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THRESHOLD PHENOMENON FOR A FAMILY OF THE

GENERALIZED FRIEDRICHS MODELS WITH THE

PERTURBATION OF RANK ONE.

S.N. LAKAEV, M. DARUS, S.T. DUSTOV

Abstract. In this work we consider a family 𝐻𝜇(𝑝), 𝜇 > 0, 𝑝 ∈ T3, of the generalized

Friedrichs models with the perturbation of rank one. This system describes a system of

two particles moving on the three dimensional lattice Z3 and interacting via a pair of

local repulsive potentials. One of the reasons to consider such family of the generalized

Friedrichs models is that this family generalizes and involves some important behaviors

of the Hamiltonians for systems of both bosons and fermions on lattices. In the work, we

study the existence or absence of the eigenvalues of the operator 𝐻𝜇(𝑝) located outside the

essential spectrum depending on the values of 𝜇 > 0 and 𝑝 ∈ 𝑈𝛿(𝑝 0) ⊂ T3. We prove a

analytic dependence on the parameters for such eigenvalue and an associated eigenfunction

and the latter is found in a certain explicit form. We prove the existence of coupling constant

threshold 𝜇 = 𝜇(𝑝) > 0 for the operator 𝐻𝜇(𝑝), 𝑝 ∈ 𝑈𝛿(𝑝 0), namely, we show that the

operator 𝐻𝜇(𝑝) has no eigenvalue for all 0 < 𝜇 < 𝜇(𝑝) and there exists a unique eigenvalue

𝑧(𝜇, 𝑝) for each 𝜇 > 𝜇(𝑝) and this eigenvalue is located above the threshold 𝑧 = 𝑀(𝑝).
We find necessary and sufficient conditions allowing us to determine whether the threshold

𝑧 = 𝑀(𝑝) is an eigenvalue or a virtual level or a regular point in the essential spectrum of

the operator 𝐻𝜇(𝑝), 𝑝 ∈ 𝑈𝛿(𝑝 0).
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Friedrichs model, regular point.
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1. Introduction

In the present paper we consider a family of generalized Friedrichs models with rank one
perturbations 𝐻𝜇(𝑝), 𝜇 > 0, 𝑝 ∈ 𝑈𝛿(𝑝 0) ⊂ T3, where 𝑈𝛿(𝑝 0) is a 𝛿-neighborhood of the point
𝑝 = 𝑝 0 ∈ T3. This family describes a system of two particles on the three-dimensional lattice
Z3 interacting via a pair of local repulsive potentials.
We show that if the parameters of the generalized Friedrichs model satisfy some conditions,

there exists a coupling constant threshold 𝜇 = 𝜇(𝑝) > 0 such that the operator 𝐻𝜇(𝑝), 𝑝 ∈
𝑈𝛿(𝑝 0) has no eigenvalue for all 0 < 𝜇 < 𝜇(𝑝) and at the same time, it possesses a unique
eigenvalue 𝑧(𝜇, 𝑝) above the threshold 𝑧 = 𝑀(𝑝) of the essential spectrum for each 𝜇 > 𝜇(𝑝).
We find a certain explicit form for an associated eigenfunction and prove its analytic dependence
on the parameters. We also find necessary and sufficient conditions determining whether the
threshold 𝑧 = 𝑀(𝑝) is an eigenvalue or a virtual level or a regular point in the essential spectrum
of 𝐻𝜇(𝑝), 𝑝 ∈ 𝑈𝛿(𝑝 0).
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In [1] for a family of the generalized Friedrichs models 𝐻𝜇(𝑝), 𝜇 > 0, 𝑝 ∈ T2 either the
existence or absence of a positive coupling constant threshold 𝜇 = 𝜇(𝑝) > 0 depending on the
parameters of the model has been proved.
One of the reasons to consider the family of the generalized Friedrichs models interacting via

pair local repulsive potentials is as follows: this family generalizes and involves some important
behaviors featured by the Schrödinger operators associated with the Hamiltonian of the systems
of two arbitrary particles moving on R𝑑 or Z𝑑, 𝑑 > 1, as well as with the Hamiltonian for systems
of both bosons and fermions [1], [2], [3], [4].
Moreover, as it was stated in [5], [6], physics stable composite objects are usually formed by

attractive forces, which allow the constituents to lower their energy by binding together. The
repulsive forces separates particles in free space. However, in structured environment such as a
periodic potential and in the absence of dissipation, stable composite objects can exist even for
repulsive interactions.
The family of the generalized Friedrichs models theoretically adequately describes this

phenomenon relating to repulsive forces since the two-particle discrete Schrödinger operators
with rank one interactions are a special case of this family.
The generalized Friedrichs model, i.e., the case, where the non-perturbed operator 𝐻0 is

a multiplication operator by arbitrary function with Van Hove singularities (critical points)
defined on the closed interval [𝑎, 𝑏] was considered in [3]. In this case, unlike to usual Friedrichs
model, the multiplicity of continuous spectrum of the non-perturbed operator is not constant.
The generalized Friedrichs models appear mostly in the problems of solid state physics [8],

[9], quantum mechanics [10], and quantum field theory [11], [12] and in general settings have
been studied in [2], [3], [7].
In [13], the family of generalized Friedrichs models with rank one perturbations 𝐻𝜇(𝑝), 𝜇 > 0,

𝑝 ∈ (−𝑝, 𝑝]3, associated with a system of two particles on the three-dimensional lattice Z3 was
considered. In a special case of multiplication operator and under the assumption that the
operator 𝐻𝜇(0), 0 ∈ T3 has a coupling constant threshold 𝜇0(0) > 0, the existence of a unique
eigenvalue below the bottom of the essential spectrum of 𝐻𝜇0(0)(𝑝), 𝑝 ∈ (−𝑝, 𝑝]3 for all non-
trivial values of 𝑝 ∈ T3 was proved.
In [14], an expansion for an eigenvalue 𝐸(𝜇, 𝑝) of 𝐻𝜇(𝑝), 𝜇 > 0, 𝑝 ∈ (−𝑝, 𝑝] was found in

some neighborhood of the point 𝜇 = 𝜇(𝑝) > 0. In [4], for a special family of the generalized
Friedrichs models, the existence of eigenvalues was proved for some values of quasi-momentum
𝑝 ∈ T𝑑 in a neighborhood of 𝑝 0 ∈ T𝑑.
In celebrated work [15], B.Simon and M.Klaus considered a family of Schrödinger operators

𝐻 = −∆ + 𝜇𝑉 in a situation, where as 𝜇 tended to 𝜇0, some eigenvalue 𝑒𝑖(𝜇) tended to 0, i.e.,
this eigenvalue was absorbed by the essential spectrum, and vice versa, as 𝜇 tended to from the
right 𝜇0, a new eigenvalue emerged from the essential spectrum. In [15], this phenomenon was
called coupling constant threshold.
In [16] the Hamiltonian of a system of two identical quantum mechanical particles (bosons)

moving on the 𝑑-dimensional lattice Z𝑑, 𝑑 > 3 and interacting via a pair zero-range repulsive
pair potentials was considered. For the associated two-particle Schrödinger operator 𝐻𝜇(𝐾),
𝐾 ∈ T𝑑 = (−𝜋, 𝜋]𝑑, the existence of coupling constant threshold 𝜇 = 𝜇0(𝐾) > 0 was proven:
the operator had no eigenvalue for all 0 < 𝜇 < 𝜇0, but for each 𝜇 > 𝜇0, it possessed a unique
eigenvalue 𝑧(𝜇,𝐾) above the upper edge of the essential spectrum of 𝐻𝜇(𝐾). An asymptotics
for 𝑧(𝜇,𝐾) was found as 𝜇→ 𝜇0(𝐾) and 𝐾 → 0.
In [17], for a wide class of two-body energy operators 𝐻2(𝑘) on the 𝑑-dimensional lattice Z𝑑,

𝑑 ≥ 3, 𝑘 being the two-particle quasi-momentum, it was proved that for all nontrivial values
𝑘 ̸= 0, the discrete spectrum of 𝐻2(𝑘) below its threshold is non-empty provided the following
two assumptions (i) and (ii) are satisfied:
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(i) the operator 𝐻2(0) has either an eigenvalue or a virtual level at the bottom of its essential
spectrum
(ii) the one-particle free Hamiltonian in the coordinate representation generates positivity
preserving semi-group.
In [15] the existence of a coupling constant threshold was assumed, while time in [16] the

coupling constant threshold was determined by the given data of the Hamiltonian.
We note that for the Hamiltonian of a system of two identical particles moving on R2 or Z2

the coupling constant threshold vanishes if the particles are bosons and the coupling constant
threshold is positive if particles are fermions.

2. Preliminaries and main results

Let Z3 be the three-dimensional hypercubes lattice and T3 = (−𝜋, 𝜋]3 be the three-
dimensional torus (Brillouin zone), the dual group of Z3. The operators of addition and multi-
plication by number of the elements of torus T3 ≡ (−𝜋, 𝜋]3 ⊂ R3 was defined as operations in
R3 modulo (2𝜋Z3).

Let 𝐿2(T3) be the Hilbert space of square-integrable functions defined on the torus T3 and
C1 be the one-dimensional complex Hilbert space.

We consider a family of the generalized Friedrichs models acting in 𝐿2(T3) as follows:

𝐻𝜇(𝑝) = 𝐻0(𝑝) + 𝜇Φ*Φ, 𝜇 > 0.

Here

Φ : 𝐿2(T3) → C1, Φ𝑓 = (𝑓, 𝜙)𝐿2(T3),

Φ* : C1 → 𝐿2(T3), Φ*𝑓0 = 𝜙(𝑞)𝑓0,

where (·, ·)𝐿2(T3) is the scalar product in 𝐿2(T3) and 𝐻0(𝑝), 𝑝 ∈ T3 is a multiplication operator
by a function 𝑤𝑝(·) := 𝑤(𝑝, ·), that is,

(𝐻0(𝑝)𝑓)(𝑞) = 𝑤𝑝(𝑞)𝑓(𝑞), 𝑓 ∈ 𝐿2(T3). (2.1)

We observe that for each 𝑓 ∈ 𝐿2(T3) and 𝑔0 ∈ C1 the identity

(Φ𝑓, 𝑔0)C1 = (𝑓,Φ*𝑔0)𝐿2(T3)

holds.
In the paper, we make the following assumption.

Assumption 1. The following conditions are satisfied:

(i) the function 𝜙(·) is nontrivial and real-analytic and has no singularities on the torus T3.
(ii) the function 𝑤(·, ·) is real-analytic function on (T3)2 = T3 × T3 and has a unique non-

degenerated maximum at (𝑝 0, 𝑞0) ∈ (T3)2.

Remark 1. We identify the real-analytic functions on T3 with the real-analytic functions on
R3 being 2𝜋-periodic in each variable.

The perturbation 𝑣 = Φ*Φ is positive operator of rank one. Hence, by the well-known Weyl
theorem [18], the essential spectrum fills the following segment on the real axis:

𝜎𝑒𝑠𝑠(𝐻𝜇(𝑝)) = 𝜎𝑒𝑠𝑠(𝐻0(𝑝)) = [𝑚(𝑝), 𝑀(𝑝)],

where

𝑚(𝑝) = min
𝑞∈T3

𝑤𝑝(𝑞), 𝑀(𝑝) = max
𝑞∈T3

𝑤𝑝(𝑞).

By Assumption 1, there exist a 𝛿-neighborhood 𝑈𝛿(𝑝 0) ⊂ T3 of the point 𝑝 = 𝑝 0 ∈ T3

and an analytic vector function q0 : 𝑈𝛿(𝑝 0) → T3 such that for each 𝑝 ∈ 𝑈𝛿(𝑝 0), the point
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q0(𝑝) = (𝑞
(1)
0 (𝑝), 𝑞

(2)
0 (𝑝), 𝑞

(3)
0 (𝑝)) ∈ T3 is a unique non-degenerated maximum of the function

𝑤𝑝(·), see Lemma 3.1. Moreover, the following integral

1

𝜇(𝑝)
=

∫︁
T3

𝜙2(𝑠)𝑑𝑠

𝑀(𝑝) − 𝑤𝑝(𝑠)
> 0

is well-defined, see Lemma 3.4.
The positive number 𝜇(𝑝) > 0 is called coupling constant threshold.

Definition 2.1. The threshold 𝑧 = 𝑀(𝑝) is called a regular point of the essential spectrum of
the operator 𝐻𝜇(𝑝) if the equation 𝐻𝜇(𝑝)𝑓 = 𝑀(𝑝)𝑓 has only trivial solution 𝑓 = 0 in 𝐿2(T3).

Let 𝐿1(T3) be the Banach space of integrable functions on T3.

Definition 2.2. The threshold 𝑧 = 𝑀(𝑝) is called a 𝑀(𝑝) energy resonance (virtual level) in
the essential spectrum of the operator 𝐻𝜇(𝑝) if the equation 𝐻𝜇(𝑝)𝑓 = 𝑀(𝑝)𝑓 has a non-trivial
solution 𝑓 ∈ 𝐿1(T3) ∖ 𝐿2(T3). The solution 𝑓 is called virtual state of the operator 𝐻𝜇(𝑝).

Remark 2. The set G of 𝜇 > 0, for which the threshold is a regular point of the essential
spectrum 𝜎𝑒𝑠𝑠(𝐻𝜇(𝑝)) of 𝐻𝜇(𝑝), is an open set in (0,+∞). More precisely, G = (0,+∞)∖{𝜇(𝑝)}.

Remark 3. If the threshold 𝑧 = 𝑀(𝑝) is a regular point of 𝐻𝜇(𝑝), then the number of eigen-
values of the operator 𝐻𝜇(𝑝) above the threshold𝑀(𝑝) does not change under small perturbations
of 𝜇 ∈ G, see Statements (i), (ii) and (iii) of Theorem 2.1.

Next theorem provides a necessary and sufficient conditions for existence of a unique eigen-
value 𝐸(𝜇, 𝑝) above the threshold of the essential spectrum of 𝐻𝜇(𝑝), 𝑝 ∈ 𝑈𝛿(𝑝 0). We prove
that for a fixed 𝑝 ∈ 𝑈𝛿(𝑝 0) the function 𝐸(·, 𝑝) is analytic in (𝜇(𝑝),+∞). Moreover, for the
associated eigenfunction we find an explicit expression and prove its analyticity. Furthermore,
in the case 𝜇 = 𝜇(𝑝) > 0, we prove that the threshold 𝑀(𝑝) of the essential spectrum is either
a virtual level or eigenvalue for the operator 𝐻𝜇(𝑝), 𝑝 ∈ T3.

Theorem 2.1. Let Assumption 1 hold and 𝑝 ∈ 𝑈𝛿(𝑝 0). Then the following statements are
true:

(i) The operator 𝐻𝜇(𝑝) has a unique eigenvalue 𝐸(𝜇, 𝑝) above the threshold𝑀(𝑝) of the essen-
tial spectrum if and only if 𝜇 > 𝜇(𝑝). The function 𝐸(·, 𝑝) is a monotonically increasing
real-analytic function on the interval (𝜇(𝑝),+∞) and the function 𝐸(𝜇, ·) is real-analytic
in 𝑈𝛿(𝑝 0). The associated eigenfunction

Ψ(𝜇; 𝑝, 𝑞, 𝐸(𝜇, 𝑝)) =
𝐶𝜇𝜙(𝑞)

𝐸(𝜇, 𝑝) − 𝑤𝑝(𝑞)

is analytic on T3, where 𝐶 ̸= 0 is a normalization constant. Moreover, the mappings

Ψ : 𝑈𝛿(𝑝 0) → 𝐿2(T3), 𝑝 ↦→ Ψ(𝜇; 𝑝, 𝑞, 𝐸(𝜇, 𝑝)) ∈ 𝐿2(T3)

and

Ψ : (𝜇(𝑝),+∞) → 𝐿2(T3), 𝜇 ↦→ Ψ(𝜇; 𝑝, 𝑞, 𝐸(𝜇, 𝑝)) ∈ 𝐿2(T3)

are vector-valued analytic functions in 𝑈𝛿(𝑝 0) and (𝜇(𝑝),+∞), respectively.
(ii) The operator 𝐻𝜇(𝑝) has no eigenvalues in a semi-infinite interval (𝑀(𝑝),∞) if and only

if 0 < 𝜇 < 𝜇(𝑝).
(iii) The threshold 𝑧 = 𝑀(𝑝) is a regular point of the operator 𝐻𝜇(𝑝) if and only if 𝜇 ̸= 𝜇(𝑝).
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(iv) The threshold 𝑧 = 𝑀(𝑝) is a virtual level of the operator 𝐻𝜇(𝑝) if and only if 𝜇 = 𝜇(𝑝)
and 𝜙(q0(𝑝)) ̸= 0. The associated virtual state is of the form

𝑓(𝑞) =
𝐶𝜇(𝑝)𝜙(𝑞)

𝑀(𝑝) − 𝑤𝑝(𝑞)
,

where 𝐶 ̸= 0 is a normalizing constant and 𝑓 ∈ 𝐿1(T3) ∖ 𝐿2(T3).
(v) The threshold 𝑧 = 𝑀(𝑝) is an eigenvalue of the operator 𝐻𝜇(𝑝) if and only if 𝜇 = 𝜇(𝑝)

and 𝜙(q0(𝑝)) = 0. Moreover, if the threshold 𝑧 = 𝑀(𝑝) is an eigenvalue of the operator
𝐻𝜇(𝑝), then the associated eigenfunction reads as

𝑓(𝑞) =
𝐶𝜇(𝑝)𝜙(𝑞)

𝑀(𝑝) − 𝑤𝑝(𝑞)
∈ 𝐿2(T3), (2.2)

where 𝐶 ̸= 0 is a normalizing constant.

Remark 4. It follows from the positivity of Φ*Φ that the operator 𝐻𝜇(𝑝) has no eigenvalues
below 𝑚(𝑝).

3. Proof

We begin with a series of auxiliary lemmata, which will be employed in the proof of the main
result.

Lemma 3.1. Let Assumption 1 hold. Then there exist a 𝛿-neighborhood 𝑈𝛿(𝑝 0) ⊂ T3 of the
point 𝑝 = 𝑝 0 and an analytic function q0 : 𝑈𝛿(𝑝 0) → T3 such that for each 𝑝 ∈ 𝑈𝛿(𝑝 0), the
point q0(𝑝) is a unique non-degenerated maximum of the function 𝑤𝑝(·).

Proof. By Assumption 1, the square matrix

𝐴(0) =

(︂
𝜕2𝑤𝑝 0

𝜕𝑞𝑖𝜕𝑞𝑗
(q0)

)︂3

𝑖,𝑗=1

< 0

is negatively defined and ∇𝑤𝑝 0(𝑞0) = 0. Then by the implicit function theorem for the analytic
case there exist a 𝛿-neighborhood 𝑈𝛿(𝑝 0) ⊂ T3 of 𝑝 = 𝑝 0 ∈ T3 and a unique analytic vector
function q0(·) : 𝑈𝛿(𝑝 0) → T3 such that ∇𝑤𝑝(q0(𝑝)) = 0 and

𝐴(𝑝) =

(︂
𝜕2𝑤𝑝

𝜕𝑞𝑖𝜕𝑞𝑗
(q0(𝑝))

)︂3

𝑖,𝑗=1

< 0, 𝑝 ∈ 𝑈𝛿(𝑝 0).

Hence, for each 𝑝 ∈ 𝑈𝛿(𝑝 0), the point q0(𝑝) is a unique non degenerated maximum of the
function 𝑤𝑝(·).

For each 𝜇 > 0 and 𝑝 ∈ T3 we define in C ∖ [𝑚(𝑝);𝑀(𝑝)] an analytic function ∆(𝜇, 𝑝; ·) (the
Fredholm determinant ∆(𝜇, 𝑝; ·) associated with the operator 𝐻𝜇(𝑝)):

∆(𝜇, 𝑝; ·) = 1 − 𝜇Ω(𝑝; ·), (3.1)

where

Ω(𝑝; 𝑧) =

∫︁
T3

𝜙2(𝑠)𝑑𝑠

𝑧 − 𝑤𝑝(𝑠)
, 𝑝 ∈ T3, 𝑧 ∈ C ∖ [𝑚(𝑝);𝑀(𝑝)]. (3.2)

Lemma 3.2. A number 𝑧 ∈ C ∖ 𝜎𝑒𝑠𝑠(𝐻𝜇(𝑝)), 𝑝 ∈ T3 is an eigenvalue of the operator 𝐻𝜇(𝑝)
if and only if ∆(𝜇, 𝑝; 𝑧) = 0. The associated eigenfunction 𝑓 ∈ 𝐿2(T3) reads as

𝑓(𝑞) =
𝐶𝜇𝜙(𝑞)

𝑧 − 𝑤𝑝(𝑞)
, (3.3)

where 𝐶 ̸= 0 is a normalizing constant.
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Proof. If a number 𝑧 ∈ C ∖ 𝜎𝑒𝑠𝑠(𝐻𝜇(𝑝)), 𝑝 ∈ T3 is an eigenvalue of the operator 𝐻𝜇(𝑝) and
𝑓 ∈ 𝐿2(T3) is an associated eigenfunction, i.e., the equation

[𝑤𝑝(𝑞) − 𝑧]𝑓(𝑞) − 𝜇𝜙(𝑞)

∫︁
T3

𝜙(𝑡)𝑓(𝑡)𝑑𝑡 = 0, (3.4)

with ∫︁
T3

𝜙(𝑡)𝑓(𝑡)𝑑𝑡 ̸= 0

has solution, then the solution 𝑓 of equation (3.4) is given by

𝑓(𝑞) =
𝐶𝜇𝜙(𝑞)

𝑧 − 𝑤𝑝(𝑞)
, (3.5)

where 𝐶 ̸= 0 is a normalizing constant. The representation (3.5) of the solution of equation
(3.4) implies the identity ∆(𝜇, 𝑝 ; 𝑧) = 0.

Let ∆(𝜇, 𝑝 ; 𝑧) = 0 for some 𝑧 ∈ C ∖ 𝜎𝑒𝑠𝑠(𝐻𝜇(𝑝)), 𝑝 ∈ T3. Then the function 𝑓 defined by
(3.5) belong to 𝐿2(T3) and solves the equation

𝐻𝜇(𝑝)𝑓 = 𝑧𝑓.

The analyticity of the eigenfunction 𝑓(·) defined by (3.5) is implied by the analyticity of 𝜙(·)
and 𝑤𝑝(·) as well as by to the fact that the denominator 𝑧 − 𝑤𝑝(·) in (3.5) is non-zero.

Lemma 3.3. For 𝜁 < 0 the following identities hold:

𝐼𝑛(𝜁) =

𝛿∫︁
0

𝑟2𝑛𝑑𝑟

𝑟2 − 𝜁
=
𝜋

2
· 𝜁𝑛√

−𝜁
+ 𝐼𝑛(𝜁), 𝑛 = 0, 1, 2, · · · ,

where 𝐼𝑛(𝜁) is an analytic function in a neighborhood of the origin.

The proof of the above lemma can be found in [20, Lm. 5].

Lemma 3.4. Let Assumption 1 hold. Then for each 𝑝 ∈ 𝑈𝛿(𝑝 0) the integral

Ω(𝑝) = Ω(𝑝,𝑀(𝑝)) =

∫︁
T3

𝜙2(𝑠)𝑑𝑠

𝑀(𝑝) − 𝑤𝑝(𝑠)

is well-defined and is an analytic function in 𝑈𝛿(𝑝 0).

Proof. We note that by the parametrical Morse lemma [21, Lm. 3.3113], for each 𝑝 ∈ 𝑈𝛿(𝑝 0),
there exists a map 𝑠 = 𝜓(𝑦, 𝑝) of the sphere 𝑊𝛾(0) ⊂ R3 centered at 𝑦 = 0 of radius 𝛾 > 0 into
a neighborhood 𝑈(q0(𝑝)) of the point q0(𝑝) such that in 𝑈(q0(𝑝)), the function 𝑤𝑝(𝜓(𝑦, 𝑝)) can
be represented as

𝑤𝑝(𝜓(𝑦, 𝑝)) = 𝑀(𝑝) − 𝑦21 − 𝑦22 − 𝑦23 = 𝑀(𝑝) − 𝑦2.

Here the function 𝜓(𝑦, ·) (respectively, 𝜓(·, 𝑝)) is analytic in 𝑈𝛿(𝑝 0) (respectively, 𝑊𝛾(0)) and
𝜓(0, 𝑝) = q0(𝑝). Moreover, the Jacobian 𝐽(𝜓(𝑦, 𝑝)) of the mapping 𝑠 = 𝜓(𝑦, 𝑝) is analytic in
𝑊𝛾(0) and positive, i.e., 𝐽(𝜓(𝑦, 𝑝)) > 0 for all 𝑦 ∈ 𝑊𝛾(0) and 𝑝 ∈ 𝑈𝛿(𝑝 0).

We represent

Ω1(𝑝, 𝑧) =

∫︁
T3

𝜙2(𝑠)𝑑𝑠

𝑧 − 𝑤𝑝(𝑠)
=

∫︁
𝑈(q0(𝑝))

𝜙2(𝑠)𝑑𝑠

𝑧 − 𝑤𝑝(𝑠)
+

∫︁
T3∖𝑈(q0(𝑝))

𝜙2(𝑠)𝑑𝑠

𝑧 − 𝑤𝑝(𝑠)

=Ω1(𝑝, 𝑧) + Ω2(𝑝, 𝑧).

(3.6)

Assumption 1 yields that the function Ω2(𝑝,𝑀(𝑝)) is analytic in 𝑝 ∈ 𝑈𝛿(𝑝 0).
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We change the variables 𝑠 = 𝜓(𝑦, 𝑝) in the integral for Ω1(𝑝, 𝑧) and this gives

Ω1(𝑝, 𝑧) =

∫︁
𝑊𝛾(0)

𝜙2(𝜓(𝑦, 𝑝))

𝑦2 + 𝑧 −𝑀(𝑝)
𝐽(𝜓(𝑦, 𝑝))𝑑𝑦,

where 𝐽(𝜓(𝑦, 𝑝)) is the Jacobian of the mapping 𝜓(𝑦, 𝑝). Passing to spherical coordinates as
𝑦 = 𝑟𝜈, we obtain

Ω1(𝑝, 𝑧) =

𝛾∫︁
0

𝑟2

𝑟2 + 𝑧 −𝑀(𝑝)

⎧⎨⎩
∫︁
Ω3

𝜙2(𝜓(𝑟𝜈, 𝑝))𝐽(𝜓(𝑟𝜈, 𝑝)) 𝑑𝜈

⎫⎬⎭ 𝑑𝑟, (3.7)

where Ω3 is a unit sphere in R3 and 𝑑𝜈 is its area differential. The inner integral can be
represented as ∫︁

Ω3

𝜙2(𝜓(𝑟𝜈, 𝑝))𝐽(𝜓(𝑟𝜈, 𝑝)) 𝑑𝜈 =
∞∑︁
𝑛=0

𝜏𝑛(𝑝)𝑟2𝑛, (3.8)

where the Pizetti coefficients 𝜏𝑛(𝑝), 𝑛 = 0, 1, 2, . . . are analytic in 𝑈𝛿(𝑝 0) [19].
Identities (3.7) and (3.8) yield that the limit

Ω1(𝑝) = lim
𝑧→𝑀(𝑝)+0

Ω1(𝑝, 𝑧) = lim
𝑧→𝑀(𝑝)+0

∞∑︁
𝑛=0

𝜏𝑛(𝑝)

𝛾∫︁
0

𝑟2𝑛+2𝑑𝑟

𝑟2 + 𝑧 −𝑀(𝑝)
=

∞∑︁
𝑛=0

𝛾2𝑛+1

2𝑛+ 1
𝜏𝑛(𝑝)

exists and the function Ω(𝑝) = Ω1(𝑝) + Ω2(𝑝,𝑀(𝑝) is analytic in 𝑝 ∈ 𝑈𝛿(𝑝 0).

Lemma 3.5. Let Assumption 1 hold and 𝑝 ∈ 𝑈𝛿(𝑝 0). Then the following statements are
equivalent:

(i) the threshold 𝑀(𝑝) is a resonance of the operator 𝐻𝜇(𝑝) and the associated resonance state
is of the form

𝑓(𝑞) =
𝐶𝜇(𝑝)𝜙(𝑞)

𝑀(𝑝) − 𝑤𝑝(𝑞)
, (3.9)

where 𝐶 ̸= 0 is a normalizing constant.
(ii) 𝜙(q0(𝑝)) ̸= 0 and ∆(𝜇, 𝑝 ;𝑀(𝑝)) = 0.

(iii) 𝜙(q0(𝑝)) ̸= 0 and 𝜇 = 𝜇(𝑝).

Proof. Let the threshold 𝑀(𝑝) be a resonance of the operator 𝐻𝜇(𝑝). According to the definition
of resonance, the equation

𝐻𝜇(𝑝)𝑓 = 𝑀(𝑝)𝑓

has a nontrivial solution 𝑓 ∈ 𝐿1(T3) ∖ 𝐿2(T3), i.e., the equation

[𝑀(𝑝) − 𝑤𝑝(𝑞)]𝑓(𝑞) − 𝜇𝜙(𝑞)

∫︁
T3

𝜙(𝑡)𝑓(𝑡)𝑑𝑡 = 0 (3.10)

with ∫︁
T3

𝜙(𝑡)𝑓(𝑡)𝑑𝑡 ̸= 0

has a nontrivial solution. It is easy to check that the solution 𝑓 of equation (3.10), i.e., the
virtual state, is given by (3.9).
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Expanding the function 𝜙(𝜓(𝑟𝜈, 𝑝)) in (3.7) to the Taylor series at 𝑟 = 0, we obtain

𝜙(𝜓(𝑟𝜈, 𝑝)) =𝜙(q0(𝑝)) +
3∑︁

𝑖=1

𝜕𝜙

𝜕𝜓(𝑖)
(q0(𝑝))

(︃
3∑︁

𝑗=1

𝜕𝜓(𝑖)

𝜕𝑦𝑗
(0, 𝑝) 𝜈𝑗

)︃
𝑟

+ 𝑔(𝑟, 𝜈)𝑟2, 𝑦𝑗 = 𝑟𝜈𝑗,

(3.11)

where 𝑔(·, 𝜈) is continuous in 𝑊𝛾(0) and 𝜈21 + 𝜈22 + 𝜈23 = 1. Since the solution 𝑓 of the equation
(3.10) belongs to 𝐿1(T3) ∖ 𝐿2(T3), asymptotics (3.11) yields the relation 𝜙(q0(𝑝)) ̸= 0.

Substituting expression (3.9) for 𝑓 into equation (3.10), we obtain:

𝜙(𝑞) − 𝜇𝜙(𝑞)

∫︁
T3

𝜙2(𝑡)𝑑𝑡

𝑀(𝑝) − 𝑤𝑝(𝑡)
= 0, (3.12)

which implies the identities ∆(𝜇, 𝑝 ;𝑀(𝑝)) = 0 and 𝜇 = 𝜇(𝑝).
Let 𝜙(q0(𝑝)) ̸= 0 and 𝜇 = 𝜇(𝑝). Then it easy to confirm that ∆(𝜇, 𝑝 ;𝑀(𝑝)) = 0 and the

function 𝑓 defined by (3.9) belongs to 𝐿1(T3) ∖ 𝐿2(T3) and solves the equation

𝐻𝜇(𝑝)𝑓 = 𝑀(𝑝)𝑓.

Lemma 3.6. Let Assumption 1 hold and 𝑝 ∈ 𝑈𝛿(𝑝 0). Then the following statements are
equivalent:

(i) The threshold 𝑧 = 𝑀(𝑝) is an eigenvalue of the operator 𝐻𝜇(𝑝) and the associated eigen-
vector is of the form

𝑓(𝑞) =
𝐶𝜇(𝑝)𝜙(𝑞)

𝑀(𝑝) − 𝑤𝑝(𝑞)
, (3.13)

where 𝐶 ̸= 0 is a normalizing constant.
(ii) 𝜙(q0(𝑝)) = 0 and ∆(𝜇, 𝑝 ;𝑀(𝑝)) = 0.

(iii) 𝜙(q0(𝑝)) = 0 and 𝜇 = 𝜇(𝑝).

Proof. Let 𝑧 = 𝑀(𝑝) be an eigenvalue of the operator 𝐻𝜇(𝑝) and 𝑓 ∈ 𝐿2(T3) is an associated
eigenfunction, i.e., the equation

[𝑀(𝑝) − 𝑤𝑝(𝑞)]𝑓(𝑞) − 𝜇𝜙(𝑞)

∫︁
T3

𝜙(𝑡)𝑓(𝑡)𝑑𝑡 = 0 (3.14)

with ∫︁
T3

𝜙(𝑡)𝑓(𝑡)𝑑𝑡 ̸= 0

has a nontrivial solution. Then the associated eigenfunction 𝑓 is given by (3.13). In this case
the relation 𝑓 ∈ 𝐿2(T3) and asymptotics (3.11) yield the the identity 𝜙(q0(𝑝)) = 0. Equation
(3.14) implies the identity ∆(𝜇, 𝑝 ;𝑀(𝑝)) = 0, which implies 𝜇 = 𝜇(𝑝).

Let 𝜙(q0(𝑝)) = 0 and 𝜇 = 𝜇(𝑝). Then ∆(𝜇, 𝑝 ;𝑀(𝑝)) = 0 and the function 𝑓 defined by
(3.13) solves the equation

𝐻𝜇(𝑝)𝑓 = 𝑀(𝑝)𝑓.

Corollary 1. The equation 𝐻𝜇(𝑝)𝑓 = 𝑀(𝑝)𝑓 has only trivial solution 𝑓 = 0 in 𝐿2(T3) if
and only if 𝜇 ̸= 𝜇(𝑝).

In the next lemma we find an expansion for ∆(𝜇, 𝑝 ; 𝑧) in a half-neighborhood (𝑀(𝑝),𝑀(𝑝)+𝛿)
of the point 𝑧 = 𝑀(𝑝).
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Lemma 3.7. Let Assumption 1 hold. Then for each 𝜇 > 0, 𝑝 ∈ 𝑈𝛿(𝑝 0) and sufficiently small
𝑧 −𝑀(𝑝) > 0 the function ∆(𝜇, 𝑝; ·) can be represented as the following convergent series:

∆(𝜇, 𝑝 ; 𝑧) = 1 − 𝜇Ω(𝑝) + 𝜇
𝜋𝜏0(𝑝)

2
(𝑧 −𝑀(𝑝))1/2 − 𝜇

∞∑︁
𝑛=2

𝑐𝑛(𝑝)(𝑧 −𝑀(𝑝))𝑛/2, (3.15)

𝜏0(𝑝) = 𝜙2(q0(𝑝))𝐽(q0(𝑝)).

Proof. According to (3.7), (3.8) and Lemma 3.3, the function Ω1(𝑝; 𝑧) can be represented as

Ω1(𝑝, 𝑧) = −𝜋𝜏0(𝑝)
2

(𝑧 −𝑀(𝑝))1/2 +
∞∑︁
𝑛=1

𝑐𝑛(𝑝)(𝑧 −𝑀(𝑝))𝑛+1/2 + 𝐹 (𝑝, 𝑧), (3.16)

where 𝐹 (𝑝, 𝑧) is an analytic function at the point 𝑧 = 𝑀(𝑝) and

𝑐𝑛(𝑝) =
(−1)𝑛+1𝜋𝜏𝑛(𝑝)

2
.

Therefore, decomposition (3.6) yields the following representation for Ω(𝑝, 𝑧), 𝑧 ∈
[𝑀(𝑝), 𝑀(𝑝) + 𝛿) :

Ω(𝑝, 𝑧) = −𝜋𝜏0(𝑝)
2

(𝑧 −𝑀(𝑝))1/2 +
∞∑︁
𝑛=1

𝑐𝑛(𝑝)(𝑧 −𝑀(𝑝))𝑛+
1
2 + 𝐹 (𝑝, 𝑧),

where 𝐹 (𝑝, 𝑧) = 𝐹 (𝑝, 𝑧) + Ω2(𝑝, 𝑧) is a function analytic at the point 𝑧 = 𝑀(𝑝).
Since

𝐹 (𝑝,𝑀(𝑝)) = Ω(𝑝) and (𝑧 −𝑀(𝑝))1/2 > 0 for 𝑧 > 𝑀(𝑝),

we obtain

Ω(𝑝, 𝑧) = Ω(𝑝) − 𝜋𝜏0(𝑝)

2
(𝑧 −𝑀(𝑝))1/2 +

∞∑︁
𝑛=2

𝑐𝑛(𝑝)(𝑧 −𝑀(𝑝))𝑛/2.

Identity (3.1) completes the proof.

Now we are in position to prove our main result.

Proof of Theorem 2.1. We begin with proving (i). Let 𝜇 > 𝜇(𝑝). Then Lemma 3.7 implies that

lim
𝑧→𝑀(𝑝)+0

∆(𝜇, 𝑝 ; 𝑧) = ∆(𝜇, 𝑝 ;𝑀(𝑝)) = 1 − 𝜇

𝜇(𝑝)
< 0.

The function ∆(𝜇, 𝑝 ; ·) is continuous and monotonically increasing in 𝑧 ∈ (𝑀(𝑝),+∞) and

lim
𝑧→+∞

∆(𝜇, 𝑝 ; 𝑧) = 1. (3.17)

Hence, ∆(𝜇, 𝑝 ; 𝑧) = 0 for a unique 𝑧 ∈ (𝑀(𝑝),+∞).
Let ∆(𝜇, 𝑝 ; 𝑧) = 0 for some 𝑧 ∈ (𝑀(𝑝),+∞). Then

1 − 𝜇

𝜇(𝑝)
= ∆(𝜇, 𝑝 ;𝑀(𝑝)) < ∆(𝜇, 𝑝 ; 𝑧) = 0 (3.18)

which yields that 𝜇 > 𝜇(𝑝). Applying Lemma 3.6, we arrive at the desired statement.
Since 𝑧 = 𝐸(𝜇, 𝑝) is a solution of the equation ∆(𝜇, 𝑝 ; 𝑧) = 0 and ∆(𝜇, ·; 𝑧) (resp. ∆(·, 𝑝 ; 𝑧))

is real-analytic in 𝑈𝛿(𝑝 0) (resp. (𝜇(𝑝),+∞)), the implicit function theorem implies that 𝐸(𝜇, ·)
(respectively, 𝐸(·, 𝑝)) is real analytic in 𝑈𝛿(𝑝 0) (respectively, (𝜇(𝑝),+∞)).

Note that for each 𝑝 ∈ 𝑈𝛿(𝑝 0) the determinant ∆(·, 𝑝; 𝑧) is monotonically decreasing function
in (𝜇(𝑝),+∞) and hence, the solution (eigenvalue) 𝐸(𝜇, 𝑝) is also monotonically decreasing
function in (𝜇(𝑝),+∞).
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Lemma 3.2 implies that if a number 𝐸(𝜇, 𝑝) is an eigenvalue of 𝐻𝜇(𝑝), 𝑝 ∈ 𝑈𝛿(𝑝 0), then the
function

Ψ(𝜇; 𝑝, ·, 𝐸(𝜇, 𝑝)) =
𝐶𝜇𝜙(·)

𝐸(𝜇, 𝑝) − 𝑤𝑝(·)
,

where 𝐶 ̸= 0 is a normalization constant, is a solution of the equation

𝐻𝜇(𝑝)Ψ(𝜇; 𝑝, 𝑞, 𝐸(𝜇, 𝑝)) = 𝐸(𝜇, 𝑝)Ψ(𝜇; 𝑝, 𝑞, 𝐸(𝜇, 𝑝)).

The analyticity of Ψ(𝜇; 𝑝, ·, 𝐸(𝜇, 𝑝)) follows the analyticity of 𝜙(·) and (𝑤𝑝(·)−𝐸(𝜇, 𝑝))−1 in
T3.

Since the functions 𝐸(𝜇, ·) (respectively, 𝐸(·, 𝑝)) and 𝑤(·, 𝑞) are analytic in 𝑈𝛿(𝑝 0) (respec-
tively, (𝜇(𝑝),+∞)) and 𝑤𝑝(𝑞) − 𝐸(𝜇, 𝑝) > 0 the mapping 𝑝 ↦→ Ψ(𝜇; 𝑝, 𝑞, 𝐸(𝜇, 𝑝)) (respectively,
𝜇 ↦→ Ψ(𝜇; 𝑝, 𝑞, 𝐸(𝜇, 𝑝))) is also analytic mapping in 𝑈𝛿(𝑝 0) (respectively, (𝜇(𝑝),+∞)).

The rest of statements of Theorem 2.1 can be proven by applying Lemmata 3.5 and 3.6 in
the same way as in the above proof of (𝑖).
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