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FRACTIONAL INTEGRODIFFERENTIAL EQUATIONS WITH
NONLOCAL CONDITIONS AND GENERALIZED HILFER
FRACTIONAL DERIVATIVE

H.A. WAHASH, M.S. ABDO, S.K. PANCHAL

Abstract. We study some basic properties of the qualitative theory such as existence,
uniqueness, and stability of solutions to the first-order of weighted Cauchy-type problem for
nonlinear fractional integro-differential equation with nonlocal conditions involving a general
form of Hilfer fractional derivative. The fractional integral and derivative of different orders
are involved in the given problem and the classical integral is involved in nonlinear terms.
We establish the equivalence between the weighted Cauchy-type problem and its mixed
type integral equation by employing various tools and properties of fractional calculus in
weighted spaces of continuous functions. The Krasnoselskii’s fixed point theorem and the
Banach fixed point theorem are used to obtain the existence and uniqueness of solutions of
a given problem, and also the results of nonlinear analysis such as Arzila-Ascoli theorem
and some special functions like Gamma function, Beta function, and Mittag-LefHer function
serves as tools in our analysis. Further, the generalized Gronwall inequality is used to obtain
the Ulam-Hyers, generalized Ulam-Hyers, Ulam-Hyers-Rassias, and generalized Ulam-Hyers-
Rassias stability of solutions of the weighted Cauchy-type problem. In the end, we provide
two examples demonstrating our main results.

Keywords: fractional integro-differential equations, nonlocal conditions ,i—Hilfer
fractional derivative, existence and Ulam-Hyers stability, fixed point theorem.
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1. INTRODUCTION

A fractional calculus is an extension of the ordinary calculus to non-integer orders. The
fractional calculus is more than three centuries old, but it attracted much attention in recent
decades due to it is a solid and growing employing both in the theoretical and applied concepts,
see [15], [17], [19], [25]. The fractional derivatives were developed in the past epoch by Riemann-
Liouville, Grunwald-Letnikov, Riesz, Erdlyi-Kober, Caputo, Hadamard, Hilfer and others. In
the past years, fractional differential equations appeared as rich and nice field to be studied
due to their applications to the physical and life sciences and to engineering as is witnessed by
blossoming literature. Many researchers worked with the fractional derivatives and the results
can be found in [I], [4], [5], [8]-[13], [18], [23], [24], see also the references therein.

The properties of fractional integrals and fractional derivatives of a function with respect to
another function have been introduced by Kilbas with co-authors in [I7]. Howover, recently,
in [6], Almeida have introduced a fractional differentiation operator, a so-called 1-Caputo
fractional operator. On the other hand, Hilfer [I5] introduced a fractional derivative, which
in particular gives the Riemann-Liouville and the Caputo fractional derivative operator. In

FRACTIONAL INTEGRO-DIFFERENTIAL EQUATIONS WITH NONLOCAL CONDITIONS AND GENERALIZED HILFER
FRACTIONAL DERIVATIVE.

©Wanasa H.A., ABpo M.S., PancHAL S.K. 2019.

Submitted November 11, 2018.

151


https://doi.org/10.13108/2019-11-4-151

152 HA. WAHASH, M.S. ABDO, S.K. PANCHAL

[13], Furati with co-authors considered a nonlinear fractional differential equation involving
Hilfer fractional derivative:

DPu(t) = f(t,u(t), t>a, O<a<l, 0<B<I, (1.1)
L7 u(a?) =u,,  y=a+f—afp, (1.2)

where Dz"f () and Ia; 7(+) are Hilfer fractional derivative of order o and type 8 and Riemann-
Liouville fractional integral of order 1 — v, respectively, u, € R. The authors used some fixed
point theorems to study the existence and uniqueness of global solutions in the weighted space
to problem (L.I)—(1.2). The stability of the solution of a weighted Cauchy-type problem was
also analyzed. In [24], Wang and Zhang proved the existence of the solutions to equation ([1.1)
with the nonlocal condition

=Y Nu(n),  meE(ab], y=a+p(1-a), (1.3)

by using Krasnoselskii and Schauder fixed point theorems. Vivek et al. [23] established the
existence, uniqueness and Ulam stability results for an implicit differential equations of Hilfer-
type fractional order:

clut) = f(tu(t), DI u(t),  t>0, 0<a<l L0<B<I,
O*):Z)\ku(m), € [0,b], v=a+3(1-a),

via Schaefer fixed point theorem and Banach contraction principle.

Lately, Sousa and Oliveira [21I] have recently proposed a w-Hilfer fractional operator and
extended the results of few previous works [13], [15]. In [22], Sousa and Oliveira disccused the
existence, uniqueness, Ulam—Hyers and Ulam—Hyers—Rassias stabilities of the implicit fractional
differential equation involving -Hilfer fractional derivative. Very recently, in [20], Sousa with
co-authors proposed a generalized Gronwall inequality for a fractional integral with respect
to another function . They also considered Cauchy-type problem (L.I)—-(1.2) involving the
y-Hilfer fractional derivative D:’f ¥ (.) introduced by Sousa and Oliveira in [2I] and they
established results on existence, uniqueness, and continuous dependence.

Motivated by the above works, we prove the existence, uniqueness, and Ulam—-Hyers and
Ulam-Hyers-Rassias stabilities for a nonlinear fractional integro-differntial equation with
nonlocal condition and -Hilfer fractional derivatives of the form:

DYP¥u(t) = f (tu(t), xult)), O0<a<l, 0<B<1,  tec(ab], (14)
L u(t) == ua+ZCkUTk Tk € (a,0), a <y =a+f—ap, (1.5)

where u, € R, Da’ﬁ ¥ (.) is the generalized Hilfer fractional derivative introduced by Sousa
and de Oliveira in [21] I s the generalized fractional integral in the sense of Riemann-
Liouville, for x : D x R — R, xu(t fo (t,s,u(s))ds. Here D : = {(t,s) : a < s < t < b},
fi(a,b) x RxR — Ris approprlate function, 7y, k: 1,2,...,m are given points satisfying
a< T <T<...<T, <band ¢, are real numbers.

This paper is organized as follows. In Section [2] we introduce some notations, basic definitions,
and preliminary facts, which will be used in the paper. In Section 3, we list the hypotheses and
we also show that problem (1.4)—(L.5) is equivalent a the mixed type integral equation. We also
prove the existence and uniqueness of solution to problem (L.4)—(1.5). The Ulam-Hyers and
Ulam-Hyers-Rassias stabilities in a weighted space for such equations is discussed in Section [4]
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In Section [5| we provide examples demonstrating our main results. Finally, the conclusion is
given in the last section.

2. PRELIMINARIES

In this section, we gather some essential facts, definitions, and lemmata concerning fractional
calculus and fractional differential equations.

Let J = [a,b], —00 < a < b < oo, be a finite interval in R. We denote by C(J,R) and
C"(J,R), n € Z; := NU{0}) the spaces of continuous and n-times continuously differentiable

functions on J with the norms
n

Ifle =max /@1 Iflen =315 =3 wax| 0.

- tedJ
=0

respectively, where C'(J,R) = C°J,R). And LP(J,R) (p > 1) is the space of measurable
functions f : J — R with the norm

1

I = ([ 150P) at

We introduce the following weighted spaces of continuous functions:
Cop(LR) ={f: (a,0] = R: (¥(t) = () f(t) € C(LR)},  0<vy<1,
s R)={feC(JR); M eC (LR}, 0<y<1l, neN.
Obviously, C.,.4(J,R) and C7,,(J, R) are the Banach spaces with the norms
1£lle,,, = 1) = ¥()" f(B)llc = max |((t) — d(a))" f)],

and

n—1
1fllex, = Z L@l + 1,

respectively, where C.(J,R) = CY. (J,R).
A well-known function frequently used in the solution of fractional differential equations is
the Mittag-LefHler function given by

0 k

2
E,5(z) = _ Re (a), Re > 0, zeC,
A=Y gy B R
where I'(z) = [ e "z* 'dx, z > 0, is the Euler gamma function. Moreover, if o« = § and 3 = 1,
0
we have
Ei(z) < e (1+erf(2)),
where

2 S
erf (Z) = ﬁ/o €7t dt

Definition 2.1. [I7] Let f be an integrable function defined on (a,b) and 1 be an increasing
function having a continuous derivative ¥’ on (a,b) such that '(t) # 0 for allt € J and o > 0
1s a constant. The left-sided fractional integral of order « of function f with respect to 1 is
defined by

is the error function.

e —Lt/s —(s))* f(s)ds
150 = g [ V00— o) s 2.1)



154 HA. WAHASH, M.S. ABDO, S.K. PANCHAL

In particular, if ¥(t) = t, we obtain the known classical Riemann-Liouville fractional integral.

Definition 2.2. [7], [17] Let n —1 < o < n, and f,¢b € C*(J,R) be two functions such that
Y is increasing and ' (t) # 0 for allt € J. The left-sided fractional derivatives of order a of f
with respect to 1 in the sense of Riemann-Liouville and Caputo are given by

D10 = | e | s

and
CDE () = I W[ ! i]nfu)
ot v 1\

respectively, where n = [a] + 1 and [a] denotes the integer part of a real number a.
The fractional derivative we deal with is a -Hilfer type operator defined as follows.

Definition 2.3. 2I] Letn— 1 <a<neN,0< <1 and f,¢b € C"(J,R) two functions
such that ¢ is an increasing and '(t) # 0 for all t € J. The left-sided -Hilfer fractional
derivative of order o and type (8 of function f is determined as

1 d1"
Da,ﬁw [5 n—a)yp - [(1 B)(n—a)yp
a+ f( ) a+ w/(t) dt a+ f( )
On the other hand, we have
DI E() = I YDIE A, v=a+B(n—a), (2.2)
where

. 1 d]"
D’Yﬂb 1) = il [(1 B)(n—a)yp
200 = | o] 1

In particular, The -Hilfer fractional derivative of order 0 < aw < 1 and type 0 < 5 < 1 can
be written in the following form

DI S0) = s [ )00 — 0o DI (o) = I D),
where v = a + B(1 — a), IZIQW(-) are defined by equation and

|

Lemma 2.1. [3,[14] Let a > 0 and B > 0. The following semigroup property holds:
(Q): If f € LP(J,R) (p = 1), then I®VIPY f(t) = ISTP¥ f(t), ace. t € J.
(ii): If f € Cyy(J,R), then ISV TV f(t) = ISFPV £(1), t € (a,b], 0 <y < L.
(iii): If f € C(J,R), then ISPIPY f(t) = ISP (1), t € J.
As a+ > 1, Statement (i) holds at each point in J.

D0 = |

Lemma 2.2. [21] Let 0 < @ < 1,0< S <1 and 0 <~ < 1. If f € L'(J,R) and D'~ f
is well-defined as an element of L'(J,R), then

Dgfwfflwf( ) — ]5(1 a)¢D5 (1-a) f( )

Moreover, if f € C1(J,R), then
DS h(E) = h).
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For0<a<1,0<8<1andvy=a+ (1l —«a) we introduce the weighted spaces
Crl (L R) = {f € Ciyu(LR): D f € Cio(JR)},
and
Ol R) = {F € Coyuu(JLR), DY € Oy (LR} (23)
Since DV f = If+1_a ;wDZj:l’f, it is obvious that C7__. (J,R) C C’?ﬁwp(J, R).
Lemma 2.3. 2] Let0<a<1,0< <l andy=a+p(1—a) Iffe€C] () R), then
LYDELf(t) = I D £ () (24)
and
DI f(t) = DI £ (1), (2.5)

Lemma 2.4. [I7] If « > 0 and 6 > 0, then ¢ -fractional integral and derivative of a power
function are given by

LW (t) = ()" = ¢
and
DY ((t) —(a)* =0, O<a<l.

Lemma 2.5. [20] Let o > 0, and 0 < v < 1. Then [o”p( -) is bounded from Cy_..,(J, R) into
Ci—vp(J,R). In particular, if v < «, then, Iz‘w( -) is bounded from Ci_,.4(J, R) into C(J,R).

Lemma 2.6. [2I] Let o > 0, 0 < v < 1, and f € Ci—y(J, R). If @ > 7, then I =
C(J,R) and

19 f(a) = T I £ (1) =
t—at
Theorem 2.1. 2I] Let 0 < a <1, 0< < 1. If f € C1—(J,R), then

](}r—ﬁ)(l—a)ﬂﬂf(a)
Fla+ (1 —a))

Moreover, ify=a+ (1 —a), f € C]__ ,(J,R) and I'; Vel La(R), then
L f(a)
T

Theorem 2.2. [25] (Banach fized point theorem) Let (X, d) be a nonempty complete metric
space with T : X — X is a contraction mapping. Then map T has a fized point x* € X such
that Tx* = x*.

IEP DR f() = f(t) — [ (t) — (a)) IO

DY (L) = f(t) - [W(t) — (@)

Theorem 2.3. [25] (Krasnoselskii’s fized point theorem) Let X be a Banach space, let S
be a bounded closed convex subset of X and let Ty, Ty be mapping from S into X such that
Tix 4+ Toy € S for every pair x,y € S. If T1 is contraction and T, is completely continuous,
then the equation Tix 4+ Tox = x has a solution in S.
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3. MAIN RESULTS

In this section, we show that problem ([1.4)-(1.5) is equivalent to a mixed type integral
equation. We also prove the unique solvability of this problem. To this aim, we shall apply the
fixed point theorems by Krasnoselskii and Banach. First we make the following assumptions.

(A1) f : (a,b) x R x R — R is a function such that f(-,u,xu) € C’lﬁl,“? (J,R), for any
u € C1_y,p(J, R) there exists M > 0 such that

|f(t, u, xu) — f(t,0,xv)|] < M [Ju—v| + |xu— xv|], vVt € (a,b],u,v € R. (3.1)
(A2) h:D x R — R is continuous on D and there exists L* > 0 such that
Ixu — xv| < L* |[u— v, u,v € G CR,
where

xu(t) = /Oth(t, s,u(s))ds, D=A{(ts): a<s<t<b}.

(A3) The inequality
M+ ML* &

- aty
Q.= ﬁ kz:;Ck(Dw (Tk,a) <1
holds, where
1 _
B = chqﬂ Tk, @) # 1, @) (71, @) := m(lﬂ(ﬂc) — ()’ g
and B(-,-) is the Beta function.
Lemma 3.1. [2] Let 0 < a < 1 and 0 < § < 1. Then a function u solves the Cauchy problem
D u(t) = f (tu(t), xu(t)),  t€(ab],
]i;’ﬂﬁ ()|t a= Uq, 7:a+5(1_a)7
if and only if u solves the following Volterra integral equation

1) = 500 = @)™ + g [ V0 =) (s, u(s) ) ds.

Xu(s):/ h(t, s, u(s))ds.

0

Lemma 3.2. Let0 <a<1,0< <1 andy = a+p(1—a). Assume that f (-, u(-), xu(:)) €
Crrp (L R). Ifu e O] (J,R) then u satisfies the problem — if and only if u satisfies
the mixed type integral equation

_(IDZJ(t,a) T L
w0 =3 | g [ B ()l ds o
+ ﬁ/a Dy (t,s)f (s,u(s), xu(s)) ds,
where
w0 = PO a0 o) ot - (o)
and -
B=3) a®j(ma)#1. (3.3)
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Proof. First, we prove the necessary condition. According to Lemma/3.1], a solution to equation

(1.4) can be expressed as

u(t) :[w(t) - w(a)]v_ IaJ:V ¢u(a)

/ Y E)W0) ~ () (s, u(s), xu(s)) ds
We substitute t = 73 into the above equation, then multiply it by ¢; to obtain

alb(m) — v
P(’}/) Ia+ ( ) (35)

V() [(m) — ()] f (s,u(s), xu(s)) ds.

cpu(Ty) =

Hence,

k=1
1 1—y i v—1
_Wla+ Yu(a) kz:; cr [Y() — (a)]
+ ; F?;) /aTk () [(m) = ()] (s, u(s), xu(s)) ds + ug,
which implies
L u(a) = 1- B _1 5 kz_; % /aTk % (7, 5) f (s, u(s), xu(s)) ds + ua | (3.6)

Substituting equation ({3.6|) into equation (3.4)), we get

_0(ta)
1-B

2 X | @ s u(s)xau(s)) ds

(«
1 t o
+ m/a Dy (¢, 5)f (s,u(s), xu(s)) ds.

We proceed to proving the sufficient condition. Applying the operator ]if”w to both sides
of (3.2) and employing Lemmata [2.4] we obtain:

Il ’WP

o 2 B ) vt s

1 e
- m/a 3 (L, s) f (s, u(s), xu(s)) ds.

We pass to the limit as t — a; since 1 — vy < 1 — v + a, Lemma implies

m

; % /k D57, ) f (5, u(s), xu(s)) ds + ug

1
[1 VY
u(a) = 1—5
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Substituting ¢t = 7, and multiplying equation (3.2)) by ¢ we get

" D) (1k,a)
cpu(Ty) = Z ckd)—

IM:

Z Fc—k) /aTk Oy (7k, 8) f (s,u(s), xu(s)) ds + ug

k=1 1-B k=1 (a
+ ; FEZ) / P47k, 8)f (5, u(s), xu(s)) ds
1 m

=T 3 ; F?:)z) /aTk S5 (Tr, 8) f (s,u(s), xu(s)) ds + 1 _BBua,

which implies

m m c Th
Z Cku(Tk) + Uy = Z F(k / (I)¢ Tk S )f (Sau(3)7XU(5)) ds + Uq (38)
k=1 k=1
Comparing equation (3.7) and equation (3.8)), we see that
I %u(a) =Y epu(my) + ug.
k=1

Now we apply the operator D(Zﬁp to both sides of equation 1) and by Lemmata , ,
and 2.3 we obtain that

DFu(t) =D I f (1 u(t), xu(t))
=D (8 u(t), xu(t)).
Since u € C7__,(J,R), by the definition of C7__.,(J, R) we have Dz;fu € Ci_4,4(J,R). Hence,
DA™ (b u(t), xu()) = DL f (1 ult), xu(t) € Cr(R).
For each f(-,u(-), xu(:)) € Ci_y;y(J,R), by Lemma [2.5 we have
L ECul), xul) € Cryp(SR), (3.10)
Equation (3 and the deﬁmtlon of C7_.,(J;R) yield that

L F (), xul)) € Oy (1 R).

Therefore, f and I_, L-pll—a)w f satisfy the assumptlons of Theorem . We apply the operator
1 f +(1 @ t6 the both sides of equation (|3.9) and by Lemmata , 6| we get
IO DYt =If£1““”¢Dfi1‘a“"f (t, u(t), xu(t))
=[ (t, u(t), xu(t))
B Ii;ﬁ(l_a);wf (avu(a)7XU(a)) W(t) . w(a)]ﬂ(l_a)_l (311)
I(B6(1 - a))
=1 (t,u(t), xu(t)).
Comparing equation (3.11)) with equation (2.2) when n =1, we get
DEFPu(t) = f (£ ult), xult) .
This means that equation ((1.4) holds true. The proof is complete. O

(3.9)

We proceed to proving the solvability of problem (1.4)-(1.5) in the weighted space
Ccr” 67 w(J, R); we shall do this by means of Krasnoselskii fixed point theorems.
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Theorem 3.1. Let
0<a<l, 0< /<, y=a+8—af
and Assumptions (A1), (A2) and (A3) are satisfied. Then problem (1.4)-(1.5) is solvable in
the space C]__.,(J,R) C C’loﬁinp(J, R).

Proof. We are going to reduce problem ([1.4)-(1.5) into a fixed point problem. Consider the
operator T : C1_y.4(J,R) = C1_.4(J,R) defined by

D (t,a
Ty =28

> ok [ w0 o) (s ds

- F(@) (3.12)
b [ P ) s r€ (ot
We define
r=lt g
e s i w((7) — $@)* + ) — w<a>]a] |

B, —{u € Ciyu(LR): Julle, , <7
[(s) = (@] f(s,u,xu)|,

= max
(s,u,xu)€J xXByr x B

and we introduce operators 17 and 715 on B, as follows:
@1(25, a)

Y

> o) | #30 u(s)xa(s) ds

and
Tyu(t) = ﬁ / D81, 5) (s, uls), xuls)) ds.

Observe that 77 + T, = T', where the operator 17" : Ci_.,(J,R) = Ci_.(J, R) is defined by
equation (3.12). The rest of the proof is split into several steps.

Step 1: Let us prove that Tiu + Thv € B, for each u,v € B,.

For u € B, and ¢ € (a,b] we have

[Tt ) — v <y [y 800 el o] s+

1-B |+~ INE)!
1 [ pBlony) .
ST 3 ;Ckww(ﬂc)—wan +Uq |,

where we have employed that

1 Tk o ~ o )Y a+vy—1
T / @37, )8 (5, a)ds = () = w(@)
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and
[W(1) — ¥(a)]
[U(71) — ¥(a)]

< 1.

Hence, it follows that

1 |~ pBla,y) o
1Thlle, ,, < =5 ;Ck (@) (U(7e) = ¥(a)” + uq (3.13)
In the same way, for the operator T, we have
I—y 1— 1 ' a
| Tov(t) [ (t) — ()] | <[e(t) — ¥(a)] m/a Y (t,5) |f (s,uls), xuls))| ds
:% [(t) — (a)]”, for v € B,.
Therefore,
1Tl < P20 ) — (). (3.14)

By equations (3.13)), (3.14) we get

1T+ Tyl <ITrulle,, + 1Tl

1 L uB(a,y) o pB(a, ) a
STop | L ey ()~ v | LR 0 - vla)
e R S v - vl + () - ¢<a>]a] <r

k=1
This proves that Tiu + Thv € B, for each u,v € B,.

Step 2: At this step, we are going to show that the operator T} is a contracting mapping on
B,.
For each u,v € B,, and for each t € (a,b], it follows from Assumptions (Al) and (A2) that

[(6) = w(a)) " Thu(t) — () — (a)] " Tre(d)
STOTIB T ) F s s xule) = s, (). x5 ds

— I'(a)
I 1 K=o [T,
SFTB 2w /, P00 M ule) =)+ ) —xo(s)l ds
1 1 = ¢ [™
< % (14, 8) (M + ML*) |u —
F(’y)l—BZF(a)/a w(Ths 8) (M + ) lu—v|ds
=1
(M +ML*) <N e /k
< g o) —
1-B ;p(a) j w7k, )@ (s,a) lu —vlle,_  ds
(M+ ML*) - a4+
<S5 ;ck% T a) lu—vle,_

which implies
ITw—Tholly, , < Qllu—vle, -
Due to Assumption (A3), we conclude that the operator T} is contracting.
Step 3: Here we prove the operator T, is completely continuous on B,.
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The continuity of f implies that operator T3 is continuous. Also, T5 is uniformly bounded
on B,.. Indeed, by Step 1, for v € B, we have

pB(a, ) o._
Tavle,.,, < St () - w(@)” = £
This shows that for each r > 0 there exists a positive constant ¢ such that ||Tyvl| Choy S ¢ for
v € B,.

In order to prove the compactness of the operator Ty, we take u € B, and t1,t; € (a,b] with
t1 < ty and we have

|[U(t2) — ()] " Toults) — [(t:) — (@) " Tou(ty)|
_ ‘ [¢(t2) — ¢(a)] -~ / ’ (I)f;(tg, s)f(s,u(s), XU(S))dS

(o)
_ ) F—(gaﬂl‘” / " 0511, (5, uls) xuls))ds
< |t _FEZ’OC()“)]H“ / 01y, )8 (5, a)ds
Lot - Ep@()anl—” [ 1830000
e 00) = ()] 8 (r20) = [(t) — 0] B 00,0
R i) - vl - () — @)

The right hand side of the above inequality is independent of u. The continuity of ¢ as to — t;
implies that

|[W(t2) — ¥(a)]' ™ Toults) — [W(t) — (@) " Tou(tr)| = 0 as tp — ty.

This proves that Ts is equicontinuous. Hence, T5 is relatively compact on B,. By the Arzela—
Ascoli theorem, T is compact on B,.. Thus, all assumptions of Theorem are satisfied and
Hilfer problem ((1.4)-(1.5)) is solvable in Cj_,,,(J, R).

Finally, we show that such a solution is in C7__.,(J/,R). By applying DZT on both sides of
equation ([3.2)), and using Lemmata , we obtain

DXFu(t) = DEPI (2 u(t), xu(t) = DS ft,u(t), yu(t).

Since f(-,u(-), xu(-)) € C’fg}f)(J, R), it follows from the definition of the space Cfg;f)(J, R)
that DY u(t) € C_.p(J, R) and this u(t) € C]_.,(J;R). The proof is complete. O

4. UrLAM—HYERS—RASSIAS STABILITY

In this section, we study Ulam—Hyers and Ulam-Hyers—Rassias stabilities for nonlocal frac-
tional integro-differntial equation (1.4))-(1.5)). The stability results are based on the Banach
fixed point theorem.

Theorem 4.1. Let Assumptions (A1) and (A2) be satisfied. If

A= ! = kzl P?;) 8 (70, a) + B%(b, a)| (M + ML) Bla, ) < 1. (4.1)
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then problem — has a unique solution.

Proof. We consider the operator 1" : Ci_.,(J,R) = C1_,.4(J,R) defined by equation (3.12]).
In view of Theorem , we know that the fixed points of T" are solutions of problem - 1.5)).

Let us prove that 7" has a unique fixed point, which is a solution of problem -(]E :
Indeed, for each u,v € Cy_,,4(J, R) and each t € (a, b], we have

|[W(t) = () Tult) — [ (t) — P(a)] " To(t)]

I’(y)(i — B) Z I‘C’;) /Tk Oy (Tk, 8) 1 f (s,u(s), xu(s)) — f(s,v(s), xv(s))| ds
k=1 a
+ [¥(t) ;(Z()& ] _7/ @1‘2‘)(& s) | f (s,u(s), xu(s)) — f (s,v(s), xv(s))| ds

Qg(TkU a) Hu - U||Cl_,\“¢

)
@Zé](t’ a) ||u - UHCl_,\ﬁw

(M + ML) B, ) Ju — vllg,_

m cn
DY (1), a) + PY(t, a
1—B;I‘(7) w(k ) 1/;( )

This gives:

ITu-Tolle,  <Afu—vle -
By inequality (4.1), the operator T' : C1_,.y(J,R) = Ci_4,4(J,R) is a contracting mapping.
Hence, we conclude that the operator 7" has a unique fixed point u € Ci_,.,(J,R) given by
Banach fixed point theorem. O

We proceed to studying the Ulam-Hyers stability and Ulam-Hyers—Rassias stability. For
e > 0 and for each ¢ € C1_,,4(J, R) we consider the following inequalities:

DIt — f(6 (), x(t)| < e, t € (a,b], (4.2)
DIPYa(t) — (170, X)) < eplt), ¢ € (a,b), (4.3)
DIV — F(4 (), x| < o(t),  te (b (4.4)

Definition 4.1. Problem — is Ulam—Hyers stable if there exists a real number Cy >
0 such that for each € > 0 and for each function u € C’f_%w(J, R) satisfying inequality ,
there exists a solution u € C’lww(J, R) of equation obeying

u(t) —u(t)] < Cre, t € (a,b].
!
Definition 4.2. Problem — is generalized Ulam—Hyers stable if there exists ¢y €

C(RT,RT) with ¢;(0) = 0 such that for each function w € C]_ .., (J,R) satisfying inequality

, there exists a solution u € OLW)(J’ R) of equation obeying
u(t) —u(®)] < ¢r(e),  t€(ab].
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Definition 4.3. Problem — 1s Ulam—Hyers—Rassias stable with respect to ¢ €
Ci—rp(J,R) if there exists a real number Cy, > 0 such that for each € > 0 and for each
function u € CY_WZ,(J, R) satisfying inequality , there exists a solution u € CY_WZ,(J, R) of
equation obeying

u(t) —u(t)] < Creep(t), € (ab].
Definition 4.4. Problem - 15 generalized Ulam—Hyers—Rassias stable with respect

to ¢ € Ci_yy(J,R) if there exists a real number Cy, > 0 such that for each function u €
CLW)(J, R) satisfying inequality (4.4]) there ezists a solution u € 0117;11;(‘]7 R) of equation

obeying
[u(t) —ut)| < Crep(t),  te(ab]

The next lemma is a generalization of Gronwall lemma.

Lemma 4.1. [20] Let o < 0 and ¢ € C'[a,b] be an increasing function such that ¢'(t) # 0
for all t € [a,b]. Assume that h is nonnegative and non-decreasing, and y is a nonnegative
function locally integrable on [a,b] and suppose also that x is nonnegative and locally integrable
on [a,b] obeying

z(t) < y(t) + h(t)/ i (t, s)x(s)ds, t € |a,b],

then, for all t € |a,b], we have
" T (@) o

Moreover, if y(t) is a nondecreasing function on [a,b], then
z(t) < y(t)E, [h(t)F(oz)@i(b, a)} , t € |a,b)].
Now, we are ready to prove Ulam-Hyers and Ulam-Hyers-Rassias stability for problem ({1.4))-
).

Theorem 4.2. Let Assumptions (A1) and (A2) be satisfied. Then problem (1.4)-(1.5) is
Ulam—Hyers stable.

Proof. Let u € C’f_%w(J, R) be a function satisfying inequality |} Applying operator I;’iw
to the both sides of inequality (4.2) and using Theorem we have

IS DGV = 153 (8 (), X)) | < 1¢e

This implies that

() — Ha % / DY, )f (5,(5), Xils) ds| < W (b,a), (4.5)
where
\I’g(b, CL) _ [¢(b)r_(a77§(a)]
and
@V(t,a) ¢ L
sm S | s [ ) (). ) s+ g
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We denote by u € Cfﬂ;w(J, R) the unique solution of the following problem

DYP¥u(t) = f (tu(t), xuls)), O0<a<l, 0<B<L,  te€(a,b],
P (t) o= I o v+ Y (). 7€ (b
k=1
where v = a + f — af. Using Lemma (3.2, we obtain
() = Hy + ﬁ / @ (1, 8)f (5, uls), xu(s)) ds. (4.6)
where . N
L= (Dlw(_t’;) ; FEZ) /aTk Oy (7k, 8) f (5,u(s), xu(s)) ds + uq

On the other hand, if
() = u(7y) and Iifwu(t) lt—a= I;prﬂ(t) li=as

it is easy to see that H, = Hz. Hence, by Assumptions (A1) and (A2) and equations (4.5),
(4.6)), for each t € (a,b] we have

1

ilt) — u(t)] < - i | B ) i) ds

M — Ml + ﬁ / B2t ) | (1, TL) \T(L)) — F(tu(t), xu(t))]| ds

<SU0.0) + o [ BRI ) — (o) + i) = vu(s)] s

«

(4.7)

% / B8, 5) [i(s) — u(s)| ds.

€
<Swe,
o w(b,a) +

We apply Lemma [4.1] to obtain

t o x\k
]ﬂ(t)—u(t)|<§\lfj(b,a) 1+/ ZM@ik(t»$>] ds

¢ > [(M + ML*) ®%(b, a)]"
<-Ui(ba) 1+Z[ +F(ak)+1¢)( )] ]

- © [(M + ML*) %(b, a)"
=5 Le(b,a) Z[ F(ak;+1w) | ]

€ * a
=Wy (b,a)Ea [(M + ML) ¥(b,a)] .

Then for
Wi (b, a)

«

Cy= Eo [(M + ML*) (b, a)]

we get:
[u(t) —u(t)| < Cye.
This means that problem (|1.4)-(1.5)) is Ulam—Hyers stable. The proof is complete. O]

Corollary 4.1. Under the assumptions Theorem if there exists ¢y € C(RT,RT) with
¢£(0) = 0, the problem (1.4)—(1.5) is generalized Ulam-Hyers stabile.
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Proof. Following the lines of the proof of Theorem , we choose ¢f(€) = Cre and ¢¢(0) =0
and we obtain |u(t) — u(t)| < ¢s(¢). Hence, problem (1.4)-(L.5]) is generalized Ulam-Hyers
stable. ]
Theorem 4.3. Let Assumptions (A1) and (A2) hold and the following condition be satisfied
(A4) There exists an increasing function ¢ € Ci_yu(J,R) and X\, > 0 such that for each
t € (a,b], the inequality holds:
I (t) < App(t).
Then problem (1.} - 15 Ulam—Hyers—Rassias stable.

Proof. Let e > 0 and let u € C]__ ,(J,R) satisfty inequality (4.3). Solving equation (4.3) and
taking into consideration Assumption (A4), we get

1

1) = s~ s / Bt 5)f (s (), xia(s)) ds| < Apeplt). (4.8)

On the other hand, let u € CLWW(J, R) be the unique solution of problem ([1.4)-(1.5), that is

1 t
) = ot s [ O (uls)vu(s) ds (1.9)
Then, as in (4.7), for each ¢ € (a, b] we have

ju(t) —u(t)] <

~ 1 Lo ~ ~
u(t) — Ha — m/a Dy (t,s)f (s,u(s), xu(s)) ds

+yHﬁ_JHuL%f%B¥/ Ot 8) [£(E ult), xu(t)) — [t ult), xu(t))| ds

<Aplt) + g | P () = u(s)| + i) = vu(s) ] s

e p(t) + %/ Dy (t, s) [u(s) — u(s)| ds.

a

We apply Lemma [4.1] and we get:

[(t) — u(t)] <eApip(t) + €Ay / M”“*)

q)zk(t, s)p(s)ds

—eMp(t) + n U ( +ML* OTEME) o1 yols)ds

M+MU)

o  [(20)
e, [(M 4 ML) IOV o(t) + (M + ML) I p(t) + .. ]
X [(M + ML*) Apip(t) + (M + ML*)? (A)? () + ... ]

L (t, 5)p(s)ds + .. }

Then, for
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we get that
[a(t) — u(t)] < Crpep(t).
This proves that problem ([1.4)-(|1.5)) is Ulam—Hyers-Rassias stable. The proof is complete. [J

Corollary 4.2. Under the assumptions of Theorem problem — 15 generalized
Ulam-Hyers-Rassias stable.

Proof. We follow the lines of the proof of Theorem and choosing € = 1, we get
[u(t) — u(t)] < Creep(t).

5. EXAMPLES

5.1. Example 1. Consider the nonlocal fractional integro-differential equation involving the
y-Hilfer fractional derivative:

11y 1 1 b
D2 u(t) = 2 u)g 0,1 5.1
o+ u() 3E1(t+2)(1+|u|) +3E1(2)/0 € S, ( ’ ]a ( )
1y 1 2
1) = Su), (52)
Here
1 1 2 2
a=g, =3 T=3 ug = 0, ‘=5 =g
and 1 : [0,1] — R is such that ¢(¢) =t for all £ € [0, 1] and
1 1 1 b
tu(t ) =tv 2 te (0,1
(0 xut) = 17 + s s [0 el
t t
xu(t) = / h(t,s,u(s))ds = / ez U9 s,
0 0
Clearly,
F(tult), xu(t)) € € (0.1, RY)
since

5 £ (t,ult), xu(t)) € C([0, 1], RY).
Let u,v € RT and ¢ € (0, 1]; then it is easy to see that

[ (&, u(t), xu(t) — f(t v(t), xv(t))| < 3Ej(2)

(Ju — o]+ |xu — xv|),

and .
- 1
Ixu — xv| < / e o) —vBlgg < 5 lu — vl .
0

Hence, Assumptions (Al) and (A2) hold with

1 1

3E,(2)’ 2

We are goint to check that Assumption (A3) hold as well.
Indeed, by simple calculations we see that

[(n) —(0)]"
L'(v)

*

B:clq)l(Tl,O) = C ’10677é 1,

and
Q2 ~010<1.
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And since all assumptions of Theorem are satisfied, problem (5.1)-(5.2]) has at least one
solution in C’3 [([0,1],RF). For t € (0,1] and u € ]R+ we have A ~ 0.42 < 1, therefore, condition

holds. Hence by Theorem problem has a unique solution in C’3 ([0, 1], RT).

5.2. Example 2. We consider the nonlocal fractional integro-differential equation involving

the vy-Hilfer-Hadamard fractional derivative

1,0,In 1 1 [t -
D u(t) = 55 (VD) cos(tult) + 55 /1 T s,
Lint 1 2
I u(l) = U (g) ,
where
1 1 1
a=3, 5=0, T=5 ug = 0, a=g;
and
1 1 [t
(b u(t), xu(t)) = oo (V) cos(t)u(t) + 5 /1
t
xu(t) :/ e ds
1
Clearly,
Fltut). yu(t) € O (L6 R)
since

(Int)2 f(t,u(t), xu(t)) € C([1,e

Let u,v € R and t € (1, €], then it is easy to see that
1
and

¢
\XU—XU\é/e ORI |ds< \u—v\.
1

Hence, Assumptions (A1) and (A2) hold with

1
M=— L=

Let us check that condition (4.1)) is satisfied.

Indeed, by simple calculations we see that for t € (1, €],

ln(n) —In(1)]"""

1
20’ 2

B = Cl@l(Tl,O) =C

and
A~0w<1

L) - 24/ log(2)

e (1, (5.3)

(5.4)

Bt) =Int, te[l e,

te(1,e,

(Ju = v| + [xu — xv|),

~ (.44 # 1,

Then by Theorem problem has a unique solution in C'1 n [[1,e],R). As it has

been shown in Theorem 4.2} for € = § > O if u € Cl n ([1,e], R) satisfies

‘Dﬁwmw—f@MﬂwMﬂﬂé

1
9’
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there exists a unique solution u € o3 ([1,e],R) such that

Lint

i(t) — u(t)] < 5,

where

Here

T (e, 1) = [In(e) — (D" % (e, 1) = In'(£) [,y [In(e) — In(1)]*".

Hence, problem (5.3)-(5.4) is Ulam-Hyers stable.
Finally, we consider ¢(t) = (Int)z, then

(Int)? p(t) = In(t) € O([1,¢], R),

., (1) € Cy (L ¢ R).
In order to verify the condition

I™o(t) < Applt), Ay >0,

by employing the Hadamard fractional integral and simple computations we get

1n 1 3 7% 1 t
[12+1 ‘Int = —1/ (ln E) (lns)%ﬁ < —1/ (ln )
I'(3) )1 s s " T(3)h 5

Thus, Assumption (A4) is satisfied with

w\»—t
w\»—A

ds 2
T < =k,

2
o =—=>0.

N3

([1,¢], R) satisfies

A

Andfore— > 0, 1fu€C'2

Lint

(Int)2,  te (e,

[\Dlr—t

DY) — £t a(t), xa(1))] <

there exists a unique solution u € i ([1,€], R) such that

Lint

|ﬂ(t)—u(t)|<C'f,¢%(lnt5: {HZ(@) (%ﬂ%(m)é.

Hence, problem (5.3)-(5.4)) is Ulam—Hyers—Rassias stable. Finally, taking e = 1, we get

30) - y(e) {uz (5+5) (&) |amot

Therefore, problem ([5.3)-(5.4) is generalized Ulam—Hyers—Rassias stable.

l\)\»—‘
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CONCLUSIONS

The main results of this article have been successfully achieved by employing Krasnoselskii
and Banach fixed point theorems and our most important results in the made nonlinear anal-
ysis is the study of the existence and uniqueness of solutions tothe Cauchy-type problem for
a nonlinear fractional integro-differential equation introduced by the left v-Hilfer fractional
derivative. We discussed the Ulam-Hyers, generalized Ulam—Hyers, Ulam-Hyers-Rassias, and
generalized Ulam-Hyers-Rassias stabilities. This paper contributes to the growth of the frac-
tional calculus, especially in the case of fractional differential equations involving a general
formulation of Hilfer fractional derivative with respect to another function.

There are some articles that carried out a brief study on existence, uniqueness, and stability
of solutions of fractional differential equations, however, there are just a few of them devoted
to Hilfer type operator and one of our aims was to contribute in this field. We expect that our
results can be extended to some other fractional differential equations involving Hilfer derivative
with respect to another function .
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