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REALIZATION OF HOMOGENEOUS
TRIEBEL-LIZORKIN SPACES WITH p =
AND CHARACTERIZATIONS VIA DIFFERENCES

M. BENALLIA, M. MOUSSAI

Abstract. In this paper, via the decomposition of Littlewood-Paley, the homogeneous
Triebel-Lizorkin space Fg’qq is defined on R™ by distributions modulo polynomials in the
sense that [|f]| = 0 (|| - || the quasi-seminorm in F(fojq) if and only if f is a polynomial on
R™. We consider this space as a set of “true” distributions and we are lead to examine the
convergence of the Littlewood-Paley sequence of each element in Fosojq. First we use the

realizations and then we obtain the realized space ﬁgo,q of F(‘;"O,q.
Our approach is as follows. We first study the commuting translations and dilations of

realizations in Fchq, and employing distributions vanishing at infinity in the weak sense, we

construct ﬁgqq. Then, as another possible definition of Fgo in the case s > 0, we make

. 7q’
use of the differences and describe F5 , as s > max(n/q —n,0).
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1. INTRODUCTION

In this paper we study a realization of homogeneous Triebel-Lizorkin spaces F;W on R". The

spaces Fjo’q are defined by distributions modulo polynomials in the sense that || f|| s , = 0if
and only if f is a polynomial on R”. Some of their properties can be found in [12], [22].

The basic definition of Fjw is given via the Littlewood-Paley decomposition (abbreviated as
LP decomposition). To recall this, we introduce some notations.

By p we denote an infinitely differentiable radial function obeying the estimates 0 < p < 1

such that

3
=1 as l<L =0 as |€]>>.
We denote v(€) := p(€) — p(2€). This function is supported in the annulus £ < |¢] < 2, and

(&) =1 as - <€ <1, ZV(ZJQ:l as £ # 0.
JEZ
For m € N, the symbol P,, stands for the set of all polynomials on R™ of degree less than m
obeying Py = {0}. By P, we denote the set of all polynomials. For m € INy U {o0}, the set
S). of the tempered distributions modulo polynomials is the dual space of S,,, which is the
orthogonal space of P, in S, that is, S, is the set of all f € S such that (u, f) = 0 for all

u € Pp,. For a tempered distributions f € &', the symbol [f],, denotes the equivalence class of
f modulo P,,.
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We define the operators (); by the formula
Qif =2@7(Nf,  jez

These operators are defined on S’ as well as on §), since @);f = 0 if and only if f € P,,.

For instance, we have @Q);(S) C S. All these operators take values in the space of analytical

functions of exponential type, see the Paley-Wiener theorem. Finally, we adopt the following
convention: for f € S, , we define Q; f := @, f for all f; € &' such that [f1],, = f.
We turn to the LP decomposition; for all f € Sy, (or S..) the identity

=510 i S (orS) (1)
JEZ

holds; this is an easy application of Lemma [7| below. However, once we work in Fcfo,q, it is

possible to obtain the convergence of the series of the LP decomposition in S;L for some integer
4, see below. This leads us to the need to realize Fcfw and to obtain the realized spaces
by using the notion of realization. For a quasi-Banach distribution space £ — S’ , we need
to find a continuous linear mapping o : F — S, such that [o(f)],, coincides with f modulo
polynomials in P, for all f € E, cf. Definition {4| below. If in addition, £ is a translation or a
dilation invariant, that is,

|7aflle =|fllz  or |hxflle = A flle

with 7 € R, where 7, f(z) := f(z — a) and hyf(z) := f(x/\) for all z,a € R™ and all A > 0,
the existence of a such o commuting with translation or dilation operators, that is, obeying

T,00 = 00T, or hyoo = 0o h,,

is nontrivial.
We note that the realizations have been introduced by G. Bourdaud [3] for the homogeneous

Besov spaces B;q; the corresponding integer u was defined in [7]. In the same way, we know

the realizations of both the homogeneous Triebel-Lizorkin spaces Fz‘f’q with p < oo and the
homogeneous Sobolev spaces W;”, and some of their properties, see, for instance, |2], [5], [6],
[7], [16], [21]. Also, nowadays there are various papers presenting applications of the realizations
to Navier-Stokes equations, pseudodifferential operators, wavelet, etc., see, for instance, [9], [15],
[20] and in particular, a comment in [I].

On the other hand, the distributions vanishing at infinity play an important role to
characterize such realization. We recall this notion.

Definition 1. We say that a distribution f € 8" vanishes at infinity if
limhyf=0 in S
A—0

The set of all such distributions is denoted by 60.

For instance, we have f € Cy if f € L, (1 < p < o0). If either f € Ly, or f € C; then
0;f € Co (j = 1,...,n). An easy statement is given by identity Cy N Py = {0} (see, for
instance, [3]).

As usually, N stands for the natural numbers {1,2,...} and INy := INU {0}. All function
spaces occurring in the paper are defined in the Euclidean space R". By || - ||, we denote the
L, quasi-norm for 0 < p < oo. For s € R, the symbol [s] denotes the integer part of s. For all
m € Ny, the standard norms in S are given by

Gn(f) = sup sup (L + |z[)™ [ f@(2)].

z€ER™ |a|<m
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The Fourier transform for a function f € L; is defined as

Fi() = Fl©) = [ ¢f@yar. ceR
Rn
The operator F can be extended to the whole &’ in the usual way. In the same way we define
the inverse Fourier transform F~!,

F (@) = @m) " (o).
For an arbitrary function f, we define the difference operators as
Anf =00 fi=1_1f — 1, Al f = AR(APTf), heR", m=23,...

The constants ¢, ¢y, ...are strictly positive and depend only on the fixed parameters as n, s,
q and probably on auxiliary functions, their values may vary from line to line. The notation
A < B means that A < ¢B. The symbol £ < F denotes that we have the embedding £ C F
and the natural mapping £ — F' is continuous. Throughout the paper, the real numbers s, ¢
satisfy as s € R and 0 < ¢ < oo unless otherwise is stated.

The paper is organized as follows. In Section [2 we recall the definitions and some properties

of homogeneous Triebel-Lizorkin spaces F3, , and of inhomogeneous ones Fy, . Section 3 is
devoted to the realizations of F(qu. In Section , by means of the differences, we characterize

the realized spaces of Fchq in the case s > max(n/q —n, 0).

2. PRELIMINARIES

2.1. Homogeneous spaces F§O7q. By Py, (k € Z, v € Z7") we denote the dyadic cube with

side length 27%, left lower corner in the point 27%v and sides parallel to the coordinate axes,
that is,
Py ={zeR": 27", <a; <27w;+1), j=12,...,n}.

The definition of F(foﬁq was given by Frazier and Jawerth [12] as follows.

Definition 2. Let ¢ €]0,00[. The space FS s the set of f € S!. such that

Oo7q
. 1/q
1/l 75, , := sup sup (2’“” / Zzﬂsqujf(g;)yqu) < 0.

keZ vezn -
Y Pkl/ J>k

coincides with the Holder space B see |14, Eq.

00,007

Remark 1. For q = oo, the set F§O
(1.3)] and Lemma[d below. We let

If]

,O0

Pt 7= SUD 271Q; flloo < 00

The space F .q becomes a quasi-Banach with the above defined quasi-seminorm. On the one
hand, its definition is independent of the choice of v, see [12, Cor. 5.3]. On the other hand, by
(1)) and Lemma 7| below, we have S, — F3, , = S._. We also have the following statements.

Lemma 1. There exist two constants c1, co > 0 such that the inequalities
allfllpe, < NIhaflpe, <ol fllp, 2)
holds for all f € I3, , and all A > 0.
Proof. At the first step, we prove with X := 2¥, N € Z. Here by using the identity
Qj(han f) = Qiun F(27V (),

we obtain easily that

[[hon f]

Fs . 2_N8Hf| Fs .
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In the case of arbitrary A > 0, we introduce an integer N € 7 such that 2N N < 2NFL
Then we use the equivalent quasi-seminorm in F3,  defined by the function v, := 7(2N AL )
and we get

LF

Then it is not difficult to prove that
allflie, <IFEVAlge, <call fllee

for some positive constants ¢; and ¢y independent of N, X\ and f. This completes the proof. [

éo"q — 2Ns||f<2—N)\ . )

The next lemma was proved in [I1].

Lemma 2. There exists a constant ¢ > 0 such that

sup |p(z)] < 2 sup || @l 1, Py (3)
nezn

.Z‘EPJ"U
holds for all j € Z,, v € Z™, and p € 8" with suppp C {£ € R™ : [£] < 2771},
Lemma 3. For all ¢ > 0 we have Foso’q — Fjom = B;;m

Proof. The identity is known, see, for instance, [12] and here we provide a proof of the embed-
ding for more clarity.
Let f € F5, . By Lemma 2| we have

Qi f(x)]* < 12" Seup/!Q; y)|idy  forall z e Pj,,
77 n
P]ﬂ]

which is bounded by
12795927 sup / Z 259 Q, f (y)| 2y,

ezn
n >

where the constant ¢; is independent of f, j and v. This inequality implies that

Qi f(2)] S 277 (Vo € Pjy).
Then we get
g = SUP SUD SUD 251Qrf(2)] S
The proof is complete. O

Remark 2. An inequality opposite to can be easily proved, and for this, the assumption
supp p C {£ € R™ : [£] < 2771} is not needed.

Remark 3. In case 1 < q < 00, the space Fosqq has another definition introduced by Triebel
[19], which is compatible with the one of Frazier and Jawerth, see a comment in [12].

2.2. Inhomogeneous spaces I . For each f € S (or f € §’), we use the inhomogeneous
LP decomposition f = F~lpx f + Y50 @;f in S (or &) and we obtain the inhomogeneous
Triebel-Lizorkin spaces F3, , as introduced in [12].

Definition 3. The space F5  is the set of f € 8" such that

q

/1

kelN VEZ” i
k,y
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Also as above,

/1

cf. Lemma [3| and see also [19, Sect. 2.3.4, Rem. 3].
For some properties of IS, , we refer to [I2]. The case s > 0 is related with the case of the
homogeneous space.

P = I llBz o = 1770 % flloo +5up 27°(1Q; f e < 00,
7>

Lemma 4. Let s > 0. Then

(i) F3, = Leo,
(ii) Fjoq is the set of f € Lo such that [f]o € F, . The expression || || + ||[f]] py, 8

an equivalent quasi-norm in F5, q

Proof. Proof of (i). This embedding can be found in [22], see in particular, Statement (iii) in
Propositions 2.4 and Proposition 2.6 in the cited work as well as Remark [3] below.
Proof of (ii). Let f € Lo, be such that [f]o € F3 .. Thanks to the convolution inequality

1F ™ 0 fllse < IF ol lloo,

we have

re . Sl + 1710

For the opposite inequality, let f € F3 . By (i), we first have || f]| <
k <0 and all v € Z", we obtain

/ S 2@, flde =2 / (3 +30 )2 lQ, s

ik k<j<0 g1

.S
FSq

o, Then for all

kl/ v
| ; (4)
Sl S22 [ 32, e
J<0 P 9>l
On the one hand, denoting by E(x) the vector ([z1],...,[r,]) € Z" for x € R"™, we get an
elementary inequality
27 Fy) <22y < 2V R 1+ 20 T € Py, E<0,j=1,...,n,
and this yields
1421k
YIS Pk,l/ = Trc U Pl,E(21*kr/)+rw0 )
r=0

where wg := (1,1,...,1) € Z". We then obtain

1421k
/ ERICTLTED DR B S N
P, j=1 r=0 P, j=1

JE(21— ku)+7‘w0

<(24 217%) sup /Zzﬂsq@ Flida

nezr >1
Py 1z

<(2 4 2'7%) sup sup 2" / Z 275 Q; f|%dx
relN nezn i>r
n

<2+ 27M)1 %,
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Finally, by inserting this inequality into (4], and taking into account that 25"(2 +2'=%) < 4 for
k <0, we get

2 [ S stds SIFI + 1, S 171, k<O, (5)
Pi. j=k
On the other hand, clearly for all k¥ € N,

/ ZQM\Q flidr < sup2rn / ZQqu’ij’qu < Hf”%go,q

Pk,u =k Pry j=r
Then this estimate and yield the desired result. The proof is complete. O
The space F};, , can be described via differences. We recall the following statement.

Lemma 5. Let m € IN be such that

max (n/q —n,0) <s<m. (6)
Then
(i) A function f belongs to F3,  if and only if f € Ly and
21*]@
s,m,1 kn —s m dt %
NI (f) = sup (2 t7*  sup |A] f(x)\qu—> < 00.
’ kENo,veZ” / t/2<|h|<t t

k,v

Moreover, the expression || f||s —|—N§5f;"1(f) s an equivalent quasi-seminorm in F3
(ii) The same conclusion holds by replacing in (i) the term N f) by

q-

2171@
—s —-n m dt
Nry= s (20 [ [ (e [ iagrwim) )
keNg,vezZm
0 Py, t/2<|h|<t
or
21 k
Ns,m,B . 2kn —sq n Am qdhd dt
00,q (f) T Sup t f | 27 .
kE]N(),VEZ"
v t/2<|hl<t
Proof. We refer to [22, Rem. 4.8] if 0 < ¢ < oo, and to [22, Cor. 4.3] as ¢ = oo, in which the
statement was proved for the Besov-type spaces B3, but B;{’m = B3, o ]

2.3. Definition of realizations.

Definition 4. Let m € Ny U {0} and k € {0,...,m}. Let E be a vector subspace of S/,
endowed with a quasi-norm such that the continuous embedding E — S, holds. A realization
of E into S}, is a continuous linear mapping o : E — S, such that [o(f)|m = f for all f € E.
The image set o(E) is called the realized space of E with respect to o.

Remark 4. In case k = m the identity is the unique realization.

If a realization is known, then it generates other realizations. We recall the following state-
ment, see [6, Prop. 1].

Lemma 6. Let oy : B — S, be a realization. For all finite families (L )r<|a)<n 0f continuous
linear functionals on E, the following formula defines a realization of E in Sj:

o(f)(x) = oo(/)x)+ > La(f)z®  (modulo Py).
k<|a|<N

And vice versa, each realization of E modulo Py, is given in such a way.
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3. REALIZATIONS OF F3

In what follows, to any space Fjog, we associate a number p € INy defined by:

p = max(0, [s] +1). (7)

We shall employ the following lemma, a classical consequence of Taylor formula, see, for
instance, [16, Prop. 2.5].

Lemma 7. Let 0 < p < oo and N € Ny. There exist c1,co > 0 and my, my € Ny such that

(i) Qi ellp < 1277 Gy (F~19)Gmy () for all p € S and all j € No.
(ii) [|Q;¢llp < 227N Cny (F 1)y () for all ¢ € Sy and all j € Z\ N.

Our main aim is to prove the following result.

Theorem 1. Let f € Fjqu. Then the series Y ., Q;f converges in S,,. Let us define o(f)
as the its sum belonging to S),. Then the mapping o : Fcfo’q — &), is a translation and a dilation
commuting realization of Fg’ovq into S, The element o(f) is the unique representative of f in
S, satisfying [0(f)|eo = f in S, and 0% (f) € Cy for all |a| = pu. Moreover,

loW el = I1f

Proof. Step 1. Let f € Fjo’q. We introduce a radial and positive function 5 € D(R™\{0}) such

that vy = . Then we define a sequence of operators (@]) as (@Q);) by taking 7 instead of ~.
Let g € S,. We begin with the inequality

(Q;f,Q;9)] < 2°1|Q; flloo(277°(1Q;9l1)-
Then by Lemma |7| with p = 1, ¢ := g and an arbitrary N and Fg‘qq — Bgoyoo we get:
|<ij7 @]g>| S 2—js min(Q_jNv 2ju)<m<g>||f| Fgquv ] € Za (8)

where an integer m depends only on N and p. We choose N such that N + s> 0, and by the
definition of ;1 we have y — s > 0. Then by the identity (Q,f,g) = (Q,f,Q,g) we get

D HQifs ) S @I fll s, (9)

JEZ

. .
Foqu

Step 2. Inequality @D yields

sup [(e(f) )| < HfHFsoq
QESH,Cm(g)<1 ,

for all f € Fjw. Then o is a realization of FOSW into §,.

Step 3. The identity [o(f)]o = f in S is implied by (L.

Step 4. Let |a| = u, A > 0 and g € S. We introduce an integer r such that 277! < A < 27",
Then supp F (hx(Q;—,f'*))) is contained in the annulus 27! < [¢] < 3-27, and

]:(Qkh/\(Qj—rf(a))) =0 as k—j=23 or k—j7< -2

Hence,
3

(Pa(Qi—rf'), 9) = D (a(Qj— ), Qj4x9)-

k=—2
By Bernstein inequality we have

1A (Qj—rf@)llse S 2V MN1Qjr flloo S 270 IN2 ]

.5
Boo,oo7
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on the one hand. On the other hand, by Lemma [f{i) and the fact that [|Q;.rgll1 < l|gll1, for
some N € Ny and m := m(N) € INy we have

[ @0 () )] £ XNl (Gl) D2 24 1 gl D227 ).

=0 3<0

Choosing N such that N + s — p > 0, and taking into account that y— s > 0 for all s € R, we
pass to limit as A tends to 0 and arrive at 9o (f) € Cp.

Step 5. Let f; € S, i = 1,2, satisfy the identity [fi]oc = [f2]oo = f and 0°f; € Cy for all
|a| = p. Then

fimfr€Pr and O (fi—fo) € CoNPsx={0} forall |a|>p

Hence, fi — fo € Py.

Step 6. Since each operator (); commutes with the mapping 7, for all a € R", the realization
o commutes also with 7.

Let A > 0. Since F%, %, 1s dilation invariant, that is, hyf € F3, , see Lemma . it follows that

o(haf) = 22z Qi(haf) € S),. We define the operators @ as @; replacing 7 by hyy. It is
easy to see that Q;(hyf) = h,\QMf in &' since Q;p(A(+)) = Qja(ha-1¢) for all ¢ € S; recall
that Q;(S) C See. We now define the realization ox(f) := 3., @iaf of F5, , into S;,. Then

(U(hxf% 90> = Z<h/\Qj,>\f7 90> =\" Z <Qj,/\f, SO(A()» = )‘n<0)\(f)7 80()\())>
JEZ JEZ
for all ¢ € S,,. Hence,
o(haf) = haoa(f) in S, (10)
As above, we also obtain that for oy, the arguing in Steps 1-5 hold true. Then
[0(N)]e = [oa(/)loc =

and o(f) — ox(f) € Pso. But 9°(a(f) — or(f)) € Co N Psx = {0} if |a| > p, and hence,
o(f) — ox(f) € P,. This implies hy(o(f) — oar(f)) € P,. Therefore,

h,\O’(f):h)\U)\(f) in Sl,i (11)

Now, by and we obtain that o(hyf) = hao(f) in S,..
Step 7. It is clear that Q,Q;f =0 as [j —r| > 2. Then

1o ()] g, =Sup sup <21" / Z 9Jsq ‘ Z Q.Q,f q dI) 1/q

I€Z veZr e PR
} (12)
“pp ([ 07| 32 @mor] )"
We let 1
F= ) @),
m=—1
and define the operators éj,l as
ESEACSI0)
Then we get
1
> QuiQi=Qu forall jeZ (13)

m=—1
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We have
- - 3
supp%C{fGR"' <l < } and () >1 as Z<!§|<1

since 71 (£) = ~v%(€), see the definition of y in Section |1} Then 7; satisfies equations (2.1)-(2.3)
in [12] and owing to equation (5.1) and Corollary 5.3 in [I2], we can replace the operators @Q;

by @ﬂ in Definition [2| to obtain

<sup sup 2l”/2235q

leZ veZ™ >l

1/q
"ar) " S Wl

Z Qm+] Q]

Hence, it follows from (12) that ||[o(f)]co] i = ||f] i

Finally, for this identity for quasi- semmorms we can add the following observation. Let
fi € 8 be such that [fi]o = [0(f)]. We have

No(leelliy, = Ikl |

Let fo € 8" be such that [fs] = f. By Step 5, fi — f2 is a polynomial; we denote f — fo =: ]7
But Q;([0(f)]ew) = Qjf1 = Q;f2 since Q;f = 0; we also have Q;fi = Q;f2 in the sense of

functions, since both @), f1 and @Q); f2 are smooth functions of exponential type, see Paley-Wiener
theorem [13, Thm. 1.7.7]). We again arrive at the desired identity. The proof is complete. [

Remark 5. For all s € R, of f € F5,,, the series Zj>0 Q;f converges in S'. Indeed, the
inequality (§ . becomes

Qi 1,Q9)] S 27N ¢(g)
for all g € S and all j € Ny, here éj 1s the same as in Step 1 in the proof of Theorem .

The next lemma characterizes the number pu; the proof of this lemma is similar to that given
by G. Bourdaud for Besov spaces [4, Prop. 2.2.1].

Lemma 8. Let s > 0. Then there exists a function f € F,
diverges in S,

such that the series ngo Q;f

o0 .
Proof. We briefly outline the proof, since in case ¢ < oo we do not have the same spaces as in
[4]. We denote m := u — 1 = [s]. Let ¢ € D be such that f x)dr = 1. As Of"p € S, we
split the sum . ((Q;f, 07"¢) into [; + I, where
L= (=1)") / (07 Qs f(x) = 7' Qi (0)pla)de,  Lpi=(=1)" D 9"Q;f(0).
J<0gn J<0

It is sufficient to construct a function f € F
purpose, let g € S be such that

such that |I;] < oo and |I3| = oo. For this

00’]

A~ w

geD, g=0, Suppﬁc{ér

We let
l‘) _ Z 2k(s+m)/29(27k$).

k=0
Clearly, we have

Q;f(x) =279t 2g(23) if  j <0, Q;f(x)=0 if j=>1,
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since 7(2*j§)A(2k5) = 01if k # —j and vg = g; we recall that v(£) =1 as % < €] < 1. Tt is also
clear that for all 7 < 0 the identities hold:

O Q, £(0) = (2m) "imm9)/2 / Ergle) de
J

07 Qs () — 97 Q£ (0)] < (2m) 20 m==¥D/2 3 [y / &l €7(6) de
k=1

Then
1N orQif0) =00, Y VOQsf | < ox.

j<0 Jj<0

It remains to prove that [f]s € F 5. Since

/ g(22)[tda < 279"|g]|?

Pk,u
and s —m > 0, that is, 2796=™)/2 < 1 for all j < 0, we first have
/ S Rl @afide < gl Y 26 S gl (14)
0=j5>k 0>5=k

for all k € Z \ N. Therefore, by taking the supremum over k € Z \ N and v € Z" in , we
get

1ol S 1.
The proof is complete. O

Without use the LP decomposition, we define the realized space of F o

Definition 5. The realized space of F5, . q denoted by F
[f]leo € Fjoq and £ € Cy for all |a| = ,u.

is the set of all [ € S, such that

00,9

We should be sure of the identity O'(F oq) = F %.q» Where the mapping o was defined in

Theorem |]] I The direct embedding is by the deﬁmtlon let us prove the opposite one.
Let f € Fooq, then f —o([f]so) is a polynomial. Since CoNPas = {0} and £ —9°0([f]) €
Cy for all |a| > p, we conclude f — o([f]os) € Py, that is, f = o([f]es) in S,

The space F %.q 18 equipped with a quasi-seminorm defined as
1705, = Al
Of course, one has to justify this definition. If [f], = [f1], and [f]e = [f2]cc, then f1 — fo € P,

but Q;(f1— f2) = 0, which is a sufficient argument. In the case s > 0, ﬁgo,q can be characterized
in &’. This is done in the next lemma; for the case s = 0 see Remark |§| below.

Lemma 9. Let s > 0. Then ﬁio’q is the set of f € S such that [f]e € F5 ., and f@ € C

0,q7
for all |a| = p, and moreover:
i
(i) If s ¢ N, then f € C*=' and f((0) =0 for all |o| < p— 1,
(ii) If s € N, then f € C*=2 and ) (0) =0 for all |a| < p—2 with p=s+1> 2.

Proof. The proof is similar to the proofs of Proposition 4.8 in [7] and of Theorem 4.5 in [16]
thanks to the embedding F3, , — Bs let us briefly outline this.

OOOO’
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Proof of (i). We first define F 5.4 iIn &' by replacing each Q; f by a polynomial of degree less
than p in o(f), see Theorem 1 I Then we get a realization denoted ;. Since any realization on

Fs , is a surjective mapping, then if f € F*_ there exists g € Foso’q such that [f], = g, and it
is SUfﬁClent to take f := o1(9g).

Construction of ;. Let g € Fchq. Then the series

=S (@0 Y @090 D)

JEZ laf<p

00,q?

converges in §’. The mapping o, : Fosojq — &' is a realization of Fchq into &', where oy (f) is the
unique representative of ¢ in &', of class C#~1, 9% (g)(0) = 0 for all |a| < pu—1, 904 (g) € Cy
for all |a] = and [[o1(0)]ocll i = llgll i

We now present the role of the assumption s ¢ IN: by the Bernstein inequality

1Q9) oo £ 271Qj9ll00 < 271 lgl| 55, .

we get

T x|l
Q) ~ Y (@)@ 0) % > Q0@

o <p ol <p—1
SEFE I+ [2) ) gllp, . rERY, j €N
On the other hand, by the Taylor formula we have

‘ng(x) — > (Qi9) (0 ‘ <py, o |x|‘a| " 1(Qi9)\ (t)| dt

ol <pe Ial =p

Therefore,

(@) @) S { D0 (277 + 20 (14 fal)et) 4+ 30 20 [}

>0 <0

Thus, thanks to assumption s € R*T\INy, we get the convergence of above series with y—1—s =
[s] —s<0and pu—s>0.
Proof of (i1). As in the previous step, we consider the mapping:

9) =3 Q0+ (Qo- Y QOO forall gL, (1)
j=0 j<0 | <pe ’

where 05(g) is the unique representative of g in &', and o5 is also a realization of ngq into &’
s, If in addition s > 0, then

satisfying 0%y(g) € Cy for all la| = p and [|[o2(9)]oo| Py, =

o2(g) is of class CF2,

Owing to Lemma|§| if f e F
to take

there exists g € Fjo’q such that [f], = ¢ and it is sufficient

Z <Z Q;9)P( )

[Bl<p—2 720

0,q?

For the realization oy we refer to [7, Rem. 4.9]. In case s > 0, for |5 < pu — 2, we have
I8l —s < p—2—s=—1, and then

> @59 Ve S gl D207

20 =0
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the estimate for the sum
« xa
D 10%{Qi9 — > (Qi9)(0) il
Jj<0 la|<p )

can be obtained as in [16]. The proof is complete. O

Remark 6. If f € ﬁgovq then f = 09(g), where o9(g) is defined in the above proof, see (|15).

Remark 7. Clearly, we can not identify F. 0.2 With BMO, where the space BMO 1s as defined
in [10], since ||[f }OOHFO .= =0 for all polynomwls, while one can easily find a polynomial f & P,

such that f (1+ \x!"“) Y/ (z)|de = oo, see [10].

4. CHARACTERIZATIONS BY DIFFERENCES

We now present a characterization of realized spaces F %.q Dy means of differences. In view
of Lemmata {4 I andl one could think that the scales N5(f), i = 1,2, 3, are other equivalent

quasi-seminorms in F * . But this is not the case since for any polynomial f of degree m we
can have N3 (f) # 0 whlle 1 f] ol iy, = 0; for instance f(x) := 7", then A" f(z) = m!h}

and N3 (f) = ml2m=*(q(m — s))~ /4 which tends to infinity as s T m; the kernel of A} is

m-

Lemma 10. Let @ be satisfied. Then there exists a constant ¢ > 0 such that the inequality
N(f) < |[f] holds for all f € F3, ,, where N := N3, The same holds if we replace

NETL by Nt with i — 2,3.
Proof. Lemmata [4] and [5] we have
N() S M llos + 1111

for all f € F3 ,. Replacing f by fi := f(A(:)) arbitrary A > 0 in this inequality and using
Lemma [I} we obtain:

Jim AN () < ell[f]

OO(]7

for all fers,, (16)

Let now A > 1 and N € IN be such that 2V < A\ < 2¥*!. By the elementary inequality
Vo € P, o 2V <26V < 29Ty 4 2, j=1,...,n
recall that 271 < 2M\~! < 1, we obtain

-1
T € Py, = AN %€ Puynpeva-1v) U PN BN A1) 4w

where wy := (1, 1,. .. 1) E 7" and we have employed the notation E(x) = ([x; ] o lx]) ez
€ R" As AY'f(z) = Alf-1y) /a(A™ z), with the change of variables y := A"z, r := A7't and
w:= \"'h, we get:
91—k
okn / =% sup / |AT f(x |qd35—
%é\h|<t
0
1 21 (k+N) (17)
d
saayaren [y [ arpwla
=0 ’ g<|ul<r

k+N,ENA—1v) 4wy
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We assume that k£ € INy and this allows us to bound last term in m 17)) by

21—i

cA\"*? sup sup 2j”/ — sup /|A H(y |qdy_ (18)

j€Ng nez™ r/2<\u|<r

where c is independent of k. Calculating the supremum over k € INg and v € Z" in , and
taking into consideration, we obtain N'(f) < ¢cA™*N(fy). Finally by (L6]), we complete
the proof. O

Here our second main result is as follows.
Theorem 2. Let m € N be such that @ 18 satisfied. Then J\/';;f’;”'(f), 1 = 1,2,3, define

y y y y ~S
equivalent quasi-seminorms in F3 |

Proof. We consider only N3%!(f), since the estimates of N3*(f), i = 2,3, can be obtained
in the same way. To simplify the notations, in the proof we write N(f) instead of N3 (f).
The proof of [|[f]ecl sy | < eN'(f), for all regular tempered distribution f obeying N'(f) < oo

can be done as in [I8, Subs. 4.1] and we omit the details.
The opposite inequality is similar to that given in [I8], and we present only the needed

changes. Let f € ﬁgqq. We denote f;, := Z—kgjgks Q;f, where k € INy. We also define k; := 0
as s € Nand ks = k as s € RT\IN. Then the function f; belongs to F3, .- Indeed, the inequality
| frlloo < c||[f] with a constant ¢ := ¢(k) > 0, can be obtained by the assumption on s
and the following es‘glmate

Qi f(z)] < c277

In order to prove (19), it is sufficient to employ the embedding F.’jo’q — Fcfooo = Bgooo
Now we are goin to prove that

1fedeoll e, < elllfloli (20)

with a constant independent of f and k. We proceed as in Step 7 in the proof of Theorem [I]
Then similar to recalling that Qerf =0as|j—r| =2, we get

Jj €7, r e R"™ (19)

lfdlie, —p g (2 [ 3] 3 @umas)”
lEZ veZ™ j>l _k<r<ks
Pry lr—j]<1

(21)

=sup sup 2U=N)n / Z Z QTQJf‘ ZJSqdm> q,

I€Z vezn >I-N  —k<r<ks

PN z |r— ;|<].
for all N € Z. Since here the supremum is taken over all [ € Z, it is translation invariant in
Z.. The last identity is trivial but is useful for the next computation. On the one hand, in the
sum Z‘T_ﬂgl ... we have at most three terms corresponding to r € {j — 1,4, + 1}, and hence

> @] <2 3 e (22)
—k<r<ks —k<r<ks
Ir—jl<1 Ir—jl<1

On the other hand, by the following elementary inequalities
if —k<r<ks and |r—j/<1 = —k-1
if —k-1<j<ks+1 and |r—j|<1l = —k-2
by the fact that
{reZ: —-k<r<k}c{re?Z: —k—2<r<ks+2},
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and by using , we obtain

S Y eerice Y Y (@i

j2-N  —k<r<ks J2l—N —k<r<ks
Ir—jl<1 Ir—3I<1

<c o DY) |@if|"

j=l-N  |r—jl<1
—k-1<<ks+1

Choosing the integer N := N ; such that —k — 1 > [ — Nj;, we bound the last term in (23) as

follows: |
Z Z ‘Qj+mij}q2ysq with m:=r —j.

j2l—=Nj1 |m|<1

Substituting this bound into , letting ¢ := [ — Ny, and taking the supremum over all ¢ € Z,

we get
c Z sup SUP 2Z" / Z QjmQ; f

n
Im|<1 LeZ veZ A >0

(23)

11 "9 ) " (24)

for all k& € INy. We continue by letting 7, := 7(27(:))7, and this function possesses the
following properties:

- a1 3 ~ 3
supp%C{é“GRE !fléﬁ}, W@ =1 e o<l
- . 1 3 - 9 11
SuppvlC{ﬁaR 15 S |€’<Z}7 V-1(§) >0 as Eglf\gﬁ-
Hence,
~ n 11 :
T 2e>0 on (EER": << =, min (20)(n)
16<I"<1g
The next property is
~ n 3 - 9 11
suppy C (EER" IS5, () >0 as o <<+
and hence,
~ 9 11 .
A©zc>0 o {eeri gyl em i (3
9 u "\2
8<|n‘<8

_

Then we define the operators Q]m as Q] mf = Ym (277 (- ))f, and as in ([13)), this yields

Qm+ij = Qj,m for all ] e 7.
We replace the operators (); by ij,m with m € {—1,0,1} in Definition [2] and we denote by

W
- 11

s
o0, q

the associated quasi-seminorms. By [12, Cor. 5.3], we have:

I1] < clllf]
where ¢ is independent of f. But from 1’ we also have

ZII

m=—1

S Y
FOO;CI

[ f%] for all k€ Z.

This proves estimate .
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Applying now Lemma [I0] to fi, we obtain

N(fe) < clllf]

the constant c is independent of k, see . On the other hand, letting

forall k€ Ny, (25)

« l‘a
ri(0) = D (Qi)V(0)
o <p
and recalling that ¢ = [s] 4+ 1, cf. (7)), we obtain that the sequence (f; — > k<jch, rj)k>0
converges uniformly on each compact subset of R™ to a limit denoted v, see [I8], (22), Subs. 2.2]

for B, .. At the same time, F(fo’q — fo),oo cf. Lemma . By applying twice the Fatou lemma

in , we get

N(v) < c|f] (26)
In case s € IN, we add the following inequality:
N(Do@sf) <elliflaclli, (27)
j=0
that is, Z]>O Q;f € FS .. The latter can be obtained by Lemma u since we can apply (19| .

thanks to s > 0, see @ and to obtain
j=0 ’
and similar to Step 7 in the proof of Theorem [T we also have
I Qi S0
j=0
Welet g :==v+3,,Q;f if s € Nand g := v if s € R"\IN. We have f —g € P, and

N (P,) = {0}; recall that Aj*(z*) = 0 for all |a| < m, and by assumption m > p > s. Then it
follows from and that

N() SN(f —9) +N(g) S [I[f]l
The proof is complete. O

s
FOqu

Remark 8. Of course, the statement of Lemma |4 is certainly known and in particular (i)
is classical, but now this can be deduced from Theorem[d at least for ¢ > 1. Indeed, the difficult
part in the proof of Lemma is ||[floollps S N fllFs, ,, where now, we get

11£] S SN SN+ 1l S 1S
ifqg=>1 and m € N s such that0<s<m

Fgoq

CONCLUSION

The realized spaces F %, Of the homogeneous Triebel-Lizorkin spaces Fgo,q are now charac-
terized by quasi-seminorms in discrete and continuous (if s > 0) forms. Our next step will be

the extension of the study on F7_, to:

e the pointwise multiplication as in e.g. [2],

e the composition operators as in case of the realized homogeneous Besov spaces, see e.g.
[8, Thm. 4] or [17, Thm. 5.1],

e the pseudodifferential operators as in e.g. [15].
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