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ON TRIPLE DERIVATIONS OF PARTIALLY ORDERED SETS

AY. ABDELWANIS

Abstract. In this paper, as a generalization of derivation on a partially ordered set, the
notion of a triple derivation is presented and studied on a partially ordered set. We study
some fundamental properties of the triple derivation on partially ordered sets. Moreover,
some examples of triple derivations on a partially ordered set are given. Furthermore, it is
shown that the image of an ideal under triple derivation is an ideal under some conditions.
Also, the set of fixed points under triple derivation is an ideal under certain conditions. We
establish a series of further results of the following nature. Let (P, <) be a partially ordered
set.

1. If d, s are triple derivations on P, then d = s if and only if Fixy(P) = Fixs(P).

2. If d is a triple derivation on P, then, for all z € P;Fix;(P)NI(x) = I(d(x)).

3. If d and s are two triple derivations on P, then d and s commute.

4. If d and s are two triple derivations on P, then d < s if and only if sd = d.

In the end, the properties of ideals and operations related to triple derivations are examined.
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1. INTRODUCTION

The concept of derivations has appeared in various researches and was studied by many
mathematicians. It also circulated in many mathematical concepts such as Jordan triple
derivations, generalized Jordan triple derivations, Jordan triple higher derivations, generalized
Jordan triple higher derivations, generalized Lie triple higher derivations and multiplicative x-lie
triple higher derivations. There is a lot of scientific researchs devoted to the generalizations of the
concept of derivations. For example, the concepts of Jordan triple derivations and generalized
Jordan triple derivations appeared in [6], [7], [9]. The concepts of Jordan triple higher derivations
and generalized Jordan triple higher derivations appeared also in [8]; for the other concepts see
1, 21

The concept of derivations on a lattice appeared in [3] and [II]. Later, in 2014, the notion
of derivations was generalized to the notion of triple derivations on lattices as in the following
definition.

Definition 1.1. Let (L,A,V) be a lattice and d : L — L be a function. We call d a triple
derwation on L if it satisfies the following condition:
dlxANyANz)=(dx)NyAz)V(eANdy)Az)V (zAyAd(z)) for all z,y,z € L.

In 2017, the notion of derivation of partially ordered sets was presented in [12] as follows.

Definition 1.2. Let P be a poset and d : P — P be a function. We call d a derivation on P
iof it satisfies the following conditions:
(1) d(l(z,y)) = l(u(l(d(z),y),l(z,d(y)))) for all z,y € P;
(2) Ud(u(z,y))) = l(u(d(z),d(y))) for all z,y € P.
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In this present paper, the notion of triple derivation of a partially ordered set is introduced
and some related properties are studied for the triple derivation on a partially ordered set.

We introduce a few notations, which will be employed in what follows. A pair (P, <) always
denotes a partially ordered set (poset). We additionally employ the shorthand notation P to
indicate a poset. For y € P, as in [12], we define [y ={pe P:p<y}landty={pe P:y<
p}. For B C P, we denote by

I(B)y={pe P:p<bforall be B}

the lower cone of B and
u(B)={pe P:b<pforallbe B}

is the upper cone. We immediately see that both are antitone and their compositions I(u(-))
and u(l(-)) are monotone. Also we have [(u(l(-))) = I(-), u(l(u(+))) = u(-) from [4]. If B =
{b1,bs,...,b,} is a finite subset, then we simply write [(B) = [(by,bs,...,b,) and u(B) =
u(by, b, ..., by,). Also, for A C P and B C P, we will denote (A, B) for [(AU B) and u(A, B)
for u(AU B). For A C P, we write | A = {p € P:p < a for some a € A}. According [5], if
A =] A, then A is said to be a lower set. A is directed if it is nonempty and every finite subset
of A has an upper bound in A; thanks to the nonemptiness, it is reasonable to expect that each
combination of components in A has an upper bound in A. A subset J of P is called an ideal
if it is a directed lower set.

In this paper, in Section 2, we present the notion of triple derivations of partially ordered
sets and discuss their essential properties. In Section 3, we examine the fixed sets from the
point of view of the triple derivation. In Section 4, we examine the properties of ideals and the
operations related to the triple derivation. Our results generalize the results of [12].

2. 'TRIPLE DERIVATIONS OF POSETS

Definition 2.1. Let P be a poset and d : P — P be a map. We call d a triple derivation on
P, if it satisfies the following conditions:

1 d(l(z,y,2)) = U u(l(d(z),y, 2),(x,d(y), 2), (x,y,d(2))) for al z,y,z € P;
2 l(d(u(z,y,2))) = lu(d(z),d(y),d(2))) for all z,y,z € P.

Remark 2.1. Suppose P = (P, <,/A\,V) is a lattice, then we can prove that if d is a triple
derivation on (P, <), then d is a triple derivation on lattice (P, A, V).

Lemma 2.1. Let P be any poset, then any surjective derivation on P is a triple derivation
on P.

Proof. Let (P,<) be a poset and d : P — P be a surjective derivation. First we are going to
show that

dl(x,y,2)) = lu(l(d(x),y, 2), (z,d(y), 2), (z,y,d(2))) forall  xz,y,z€ P. (2.1)
First we prove that
d(l(z,y,2)) Cl(d(x),y,z)  forall  =z,y,z€P.

Let z,y,z € P and s € d(l(x,y, z)), then there exist t € [(x,y, z) such that s = d(t). Since d
is a derivation on P, then by Statement 1 in Proposition 2.1 in [12] we get s = d(t) < t. But
t € l(z,y,2) and d is a derivation then again by using Statements 1, 2 in Proposition 2.1 of
[12], we obtain

Hence, we have
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ie. s €l(d(x),y,z). Therefore,
d(l(z,y,2)) C U(d(2),y,2) = l(u(l(d(2),y, 2))) € W(ul(d(z),y, 2),1(x,d(y), 2), (2, y,d(2))).

On the other hand, since d is a surjective derivation on P, we see easily that
d(x),9,2) = Uz, d(y), 2) = (g, d(z)  forall  z,y,2€ P
Then
Wu(l(d(z), y, 2), Uz, d(y), 2), l(z,y, d(2))) = Lu(l(d(z),y,2))) = (d(),y, z)

for all z,y,z € P. But d is a derivation and we find I(d(z),y,2) C l(z,y, 2), for all z,y,z € P.
Now, since d is surjective derivation, we see that I(z,y, z) C d(l(x,y, z)) for all z,y,z € P.

Let z,y,z € P and h € [(z,y,z). Since d is a surjective derivation, there exist k& € P such
that d(k) = h. By [12, Stat. 1 in Thm. 3.1] we get h = d(k) = d(d(k)) € d(l(z,y,2)). Then
ld(z),y,2) C d(l(z,y, ). Hence,

l(u(l(d(x),y,z),l(x,d(y),z),l(x,y,d(z))) - d(l([E,y,Z)) for all r,y,z € P.
This proves (2.1)) is proved. In the same way we prove that

ld(u(z,y,2))) = l(u(d(x),d(y),d(2))) forall  x,y,z¢€ P. (2.2)
The proof is complete. O

As the following example shows, there exists a triple derivation on a poset which is not a
surjective derivation.

Example 2.1. Let (P, <) = ({0, 1,2}, <). Define the functiond : P — P by d(0) = d(2) =0
and d(1) = 1. Clearl,y d is a triple derivation on P. On the other hand, d is not a derivation
on P since d(1(1,2)) = d(I(1)) = {0,1} and l(u(l(d(1),2)),1(1,d(2))) = l(u(l(1,0)),1(1,0)) =
[(u(l(0))) = 1(0) = {0}. Thus, d is not a surjective derivation.

In what follows, (P, <) is a poset.

Lemma 2.2. Let d be a triple derivation on P, then the following statements hold:

1. d(z) < z; for all x € P.

2. If v <y, then d(z) < d(y);

3. If I is an ideal of P, then d(I) C I

4. If P has the least element O then d(0) = 0.

Proof. 1. Since d is a triple derivation on P, we have

dl(z,z,z)) = l(u(l(d(z), z,z),(z,d(x),x)), (z,z,d(x))) = H(ul(d(z),z,x))) = l(d(x),z, ).
But
d(l(z)) = d(l(z,z,x)) = l(d(z), z, x) = l(d(z), z).
On the other hand we have, d(x) € d(l(x)), then d(x) € l(d(x), z). Hence d(z) <
2. Suppose that = < y, then

ld(u(z,y,9))) = l{d(u(y))) = l(u(d(z),d(y), d(y))) = l(u(d(2), d(y)))-

But d(z) € l(u(d(z),d(y))), so d(x) € I(d(u(y))). Hence d(z) < d(y).

3. Assume that [ is an ideal of P. If x € d([), then there exist ¢ € [ such that d(t) = x. By
Statement 1, we get d(t) < t so x < ¢, but I is an ideal of P. Hence, z € I. This proves that
d(I) C I.

4. Let P has the least element 0 then, by Statement 1, we get 0 < d(0) < 0. Hence, d(0) = 0.

The proof is complete. O

Lemma 2.3. Let d be a triple derivation on P. Then the following statements hold:
1. Ifd(l(x)) = l(y), then d(z) =
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2. If d(u(zx)) = u(y), then d(z) = y.

Proof. 1. Let d(I(x)) = l(y), then by y € l(y
such that d(t) = y. But d(t) < d(z), so y < d(
d(x) < y. Hence, d(z) = y.

2. Statement 2 can be proved in the same way as Statement 1. O

) we get y € d(I(x)). Then there exist ¢t € [(x)
x). On the other hand, d(z) € d(I(x)) = l(y), so

Theorem 2.1. Let P be a poset and d : P — P be a map. Then d is a triple derivation on
P if and only iof

L d(l(x,y,2)) =U(d(x),y,2)) =U(z,dy), 2) =l(x,y,d(2)) for all z,y,z € P;
2. l(d(u(z,y, 2))) = l(u(d(x),d(y),d(z))) for all z,y,z € P.

Proof. We simply need to show that Condition 1 in Definition [2.1]is equivalent to Statement 1
in this theorem. First, assume that Statement 1 is satisfied, then

d(l(z,y, z)) = l(d(z),y, z) = W(u(l(d(z),y, 2))) = W(u(l(d(z),y, 2),1(z,d(y), 2)), Lz, y,d(2))).
Assume, that d is a triple derivation on P. Then
ld(x),y, 2) = Wu(l(d(x),y,2))) € Wul(d(x),y, 2), 1(z,d(y), 2)), l(z,y,d(2))) = d(I(z,y, 2)).

On the other hand, suppose that v € d(I(z,vy, 2)), then there exists t € [(x,y, z) satisfying
d(t) = v. By Statements 1, 2 in Lemma 2.2 we have

d(t) < d(z),  d(t) <d(y) <y, dl) <d(z) <z

d
This shows that v = d(t) € l(d(z),y,2). Hence, d(l(z,y,2)) C I(d(z),y,z) and therefore,

dl(z,y,z)) = U(d(x),y, 2).
In the same way we prove that

d(l(z,y,2)) = l(z,d(y),2),  d(l(z,y,2)) = l(z,y,d(2)).
]

Lemma 2.4. Let d be a triple derivation of P. Then d(I(z,y,z)) = l(d(x),d(y),d(z)), for
all x,y,z € P.

Proof. First assume that t € [(d(x),d(y),d(z)) and
t<d@),  t<dy),  t<d).

d
By Statement 1 in Lemma t <yandt <z Then t € l(d(x),y,z). By Statement 1 in
Theorem [2.1] I(d(z),d(y),d(z)) C d(I(z,y, z)). And vice versa, suppose that ¢ € d(I(z,y, 2)),
then there exists v € I(z,y, z) such that d(v) = t. Then by Statement 2 in Lemma [2.2{ we get

dv) < d(x),  dv) <d(y),  dv) <d(z).
Hence, t € l(d(x),d(y),d(z)) and d(l(z,y,z)) C I(d(x),d(y),d(z)). The proof is complete. ]

3. FIXED POINTS OF A TRIPLE DERIVATIONS

Throughout this section P is a poset and d is a triple derivation on P. We call x a fixed point
of d in P if d(z) = x. We also denote by Fix,(P) = {y € P : d(y) = y} the set of all fixed
points of d in P and d(P) = {d(y) : y € P}.

Theorem 3.1. Let d be a triple derivation on P. Then

1. d(z) € Fixq(P), for all x € P,
2. Fixy(P) = d(P).
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Proof. 1. We are going to prove that d(d(z)) = d(x) for all x € P. Let € P then by
Statement 1 in Lemma 2.2 and Statement 1 in Theorem 2.1] we have

d(l(d(z))) = d(l(z, z,d(x))) = l(d(x), z, d(x)) = I(d(z)).

Then by Statement 1 in Lemma [2.3| we obtain d(d(z)) = d(x). Hence, d(x) € Fixq(P).

2. By Statement 1, d(z) € Fix,(P) for all x € P, then d(P) C Fix4(P). And vice versa, let
x € Fixy(P), then x = d(z). Hence, Fixy(P) C d(P), and Fixy(P) = d(P).

The proof is complete. n

Lemma 3.1. Let d, s be two triple derivations on P. Then d = s if and only if Fixy(P) =
Fix,(P).

Proof. Tt is obvious that as d = s, we have Fixy(P) = Fix,(P). And vice versa, let Fixy(P) =
Fixs(P), and = € P. Since by Statement 1 in Theorem B.1](1) we get d(z) € Fixq(P) = Fix,(P),
then s(d(z)) = d(z). In the same way we confirm that d(s(z)) = s(z). Then by Statements 1, 2
in Lemma 2.2 we get d(z) < s(z) and s(x) < d(z). Hence, d(z) = s(z). The proof is complete.

[l

Proposition 3.1. Let d be a triple derivation on P with the least element 0. Then the fol-
lowing statement hold.

1. 0 € Fixy(P),

2. If x € Fixq(P), and y < x, then y € Fixy(P),

3. If P is directed, then, for each x,y € Fixy(P), there exists z € Fixy(P) satisfying x < z,
Y <z

Proof. 1. Since d(0) = 0, then 0 € Fixy(P).
2. Assume that = € Fixy(P), and y < x then d(z) = x. Then by Statement 1 in Theorem
and Statement 2 in Lemma [2.2] we get

d(l(y)) = d(l(z,y,y)) = l(d(x),y,y) = l(z,y,y) = l(y).

Then by Statement 1 in Lemma [2.3(1) we get d(y) = y, and hence y € Fixq(P).

3. Suppose that P is directed then for each x,y € P there exist v € P such that x < v and
y < w. Since z,y € Fixy(P), then d(x) = z, d(y) = y. But d(z) = z < d(v) and d(y) = y < d(v).
We take h = d(v) and by Statement 2 in Theorem (3.1 we get z € Fixy(P).

The proof is complete. O

Corollary 3.1. If P is a directed poset with the least element 0, then Fixy(P) is an ideal of
P.

Theorem 3.2. Let d be a triple derivation on P. Then, for all x € P,
Fixy(P) N l(x) = I(d(z)).

Proof. First assume that y € Fixg(P) Ni(x), then y = d(y) and y < z. Then d(y) < d(z) and
y < d(x). Hence, y € l(d(x)) an

Fixg(P) N i(z) € 1(d(x)).

On the other hand, we have d(x) < z and d(z) € Fix4(P). Hence, d(x) € Fixq(P) Ni(z). Then
by Lemma [3.1 we get I(d(z)) C Fixq(P) Ni(z). Hence
(P

) Ni(z) = U(d(2)).

The proof is complete. O

Fixy
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4. IDEALS AND OPERATIONS RELATED WITH TRIPLE DERIVATIONS

In this section, P is a poset with the least element 0.

Theorem 4.1. Let d be a triple derivation on P. Then Kerd = {x € P : d(x) = 0} is a
nonempty lower set of P.

Proof. By Statement 4 in Lemma|2.2{we have d(0) = 0. Then 0 € Ker d, and Ker d # ¢. Suppose
that € Kerd and y < x then d(z) = 0. By Statement 2 in Lemma[2.2) we get d(y) < d(z) = 0.
Hence d(y) = 0, and this shows that y € Kerd. The proof is complete. O

Lemma 4.1. Let d be a triple derivation on P and I be an ideal of P. Then d~'(I) is a
nonempty lower set of P such that Kerd C d='(I).

Proof. The identity d(0) = 0 implies that 0 € d~*(I), and hence, d~'(I) # ¢.

Assume that z € d~'(I) and y < x, then d(z) € I. Then by Statement 2 in Lemma 2.2 we
get d(y) < d(z) € I. Hence, d(y) € I, and this shows that y € d~'(I). Therefore, d~*(I) is
a nonempty lower set of P. And vice versa, we observe that Kerd = d~'({0}) C d"'(I). The
proof is complete. ]

Lemma 4.2. Let d be a triple derivation on P and I, J be two ideals of P. Then

1. if I C J, then d(I) C d(J),
2. d(INJ)=d(I)nd(J).

Proof. 1. Suppose that = € d(I), then there exist y € I C J such that z = d(y). Then,
x € d(J), and this shows that d(I) C d(J).

2 It is clear that d(I NJ) C d(I)Nd(J). And vice versa, let x € d(I)Nd(J), then there exist
a € I, b € J such that d(a) = z and d(b) = x. Then by Statement 1 in TheoremP.1] we get

d(l(a,a,d(b)) =l(d(a),a,d(b)) = l(z,a,z) = l(x).

(
But x € I(z) and hence, = € d(I(a,a,d(b))). Then there exist z € I(a, a,d(b)) such that d(z) = x.
By z < aand z < d(b) < b we see that z € INJ. Hence x € d(INJ), and d(I)Nd(J) C d(INJ).
The proof is complete. O

Theorem 4.2. Let d and s be two triple derivations on P. Then d and s commute.

Proof. Let d and s BE two triple derivations on P. Then for each x € P,

d(l(s(x))) = d(U(s(x), z, 7)) = U(s(x), d(z), x) = [(s(x), d(x))
and

s(l(d(x))) = s(l(d(x), z, 7)) = U(d(2), s(x), ) = [(d(2)), 5(x)).
Hence, d(I(s(z))) = s(l(d(z))). But d(s(z)) € d(I(s(x))) and therefore, d(s(x)) € s(l(d(x)))
Then there exists z € [(d(x)) such that d(s(z)) = s(z). By Statement 2 in Lemma 2.2 we
conclude that s(z) < s(d(z)), and therefore d(s(x)) < s(d(x)).

In the same way we can prove that s(d(x)) < d(s(x)). This yields the identity d(s(x)) =
s(d(z)). The proof is complete. O
d

Theorem 4.3. Let d and s be two triple derivations on P. Then d < s if and only if sd =

Proof. Let d and s be two triple derivations on P with d < s. Then, for any x € P, we have
d(x) € Fixg(P) ie. d(z) = d(d(x)) < s(d(x)). Also by Statement 1 in Lemma we have
s(d(z)) < d(z). Hence, s(d(x)) = d(x). This leads us to sd = d. On the other hand, thanks to
Statement 2 in Lemma [2.2] we have d(z) = s(d(z)) < s(z) for each z € P. This implies that
sd < s. The proof is complete. O
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