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GROUP CLASSIFICATION AND SYMMETRY REDUCTION

OF THREE-DIMENSIONAL NONLINEAR

ANOMALOUS DIFFUSION EQUATION

R.K. GAZIZOV, A.A. KASATKIN, S.YU. LUKASHCHUK

Abstract. The work is devoted to studying symmetry properties of a nonlinear anomalous
diffusion equation involving a Riemann-Liouville fractional derivative with respect to the
time. We resolve a problem on group classification with respect to the diffusion coeffi-
cient treated as a function of the unknown. We show that for an arbitrary function, the
equation admits a seven-dimensional Lie algebra of infinitesimal operators corresponding
to the groups of translations, rotations and dilations. In contrast to the symmetries of the
equations with integer order derivatives, the translation in time is not admitted. Moreover,
the coefficients of the group of dilations are different. If the coefficient is power, the admis-
sible algebra is extended to a eight-dimensional one by an additional operator generating
the group of dilatations. For two specific values of the exponent in the power, the algebra
can be further extended to a nine-dimensional one or to a eleven-dimensional one and at
that, additional admissible operators correspond to various projective transformations. For
the obtained Lie algebras of symmetries with dimensions from seven to nine, we construct
optimal systems of subalgebras and provide ansatzes for corresponding invariant solutions
of various ranks. We also provide general forms of invariant solutions convenient for the
symmetry reduction as the fractional Riemann-Liouville derivative is present. We make a
symmetry reduction on subalgebras allowing one to find invariant solutions of rank one.
We provide corresponding reduced ordinary fractional differential equations.

Keywords: fractional derivatives, symmetry reduction, optimal system of subalgebras,
nonlinear fractional diffusion equation.
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1. Introduction

Many modern mathematical models employ the techniques of fractional integration and dif-
ferentiation for describing the memory effects or nonlocal interactions in a considered me-
dia [1], [2], [3]. In particular, under certain conditions, the fractional order derivatives can be
applicable for the models of filtration in a soil or in complex oil and gas reservoirs. Many of the
considered models, both classical and fractional-differential, involve essential nonlinearities in
the equations [4], [5]. Almost all existing methods for the equations with fractional derivatives
are either numerical or approximate analytic. One of the most developed direction in studying
of nonlinear equations is the studying of their symmetry properties [6], [7]. These methods
can be also adapted for studying equations with fractional order derivatives, see, for instance,
survey [8].
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In the present work we consider a three-dimensional nonlinear anomalous diffusion equation
with a fractional derivative in time of the form

0𝐷
𝛼
𝑡 𝑢 = (𝑘(𝑢)𝑢𝑥)𝑥 + (𝑘(𝑢)𝑢𝑦)𝑦 + (𝑘(𝑢)𝑢𝑧)𝑧, 𝛼 ∈ (0, 1) ∪ (1, 2). (1)

In particular, such equation can be obtained while considering the filtration in a porous media
with a modified Darcy law [9].

A fractional derivative of Riemann-Liouville type is defined by the identity

𝑎𝐷
𝛼
𝑡 𝑢(𝑡,x) =

1

Γ(𝑚− 𝛼)

𝑑𝑚

𝑑𝑡𝑚

𝑡∫︁
𝑎

𝑢(𝑤,x)

(𝑡− 𝑤)𝛼+1−𝑚
𝑑𝑡, 𝑚− 1 < 𝛼 < 𝑚, 𝑚 ∈ N. (2)

For equation (1) we solve the problem of a group classification with respect to the function
𝑘(𝑢). In the limiting case 𝛼 = 1, by the identity 0𝐷

1
𝑡 𝑢 = 𝑢𝑡, this equation becomes a classical

nonlinear heat equation, and the results of the group classification for the latter equation are
well-known [10], see also [11]. The results on the group classification for one-dimensional version
of equation (1) with symmetry reductions were provided in [12]. In the present work we consider
only nonlinear equations assuming that 𝑘′(𝑢) ̸= 0. Symmetry properties and conservations laws
for equation (1) were considered in work [13], however, an essential part of the obtained results
was wrong and the problem on the group classification (1) is still topical.

For the obtained Lie algebras of the symmetries of dimensions from seven to nine we construct
optimal systems of subalgebras and find the substitutions for constructing invariant solutions.
We consider the cases of symmetry reductions for invariant solutions of rank 1.

2. Group classification of nonlinear isotropic fractional differential
anomalous diffusion equation

The problem on group classification for equation (1) is solved up to equivalence transforma-
tions [6], [7], which can be found similar to symmetries [14] and read as

𝑡 = 𝛿2𝑡, �̄� = 𝛾𝑥+𝛽1, 𝑦 = 𝛾𝑦+𝛽2, 𝑧 = 𝛾𝑧+𝛽3, �̄� = 𝜌𝑢, 𝑘 = 𝛾2𝛿−2𝛼𝑘, (3)

where 𝛽1, 𝛽2, 𝛽3, 𝛾, 𝛿 ∈ R, 𝜌 > 0. We observe an important feature: opposite to the classical
heat equation, the equivalence transformations for the fractional equation do not involve the
translation in the variable 𝑢.

The symmetries of equation (1) are defined by the infinitesimal generators

𝑋 = 𝜏
𝜕

𝜕𝑡
+ 𝜉1

𝜕

𝜕𝑥
+ 𝜉2

𝜕

𝜕𝑦
+ 𝜉3

𝜕

𝜕𝑧
+ 𝜂

𝜕

𝜕𝑢
(4)

and are sought in a linear autonomous form [8], [15]:

𝜏 = 𝐶1𝑡+ 𝐶2𝑡
2, 𝜉1 = 𝜃1(𝑥, 𝑦, 𝑧), 𝜉2 = 𝜃2(𝑥, 𝑦, 𝑧), 𝜉3 = 𝜃3(𝑥, 𝑦, 𝑧),

𝜂 = 𝜂(0) + 𝜂(1)𝑢, 𝜂(0) = 𝜓(𝑡, 𝑥, 𝑦, 𝑧), 𝜂(1) = 𝜙(𝑥, 𝑦, 𝑧) + (𝛼− 1)𝐶2𝑡,
(5)

and here we apply the prolongation formula to fractional derivatives.
The determining equation for the functions 𝜃𝑖, (𝑖 = 1, 2, 3), 𝜙 and 𝜓 becomes

0𝐷
𝛼
𝑡 (𝜓) + [𝜙− 𝛼𝐶1 − (1 + 𝛼)𝐶2𝑡] [(𝑢𝑥𝑥 + 𝑢𝑦𝑦 + 𝑢𝑧𝑧)𝑘 + (𝑢2𝑥 + 𝑢2𝑦 + 𝑢2𝑧)𝑘

′]

− (𝜁11 + 𝜁22 + 𝜁33)𝑘 − 2(𝜁1𝑢𝑥 + 𝜁2𝑢𝑦 + 𝜁3𝑢𝑧)𝑘
′

− [𝜓 + (𝜙+ (𝛼− 1)𝐶2𝑡)𝑢][(𝑢𝑥𝑥 + 𝑢𝑦𝑦 + 𝑢𝑧𝑧)𝑘
′ + (𝑢2𝑥 + 𝑢2𝑦 + 𝑢2𝑧)𝑘

′′] = 0,

(6)
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where

𝜁1 = 𝜓𝑥 + 𝜙𝑥𝑢+ (𝜙+ (𝛼− 1)𝐶2𝑡− 𝜃1𝑥)𝑢𝑥 − 𝜃2𝑥𝑢𝑦 − 𝜃3𝑥𝑢𝑧,

𝜁2 = 𝜓𝑦 + 𝜙𝑦𝑢− 𝜃1𝑦𝑢𝑥 + (𝜙+ (𝛼− 1)𝐶2𝑡− 𝜃2𝑦)𝑢𝑦 − 𝜃3𝑦𝑢𝑧,

𝜁3 = 𝜓𝑧 + 𝜙𝑧𝑢− 𝜃1𝑧𝑢𝑥 − 𝜃2𝑧𝑢𝑦 + (𝜙+ (𝛼− 1)𝐶2𝑡− 𝜃3𝑧)𝑢𝑧,

𝜁11 = 𝜓𝑥𝑥 + 𝜙𝑥𝑥𝑢+ (2𝜙𝑥 − 𝜃1𝑥𝑥)𝑢𝑥 − 𝜃2𝑥𝑥𝑢𝑦 − 𝜃3𝑥𝑥𝑢𝑧+

+ (𝜙+ (𝛼− 1)𝐶2𝑡− 2𝜃1𝑥)𝑢𝑥𝑥 − 2𝜃2𝑥𝑢𝑥𝑦 − 2𝜃3𝑥𝑢𝑥𝑧,

𝜁22 = 𝜓𝑦𝑦 + 𝜙𝑦𝑦𝑢− 𝜃1𝑦𝑦𝑢𝑥 + (2𝜙𝑦 − 𝜃2𝑦𝑦)𝑢𝑦 − 𝜃3𝑦𝑦𝑢𝑧

− 2𝜃1𝑦𝑢𝑥𝑦 + (𝜙+ (𝛼− 1)𝐶2𝑡− 2𝜃2𝑦)𝑢𝑦𝑦 − 2𝜃3𝑦𝑢𝑦𝑧,

𝜁33 = 𝜓𝑧𝑧 + 𝜙𝑧𝑧𝑢− 𝜃1𝑧𝑧𝑢𝑥 − 𝜃2𝑧𝑧𝑢𝑦 + (2𝜙𝑧 − 𝜃2𝑧𝑧)𝑢𝑧

− 2𝜃2𝑧𝑢𝑦𝑧 + (𝜙+ (𝛼− 1)𝐶2𝑡− 2𝜃3𝑧)𝑢𝑧𝑧.

By splitting (6) with respect to 𝑢𝑥𝑥, 𝑢𝑦𝑦 and 𝑢𝑧𝑧 we arrive at the equations

𝜓 + (𝛼− 1)𝐶2𝑡𝑢+ 𝜙𝑢+ [𝛼(𝐶1 + 2𝐶2𝑡) − 2𝜃1𝑥]𝐾(𝑢) = 0,

𝜓 + (𝛼− 1)𝐶2𝑡𝑢+ 𝜙𝑢+ [𝛼(𝐶1 + 2𝐶2𝑡) − 2𝜃2𝑦]𝐾(𝑢) = 0,

𝜓 + (𝛼− 1)𝐶2𝑡𝑢+ 𝜙𝑢+ [𝛼(𝐶1 + 2𝐶2𝑡) − 2𝜃3𝑧 ]𝐾(𝑢) = 0,

(7)

where 𝐾(𝑢) = 𝑘(𝑢)/𝑘′(𝑢). By differentiating these equations with respect to 𝑢 we are led
to the classifying relation 𝐾 ′′ = 0, which turns out to be identical to the classifying relation
for classical heat equation [6]. As a result, up to equivalent transformations (3), we find the
following cases for 𝑘(𝑢) ̸= 𝑐𝑜𝑛𝑠𝑡:

I. 𝑘(𝑢) is an arbitrary function,
II. 𝑘(𝑢) = 𝑒𝑢,
III. 𝑘(𝑢) = (𝑢+𝐵)𝜎, 𝜎 ̸= 0.
In Case I, by (7) we find

𝐶2 = 0, 𝜙 = 0, 𝜓 = 0, 𝜃1𝑥 = 𝜃2𝑦 = 𝜃3𝑧 =
𝛼

2
𝐶1. (8)

In Case II we have

𝐶2 = 0, 𝜙 = 0, 𝜃1𝑥 = 𝜃2𝑦 = 𝜃3𝑧 =
𝛼

2
(𝛼𝐶1 + 𝜓). (9)

In Case III we get the equations

𝜎𝜓 = 𝐵(𝜎𝜙− 2𝛼𝐶2𝑡), 𝜃1𝑥 = 𝜃2𝑦 = 𝜃3𝑧 =
𝛼

2
(𝛼𝐶1 + 𝜓), (10)

at that 𝐶2 ̸= 0 only as 𝜎 = 2𝛼
1−𝛼

.
The splitting of (6) with respect to the mixed variables 𝑢𝑥𝑦, 𝑢𝑥𝑧 and 𝑢𝑦𝑧 gives rise to the

equations
𝜃2𝑥 + 𝜃1𝑦 = 0, 𝜃3𝑥 + 𝜃1𝑧 = 0, 𝜃3𝑦 + 𝜃2𝑧 = 0. (11)

The splitting with respect to 𝑢2𝑥, 𝑢2𝑦, 𝑢
2
𝑧, 𝑢𝑥𝑢𝑦, 𝑢𝑥𝑢𝑧, 𝑢𝑦𝑢𝑧 produces the differential implications

of the above obtained equations.
The splitting with respect to 𝑢𝑥, 𝑢𝑦, 𝑢𝑧 gives

𝐾(𝑢)(2𝜙𝑥 − 𝜃1𝑥𝑥 − 𝜃1𝑦𝑦 − 𝜃1𝑧𝑧) + 2(𝜓𝑥 + 𝜙𝑥𝑢) = 0,

𝐾(𝑢)(2𝜙𝑦 − 𝜃2𝑥𝑥 − 𝜃2𝑦𝑦 − 𝜃2𝑧𝑧) + 2(𝜓𝑦 + 𝜙𝑦𝑢) = 0,

𝐾(𝑢)(2𝜙𝑧 − 𝜃3𝑥𝑥 − 𝜃3𝑦𝑦 − 𝜃3𝑧𝑧) + 2(𝜓𝑧 + 𝜙𝑧𝑢) = 0.

(12)

The equation remaining after the splitting reads as

0𝐷
𝛼
𝑡 𝜓 = (𝜓𝑥𝑥 + 𝜓𝑦𝑦 + 𝜓𝑧𝑧)𝑘 + (𝜙𝑥𝑥 + 𝜙𝑦𝑦 + 𝜙𝑧𝑧)𝑢𝑘. (13)
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The group classification is completed by finding the solution to system of obtained equations
(8)–(13). At that, by straightforward calculations we show that Case II does not extend the
group of point transformations admitted by equation (1), while in Case III the group extends

only as 𝐵 = 0, and here one more particular 𝑘(𝑢) = 𝑢−
4
5 arises. We summarize the obtained

results in the following statement.

Lemma 1. Assuming that 𝑘′(𝑢) ̸= 0, in the case of an arbitrary function 𝑘(𝑢) nonlinear
equation (1) possesses a seven-dimensional Lie algebra of point symmetries with the basis

𝑋1 =
𝜕

𝜕𝑥
, 𝑋2 =

𝜕

𝜕𝑦
, 𝑋3 =

𝜕

𝜕𝑧
, 𝑋4 = 𝑦

𝜕

𝜕𝑧
− 𝑧

𝜕

𝜕𝑦
,

𝑋5 = 𝑧
𝜕

𝜕𝑥
− 𝑥

𝜕

𝜕𝑧
, 𝑋6 = −𝑦 𝜕

𝜕𝑥
+ 𝑥

𝜕

𝜕𝑦
, 𝑋7 =

2

𝛼
𝑡
𝜕

𝜕𝑡
+ 𝑥

𝜕

𝜕𝑥
+ 𝑦

𝜕

𝜕𝑦
+ 𝑧

𝜕

𝜕𝑧
.

(14)

In the case of a power dependence 𝑘(𝑢) = 𝑢𝜎, 𝜎 ̸= 0, the algebra is extended to an eight-
dimensional one by the operator

𝑋8 = 𝑢
𝜕

𝜕𝑢
− 𝜎

𝛼
𝑡
𝜕

𝜕𝑡
. (15)

At that, in the particular case 𝜎 = 2𝛼
1−𝛼

, there is an additional extension of the algebra to a
nine-dimensional one with the operator

𝑋9 = 𝑡2
𝜕

𝜕𝑡
− (1 − 𝛼)𝑡𝑢

𝜕

𝜕𝑢
, (16)

and in the case 𝜎 = −4
5
the extension is made up to an eleven-dimensional algebra with the

operators

𝑋9 = (𝑦2 + 𝑧2 − 𝑥2)
𝜕

𝜕𝑥
− 2𝑥𝑦

𝜕

𝜕𝑦
− 2𝑥𝑧

𝜕

𝜕𝑧
+ 5𝑥𝑢

𝜕

𝜕𝑢
,

𝑋10 = (𝑥2 + 𝑧2 − 𝑦2)
𝜕

𝜕𝑦
− 2𝑥𝑦

𝜕

𝜕𝑥
− 2𝑦𝑧

𝜕

𝜕𝑧
+ 5𝑦𝑢

𝜕

𝜕𝑢
,

𝑋11 = (𝑥2 + 𝑦2 − 𝑧2)
𝜕

𝜕𝑧
− 2𝑥𝑧

𝜕

𝜕𝑥
− 2𝑦𝑧

𝜕

𝜕𝑦
+ 5𝑧𝑢

𝜕

𝜕𝑢
.

(17)

There are no other cases for the considered nonlinear equation when the Lie algebra of symme-
tries extends.

Comparing the results of the performed classification with the classification results of the
classical three-dimensional nonlinear heat equation [6], we see that they are very close. The
presence of the fractional derivative just changes the coefficients in the dilation operators 𝑋7,
𝑋8. However, the dimension of the admissible Lie algebra of symmetries for the fractional
differential equations becomes less by one since the translation in time is not admitted. At
that, we find a case, when the generator of projective group (16) is admitted, which is not the
case for the classical heat equation.

3. Optimal system of subalgebras of Lie algebra of symmetries

For a systematic studying of invariant solutions to diffusion equation (1) we need to construct
an optimal system of subalgebras for the admissible Lie algebra of operators. This allows us
to exclude equivalent cases from the consideration, that is, the cases reducible one to another
by means of the transformations admitted by the equation. Each symmetry of the equation
generates an inner automorphism of the Lie algebra of the admitted operators. The optimal
system is a set of the representatives from each class formed by elements reducible one to
another by the automorphisms of the subalgebras.

We proceed to constructing an optimal system of subalgebras of Lie algebra 𝐿9 with the basis
𝑋1, . . . , 𝑋9. We employ a two-step algorithm proposed in [16], see also [7], which is based on
using the structure of the algebra. For a three-dimensional nonlinear diffusion equation of an
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integer order with a power coefficient, an optimal system was constructed for a similar system
in work [17], but the results can not be easily employed.

The commutators for the algebra 𝐿9 are given in Table 1.

Table 1: Table of commutators

𝑋1 𝑋2 𝑋3 𝑋4 𝑋5 𝑋6 𝑋7 𝑋8 𝑋9

𝑋1 0 0 0 0 −𝑋3 𝑋2 𝑋1 0 0
𝑋2 0 0 0 𝑋3 0 −𝑋1 𝑋2 0 0
𝑋3 0 0 0 −𝑋2 𝑋1 0 𝑋3 0 0
𝑋4 0 −𝑋3 𝑋2 0 −𝑋6 𝑋5 0 0 0
𝑋5 𝑋3 0 −𝑋1 𝑋6 0 −𝑋4 0 0 0
𝑋6 −𝑋2 𝑋1 0 −𝑋5 𝑋4 0 0 0 0

𝑋7 −𝑋1 −𝑋2 −𝑋3 0 0 0 0 0
2

𝛼
𝑋9

𝑋8 0 0 0 0 0 0 0 0
2

𝛼− 1
𝑋9

𝑋9 0 0 0 0 0 0 − 2

𝛼
𝑋9

2

1 − 𝛼
𝑋9 0

It is easy to see that the algebra 𝐿7 with the basis 𝑋1, . . . , 𝑋7 can be represented as a
semi-direct sum of the subalgebra 𝐿4 and an Abelian ideal 𝐽3:

𝐿7 = 𝐿4 ⊕· 𝐽3, 𝐿4 = {𝑋4, 𝑋5, 𝑋6, 𝑋7}, 𝐽3 = {𝑋1, 𝑋2, 𝑋3}.
In the case of the power form of the coefficient 𝑘(𝑢) = 𝑢𝛽, the algebra of the admissible operators
is extended up to 𝐿8:

𝐿8 = 𝐿7 ⊕ {𝑋8},
and an one-dimensional subalgebra {𝑋8} is a center of 𝐿8. And finally, as 𝜎 = 2𝛼/(1− 𝛼), the
operator 𝑋9 is added to the admissible algebra generating its one-dimensional ideal:

𝐿9 = 𝐿8 ⊕· {𝑋9}.
Each of the operators 𝑋𝑖 ∈ 𝐿 generates an inner automorphism 𝐴𝑖 of the studied algebra 𝐿.

It can be constructed as a solution to the Cauchy problem

𝑑�̄�

𝑑𝑎
= [𝑋𝑖, �̄�], �̄�

⃒⃒
𝑎=0

= 𝑋𝑖, (18)

at that, the unknowns are the transformations of the coefficients of the operator 𝑘𝑖(𝑎) in the
original basis: �̄� =

∑︀9
𝑗=1 𝑘𝑗(𝑎)𝑋𝑗, 𝑘𝑗(0) = 𝑘𝑗.

It is convenient to write the inner automorphisms for the widest Lie algebra 𝐿9; for the sake
of brevity we provide only changed coefficients:
𝐴1 : 𝑘1 = 𝑘1 + 𝑎1𝑘7, 𝑘2 = 𝑘2 + 𝑎1𝑘6, 𝑘3 = 𝑘3 − 𝑎1𝑘5,
𝐴2 : 𝑘1 = 𝑘1 − 𝑎1𝑘6, 𝑘2 = 𝑘2 + 𝑎2𝑘7, 𝑘3 = 𝑘3 + 𝑎2𝑘4,
𝐴3 : 𝑘1 = 𝑘1 + 𝑎3𝑘5, 𝑘2 = 𝑘2 − 𝑎3𝑘4, 𝑘3 = 𝑘3 + 𝑎3𝑘7,
𝐴4 : 𝑘23 = 𝑂1𝑘23, 𝑘56 = 𝑂1𝑘56,
𝐴5 : 𝑘13 = 𝑂2𝑘13, 𝑘46 = 𝑂2𝑘46,
𝐴6 : 𝑘12 = 𝑂3𝑘12, 𝑘45 = 𝑂3𝑘45

𝐴7 : 𝑘1 = 𝑎7𝑘1, 𝑘2 = 𝑎7𝑘2, 𝑘3 = 𝑎7𝑘3, 𝑘9 =

(︂
1

𝑎27

)︂1/𝛼

, 𝑎7 ̸= 0,

𝐴8 : 𝑘9 = 𝑎8𝑘9, 𝑎8 > 0,

𝐴9 : 𝑘9 = 𝑘9 +

(︂
2

1 − 𝛼
𝑘8 −

2

𝛼
𝑘7

)︂
𝑎9.
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In 𝐴4 − 𝐴6 we adopted the following notations for the vector of the coefficients and for the
rotation matrix:

𝑘𝑖𝑗 = (𝑘𝑖, 𝑘𝑗)
𝑇 , 𝑂𝑖 =

(︂
cos(𝑎𝑖) sin(𝑎𝑖)

− sin(𝑎𝑖) cos(𝑎𝑖)

)︂
.

While constructing an optimal system of subalgebras for the symmetry reduction, to the
group of inner automorphisms we add discrete automorphisms generated by reflection of the
coordinate axes 𝑥 → −𝑥, 𝑦 → −𝑦, 𝑧 → −𝑧; as a result, the initial restriction 𝑎7 > 0 in 𝐴7 is
omitted. However, the change 𝑡 → −𝑡 influences the integration domain and this is why it is
not admitted.

An optimal system of subalgebras is constructed by employing classical algorithms [16], [7]
demonstrated in details in [17]: the coordinates of the basis are written as a matrix and
are maximally simplified by inner automorphisms, linear transformations and by checking the
subalgebra conditions.

An optimal system Θ(𝐿4) is known [18] and can be constructed easily:

Θ1(𝐿4) : 1.1 : 𝑋4, 1.2 : 𝑋7, 1.3 : 𝑋4 + 𝛾𝑋7, 𝛾 > 0,

Θ2(𝐿4) : no two-dimensional subalgebras,

Θ3(𝐿4) : 3.1 : 𝑋4, 𝑋5, 𝑋6,

Θ4(𝐿4) : 4.1 : 𝑋4, 𝑋5, 𝑋6, 𝑋7.

(19)

To minimize the arbitrariness in the choice of the representatives, one usually impose a
normalization condition: together with a subalgebra 𝐾 ∈ Θ(𝐿), the optimal system should
also contain its normalizator Nor𝐿𝐾, which is the maximal subalgebra in 𝐿, for which 𝐾 is
ideal.

In many cases it is convenient to employ cylindrical and spherical coordinate systems for
constructing invariant solutions. Hereinafter

𝑅 =
√︀
𝑥2 + 𝑦2 + 𝑧2, 𝑟 =

√︀
𝑦2 + 𝑧2, 𝑟 cos𝜙 = 𝑦, 𝑟 sin𝜙 = 𝑧.

In Table 2 we provide a constructed optimal system of subalgebras Θ(𝐿7); for each subalgebra
we give a general form of an invariant solution to equation (1) obtained from the invariants of
the subalgebra in the case when the invariants involve 𝑢.

Table 2: Optimal system Θ(𝐿7)

no. Subalgebra Projection in 𝐿4 Nor𝐿7𝐾 Form of invariant solution
1.1 4 - 3.7 𝑣(𝑡, 𝑥, 𝑦2 + 𝑧2)
1.2 7 - 4.1 𝑣(𝑡𝑥−2/𝛼, 𝑡𝑦−2/𝛼, 𝑡𝑧−2/𝛼)
1.3 4 + 𝛾7 - 2.1 𝑣

(︀
𝛾𝜙− ln(𝑟), 𝑡𝑥−2/𝛼, 𝑟

𝑥

)︀
1.4 1 0 5.1 𝑣(𝑡, 𝑦, 𝑧)
1.5 1 + 4 1.1 2.1 𝑣(𝑥− 𝜙, 𝑦2 + 𝑧2, 𝑡)
2.1 4, 7 - 2.1 𝑣

(︀
𝑡𝑥−2/𝛼, 𝑟

𝑥

)︀
2.2 2, 3 0 5.1 𝑣(𝑡, 𝑥)
2.3 1, 4 1.1 3.7 𝑣(𝑡, 𝑟)
2.4 1, 7 1.2 3.7 𝑣(𝑡𝑦−2/𝛼, 𝑧/𝑦)
2.5 1, 4 + 𝛾7 1.3 3.7 𝑣(𝑡𝑟−2/𝛼, 𝛾𝜙− ln 𝑟)
3.1 4, 5, 6 - 4.1 𝑣(𝑡, 𝑅)
3.2 1, 2, 3 0 7.1 𝑣(𝑡)
3.3 1 + 4, 2, 3 1.1 4.2 𝑣(𝑡)
3.4 2, 3, 4 1.1 5.1 𝑣(𝑡, 𝑥)
3.5 2, 3, 7 1.2 4.5 𝑣(𝑡𝑥−2/𝛼)
3.6 2, 3, 4 + 𝛾7 1.3 4.5 𝑣(𝑡𝑥−2/𝛼)
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3.7 1, 4, 7 2.1 3.7 𝑣(𝑡𝑟−2/𝛼)
4.1 4, 5, 6, 7 - 4.1 𝑣

(︀
𝑡𝑅−2/𝛼

)︀
4.2 1, 2, 3, 4 1.1 5.1 𝑣(𝑡)
4.3 1, 2, 3, 7 1.2 7.1 𝑐
4.4 1, 2, 3, 4 + 𝛾7 1.3 5.1 𝑐
4.5 2, 3, 4, 7 2.1 4.5 𝑣(𝑡𝑥−2/𝛼)
5.1 1, 2, 3, 4, 7 2.1 5.1 𝑐
6.1 1, 2, 3, 4, 5, 6 3.1 7.1 𝑣(𝑡)
7.1 1, 2, 3, 4, 5, 6, 7 4.1 7.1 𝑐

We employ a brief writing: {𝑋1, 𝑋2, 𝑋3, 𝑋4 + 𝛾𝑋7} are denoted as 1, 2, 3, 4 + 𝛾7. We also
introduce arbitrary constants 𝛾 > 0, 𝜆 ̸= 0, 𝜇 ∈ R.

The optimal system Θ𝑘(𝐿8) includes subalgebras of two types: all elements Θ𝑘−1(𝐿7) with
an added operator 𝑋8, and also subalgebras constructed from Θ𝑘(𝐿7) by adding terms with 𝑋8

to each operator followed by simplification and checking the subalgebra conditions. In Table 3
we list additional elements Θ(𝐿8) in comparison with Θ(𝐿7).

Table 3: Optimal system Θ(𝐿8) as extension of Θ(𝐿7)

no. Subalgebra Projection in 𝐿7 Nor𝐿8𝐾 Form of invariant solution
1.6 8 0 8.1 𝑡−𝛼/𝜎𝑣(𝑥, 𝑦, 𝑧)
1.7 4 + 𝛾8 1.1 4.12 𝑒𝛾𝜙𝑣(𝑡𝑒𝜎𝛾𝜙/𝛼, 𝑥, 𝑦2 + 𝑧2)
1.8 7 + 𝜆8 1.2 5.2 𝑥𝜆𝑣

(︀
𝑡𝑥(𝜎𝜆−2)/𝛼, 𝑦

𝑥
, 𝑧
𝑥

)︀
1.9 4 + 𝛾7 + 𝜇8 1.3 3.8 𝑥

𝜇
𝛾 𝑣

(︁
𝑡𝑒

𝜎𝜇−2𝛾
𝛼

𝜙, 𝑟
𝑥
, 𝛾𝜙− ln𝑥

)︁
1.10 1 + 8 1.4 5.3 𝑡−𝛼/𝜎𝑣(𝑡𝑒𝜎𝑥/𝛼, 𝑦, 𝑧)
1.11 1 + 4 + 𝛾8 1.5 3.10 𝑒𝛾𝜙𝑣(𝑡𝑒𝜎𝛾𝜙/𝛼, 𝑥− 𝜙, 𝑦2 + 𝑧2)
2.6 4, 8 1.1 4.12 𝑡−𝛼/𝜎𝑣 (𝑥, 𝑦2 + 𝑧2)
2.7 7, 8 1.2 5.2 𝑡−𝛼/𝜎𝑥2/𝜎𝑣

(︀
𝑦
𝑥
, 𝑧
𝑥

)︀
2.8 4 + 𝛾7, 8 1.3 3.8 𝑡−𝛼/𝜎𝑥2/𝜎𝑣

(︀
𝛾𝜙− ln(𝑟), 𝑟

𝑥

)︀
2.9 1, 8 1.4 6.2 𝑡−𝛼/𝜎𝑣(𝑦, 𝑧)
2.10 1 + 4, 8 1.5 3.10 𝑡−𝛼/𝜎𝑣(𝑟, 𝑥− 𝜙)

2.11 4, 7 + 𝜆8 2.1 3.8 𝑥𝜆 𝑣
(︁
𝑡𝑥

𝜆𝜎−2
𝛼 , 𝑟

𝑥

)︁
2.12 4 + 𝛾8, 7 + 𝜇8 2.1 3.8 𝑥𝜇𝑒𝛾𝜙 𝑣

(︁
𝑡𝑥

𝜇𝜎−2
𝛼 𝑒

𝛾𝜎𝜑
𝛼 , 𝑟

𝑥

)︁
2.13 2 + 8, 3 2.2 4.7 𝑒𝑦 𝑣

(︀
𝑡𝑒

𝜎
𝛼
𝑦, 𝑥

)︀
2.14 1, 4 + 𝛾8 2.3 4.12 𝑒𝛾𝜙 𝑣

(︀
𝑡𝑒

𝛾𝜎
𝛼

𝜙, 𝑟
)︀

2.15 1 + 8, 4 + 𝛾8 2.3 3.10 𝑒𝑥+𝛾𝜙 𝑣
(︀
𝑡𝑒

𝜎
𝛼
(𝑥+𝛾𝜙), 𝑟

)︀
2.16 1, 7 + 𝜆8 2.4 4.12 𝑦𝜆 𝑣

(︁
𝑡𝑦

𝜆𝜎−2
𝛼 , 𝑧/𝑦

)︁
2.17 1, 4 + 𝛾7 + 𝜆8 2.5 4.12 𝑟𝜆/𝛾 𝑣

(︁
𝑡𝑟

𝜆𝜎−2𝛾
𝛼𝛾 , 𝛾𝜙− ln 𝑟

)︁
3.8 4, 7, 8 2.1 3.8 𝑥2/𝜎𝑡−𝛼/𝜎𝑣

(︀
𝑟
𝑥

)︀
3.9 2, 3, 8 2.2 6.2 𝑡−𝛼/𝜎𝑣(𝑥)
3.10 1, 4, 8 2.3 4.12 𝑡−𝛼/𝜎𝑣(𝑟)
3.11 1, 7, 8 2.4 4.12 𝑡−𝛼/𝜎𝑦2/𝜎𝑣(𝑧/𝑦)
3.12 1, 4 + 𝛾7, 8 2.5 4.12 𝑡−𝛼/𝜎𝑟2/𝜎𝑣(𝛾𝜙− ln 𝑟)
3.13 1 + 8, 2, 3 3.2 5.3 𝑒𝑥𝑣

(︀
𝑡𝑒

𝜎𝑥
𝛼

)︀
3.14 1 + 4 + 𝛾8, 2, 3 3.3 5.3 𝑒𝛾𝑥𝑣

(︀
𝑡𝑒

𝛾𝜎𝑥
𝛼

)︀
3.15 2, 3, 4 + 𝛾8 3.4 6.2 𝑡−𝛼/𝜎𝑣(𝑥)

3.16 2, 3, 7 + 𝜆8 3.5 5.6 𝑥𝜆𝑣
(︁
𝑡𝑥

𝜎𝜆−2
𝛼

)︁
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3.17 2, 3, 4 + 𝛾7 + 𝜆8 3.6 5.6 𝑥𝜆/𝛾 𝑣
(︁
𝑡𝑥

𝜎𝜆−2𝛾
𝛼𝛾

)︁
3.18 1, 4, 7 + 𝜆8 3.7 4.12 𝑟𝜆 𝑣

(︁
𝑡𝑟

𝜎𝜆−2
𝛼

)︁
3.19 1, 4 + 𝛾8, 7 + 𝜇8 3.7 4.12 𝑒𝛾𝜑𝑟𝜇𝑣

(︁
𝑡𝑟

𝜎𝜇−2
𝛼 𝑒

𝛾𝜎𝜙
𝛼

)︁
4.6 4, 5, 6, 8 3.1 5.2 𝑡−𝛼/𝜎𝑣(𝑅)
4.7 1, 2, 3, 8 3.2 8.1 𝑐𝑡−𝛼/𝜎

4.8 1 + 4, 2, 3, 8 3.3 5.3 𝑐𝑡−𝛼/𝜎

4.9 2, 3, 4, 8 3.4 6.2 𝑡−𝛼/𝜎𝑣(𝑥)
4.10 2, 3, 7, 8 3.5 5.6 𝑐𝑡−𝛼/𝜎𝑥2/𝜎

4.11 2, 3, 4 + 𝛾7, 8 3.6 5.6 𝑐𝑡−𝛼/𝜎𝑥2/𝜎

4.12 1, 4, 7, 8 3.7 4.12 𝑐𝑡−𝛼/𝜎𝑟2/𝜎

4.13 4, 5, 6, 7 + 𝜆8 3.8 5.2 𝑅𝜆𝑣(𝑡𝑅
𝜎𝜆−2

𝛼 )
4.14 1, 2, 3, 4 + 𝛾8 4.1 6.2 𝑐𝑡−𝛼/𝜎

4.15 1 + 8, 2, 3, 4 + 𝛾8 4.2 5.3 𝑐𝑡−𝛼/𝜎

4.16 1, 2, 3, 7 + 𝜆8 4.3 8.1 𝑐𝑡𝛼𝜆/(2−𝜎𝜆)

4.17 1, 2, 3, 4 + 𝛾7 + 𝜆8 4.4 6.2 𝑐𝑡𝛼𝜆/(2𝛾−𝜎𝜆)

4.18 2, 3, 4, 7 + 𝜆8 4.5 5.6 𝑥𝜆𝑣
(︁
𝑡𝑥

𝜎𝜆−2
𝛼

)︁
4.19 2, 3, 4 + 𝛾8, 7 + 𝜇8 4.5 5.6 𝑐𝑡−𝛼/𝜎𝑥2/𝜎

5.2 4, 5, 6, 7, 8 4.1 5.2 𝑐𝑡−𝛼/𝜎𝑅2/𝜎

5.3 1, 2, 3, 4, 8 4.2 6.2 𝑐𝑡−𝛼/𝜎

5.4 1, 2, 3, 7, 8 4.3 8.1 —
5.5 1, 2, 3, 4 + 𝛾7, 8 4.4 6.2 —
5.6 2, 3, 4, 7, 8 4.5 5.6 𝑐𝑡−𝛼/𝜎𝑥2/𝜎

5.7 1, 2, 3, 4, 7 + 𝜆8 4.6 6.2 𝑐𝑡𝛼𝜆/(2−𝜎𝜆)

5.8 1, 2, 3, 4 + 𝛾8, 7 + 𝜇8 4.7 6.2 —
6.2 1, 2, 3, 4, 7, 8 5.1 6.2 —
7.2 1, 2, 3, 4, 5, 6, 8 6.1 8.1 𝑐𝑡−𝛼/𝜎

7.3 1, 2, 3, 4, 5, 6, 7 + 𝜆8 7.1 8.1 𝑐𝑡𝛼𝜆/(2−𝜎𝜆)

8.1 1, 2, 3, 4, 5, 6, 7, 8 7.1 8.1 —

Optimal system Θ𝑘(𝐿9) is constructed in a same way. We observe that 𝑋9 corresponds to an
ideal but not to the center of the algebra as 𝑋8. As a result, the term 𝑘9𝑋9 in one of the basis
infinitesimal operator can be excluded by an inner automorphism 𝐴9 under the conditions

𝑘27 + 𝑘28 ̸= 0, 𝑘8 ̸=
1 − 𝛼

𝛼
𝑘7.

In Table 4 we list subalgebras Θ(𝐿9) of the dimension up to 4 not contained in Θ(𝐿8).

Table 4: Optimal system Θ(𝐿9) as extension of Θ(𝐿8)

no. Subalgebra Form of invariant solution
1.12 9 𝑡𝛼−1𝑣(𝑥, 𝑦, 𝑧)

1.13 4 + 9 𝑡𝛼−1𝑣
(︁
𝑥, 𝑟, 𝑡

1+𝜙𝑡

)︁
1.14 7 + 𝜆8 𝑡𝛼−1𝑣

(︀
𝑦, 𝑧, 𝑡

1+𝑡𝑥

)︀
1.15 1 + 4 + 9 𝑡𝛼−1𝑣

(︁
𝑟, 𝑥− 𝜙, 𝑡

1+𝜙𝑡

)︁
1.16 7 + 1−𝛼

𝛼
8 ± 9 𝑡𝛼−1𝑥

1−𝛼
𝛼 𝑣

(︁
𝑥𝑒±

1
𝑡 , 𝑦𝑒±

1
𝑡 , 𝑧𝑒±

1
𝑡

)︁
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1.17 4 + 𝛾7 + 1−𝛼
𝛼
𝛾8 ± 9 𝑡𝛼−1𝑥

1−𝛼
𝛼 𝑣

(︁
𝑡

1±𝑡𝛾−1 ln𝑥
, 𝛾𝜙− ln𝑥, 𝑟

𝑥

)︁
2.18 4, 9 𝑡𝛼−1𝑣(𝑥, 𝑟)

2.19 7, 9 𝑡𝛼−1𝑥
2(1−𝛼)

𝛼 𝑣
(︀
𝑦
𝑥
, 𝑧
𝑥

)︀
2.20 4 + 𝑔7, 9 𝑡𝛼−1𝑥

2(1−𝛼)
𝛼 𝑣

(︀
𝛾𝜙− ln𝑥, 𝑟

𝑥

)︀
2.21 1, 9 𝑡𝛼−1𝑣(𝑦, 𝑧)
2.22 1 + 4, 9 𝑡𝛼−1𝑣(𝑟, 𝑥− 𝜙)
2.23 8, 9 —
2.24 4 + 𝛾8, 9 𝑡𝛼−1𝑒−𝛾𝜙𝑣(𝑥, 𝑟)
2.25 7 + 𝜆8, 9 𝑡𝛼−1𝑥2/𝛼−2−𝜆𝑣

(︀
𝑦
𝑥
, 𝑧
𝑥

)︀
2.26 4 + 𝛾7 + 𝜆8, 9 𝑡𝛼−1𝑥2/𝛼−2−𝜆/𝛾𝑣

(︀
𝑟
𝑥
, 𝛾𝜙− ln𝑥

)︀
2.27 1 + 8, 9 𝑡𝛼−1𝑒−𝑥𝑣 (𝑦, 𝑧)
2.28 1 + 4 + 𝛾8, 9 𝑡𝛼−1𝑒−𝛾𝑥𝑣 (𝑟, 𝑥− 𝜙)

2.29 2 + 9, 3 𝑡𝛼−1𝑣
(︁
𝑥, 𝑡

1+𝑡𝑦

)︁
2.30 1, 4 + 9 𝑡𝛼−1𝑣

(︁
𝑟, 𝑡

1+𝑡𝜙

)︁
2.31 1 + 9, 4 𝑡𝛼−1𝑣

(︀
𝑟, 𝑡

1+𝑡𝑥

)︀
2.32 1 + 9, 4 + 9 𝑡𝛼−1𝑣

(︁
𝑟, 𝑡

1+𝑡(𝑥+𝜙)

)︁
2.33 4, 7 + 1−𝛼

𝛼
8 ± 9 𝑡𝛼−1𝑥

1−𝛼
𝛼 𝑣

(︀
𝑡

1±𝑡 ln 𝑟
, 𝑡
1±𝑡 ln𝑥

,
)︀

2.34 4 + 9, 7 + 1−𝛼
𝛼

8 + 𝜇9 𝑡𝛼−1𝑥
1−𝛼
𝛼 𝑣

(︁
𝑟
𝑥
, 𝑡
1+𝑡(𝜙+𝜇 ln𝑥)

,
)︁

2.35 1, 7 + 1−𝛼
𝛼

8 ± 9 𝑡𝛼−1𝑟
1−𝛼
𝛼 𝑣

(︀
𝜙, 𝑡

1±𝑡 ln 𝑟

)︀
2.36 1 + 9, 7 + (1−𝛼)(2+𝛼)

2𝛼
8 𝑡𝛼−1𝑟

(1−𝛼)(2−𝛼)
2𝛼 𝑣

(︀
𝜙, 𝑡𝑟

1+𝑡𝑥

)︀
2.37 1, 4 + 𝛾7 + 1−𝛼

𝛼
𝛾8 ± 9 𝑡𝛼−1𝑟

1−𝛼
𝛼 𝑣

(︁
𝑡

1±𝑡𝛾−1 ln 𝑟
, 𝛾𝜙− ln 𝑟

)︁
2.38 1 + 9, 4 + 𝛾7 + (1−𝛼)(2+𝛼)

2𝛼
𝛾8 𝑡𝛼−1𝑟

(1−𝛼)(2−𝛼)
2𝛼 𝑣

(︀
𝑡𝑟

1+𝑡𝑥
, 𝛾𝜙− ln 𝑟

)︀
3.21 2, 3, 9 𝑡𝛼−1𝑣(𝑥)
3.22 1, 4, 9 𝑡𝛼−1𝑣(𝑟)

3.23 1, 7, 9 𝑡𝛼−1𝑦
2(1−𝛼)

𝛼 𝑣(𝑧/𝑦)

3.24 1, 4 + 𝛾7, 9 𝑡𝛼−1𝑟
2(1−𝛼)

𝛼 𝑣(𝛾𝜙− ln 𝑟)
3.25 4, 8, 9 —
3.26 7, 8, 9 —
3.27 4 + 𝛾7, 8, 9 —
3.28 1, 8, 9 —
3.29 1 + 4, 8, 9 —
3.30 4, 7 + 𝜆8, 9 𝑡𝛼−1𝑥2/𝛼−2−𝜆 𝑣 (𝑟/𝑥)
3.31 4 + 𝛾8, 7 + 𝜇8, 9 𝑡𝛼−1𝑒−𝛾𝜙𝑥2/𝛼−2−𝜇 𝑣 (𝑟/𝑥)
3.32 2 + 8, 3, 9 𝑡𝛼−1𝑒−𝑦 𝑣 (𝑥)
3.33 1, 4 + 𝛾8, 9 𝑡𝛼−1𝑒−𝛾𝜙 𝑣 (𝑟)
3.34 1 + 8, 4 + 𝛾8, 9 𝑡𝛼−1𝑒−𝑥−𝛾𝜙 𝑣 (𝑟)
3.35 1, 7 + 𝜆8, 9 𝑡𝛼−1𝑦2/𝛼−2−𝜆 𝑣 (𝑧/𝑦)
3.36 1, 4 + 𝛾7 + 𝜆8, 9 𝑡𝛼−1𝑟2/𝛼−2−𝜆/𝛾 𝑣 (𝛾𝜙− ln 𝑟)
3.37 1 + 9, 2, 3 𝐻𝛼−1𝑣(𝑡/𝐻), 𝐻 = 1 + 𝑡𝑥
3.38 1 + 4 + 9, 2, 3 𝐻𝛼−1𝑣(𝑡/𝐻), 𝐻 = 1 + 𝑡𝑥
3.39 2, 3, 4 + 9 𝑡𝛼−1𝑣(𝑥)

3.40 2, 3, 7 + 1−𝛼
𝛼

8 ± 9 𝑥
1−𝛼
𝛼 𝐻𝛼−1𝑣 (𝑡/𝐻) , 𝐻 = 1 ± 𝑡 ln𝑥

3.41 2 + 9, 3, 7 + (1−𝛼)(2+𝛼)
2𝛼

8 𝑥(1−𝛼)(2+𝛼)/(2𝛼)𝐻𝛼−1𝑣 (𝑡𝑥/𝐻) , 𝐻 = 1 + 𝑡𝑦

3.42 2, 3, 4 + 𝛾7 + 𝛾 1−𝛼
𝛼

8 ± 𝛾9 𝑥
1−𝛼
𝛼 𝐻𝛼−1𝑣 (𝑡/𝐻) , 𝐻 = 1 ± 𝑡 ln𝑥

3.43 1, 4, 7 + 1−𝛼
𝛼

8 ± 9 𝑟
1−𝛼
𝛼 𝐻𝛼−1𝑣(𝑡/𝐻), 𝐻 = 1 ± 𝑡 ln 𝑟
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3.44: 1, 4 + 9, 7 + 1−𝛼
𝛼

8 + 𝜇9 𝑟
1−𝛼
𝛼 𝐻𝛼−1𝑣 (𝑡/𝐻) , 𝐻 = 1 + (𝜇 ln 𝑟 + 𝜙)𝑡

3.45 1 + 9, 4, 7 + (1−𝛼)(2+𝛼)
2𝛼

8 𝑟(1−𝛼)(2+𝛼)/(2𝛼)𝐻𝛼−1𝑣 (𝑡𝑟/𝐻) , 𝐻 = 1 + 𝑡𝑥
4.20 4, 5, 6, 9 𝑡𝛼−1𝑣(𝑅)
4.21 1, 2, 3, 9 𝑐𝑡𝛼−1

4.22 1 + 4, 2, 3, 9 𝑐𝑡𝛼−1

4.23 2, 3, 4, 9 𝑐𝑡𝛼−1

4.24 2, 3, 7, 9 𝑐𝑡𝛼−1𝑥
2(1−𝛼)

𝛼

4.25 2, 3, 4 + 𝛾7, 9 𝑐𝑡𝛼−1𝑥
2(1−𝛼)

𝛼

4.26 1, 4, 7, 9 𝑐𝑡𝛼−1𝑟
2(1−𝛼)

𝛼

4.27 4, 7, 8, 9 —
4.28 2, 3, 8, 9 —
4.29 1, 4, 8, 9 —
4.30 1, 7, 8, 9 —
4.31 1, 4 + 𝛾7, 8, 9 —
4.32 1 + 8, 2, 3, 9 𝑐𝑡𝛼−1𝑒−𝑥

4.33 1 + 4 + 𝛾8, 2, 3, 9 𝑐𝑡𝛼−1𝑒−𝛾𝑥

4.34 2, 3, 4 + 𝛾8, 9 —
4.35 2, 3, 7 + 𝜆8, 9 𝑐𝑡𝛼−1𝑥2/𝛼−2−𝜆

4.36 2, 3, 4 + 𝛾7 + 𝜆8, 9 𝑐𝑡𝛼−1𝑥2/𝛼−2−𝜆/𝛾

4.37 1, 4, 7 + 𝜆8, 9 𝑐𝑡𝛼−1𝑟2/𝛼−2−𝜆

4.38 1, 4 + 𝛾8, 7 + 𝜇8, 9 𝑐𝑡𝛼−1𝑟2/𝛼−2−𝜇𝑒−𝛾𝜙

4.39 1, 2, 3, 4 + 9 𝑐𝑡𝛼−1

4.40 1 + 9, 2, 3, 4 + 9 𝑐𝑡𝛼−1

4.41 1 + 9, 2, 3, 4 + 9 𝑐𝑡𝛼−1

4.42 4, 5, 6, 7 + 1−𝛼
𝛼

8 ± 9 𝑅
1−𝛼
𝛼 𝐻𝛼−1𝑣 (𝑡/𝐻) , 𝐻 = 1 ± 𝑡 ln𝑅

4.43 1, 2, 3, 7 + 1−𝛼
𝛼

8 ± 9 𝑐𝑡𝛼−1𝑒±
𝛼−1
𝛼𝑡

4.44 1 + 9, 2, 3, 7 + (1−𝛼)(2+𝛼)
2𝛼

8 𝑐𝑡
(𝛼−1)(𝛼+2)

2𝛼 (1 + 𝑡𝑥)
(1−𝛼)(2−𝛼)

2𝛼

4.45 1, 2, 3, 4 + 𝛾7 + 𝛾 1−𝛼
𝛼

8 ± 𝛾9 𝑐𝑡𝛼−1𝑒±
𝛼−1
𝛼𝑡

4.46 1 + 9, 2, 3, 𝑐𝑡
(𝛼−1)(𝛼+2)

2𝛼 (1 + 𝑡𝑥)
(1−𝛼)(2−𝛼)

2𝛼

4 + 𝛾7 + 𝛾 (1−𝛼)(2+𝛼)
2𝛼

8

4.47 2, 3, 4, 7 + 1−𝛼
𝛼

8 ± 9 𝑥
1−𝛼
𝛼 𝐻𝛼−1𝑣 (𝑡/𝐻) , 𝐻 = 1 ± 𝑡 ln𝑥

4.48 2, 3, 4 + 𝛾9, 7 + 1−𝛼
𝛼

8 + 𝜇9 𝑐𝑡𝛼−1𝑥
1−𝛼
𝛼

4. Symmetry reductions

Subalgebras of small dimensions up to three allow one to construct only invariant solutions
of rank two or three, that is, to reduce the equation to a partial differential equation with
less number of variables. The resolving of such equations is a complicated problem and in the
present work we do not consider it.

As an illustration, we make a symmetry reduction on the subalgebra 2.1 {𝑋4, 𝑋7}. Then the
corresponding substitution

𝑢 = 𝑣 (𝜏, 𝑝) , 𝜏 = 𝑡𝑥−2/𝛼, 𝑝 =
𝑦2 + 𝑧2

𝑥2

even to the simplest linear equation 𝐷𝛼
𝑡 𝑢 = 𝑢𝑥𝑥 + 𝑢𝑦𝑦 + 𝑢𝑧𝑧 leads us to a rather complicated

although linear reduced equation for 𝑣(𝜏, 𝑝):

𝐷𝛼
𝜏 𝑢 = 4𝑝(𝑝+ 1)𝑣𝑝𝑝 + (6𝑝+ 4)𝑣𝑝 + 8𝛼−1𝜏𝑝𝑣𝜏𝑝 + 4𝛼−2𝜏 2𝑣𝜏𝜏 + 2𝜏𝛼−1(1 + 2𝛼−1)𝑣𝜏 .

In what follows we consider invariant solutions of rank 1, for which the symmetry reduction
produces ordinary differential equations with integer or fractional derivatives.
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While making symmetry reduction for subalgebras in Θ(𝐿7),Θ(𝐿8), the most common form
of the invariant solution is

𝑢(x, 𝑡) = ℎ(x)𝑣(𝜏), 𝜏 = 𝑡𝑔(x), x = (𝑥, 𝑦, 𝑧)𝑇 . (20)

Then by the change of variables in integral (2) we easily get the relation

𝐷𝛼
𝑡 𝑢 = ℎ(x)𝑔𝛼(x)𝐷𝛼

𝜏 𝑣(𝜏). (21)

In the particular case
𝑢(x, 𝑡) = 𝑣(𝜏), 𝜏 = 𝑡𝑔(x), (22)

after substitution into (1) and in view (20), we get the following form of the reduced equation

𝑔𝛼𝐷𝛼
𝜏 𝑣 =

|∇𝑔|2

𝑔2
(𝑓𝑣′′ + 𝑓 ′(𝑣′)2)𝜏 2 +

∆𝑔

𝑔
𝑓𝑣′𝜏.

We note that employing other equivalent forms of invariant solution can lead to the presence
of other fractional derivatives in the reduced equations. For instance, if we choose the form
𝑢 = 𝑣(𝑡−𝛼/2𝑥) instead of 𝑢 = 𝑣(𝑡𝑥−2/𝛼), the resulting equation involves Erdélyi-Kober operators
[8], [19], [20].

Many subalgebras of optimal system lead to the same form of solutions due to the coincidence
of the invariants.

The equations arising in constructing invariant solutions of rank 1 are given in Table 5.

Table 5: Results of symmetry reduction for subalgebras
Θ(𝐿7) in the case of arbitrary function 𝑘(𝑢)

Subalgebras Substitution Reduced equation
3.2, 3.3, 4.2, 6.1 𝑣(𝑡) 𝐷𝛼

𝑡 𝑣 = 0, 𝑣 = 𝑐𝑡𝛼−1

3.5, 3.6, 4.5 𝑣(𝑡𝑥−2/𝛼) 𝐷𝛼
𝜏 𝑣 =

4

𝛼2
𝜏 2

(︀
𝑘𝑣′′ + (𝑣′)2𝑘′

)︀
+

2(𝛼 + 2)

𝛼2
𝜏𝑘𝑣′

3.7 𝑣(𝑡𝑟−2/𝛼) 𝐷𝛼
𝜏 𝑣 =

4

𝛼2
𝜏 2(𝑘𝑣′′ + (𝑣′)2𝑘′) +

4

𝛼2
𝜏𝑘𝑣′

4.1 𝑣(𝑡𝑅−2/𝛼) 𝐷𝛼
𝜏 𝑣 =

4

𝛼2
𝜏 2(𝑘𝑣′′ + (𝑣′)2𝑘′) +

2(2 − 𝛼)

𝛼2
𝜏𝑘𝑣′

For the equation with the power coefficient there are additional forms of reduced equations,
which are given in Table 6.

Table 6: Results of symmetry reduction for subalgebras
Θ(𝐿8) in the case 𝑘(𝑢) = 𝑢𝜎

no. Substitution Reduced equation
3.8 𝑥2/𝜎𝑡−𝛼/𝜎𝑣 (𝑟/𝑥) (𝜏 2 + 1) (𝑣𝜎𝑣′′ + 𝜎𝑣𝜎−1(𝑣′)2) +

(︀
1
𝜏
− 2𝜏

(︀
1 + 2

𝜎

)︀)︀
𝑣𝜎𝑣′+

+ 2
𝜎

(︀
1 + 2

𝜎

)︀
𝑣𝜎+1 − Γ(1−𝛼/𝜎)

Γ(1−𝛼−𝛼/𝜎)
𝑣 = 0

3.9, 𝑡−𝛼/𝜎𝑣(𝑥) 𝜎(𝑣′)2 + 𝑣𝑣′′ − Γ(1−𝛼/𝜎)
Γ(1−𝛼−𝛼/𝜎)

𝑣2−𝜎 = 0

3.15,
4.9

3.10 𝑡−𝛼/𝜎𝑣(𝑟) 𝑣𝜎𝑣′′ + 𝜎𝑣𝜎−1(𝑣′)2 + 1
𝑟
𝑣𝜎𝑣′ − Γ(1−𝛼/𝜎)

Γ(1−𝛼−𝛼/𝜎)
𝑣 = 0

3.11 𝑡−𝛼/𝜎𝑦2/𝜎𝑣(𝑧/𝑦)
(︀
1 + 1

𝜏2

)︀
(𝑣𝜎𝑣′′ + 𝜎𝑣𝜎−1(𝑣′)2) −

(︀
1 + 2

𝜎

)︀
2
𝜏
𝑣𝜎𝑣′+

+ 2
𝜎

(︀
1 + 2

𝜎

)︀
𝑣𝜎+1 − Γ(1−𝛼/𝜎)

Γ(1−𝛼−𝛼/𝜎)
𝑣 = 0

3.12 𝑡−𝛼/𝜎𝑟2/𝜎𝑣(ℎ) (𝛾2 + 1) (𝑣𝜎𝑣′′ + 𝜎𝑣𝜎−1(𝑣′)2)−
ℎ = 𝛾𝜙− ln 𝑟 −4(𝜎+1)

𝜎2 (𝜎𝑣𝜎𝑣′ − 𝑣𝜎+1) − Γ(1−𝛼/𝜎)
Γ(1−𝛼−𝛼/𝜎)

𝑣 = 0

3.13 𝑒𝑥𝑣
(︀
𝑡𝑒𝜎𝑥/𝛼

)︀
𝐷𝛼

𝜏 𝑣 = 𝜎2

𝛼2 𝜏
2(𝑣𝜎𝑣′′ + 𝜎𝑣𝜎−1(𝑣′)2)+

+ 𝜎
𝛼2 (2𝛼(𝜎 + 1) + 𝜎)𝜏𝑣𝜎𝑣′ + (𝜎 + 1)𝑣𝜎+1
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3.14 𝑒𝛾𝑥𝑣
(︀
𝑡𝑒𝛾𝜎𝑥/𝛼

)︀
𝐷𝛼

𝜏 𝑣 = 𝜎2𝛾2

𝛼2 𝜏
2(𝑣𝜎𝑣′′ + 𝜎𝑣𝜎−1(𝑣′)2)+

+𝜎𝛾2

𝛼2 (2𝛼(𝜎 + 1) + 𝜎)𝜏𝑣𝜎𝑣′ + (𝜎 + 1)𝛾2𝑣𝜎+1

3.16, 𝑥𝜆𝑣
(︁
𝑡𝑥

𝜎𝜆−2
𝛼

)︁
𝐷𝛼

𝜏 𝑣 = (𝜎𝜆−2)2

𝛼2 𝜏 2 (𝑣𝜎𝑣′′ + 𝜎𝑣𝜎−1(𝑣′)2) +

4.18 +𝜆𝜎−2
𝛼

(︀
2𝜆(𝜎 + 1) − 1 + 𝜆𝜎−2

𝛼

)︀
𝜏𝑣𝜎𝑣′ + 𝜆2(𝜎 + 1 − 𝜆−1)𝑣𝜎+1

3.17 𝑥𝜆/𝛾 𝑣
(︁
𝑡𝑥

𝜎𝜆−2𝛾
𝛼𝛾

)︁
𝐷𝛼

𝜏 𝑣 = (𝜎𝜆−2𝛾)2

𝛼2𝛾2 𝜏 2 (𝑣𝜎𝑣′′ + 𝜎𝑣𝜎−1(𝑣′)2) +

+𝜆𝜎−2𝛾
𝛼𝛾2

(︀
2𝜆(𝜎 + 1) − 𝛾 + 𝜆𝜎−2𝛾

𝛼

)︀
𝜏𝑣𝜎𝑣′ + 𝜆2

𝛾2 (𝜎 + 1 − 𝛾/𝜆)𝑣𝜎+1

3.18 𝑟𝜆 𝑣
(︁
𝑡𝑟

𝜎𝜆−2
𝛼

)︁
𝐷𝛼

𝜏 𝑣 = (𝜎𝜆−2)2

𝛼2 𝜏 2 (𝑣𝜎𝑣′′ + 𝜎𝑣𝜎−1(𝑣′)2) +

+𝜆𝜎−2
𝛼

(︀
2𝜆(𝜎 + 1) + 𝜆𝜎−2

𝛼

)︀
𝜏𝑣𝜎𝑣′ + 𝜆2(𝜎 + 1)𝑣𝜎+1

3.19 𝑒𝛾𝜑𝑟𝜇𝑣 (𝑡ℎ) 𝐷𝛼
𝜏 𝑣 = (𝜎𝜇−2)2+𝛾2𝜎2

𝛼2 𝜏 2 (𝑣𝜎𝑣′′ + 𝜎𝑣𝜎−1(𝑣′)2) + (𝛾2 + 𝜇2)(𝜎 + 1)𝑣𝜎+1

ℎ = 𝑟
𝜎𝜇−2

𝛼 𝑒
𝛾𝜎𝜙
𝛼 + 1

𝛼2 ((𝛾2 + 𝜇2)(2𝛼𝜎 + 2𝛼 + 𝜎)𝜎 + 4 − 4𝜇(𝛼𝜎 + 𝛼 + 𝜎)) 𝜏𝑣𝜎𝑣′

4.6 𝑡−𝛼/𝜎𝑣(𝑅) 𝜎(𝑣′)2 + 𝑣𝑣′′ + 2𝑣𝑣′/𝑅− Γ(1−𝛼/𝜎)
Γ(1−𝛼−𝛼/𝜎)

𝑣2−𝜎 = 0

4.13 𝑅𝜆𝑣(𝑡𝑅
𝜎𝜆−2

𝛼 ) 𝐷𝛼
𝜏 𝑣 = (𝜎𝜆−2)2

𝛼2 𝜏 2 (𝑣𝜎𝑣′′ + 𝜎𝑣𝜎−1(𝑣′)2) +
+𝜆𝜎−2

𝛼

(︀
2𝜆(𝜎 + 1) + 1 + 𝜆𝜎−2

𝛼

)︀
𝜏𝑣𝜎𝑣′ + 𝜆2(𝜎 + 1 + 𝜆−1)𝑣𝜎+1

We observe that for all subalgebras containing the operator 𝑋8, the corresponding solutions
are of form 𝑢 = 𝑡−𝛼/𝜎𝑣(ℎ(𝑥, 𝑦, 𝑧)); after the reduction, these solutions produce ordinary differ-
ential equations with no fractional derivatives. As it was shown in [12], many of such equations
are integrable in quadrature.

All subalgebras containing subalgebra 2.2 (the operators 𝑋2, 𝑋3) generate invariant solutions
of the one-dimensional nonlinear anomalous diffusion equation. These are, for instance, 3.2 −
3.6, 3.9, 3.13 − 3.17. In these cases the reduced equations coincides with ones obtained in
work [12].

It is easy to see that in other cases, the reduced equations for invariant solutions of rank 1
are of the form similar to [12]:

𝐷𝛼
𝜏 𝑣 = 𝐴(𝑣𝜎𝑣′′ + 𝜎𝑣𝜎−1(𝑣′)2) +𝐵𝜏𝑣𝜎𝑣′ + 𝐶𝑣𝜎+1, (23)

except the cases of reducing to the equations with no fractional derivatives.
We proceed to employing subalgebras Θ(𝐿9) not contained in Θ(𝐿8). They allow to construct

new invariant solutions as 𝑘(𝑢) = 𝑢𝜎, 𝜎 = 2𝛼/(1 − 𝛼).
If such subalgebra contains 𝑋9 as a basis operator (3.21-3.36, 4.20-4.38), one of the invariants

becomes 𝑢𝑡𝛼−1 and we obtain an analogue of stationary solution 𝑡𝛼−1𝑣(𝑥, 𝑦, 𝑧), for which the
left hand side of the equation vanishes. In all other cases, to make a symmetry reduction by
combining the invariants of subalgebras we succeed to choose the form of invariant solution

𝑢(x, 𝑡) = ℎ(x)(1 + 𝑡𝑔(x))𝛼−1𝑣(𝜏), 𝜏 =
𝑡𝜆(x)

1 + 𝑡𝑔(x)

and to employ then the relations

𝐷𝛼
𝑡 𝑢 = 𝜇(x)𝜆𝛼(x)(1 + 𝑡𝑔(x))−1−𝛼𝐷𝛼

𝜏 𝑣(𝜏),

𝐷𝛼
𝑡 𝑢 = 𝜇(x)𝜆−1(x)(𝜆(x) − 𝜏𝑔(x))1+𝛼𝐷𝛼

𝜏 𝑣(𝜏)

obtained by the change of variables in integral (2).

Table 7: Results of symmetry reduction for subalgebras
Θ(𝐿9) except the solutions of form 𝑡𝛼−1𝑣(x) in the case
𝑘(𝑢) = 𝑢𝜎, 𝜎 = 2𝛼/(1 − 𝛼)

no. Form of solution and reduced equation
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3.37, 𝐻𝛼−1𝑣(𝑡/𝐻), 𝐻 = 1 + 𝑡𝑥
3.38 𝐷𝛼

𝜏 𝑣 = 𝜏 4 (𝑣𝜎𝑣′′ + 𝜎𝑣𝜎−1(𝑣′)2) + 2(𝛼 + 2)𝜏 3𝑣𝜎𝑣′ + (1 − 𝛼)(𝛼 + 2)𝜏 2𝑣𝜎+1

3.40, 𝑥
1−𝛼
𝛼 𝐻𝛼−1𝑣 (𝑡/𝐻)) , 𝐻 = 1 ± 𝑡 ln𝑥

3.42, 𝐷𝛼
𝜏 𝑣 = 𝜏 4 (𝑣𝜎𝑣′′ + 𝜎𝑣𝜎−1(𝑣′)2) + (𝛼 + 2)(2𝜏 − 1/𝛼)𝜏 2𝑣𝜎𝑣′+

4.47 +1−𝛼
𝛼2 ((𝛼 + 2)𝛼𝜏(𝛼𝜏 − 1) + 1)𝑣𝜎+1

3.41 𝑥(1−𝛼)(2+𝛼)/(2𝛼)𝐻𝛼−1𝑣 (𝑡𝑥/𝐻) , 𝐻 = 1 + 𝑡𝑦
𝐷𝛼

𝜏 𝑣 = 𝜏 2(𝜏 2 + 1) (𝑣𝜎𝑣′′ + 𝜎𝑣𝜎−1(𝑣′)2) + (𝛼 + 2)(2𝜏 2 + 𝛼+1
𝛼

)𝜏 2𝑣𝜎𝑣′+

+ (1−𝛼)(𝛼+2)
4𝛼2 (4𝛼2𝜏 2 + 𝛼2 + 𝛼 + 2)𝑣𝜎+1

3.43 𝑟
1−𝛼
𝛼 𝐻𝛼−1𝑣(𝑡/𝐻), 𝐻 = 1 ± 𝑡 ln 𝑟

𝐷𝛼
𝜏 𝑣 = 𝜏 4 (𝑣𝜎𝑣′′ + 𝜎𝑣𝜎−1(𝑣′)2) + 2

(︀
(𝛼 + 2)𝜏 ∓ 𝛼+1

𝛼

)︀
𝜏 2𝑣𝜎𝑣′+

+1−𝛼
𝛼2 ((𝛼 + 2)𝛼2𝜏 2 ∓ 2(𝛼 + 1)𝛼𝜏 + 𝛼 + 1)𝑣𝜎+1

3.44 𝑟
1−𝛼
𝛼 𝐻𝛼−1𝑣 (𝑡/𝐻) , 𝐻 = 1 + (𝜇 ln 𝑟 + 𝜙)𝑡

𝐷𝛼
𝜏 𝑣 = (𝜇2 + 1)𝜏 4 (𝑣𝜎𝑣′′ + 𝜎𝑣𝜎−1(𝑣′)2) + 2

(︀
(𝜇2 + 1)(𝛼 + 2)𝜏 − 𝜇𝛼+1

𝛼

)︀
𝜏 2𝑣𝜎𝑣′+

+1−𝛼
𝛼2 ((𝜇2 + 1)(𝛼 + 2)𝛼2𝜏 2 − 2𝜇(𝛼 + 1)𝛼𝜏 + 𝛼 + 1)𝑣𝜎+1

3.45 𝑟(1−𝛼)(2+𝛼)/(2𝛼)𝐻𝛼−1𝑣 (𝑡𝑟/𝐻) , 𝐻 = 1 + 𝑡𝑥
𝐷𝛼

𝜏 𝑣 = 𝜏 4 (𝑣𝜎𝑣′′ + 𝜎𝑣𝜎−1(𝑣′)2) + 1
𝛼

(2𝛼(𝛼 + 2)𝜏 2 + 𝛼2 + 4𝛼 + 2)𝜏𝑣𝜎𝑣′+

+ (1−𝛼)(𝛼+2)
4𝛼2 (4𝛼2𝜏 2 + (𝛼 + 1)(𝛼 + 2))𝑣𝜎+1

4.42 𝑅
1−𝛼
𝛼 𝐻𝛼−1𝑣 (𝑡/𝐻) , 𝐻 = 1 ± 𝑡 ln𝑅

𝐷𝛼
𝜏 𝑣 = 𝜏 4 (𝑣𝜎𝑣′′ + 𝜎𝑣𝜎−1(𝑣′)2) +

(︀
2(𝛼 + 2)𝜏 ∓ 3𝛼+2

𝛼

)︀
𝜏 2𝑣𝜎𝑣′+

+1−𝛼
𝛼2 ((𝛼 + 2)𝛼2𝜏 2 ∓ (3𝛼 + 2)𝛼𝜏 + 2𝛼 + 1)𝑣𝜎+1

For Subalgebras 3.37–3.40, 3.42, 4.47 the described solutions are independent of 𝑦, 𝑧; the
reduced equations coincide with ones obtained in [12].

We observe that all reduced equations in Table 7 are of the form

𝐷𝛼
𝜏 𝑣 = (𝐴𝜏 2 +𝐵)𝜏 2

(︀
𝑣𝜎𝑣′′ + 𝜎𝑣𝜎−1(𝑣′)2

)︀
+ (𝐶𝜏 2 +𝐷𝜏 + 𝐸)𝜏𝑣𝜎𝑣′ + (𝐹𝜏 2 +𝐺𝜏 +𝐻)𝑣𝜎+1.

Invariant solutions of rank 0 are constructed on the base of subalgebras of dimension 4 and
greater. According to Tables 2, 3, 4, most part of such solutions are power functions. They
also correspond to exact power solutions of reduced equations for solutions of rank 1.

Conclusion

The group classification made in the present work and the procedure of symmetry reduction
demonstrates the possibility of applying classical algorithms of the group analysis of differential
equations to a systematic study of nonlinear equations with fractional derivatives and several
independent variables. The results agree with earlier results for the one-dimensional model.

The constructed optimal systems of subalgebras and the forms of invariant solutions can be
applicable for other three-dimensional models with fractional derivatives. We succeed to avoid
main difficulties of constructing reduced equations like changing the limits and a type of the
operator of fractional differentiation by choosing an appropriate form of the invariant solution.
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