿 and 𝑀 , respectively. In the plane we construct a triangle 𝑇0 with sides
𝜌(𝑂,𝑋), 𝜌(𝑂, 𝑌 ) and 𝜌(𝑋, 𝑌 ). Such triangle exists since the mentioned distance satisfy the
triangle inequality. Let 𝛾(𝑋, 𝑌 ) be an angle opposite to the side 𝜌(𝑋, 𝑌 ).

Definition 11. [9] An upper angle (angle) between the curves 𝐿 and 𝑀 at the point 𝑂 is

lim
𝑋,𝑌→𝑂

𝛾(𝑋, 𝑌 )

(︂
lim

𝑋,𝑌→𝑂
𝛾(𝑋, 𝑌 )

)︂
.

An upper angle in the triangle 𝑇 = 𝐴𝐵𝐶 at the vertex 𝐴 is the upper angle between the
shortest curves 𝐴𝐵 and 𝐴𝐶.

Definition 12. [9] An upper excess (excess) of a triangle 𝑇 is the quantity

𝜈(𝑇 ) = �̄� + 𝛽 + 𝛾 − 𝜋 (𝜈(𝑇 ) = 𝛼 + 𝛽 + 𝛾 − 𝜋) ,

where �̄�, 𝛽, 𝛾 (𝛼, 𝛽, 𝛾) are upper angles (angles) in the triangle 𝑇 .

Definition 13. [9] A metric space 𝑅 is called a two-dimensional manifold of a bounded
distortion if the following axioms are satisfied:

1. 𝑅 is a metric space with an internal metrics;
2. Each point in 𝑅 has a neighbourhood homeomorphic to a circle in the plane;
3. For each domain 𝐺 ⊂ 𝑅 with a compact closure there exists a number 𝜈(𝐺) such that for

each finite set of mutually non-incumbent simple triangles 𝑇𝑖 ⊂ 𝐺 the inequality holds:

Σ𝑖 |𝜈(𝑇𝑖)| 6 𝜈(𝐺) < +∞.

The following theorem is true.

Theorem 1. [10] A two-dimensional manifold with an internal metrics has a bounded curva-
ture if and only if in each domain 𝐺 with a compact closure, the induced in each metric 𝜌𝐺 can
be uniformly approximated by Riemannian metrics with uniformly bounded absolute curvatures.

A next theorem was proved in [5].

Theorem 2. Each smooth surface of a bounded distortion is a manifold of a bounded cur-
vature in the sense of its internal metrics.
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Now we provide some definitions and results from work [5].

Definition 14. [5] A mean surface 𝐹ℎ for a surface 𝐹 of a bounded distortion with a
parametrization �⃗� = �⃗�(𝑥1, 𝑥2) is a surface with the parametrization

�⃗�ℎ(𝑥1, 𝑥2) =

∫︁∫︁
𝐷−𝐷𝛿

�⃗�(𝜉, 𝜂)𝜔ℎ(𝜉, 𝜂, 𝑥1, 𝑥2)𝑑𝜉𝑑𝜂,

where

𝜔ℎ(𝜉, 𝜂, 𝑥1, 𝑥2)𝑑𝜉𝑑𝜂 =

⎧⎨⎩
1

𝐻ℎ

𝑒
𝑟2

𝑟2−ℎ2 , 𝑟 < ℎ,

0, 𝑟 > ℎ,

𝐻ℎ =

∫︁∫︁
𝑟6ℎ

𝑒
𝑟2

𝑟2−ℎ2 𝑑𝜉𝑑𝜂, 𝑟 =
√︀

(𝑥1 − 𝜉)2 + (𝑥2 − 𝜂)2.

We introduce the following notations [5]:

Γ1 =
1

2
𝑔12 ·

𝜕𝑔22
𝜕𝑥2

− 𝑔22

(︂
𝜕𝑔12
𝜕𝑥2

− 1

2

𝜕𝑔22
𝜕𝑥1

)︂
;

𝜓(𝑥1, 𝑥2) =
Γ1√︀

𝑔11𝑔22 − 𝑔212
· 𝑔22ℎ,

where the subscript ℎ indicates the belonging to the mean surface.
Let 𝑈1,𝛿 be the set of all points in the segment [𝑎+𝛿, 𝑏−𝛿] possessing the following properties:

for 𝑢 ∈ 𝑈1,𝛿 there exists a subsequence 𝐹ℎ𝑘
such that

1. For all 𝑐+ 𝛿 6 𝜆 < 𝜇 6 𝑑− 𝛿 the identity holds:

lim
ℎ𝑘→0

∫︁ 𝜇

𝜆

𝜓ℎ𝑘
(𝑢, 𝑣)𝑑𝑣 =

∫︁ 𝜇

𝜆

𝜓(𝑢, 𝑣)𝑑𝑣;

2. The curve 𝐿𝑢
1 has a finite rotation in the space, which is a function of sets in the curve

𝐿𝑢 is absolutely continuous;
3. The curves 𝐿𝑢,ℎ𝑘

converge to 𝐿𝑢 uniformly with all their tangent lines and have uniformly
bounded rotations, which are absolutely equicontinuous.

Theorem 3. [5] On each smooth surface of a bounded distortion in the rectangle 𝐾
𝑥2
1𝑥

2
2

𝑥1
1𝑥

1
2
for

almost each 𝑥11, 𝑥
1
2 ∈ 𝑈1,𝛿 and for almost each 𝑥21, 𝑥

2
2 ∈ 𝑉1,𝛿 the relations∮︁

𝐿

𝑏11𝑑𝑥
1 + 𝑏12𝑑𝑥

2 =

∫︁∫︁
𝐾

𝑥21𝑥
2
2

𝑥11𝑥
1
2

Γ1
12𝑏11 + Γ2

12𝑏12 − Γ1
11𝑏12 − Γ2

11𝑏22𝑑𝑥
1𝑑𝑥2,

∮︁
𝐿

𝑏12𝑑𝑥
1 + 𝑏22𝑑𝑥

2 =

∫︁∫︁
𝐾

𝑥21𝑥
2
2

𝑥11𝑥
1
2

Γ1
22𝑏11 + Γ2

22𝑏12 − Γ1
21𝑏12 − Γ2

21𝑏22𝑑𝑥
1𝑑𝑥2,

(1)

hold, where 𝐿 is the boundary of the rectangle 𝐾
𝑥2
1𝑥

2
2

𝑥1
1𝑥

1
2
, Γ𝑘

𝑖𝑗 are generalized second kind Christoffel

symbols [5].

Theorem 4. [5] Let 𝑄 be some set on a surface of a bounded distortion 𝐹 . The formula

𝜔(𝑄) =

∫︁∫︁
𝑄

𝑏11𝑏22 − 𝑏212
𝑔11𝑔22 − 𝑔212

𝑑𝜎, (2)

1The definition of the rotation of a coordinate line 𝐿𝑢 [5] is rather cumbersome and we do not provide it
here.
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holds true, where 𝜔(𝑄) is the curvature of 𝑄, 𝑑𝜎 is the area differential.

In what follows we consider a surface of a bounded distortion and of a positive curvature.
The definition of this notion for a two-dimensional manifold of a bounded curvature is rather
cumbersome and this is why we do not provide it here. A detailed construction of the notion
of the curvature can be found in [9, Ch. 5]. In a smooth case an analogue of the curvature is
a Gaussian curvature and its positivity is equivalent to the positive definiteness of the second
fundamental form of the surface.

The positivity of the curvature of the surface of a bounded distortion implies that the second
fundamental form is positive almost everywhere [5, Sect. 11, 12].

A random process 𝑌𝑡 generated by the second fundamental form can be constructed by means
of the corresponding Dirichlet form1 [11]. The equivalence of the defining the process by means
of the Dirichlet form and by means of the generator was also shown in the same book.

3. Formulation of the main result

We suppose that on a surface 𝐹 of a bounded distortion and of a positive curvature uniformly
separated from zero, we are given two random processes, 𝑋𝑡 with a generator 𝐴𝑋 = 𝑔𝑖𝑗𝜕𝑖𝜕𝑗
and 𝑌𝑡 with a generator 𝐴𝑌 = 𝑏𝑖𝑗𝜕𝑖𝜕𝑗. The transition function of the process 𝑋𝑡 is denoted by
𝑃 1(𝑡, 𝑥,Γ), while the same function for the process 𝑌𝑡 is denoted by 𝑃 2(𝑡, 𝑥,Γ).

Our main theorems are as follows.

Theorem 5. On each smooth surface of a bounded distortion, for almost all 𝑥11, 𝑥
1
2 ∈ 𝑈1,𝛿

and for almost all 𝑥21, 𝑥
2
2 ∈ 𝑉1,𝛿, in the rectangle 𝐾

𝑥2
1𝑥

2
2

𝑥1
1𝑥

1
2
the relations hold:∮︁

𝐿

𝑏11𝑑𝑥
1 + 𝑏12𝑑𝑥

2 =

∫︁∫︁
𝐾

𝑥21𝑥
2
2

𝑥11𝑥
1
2

Γ1
12𝑏11 + Γ2

12𝑏12 − Γ1
11𝑏12 − Γ2

11𝑏22𝑑𝑥
1𝑑𝑥2,

∮︁
𝐿

𝑏12𝑑𝑥
1 + 𝑏22𝑑𝑥

2 =

∫︁∫︁
𝐾

𝑥21𝑥
2
2

𝑥11𝑥
1
2

Γ1
22𝑏11 + Γ2

22𝑏12 − Γ1
21𝑏12 − Γ2

21𝑏22𝑑𝑥
1𝑑𝑥2,

(3)

where 𝐿 is the boundary of the rectangle 𝐾
𝑥2
1𝑥

2
2

𝑥1
1𝑥

1
2
, and

𝑏𝑖𝑗 = Σ2
𝑘,𝑙=1

1

|𝐼|2

∫︁
𝑃 1
𝑡0(𝑡, 𝑥, 𝑑𝑦)

𝑦𝑖𝑦𝑘
1 + 𝛿𝑖𝑘

∫︁
𝑃 1
𝑡0(𝑡, 𝑥, 𝑑𝑦)

𝑦𝑗𝑦𝑙
1 + 𝛿𝑗𝑙

∫︁
𝑃 2
𝑡0(𝑡, 𝑥, 𝑑𝑦)

𝑦𝑘𝑦𝑙
1 + 𝛿𝑘𝑙

,

Γ𝑖𝑗,𝑘 =
1

2

(︂
𝜕𝑔𝑖𝑘
𝜕𝑥𝑗

+
𝜕𝑔𝑗𝑘
𝜕𝑥𝑖

− 𝜕𝑔𝑖𝑗
𝜕𝑥𝑘

)︂
, Γ𝑙

𝑖𝑗 = 𝑔𝑘𝑙Γ𝑖𝑗,𝑘,

|𝐼| =

∫︁
𝑃 1
𝑡0 (𝑡, 𝑥, 𝑑𝑦)

𝑦21
2

·
∫︁
𝑃 1
𝑡0 (𝑡, 𝑥, 𝑑𝑦)

𝑦22
2

−
[︂∫︁

𝑃 1
𝑡0 (𝑡, 𝑥, 𝑑𝑦) 𝑦1𝑦2

]︂2
,

the derivatives are understood in the sense of Sobolev, the subscript 𝑡0 denotes the derivative
in 𝑡 at 𝑡 = 0, and

𝑔𝑖𝑗 =
1

|𝐼|

∫︁
𝑃 1
𝑡0(𝑡, 𝑥, 𝑑𝑦)

𝑦𝑖𝑦𝑗
1 + 𝛿𝑖𝑗

.

Theorem 6. Let 𝑄 be some set on a surface 𝐹 of a bounded distortion. The formula holds:

𝜔(𝑄) =

∫︁∫︁
𝑄

𝑏11𝑏22 − 𝑏212
𝑔11𝑔22 − 𝑔212

𝑑𝜎, (4)

1The construction of the random process by means of the Dirichlet form is rather cumbersome [11, Ch. 1]
and we do not provide it here.



46 D.S. KLIMENTOV

where 𝜔(𝑄) is the curvature on 𝑄, 𝑑𝜎 is the differential of the area,

𝑏𝑖𝑗 = Σ2
𝑘,𝑙=1

1

|𝐼|2

∫︁
𝑃 1
𝑡0(𝑡, 𝑥, 𝑑𝑦)

𝑦𝑖𝑦𝑘
1 + 𝛿𝑖𝑘

∫︁
𝑃 1
𝑡0(𝑡, 𝑥, 𝑑𝑦)

𝑦𝑗𝑦𝑙
1 + 𝛿𝑗𝑙

∫︁
𝑃 2
𝑡0(𝑡, 𝑥, 𝑑𝑦)

𝑦𝑘𝑦𝑙
1 + 𝛿𝑘𝑙

,

𝑔𝑖𝑗 =
1

|𝐼|

∫︁
𝑃 1
𝑡0(𝑡, 𝑥, 𝑑𝑦)

𝑦𝑖𝑦𝑗
1 + 𝛿𝑖𝑗

,

|𝐼| =

∫︁
𝑃 1
𝑡0 (𝑡, 𝑥, 𝑑𝑦)

𝑦21
2

·
∫︁
𝑃 1
𝑡0 (𝑡, 𝑥, 𝑑𝑦)

𝑦22
2

−
[︂∫︁

𝑃 1
𝑡0 (𝑡, 𝑥, 𝑑𝑦) 𝑦1𝑦2

]︂2
.

Theorem 7. Two random processes 𝑋𝑡 and 𝑌𝑡 determine uniquely a surface of a bounded
distortion (up to a position in the space) if and only if equations (3), (4) hold true.

4. Proof of main result

The proofs of the theorems are based on several lemmata.

Lemma 1. Contravariant coefficients of the first fundamental form are related with the tran-
sition functions of the process 𝑋𝑡 by the following formulae:

𝑔11 =

∫︁
𝑑

𝑑𝑡

(︀
𝑃 1 (𝑡, 𝑥, 𝑑𝑦)

)︀
𝑡=0

𝑦21
2
,

𝑔12 =

∫︁
𝑑

𝑑𝑡

(︀
𝑃 1 (𝑡, 𝑥, 𝑑𝑦)

)︀
𝑡=0

𝑦1𝑦2,

𝑔22 =

∫︁
𝑑

𝑑𝑡

(︀
𝑃 1 (𝑡, 𝑥, 𝑑𝑦)

)︀
𝑡=0

𝑦22
2
.

Proof. In book [7], the formula 𝑇𝑡𝑓 =
∫︀
𝑃 (𝑡, �⃗�, 𝑑𝑦)𝑓(𝑦) was established. By definition, the

infinitesimal diffusion operator 𝑋𝑡 is defined by identity

𝐴𝑋𝑓 = lim
𝑡→+0

𝑇𝑡𝑓 − 𝑓

𝑡
. (5)

Let us consider this identity in more details. We fix a function 𝑓 in the domain of the genera-
tor. For twice continuously differentiable functions 𝑓 , the left hand side is well-defined and is
continuous, therefore, the limit in the right hand side exists and is equal to

𝐴𝑋𝑓 =
𝑑

𝑑𝑡
[𝑇𝑡𝑓 ]𝑡=0.

Here we have employed the identity 𝑇0𝑓 = 𝑓 . In our case, the generator of the process 𝑋𝑡 reads

as 𝐴𝑋𝑓 = 𝑔𝑖𝑗𝜕𝑖𝜕𝑗𝑓 . Choosing the function 𝑓 as 𝑓 = 𝑦𝑖𝑦𝑗

1+𝛿𝑖𝑗
and substituting it into the latter

identity for the generator, we obtain the statement of the lemma:

𝑔𝑖𝑗𝜕𝑖𝜕𝑗𝑓 (𝑥) =

∫︁
𝑑

𝑑𝑡

(︀
𝑃 1 (𝑡, 𝑥, 𝑑𝑦)

)︀
𝑡=0

𝑓 (𝑦) .

We observe that we interchange the derivation and the integral by the Lebesgue theorem on a
majorized convergence [12].

In what follows, in order not to complicate the notations, the derivation in time at 𝑡 = 0 is
denoted by the subscript 𝑡0.
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Lemma 2. Covariant coefficients of the first fundamental form of the surface read as

𝑔11 =
1

|𝐼|

∫︁
𝑃 1
𝑡0 (𝑡, 𝑥, 𝑑𝑦)

𝑦22
2
,

𝑔22 =
1

|𝐼|

∫︁
𝑃 1
𝑡0 (𝑡, 𝑥, 𝑑𝑦)

𝑦21
2
,

𝑔12 = − 1

|𝐼|

∫︁
𝑃 1
𝑡0 (𝑡, 𝑥, 𝑑𝑦) 𝑦1𝑦2,

where

|𝐼| =

∫︁
𝑃 1
𝑡0 (𝑡, 𝑥, 𝑑𝑦)

𝑦21
2

·
∫︁
𝑃 1
𝑡0 (𝑡, 𝑥, 𝑑𝑦)

𝑦22
2

−
[︂∫︁

𝑃 1
𝑡0 (𝑡, 𝑥, 𝑑𝑦) 𝑦1𝑦2

]︂2
.

Proof. The statement is immediately implied by the relation

𝑔𝑖𝑙𝑔
𝑙𝑗 = 𝛿𝑗𝑖 ,

where 𝛿𝑗𝑖 is the Kronecker delta.

Lemma 3. Contravariant coefficients of the second fundamental form of the surface are
related with transitions functions of the process 𝑌𝑡 by the relations

𝑏11 =

∫︁
𝑃 2
𝑡0 (𝑡, 𝑥, 𝑑𝑦)

𝑦21
2
,

𝑏12 =

∫︁
𝑃 2
𝑡0 (𝑡, 𝑥, 𝑑𝑦) 𝑦1𝑦2,

𝑏22 =

∫︁
𝑃 2
𝑡0 (𝑡, 𝑥, 𝑑𝑦)

𝑦22
2
.

Proof. The proof reproduces that of Lemma 1 literally with the only exception: the values of
the generator 𝐴𝑌 on twice differentiable functions are generally speaking square summable but
this makes no influence of the further arguing.

Lemma 4. Contravariant coefficients of the second fundamental form of the surface read as

𝑏𝑖𝑗 = Σ2
𝑘,𝑙=1

1

|𝐼|2

∫︁
𝑃 1
𝑡0(𝑡, 𝑥, 𝑑𝑦)

𝑦𝑖𝑦𝑘
1 + 𝛿𝑖𝑘

∫︁
𝑃 1
𝑡0(𝑡, 𝑥, 𝑑𝑦)

𝑦𝑗𝑦𝑙
1 + 𝛿𝑗𝑙

∫︁
𝑃 2
𝑡0(𝑡, 𝑥, 𝑑𝑦)

𝑦𝑘𝑦𝑙
1 + 𝛿𝑘𝑙

.

Proof. The proof is immediately implied by a known formula 𝑏𝑖𝑗 = 𝑔𝑖𝑘𝑔𝑗𝑙𝑏
𝑘𝑙 and Lemmata 1–

3.

Lemma 5. The Christoffel coefficients are calculated by the formulae

Γ𝑖𝑗,𝑘 =
1

2

(︂
𝜕𝑔𝑖𝑘
𝜕𝑥𝑗

+
𝜕𝑔𝑗𝑘
𝜕𝑥𝑖

− 𝜕𝑔𝑖𝑗
𝜕𝑥𝑘

)︂
, Γ𝑙

𝑖𝑗 = 𝑔𝑘𝑙Γ𝑖𝑗,𝑘,

where the derivatives are treated in the Sobolev sense, and

𝑔𝑖𝑗 =
1

|𝐼|

∫︁
𝑃 1
𝑡0(𝑡, 𝑥, 𝑑𝑦)

𝑦𝑖𝑦𝑗
1 + 𝛿𝑖𝑗

.

Proof. In work [5], the existence of the Christoffel symbols was proved for a surface of a bounded
distortion and it was shown that they were calculated by the above formulae. Then the state-
ment of the lemma follows easily Lemmata 1, 2.

The proofs of the main theorem obviously follow the mentioned lemmata and the results of
works [5], [6].
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