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NEUMANN BOUNDARY VALUE PROBLEM FOR SYSTEM

OF EQUATIONS OF NON-EQUILIBRIUM SORPTION

I.A. KALIEV, G.S. SABITOVA

Abstract. Filtration of liquids and gases containing associated (dissolved, suspended)
solids in porous media is accompanied by diffusion of these substances and mass transfer
between the liquid (gas) and solid phases. In this work, we study the system of equations
modeling the process of a non-equilibrium sorption. We prove an existence and uniqueness
theorem for a multi-dimensional Neumann initial-boundary value problem in the Hölder
classes of functions. We obtain a maximum principle, which plays an important role in the
proof of the theorem. The uniqueness of the solution follows this principle. The existence
of a solution to the problem is shown by Schauder fixed point theorem for a completely
continuous operator; we describe a corresponding operator. We obtain estimates ensuring
the complete continuity of the constructed operator and the mapping of some closed set of
functions into itself over a small time interval. Then we obtain the estimates allowing us
to continue the solution up to arbitrary finite time.

Keywords: modeling of process of non-equilibrium sorption, Neumann initial boundary
value problem, global unique solvability.
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1. Introduction

Almost all liquids in the nature are solutions, that is, they are mixture of two or more substances.
The filtration of liquids and gases in porous media containing associated (dissolved, suspended) solids
is accompanied by diffusion of these substances and mass transfer between the liquid (gas) and solid
phases. The most common types of mass transfer are sorption and desorption, ion exchange, dissolution
and crystallization, mudding, sulfation and suffusion, waxing. Taking into consideration the features
of physical and chemical interaction of solutions with reservoir rocks, the problems of equilibrium and
non-equilibrium are considered.

In the work we prove a global unique solvability of the Neumann initial-boundary value problem
modelling the process of a non-equilibrium sorption.

2. Formulation of problem

Let 𝑚(𝑥, 𝑡) be the porosity of a medium, 0 < 𝑚(𝑥, 𝑡) 6 1; the porous space be filled by a solution
and by a precipitated solid phase, 𝑐(𝑥, 𝑡) be the mass concentration of a certain substance in the
liquid phase (per unit of the volume), 𝑠(𝑥, 𝑡) be the mass concentration of the precipitated solid of
this substance (per unit of the volume of the pores).

Under equilibrium conditions when the contact between the solution and the solid is kept for a
long time, the relation between the concentrations 𝑐(𝑥, 𝑡) in the solution and on the sorbate 𝑠(𝑥, 𝑡) is
determined by the sorption isotherm. For small concentrations of the solution, the absorption value is
determined by a linear dependence, namely, by Henry isotherm 𝑠 = Γ𝑐, where Γ > 0 is some constant
depending on physical and chemical properties of the medium (Henry constant).
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Equilibrium sorption equation can not always completely characterize the features of sorption and
substances exchange in a two-phase system solution-solid. In works [1]–[3] there were proposed math-
ematical models describing non-equilibrium sorption processes. At that, the concentration 𝑠 of solid
stage is related with the concentration 𝑐 in the liquid stage by the equation

𝜕𝑠

𝜕𝑡
=

1

𝜏
(Γ𝑐− 𝑠) , (1)

where a positive constant 𝜏 is a character relaxation time, 𝐺 is the Henry constant. The concentration
𝑐 of a substance in a solution satisfies the equation

𝑚
𝜕𝑐

𝜕𝑡
= 𝐷△𝑐− 𝑣∇𝑐− 𝜕𝑠

𝜕𝑡
, (2)

where 𝐷(𝑥, 𝑡) > 0 is the diffusion coefficient, 𝑣(𝑥, 𝑡) is the filtration rate vector, which are regarded as
known functions of the mentioned arguments; Δ is the Laplace operator, ∇ is the gradient, 𝑣 · ∇𝑐 is
the scalar produce of the vectors 𝑣 and ∇𝑐.

In work [4], a global unique solvability was proved for the Dirichlet initial-boundary problem for
system (1)–(2). In [5], [6] there was formulated a difference approximation of the differential problem
by an implicit scheme, a solution to the difference problem was constructed by means of the sweep
method and the results of the numerical experiments were presented.

In this work we consider the Neumann boundary value problem for system of equations (1)–(2)
describing the process of a non-equilibrium sorption.

Let Ω be a bounded domain in a 𝑛-dimensional space R𝑛 with a sufficiently smooth boundary
𝑆 = 𝜕Ω, 𝑄𝑇 = Ω × (0, 𝑇 ), 𝑇 > 0, 𝑆𝑇 = 𝑆 × (0, 𝑇 ) be the lateral surface of cylinder 𝑄𝑇 . We need
to find functions 𝑐(𝑥, 𝑡), 𝑠(𝑥, 𝑡) defined in domain 𝑄𝑇 satisfying equations (1), (2) in 𝑄𝑇 , obeying the
initial conditions

𝑐(𝑥, 0) = 𝑐0(𝑥), (3)

𝑠(𝑥, 0) = 𝑠0(𝑥), (4)

and the Neumann boundary condition

𝜕𝑐(𝑥, 𝑡)

𝜕𝑛
= 0, (𝑥, 𝑡) ∈ 𝑆𝑇 , (5)

where 𝑛 is the outward normal to 𝑆 = 𝜕Ω.
The main result of the work is the following theorem.

Theorem 1. Let the coefficients 𝑚, 𝐷, 𝑣 of equation (2) belong the Hölder space 𝐶𝛼,𝛼/2
(︀
�̄�𝑇

)︀
,

0 < 𝛼 < 1; the boundary of the domain 𝑆 be 𝐶2+𝛼-smooth; the functions 𝑐0(𝑥), 𝑠0(𝑥) belong to the
spaces 𝐶2+𝛼(Ω̄), 𝐶𝛼(Ω̄), respectively ; the matching conditions

𝜕𝑐0(𝑥)

𝜕𝑛
= 0, 𝑥 ∈ 𝑆,

hold as well as the conditions 0 6 𝑐0(𝑥) 6 𝑀, 0 6 𝑠0(𝑥) 6 Γ𝑀 , 𝑥 ∈ Ω. Then problem (1)–(5) possesses

a unique classical solution 𝑐(𝑥, 𝑡) ∈ 𝐶2+𝛼,1+𝛼/2
(︀
�̄�𝑇

)︀
, 𝑠(𝑥, 𝑡) ∈ 𝐶𝛼,1+𝛼/2

(︀
�̄�𝑇

)︀
and the estimates hold:

0 6 𝑐(𝑥, 𝑡) 6 𝑀, 0 6 𝑠(𝑥, 𝑡) 6 Γ𝑀, (𝑥, 𝑡) ∈ 𝑄𝑇 .

3. Proof of Theorem

We begin with proving estimates providing the maximum principle:

0 6 𝑐(𝑥, 𝑡) 6 𝑀, (𝑥, 𝑡) ∈ 𝑄𝑇 , (6)

0 6 𝑠(𝑥, 𝑡) 6 Γ𝑀, (𝑥, 𝑡) ∈ 𝑄𝑇 . (7)

Equation (1) and condition (3) imply the representation

𝑠(𝑥, 𝑡) = 𝑠0(𝑥)𝑒
−𝑡/𝜏 +

Γ

𝜏
𝑒−𝑡/𝜏

𝑡∫︁
0

𝑐(𝑥, 𝜃)𝑒𝜃/𝜏𝑑𝜃. (8)
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Substituting (8) into (2), we obtain:

𝑚
𝜕𝑐

𝜕𝑡
−𝐷Δ𝑐+ 𝑣 · ∇𝑐+

Γ

𝜏
𝑐 =

1

𝜏
𝑠0(𝑥)𝑒

−𝑡/𝜏 +
Γ

𝜏2
𝑒−𝑡/𝜏

𝑡∫︁
0

𝑐(𝑥, 𝜃)𝑒𝜃/𝜏𝑑𝜃. (9)

Assume that a negative minimum 𝑐min < 0 of the function 𝑐(𝑥, 𝑡) is attained at some point (𝑥0, 𝑡0)
inside the domain 𝑄𝑇 . Then at this point we have

𝑐𝑡 6 0, −Δ𝑐 6 0, ∇𝑐 = 0,

and by (9) we get:

Γ

𝜏
𝑐min >

1

𝜏
𝑠0(𝑥0)𝑒

−𝑡0/𝜏 +
Γ

𝜏2
𝑐min𝑒

−𝑡0/𝜏

𝑡0∫︁
0

𝑒𝜃/𝜏𝑑𝜃,

Γ𝑐min > 𝑠0(𝑥0)𝑒
−𝑡0/𝜏 + Γ𝑐min𝑒

−𝑡0/𝜏 (𝑒𝑡0/𝜏 − 1),

0 > 𝑠0(𝑥0)𝑒
−𝑡0/𝜏 − Γ𝑐min𝑒

−𝑡0/𝜏 ,

and hence, we arrive at a contradiction since 𝑠0(𝑥) > 0, while 𝑐min < 0. Therefore, a negative minimum
of the function 𝑐(𝑥, 𝑡) can not be attained inside the domain 𝑄𝑇 .

On the boundary 𝑆𝑇 the minimum can not be attained by condition (5) and the following Zaremba-
Giraud lemma.

Lemma 1. Let

𝐿𝑢 =
𝑛∑︁

𝑖,𝑗=1

𝑎𝑖,𝑗(𝑥)𝑢𝑥𝑖𝑥𝑗 (𝑥) +
𝑛∑︁

𝑖=1

𝑏𝑖(𝑥)𝑢𝑥𝑖(𝑥)

be an elliptic operator in an unbounded domain Ω with a sufficiently smooth boundary, 𝑢 ∈ 𝐶2(Ω) ∩
𝐶1

(︀
Ω̄
)︀
, 𝐿𝑢 6 0 in Ω and let the function 𝑢(𝑥) attain its proper global maximum in a boundary point

𝑥0 ∈ 𝜕Ω. Then

𝜕𝑢

𝜕𝑛

⃒⃒⃒⃒
𝑥0

< 0,

where 𝑛 is the outward normal to 𝑆 = 𝜕Ω at the point 𝑥0.

For harmonic functions, this lemma was proved by Zaremba [7], and in a more general formulation
it was proved by Giraud [8].

In our case

𝐿𝑐 = 𝐷Δ𝑐− 𝑣 · ∇𝑐 = 𝐹 (𝑥, 𝑡) = 𝑚
𝜕𝑐

𝜕𝑡
+

Γ

𝜏
𝑐− 1

𝜏
𝑠0(𝑥)𝑒

−𝑡/𝜏 − Γ

𝜏2
𝑒−𝑡/𝜏

𝑡∫︁
0

𝑐(𝑥, 𝜃)𝑒𝜃/𝜏𝑑𝜃.

Assume that the negative minimum 𝑐min < 0 of the function 𝑐(𝑥, 𝑡) is attained at some point (𝑥0, 𝑡0)
in the boundary of the domain 𝑆𝑇 . Then

𝐹 (𝑥0, 𝑡0) =𝑚(𝑥0, 𝑡0)
𝜕𝑐

𝜕𝑡
(𝑥0, 𝑡0) +

Γ

𝜏
𝑐min −

1

𝜏
𝑠0(𝑥0)𝑒

−𝑡0/𝜏 − Γ

𝜏2
𝑒−𝑡0/𝜏

𝑡0∫︁
0

𝑐(𝑥0, 𝜃)𝑒
𝜃/𝜏𝑑𝜃

6𝑚(𝑥0, 𝑡0)
𝜕𝑐

𝜕𝑡
(𝑥0, 𝑡0) +

Γ

𝜏
𝑐min −

1

𝜏
𝑠0(𝑥0)𝑒

−𝑡0/𝜏 − Γ

𝜏2
𝑐min𝑒

−𝑡0/𝜏

𝑡0∫︁
0

𝑒𝜃/𝜏𝑑𝜃

=𝑚(𝑥0, 𝑡0)
𝜕𝑐

𝜕𝑡
(𝑥0, 𝑡0) +

Γ

𝜏
𝑐min −

1

𝜏
𝑠0(𝑥0)𝑒

−𝑡0/𝜏 − Γ

𝜏
𝑐min𝑒

−𝑡0/𝜏
(︁
𝑒𝑡0/𝜏 − 1

)︁
=𝑚(𝑥0, 𝑡0)

𝜕𝑐

𝜕𝑡
(𝑥0, 𝑡0)−

1

𝜏
𝑠0(𝑥0)𝑒

−𝑡0/𝜏 +
Γ

𝜏
𝑐min𝑒

−𝑡0/𝜏 < 0.
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Therefore, 𝐹 (𝑥, 𝑡0) < 0 in the vicinity of the point 𝑥0 and we can apply Zaremba-Giraud lemma, that
is,

𝜕𝑐

𝜕𝑛

⃒⃒⃒⃒
𝑥0

< 0.

This contradicts boundary condition (5).
Hence, the function 𝑐(𝑥, 𝑡) attains its minimum on the lower boundary of the domain 𝑄𝑇 , that is, at

initial time and at this time, the function 𝑐0(𝑥) is non-negative. Thus, we have proved that 𝑐(𝑥, 𝑡) > 0,
(𝑥, 𝑡) ∈ 𝑄𝑇 .

Assume now that the function 𝑐(𝑥, 𝑡) attains its positive maximum 𝑐max > 𝑀 inside the domain
𝑄𝑇 , that is, there exists a point (𝑥1, 𝑡1) ∈ 𝑄𝑇 such that 𝑐(𝑥1, 𝑡1) = 𝑐max > 𝑀. At this point we have

𝑐𝑡 > 0, −Δ𝑐 > 0, ∇𝑐 = 0,

and by (9) we get the inequalities

Γ

𝜏
𝑐max 6

1

𝜏
𝑠0(𝑥1)𝑒

−𝑡1/𝜏 +
Γ

𝜏2
𝑐max𝑒

−𝑡1/𝜏

𝑡1∫︁
0

𝑒𝜃/𝜏𝑑𝜃,

Γ𝑐max 6 𝑠0(𝑥1)𝑒
−𝑡1/𝜏 + Γ𝑐max𝑒

−𝑡1/𝜏 (𝑒𝑡1/𝜏 − 1),

0 6 𝑠0(𝑥1)𝑒
−𝑡1/𝜏 − Γ𝑐max𝑒

−𝑡1/𝜏 = (𝑠0(𝑥1)− Γ𝑐max) 𝑒
−𝑡1/𝜏 .

We again have arrived at a contradiction, since 𝑠0(𝑥) 6 Γ𝑀 and 𝑐max > 𝑀.
At the boundary 𝑆𝑇 , the maximum can not be attained by condition (5) and Zaremba-Giraud

lemma. We consider

𝐿𝑐 = 𝐷Δ𝑐− 𝑣 · ∇𝑐 = 𝐹 (𝑥, 𝑡) = 𝑚
𝜕𝑐

𝜕𝑡
+

Γ

𝜏
𝑐− 1

𝜏
𝑠0(𝑥)𝑒

−𝑡/𝜏 − Γ

𝜏2
𝑒−𝑡/𝜏

𝑡∫︁
0

𝑐(𝑥, 𝜃)𝑒𝜃/𝜏𝑑𝜃.

Assume that a positive maximum 𝑐max > 𝑀 of the function 𝑐(𝑥, 𝑡) is attained at some point (𝑥1, 𝑡1)
in the boundary of the domain 𝑆𝑇 . Then

𝐹 (𝑥1, 𝑡1) =𝑚(𝑥1, 𝑡1)
𝜕𝑐

𝜕𝑡
(𝑥1, 𝑡1) +

Γ

𝜏
𝑐max −

1

𝜏
𝑠0(𝑥1)𝑒

−𝑡1/𝜏 − Γ

𝜏2
𝑒−𝑡1/𝜏

𝑡1∫︁
0

𝑐(𝑥1, 𝜃)𝑒
𝜃/𝜏𝑑𝜃

>
Γ

𝜏
𝑐max −

1

𝜏
𝑠0(𝑥1)𝑒

−𝑡1/𝜏 − Γ

𝜏2
𝑐max𝑒

−𝑡1/𝜏

𝑡1∫︁
0

𝑒𝜃/𝜏𝑑𝜃

=
Γ

𝜏
𝑐max −

1

𝜏
𝑠0(𝑥1)𝑒

−𝑡1/𝜏 − Γ

𝜏
𝑐max𝑒

−𝑡1/𝜏 (𝑒𝑡1/𝜏 − 1)

=− 1

𝜏
𝑠0(𝑥1)𝑒

−𝑡1/𝜏 +
Γ

𝜏
𝑐max𝑒

−𝑡1/𝜏

=
1

𝜏
(Γ𝑐max − 𝑠0(𝑥1)) 𝑒

−𝑡1/𝜏 >
1

𝜏
(Γ𝑀 − Γ𝑀) 𝑒−𝑡1/𝜏 = 0.

Therefore, 𝐹 (𝑥, 𝑡1) > 0 in the vicinity of the point 𝑥1 and we can apply Zaremba-Giraud lemma for
the case of the maximum and hence

𝜕𝑐

𝜕𝑛

⃒⃒⃒⃒
𝑥1

> 0.

This contradicts boundary condition (5).
Thus, the function 𝑐(𝑥, 𝑡) attains its maximum on the lower boundary of the domain 𝑄𝑇 , that is,

at the initial time; at this time we have the estimate 𝑐0(𝑥) 6 𝑀. Therefore, 𝑐(𝑥, 𝑡) 6 𝑀 , (𝑥, 𝑡) ∈ 𝑄𝑇 .
This completes the proof of estimate (6).

Estimate (7) is implied by representation (8) with employing (6). Indeed, since 𝑠0(𝑥) > 0, 𝑐(𝑥, 𝑡) > 0,
it follows from (8) that 𝑠(𝑥, 𝑡) > 0 for all (𝑥, 𝑡) ∈ 𝑄𝑇 .
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Since 𝑠0(𝑥) 6 Γ𝑀, 𝑐(𝑥, 𝑡) 6 𝑀, then

𝑠(𝑥, 𝑡) 6 𝑠0(𝑥)𝑒
−𝑡/𝜏 +

Γ𝑀

𝜏
𝑒−𝑡/𝜏

𝑡∫︁
0

𝑒𝜃/𝜏𝑑𝜃 6 Γ𝑀𝑒−𝑡/𝜏 + Γ𝑀𝑒−𝑡/𝜏 (𝑒𝑡/𝜏 − 1) = Γ𝑀.

This completes the proof of estimate (7).
The uniqueness of solution to problem (1)–(5) follows Lemma.
We proceed to the proof of the existence of a solution to problem (1)–(5); we shall do this by means

of the Schauder theorem on a fixed point of a completely continuous operator. We denote by 𝑉𝑇1 the

following closed convex subset in 𝐶2+𝛼,1+𝛼/2
(︀
�̄�𝑇1

)︀
:

𝑉𝑇1 =

{︂
𝑐(𝑥, 𝑡)| 𝑐(𝑥, 0) = 𝑐0(𝑥);

𝜕𝑐(𝑥, 𝑡)

𝜕𝑛
= 0, (𝑥, 𝑡) ∈ 𝑆𝑇1 ; ‖𝑐‖𝐶2+𝛼,1+𝛼/2(�̄�𝑇1)

6 𝐾

}︂
,

where 𝐾 is some fixed positive number depending on data of problem (1)–(5), which we define later.
Given a function 𝑐 ∈ 𝑉𝑇1 , we find a function

𝑠(𝑥, 𝑡) = 𝑠0(𝑥)𝑒
−𝑡/𝜏 +

Γ

𝜏
𝑒−𝑡/𝜏

𝑡∫︁
0

𝑐(𝑥, 𝜃)𝑒𝜃/𝜏𝑑𝜃. (10)

Now to each function 𝑐 ∈ 𝑉𝑇1 , we associate a function 𝑐 = Λ(𝑐) as a solution to the problem

𝑚
𝜕𝑐

𝜕𝑡
−𝐷Δ𝑐+ 𝑣 · ∇𝑐+

Γ

𝜏
𝑐 =

1

𝜏
𝑠, (11)

𝑐(𝑥, 0) = 𝑐0(𝑥), 𝑥 ∈ Ω;
𝜕𝑐(𝑥, 𝑡)

𝜕𝑛
= 0, (𝑥, 𝑡) ∈ 𝑆𝑇1 . (12)

Let us prove that the operator Λ is completely continuous and for sufficiently small 𝑇1, it maps the
set 𝑉𝑇1 into itself.

First we are going to show that 𝑠 ∈ 𝐶𝛼,𝛼/2
(︀
�̄�𝑇1

)︀
. Identity (10) implies the inequality

|𝑠|(0)𝑄𝑇1
≡ max

(𝑥,𝑡)∈�̄�𝑇1

|𝑠(𝑥, 𝑡)| 6 |𝑠0|(0)Ω + Γ|𝑐|(0)𝑄𝑇1
max

𝑡∈[0,𝑇1]
(1− 𝑒−𝑡/𝜏 ).

Expanding the function 𝑒−𝑡/𝜏 into the Maclaurin series, it is easy to obtain the following estimate as
𝑇1 < 𝜏 :

|𝑠|(0)𝑄𝑇1
6 |𝑠0|(0)Ω + 𝑇1

Γ

𝜏
|𝑐|(0)𝑄𝑇1

. (13)

In the same, identity (10) implies the estimate

|𝑠|(𝛼)𝑥,𝑄𝑇1
≡ sup

(𝑥,𝑡),(𝑥′,𝑡)∈�̄�𝑇1

|𝑠(𝑥, 𝑡)− 𝑠(𝑥′, 𝑡)|
|𝑥− 𝑥′|𝛼

6|𝑠0|(𝛼)𝑥,Ω + Γ|𝑐|(𝛼)𝑥,𝑄𝑇1
max

𝑡∈[0,𝑇1]
(1− 𝑒−𝑡/𝜏 ) 6 |𝑠0|(𝛼)𝑥,Ω + 𝑇1

Γ

𝜏
|𝑐|(𝛼)𝑥,𝑄𝑇1

,

(14)

that is, the function 𝑠 satisfies the Hölder condition in the spatial variable with an exponent 𝛼.
The function 𝑠 satisfies the Hölder condition in the variable 𝑡 with arbitrary exponent 0 < 𝛽 6 1

being even a Lipschitz function since it possesses a bounded in time derivative:

𝑠𝑡(𝑥, 𝑡) =− 1

𝜏
𝑠0(𝑥)𝑒

−𝑡/𝜏 − Γ

𝜏2
𝑒−𝑡/𝜏

∫︁ 𝑡

0
𝑐(𝑥, 𝜃)𝑒𝜃/𝜏𝑑𝜃 +

Γ

𝜏
𝑐(𝑥, 𝑡),

|𝑠𝑡|(0)𝑄𝑇1
6
1

𝜏
|𝑠0|(0)Ω +

Γ

𝜏
|𝑐|(0)𝑄𝑇1

max
𝑡∈[0,𝑇1]

(1− 𝑒−𝑡/𝜏 ) +
Γ

𝜏
|𝑐|(0)𝑄𝑇1

6
1

𝜏
|𝑠0|(0)Ω +

2Γ

𝜏
|𝑐|(0)𝑄𝑇1

. (15)

In particular, as 𝛽 = 1, we get

|𝑠(𝑥, 𝑡)− 𝑠(𝑥, 𝑡′)|
|𝑡− 𝑡′|𝛼/2|𝑡− 𝑡′|1−𝛼/2

6 |𝑠𝑡|(0)𝑄𝑇1
.
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This implies the inequality

|𝑠|(𝛼/2)𝑡,𝑄𝑇1
≡ sup

(𝑥,𝑡),(𝑥,𝑡′)∈�̄�𝑇1

|𝑠(𝑥, 𝑡)− 𝑠(𝑥, 𝑡′)|
|𝑡− 𝑡′|𝛼/2

6 𝑇
1−𝛼/2
1 |𝑠𝑡|(0)𝑄𝑇1

. (16)

Estimates (13)–(16) yield that 𝑠 ∈ 𝐶𝛼,𝛼/2
(︀
�̄�𝑇1

)︀
, and for 𝑇1 < 1, the estimate is true:

‖𝑠‖𝐶𝛼,𝛼/2(�̄�𝑇1
) 6 𝐶1‖𝑠0‖𝐶𝛼(Ω̄) + 𝑇

1−𝛼/2
1 𝐶2‖𝑐‖𝐶𝛼,𝛼/2(�̄�𝑇1

), (17)

where 𝐶1, 𝐶2 are some positive constants independent of 𝑠0 and 𝑐. The constants 𝐶1, 𝐶2 depend on
𝑇 , but are independent of 𝑇1 < min{𝑇, 1, 𝜏}.

Since

𝑠𝑡 =
1

𝜏
(Γ𝑐− 𝑠),

we have 𝑠 ∈ 𝐶𝛼,1+𝛼/2
(︀
�̄�𝑇1

)︀
.

A solution 𝑐(𝑥, 𝑡) to problem (11), (12) obeys the estimate [9]:

‖𝑐‖𝐶2+𝛼,1+𝛼/2(�̄�𝑇1
) 6 𝐶(‖𝑐0‖𝐶2+𝛼(Ω̄) + ‖𝑠‖𝐶𝛼,𝛼/2(�̄�𝑇1

)), (18)

where 𝐶 is some positive constant independent of 𝑐0, 𝑠. The constant 𝐶 depends on 𝑇 but is indepen-
dent of 𝑇1 < 𝑇. Employing (17), (18), we find that

‖𝑐‖𝐶2+𝛼,1+𝛼/2(�̄�𝑇1
) 6 𝐶3

(︁
‖𝑐0‖𝐶2+𝛼(Ω̄) + ‖𝑠0‖𝐶𝛼(Ω̄)

)︁
+ 𝑇

1−𝛼/2
1 𝐶4‖𝑐‖𝐶𝛼,𝛼/2(�̄�𝑇1

). (19)

This implies that the operator Λ : 𝑐 → 𝑐 is completely continuous.
We fix the constant 𝐾 involved in the definition of the set 𝑉𝑇1 by the requirement

𝐾 > 𝐶3

(︁
‖𝑐0‖𝐶2+𝛼(Ω̄) + ‖𝑠0‖𝐶𝛼(Ω̄)

)︁
.

For the sake of definitenss we let

𝐾 = 2𝐶3

(︁
‖𝑐0‖𝐶2+𝛼(Ω̄) + ‖𝑠0‖𝐶𝛼(Ω̄)

)︁
.

The it follows from (19) that for sufficiently small 𝑇1, the operator Λ maps the set 𝑉𝑇1 into itself.
By the Schauder theorem on a fixed point of a completely continuous operator, the set 𝑉𝑇1 contains

a fixed point 𝑐, which together with the corresponding function 𝑠 in (10) solves problem (1)–(5) in
the time interval [0, 𝑇1]. In 𝑘 steps, the obtained solution can be continued on [𝑇𝑘, 𝑇𝑘+1], 𝑘 = 1, 2, . . .,
and 𝑇𝑘+1 − 𝑇𝑘 > 𝛿 > 0 with 𝛿 independent of the index 𝑘. This is seen in view of estimate (19)

𝐶3

(︁
‖𝑐0‖𝐶2+𝛼(Ω̄) + ‖𝑠0‖𝐶𝛼(Ω̄)

)︁
+ 𝑇

1−𝛼/2
1 𝐶4‖𝑐‖𝐶𝛼,𝛼/2(�̄�𝑇1

) < 𝐾 = 2𝐶3

(︁
‖𝑐0‖𝐶2+𝛼(Ω̄) + ‖𝑠0‖𝐶𝛼(Ω̄)

)︁
.

Since ‖𝑐‖𝐶𝛼,𝛼/2(�̄�𝑇1
) 6 𝐾, this implies that as 𝛿 we can choose

𝛿1−𝛼/2 =
𝐾

2𝐶4𝐾
=

1

2𝐶4
,

which is independent of 𝑘. Hence, in finitely many steps, the solution can be continued to each
0 < 𝑇 < +∞.
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