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ASYMPTOTICS OF EIGENVALUES OF

INFINITE BLOCK MATRICES

I.N. BRAEUTIGAM, D.M. POLYAKOV

Abstract. The paper is devoted to determining the asymptotic behavior of eigenvalues,
which is one of topical directions in studying operators generated by tridiagonal infinite
block matrices in Hilbert spaces of infinite sequences with complex coordinates or, in other
words, to discrete Sturm-Liouville operators. In the work we consider a class of non-self-
adjoint operators with discrete spectrum being a sum of a self-adjoint operator serving as
an unperturbed operator and a perturbation, which is an operator relatively compact with
respect to the unperturbed operator. In order to study the asymptotic behavior of eigen-
values, in the paper we develop an adapted scheme of abstract method of similar operators.
The main idea of this approach is that by means of the similarity operator, the studying of
spectral properties of the original operator is reduced to studying the spectral properties
of an operator of a simpler structure. Employing this scheme, we write out the formu-
lae for the asymptotics of arithmetical means of the eigenvalues of the considered class of
the operators. We note that such approach differs essentially from those employed before.
The obtained general result is applied for determining eigenvalues of particular operators.
Namely, we provide asymptotics for the eigenvalues of symmetric and non-symmetric tridi-
agonal infinite matrices in the scalar case, the asymptotics for arithmetical means of the
eigenvalues of block matrices with power behavior of eigenvalues of unperturbed operator
and generalized Jacobi matrices with various number of non-zero off-diagonals.

Keywords: infinite tridiagonal block matrices, Jacobi matrices, the method of similar
operators, eigenvalues, spectrum.
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1. Introduction

Let C𝑚, 𝑚 > 1, be an 𝑚-dimensional Euclidean space of vector columns equipped with

the scalar product (𝑥, 𝑦)C𝑚 =
𝑚∑︀
𝑖=1

𝑥𝑖𝑦𝑖, where complex numbers 𝑥𝑖, 𝑦𝑖, 𝑖 = 1, . . . ,𝑚, are the

coordinates of the vectors 𝑥 and 𝑦, respectively. By 𝑙2(N,C𝑚) we denote the Hilbert space of
infinite sequences 𝑢 : N → C𝑚, 𝑢 = (𝑢1, 𝑢2, . . .), 𝑢𝑛 ∈ C𝑚, 𝑛 ∈ N, equipped with the scalar

product (𝑢, 𝑣)𝑙2(N,C𝑚) =
∞∑︀
𝑛=1

(𝑢𝑛, 𝑣𝑛)C𝑚 .
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We consider an infinite tridiagonal block matrix

J :=

⎛⎜⎜⎜⎝
𝒜1 −ℬ1 𝒪 𝒪 . . .

− ̃︀ℬ1 𝒜2 −ℬ2 𝒪 . . .

𝒪 − ̃︀ℬ2 𝒜3 −ℬ3 . . .
...

...
...

...
. . .

⎞⎟⎟⎟⎠ ,

where 𝒜𝑛,ℬ𝑛, ̃︀ℬ𝑛, 𝑛 ∈ N, are complex-valued matrices of size 𝑚 × 𝑚, 𝒜𝑛 are self-adjoint
matrices and 𝒪 is the zero matrix. We note that in literature, the matrix J is also called an
infinite tridiagonal matrix with matrix entries.

The matrix J defines a linear operator 𝐿 : 𝐷(𝐿) ⊂ 𝑙2(N,C𝑚) → 𝑙2(N,C𝑚) with the domain

𝐷(𝐿) = {𝑢 ∈ 𝑙2(N,C𝑚) : J𝑢 ∈ 𝑙2(N,C𝑚)},
acting by the formula

(𝐿𝑢)𝑛 = − ̃︀ℬ𝑛−1𝑢𝑛−1 + 𝒜𝑛𝑢𝑛 − ℬ𝑛𝑢𝑛+1, 𝑛 ∈ N,

for 𝑢 ∈ 𝐷(𝐿). We observe that ̃︀ℬ0 = 𝒪 as 𝑛 = 1.
Hereafter we assume that the domain of the operator 𝐿 coincides with the domain of the

operator 𝐿0 : 𝐷(𝐿0) ⊂ 𝑙2(N,C𝑚) → 𝑙2(N,C𝑚) acting by the formula (𝐿0𝑢)𝑛 = 𝒜𝑛𝑢𝑛, 𝑛 ∈ N,
that is,

𝐷(𝐿) = 𝐷(𝐿0) =

{︂
𝑢 ∈ 𝑙2(N,C𝑚) :

∞∑︁
𝑛=1

‖𝒜𝑛𝑢𝑛‖2 < ∞
}︂
.

We assume that all eigenvalue of the operator 𝐿0 are simple. Denoting by 𝜎𝑛 the spectra of the
matrices 𝒜𝑛, 𝑛 ∈ N, we have 𝜎𝑛 ∩ 𝜎𝑗 = ∅, 𝑛 ̸= 𝑗, and we suppose that

𝑑𝑛 = min
�̸�=𝑗

dist(𝜎𝑛, 𝜎𝑗) → ∞ as 𝑛 → ∞. (1)

Moreover, we assume that the matrices ℬ𝑛, ̃︀ℬ𝑛, 𝑛 ∈ N, satisfy the following conditions:
∞∑︁
𝑛=1

‖ℬ𝑛‖2 + ‖ ̃︀ℬ𝑛‖2

dist2(𝜎𝑛, 𝜎𝑛+1)
< ∞, (2)

∞∑︁
𝑛=1

‖ℬ𝑛‖2‖ℬ𝑛+1‖2

dist2(𝜎𝑛+2, 𝜎𝑛+1)
+

∞∑︁
𝑛=1

‖ ̃︀ℬ𝑛‖2‖ ̃︀ℬ𝑛+1‖2

dist2(𝜎𝑛, 𝜎𝑛+1)
+

∞∑︁
𝑛=1

‖ℬ𝑛‖2‖ ̃︀ℬ𝑛‖2

dist2(𝜎𝑛, 𝜎𝑛+1)
< ∞. (3)

We note that if in addition we assume that ̃︀ℬ𝑛 coincides with the adjoint of ℬ𝑛, then J becomes
symmetric and is called a block Jacobi matrix or a Jacobi matrix with matrix entries.

Infinite tridiagonal matrices with scalar or matrix entries arise in various mathematical mod-
els. For instance, they are important objects in studying the moment problem (matrix moment
problem) [1]–[4], in describing the spectral properties of the differential Schrödinger and Dirac
operators with point interactions [5]–[9] and the Hill operator with trigonometric potentials
[10].

The classification of the spectrum of the self-adjoint operators generated by such matrices
is among the main issues studied for infinite tridiagonal matrices. In particular, the problems
related with finding the conditions for the entries of infinite tridiagonal matrices, under which
the spectrum is discrete or continuous were considered in [11]–[13]. The problem of finding the
eigenvalues of infinite symmetric and non-symmetric tridiagonal matrices or discrete Sturm-
Liouville operator attracted a lot of attention [14]–[21]. There are several approaches for solving
this problem. In papers [14]–[16], an asymptotics was found for the eigenvalues of various classes
of Jacobi matrices by the method of successive diagonalization. In [16], apart of the mentioned
approach, there was applied a method based on an abstract result by G.V. Rozenblum and
an approach based on constructing analytic models. However, one of the main methods is
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that of finding the eigenvalue of self-adjoint or non-self-adjoint tridiagonal Jacobi matrices by
approximating them by the eigenvalues of truncated (finite) tridiagonal matrices employed in
[17]–[21].

The main aim of the present work is to find asymptotic formulae for the eigenvalues of the
operator 𝐿. Our approach is the method of similar operators [22]–[25], which differs essentially
from ones mentioned above. Earlier, this approach was applied for determining asymptotic
behavior for the eigenvalues of various classes of differential operators with matrix coefficients
[26]–[28] as well as of second order difference operators with a growing potential considered in
the space 𝑙2(Z,C) [29], [30].

The paper is organized as follows. In Section 2 we provide the main concept on the method
of similar operator. Section 3 is devoted to a preliminary similarity transform for the operator
𝐿 and obtaining auxiliary estimates. The main result is proved in Section 4 and in Section 5
we provide various examples.

2. Method of similar operators and abstract scheme of studying

In this section we briefly present the main ideas of the method of similar operators, for more
details see [22]–[25]. We also construct a scheme of studying of abstract operators, which are
close to an original operator 𝐿 by their properties.

Let ℋ be a complex separable Hilbert space, Endℋ be the Banach algebra of linear bounded
operators acting in ℋ.

Definition 1. Two linear operators 𝐴𝑖 : 𝐷(𝐴𝑖) ⊂ ℋ → ℋ, 𝑖 = 1, 2, are called similar if
there exists a continuously invertible operator 𝑈 ∈ Endℋ such that 𝐴1𝑈𝑥 = 𝑈𝐴2𝑥, 𝑥 ∈ 𝐷(𝐴2),
𝑈𝐷(𝐴2) = 𝐷(𝐴1). The operator 𝑈 is called the operator of transformation of the operator 𝐴1

into 𝐴2.

The advantage of considering similar operator is that some of their spectral properties coin-
cide [24, Lm. 1]. In particular, the spectra of similar operators coincide.

Let 𝐴 : 𝐷(𝐴) ⊂ ℋ → ℋ be a closed linear operator. By 𝜎(𝐴) and 𝜌(𝐴) we denote its spectrum
and resolvent set, while the symbol L𝐴(ℋ) stands for the Banach space of the operators acting
in ℋ and bounded relative to 𝐴. Then we consider a linear operator 𝐵 : 𝐷(𝐵) ⊂ ℋ → ℋ. We
say that 𝐵 belongs to the space L𝐴(ℋ) if 𝐷(𝐴) ⊆ 𝐷(𝐵) and the quantity

‖𝐵‖𝐴 = inf{𝐶 > 0 : ‖𝐵𝑥‖ 6 𝐶(‖𝑥‖ + ‖𝐴𝑥‖), 𝑥 ∈ 𝐷(𝐴)}
is finite. This quantity serves as a norm in L𝐴(ℋ). By the symbol 𝐶 various positive constants.

The main object of our study is the operator 𝐴 − 𝐵. The operator 𝐴 is regarded as an
unperturbed operator, while 𝐵 serves as a perturbation. Moreover, we assume that the spectral
characteristics we are interesting in are known for the operator 𝐴. We however observe that in
most cases there is no similarity between the operators 𝐴 and 𝐴−𝐵. To overcome this obstacle,

in the space L𝐴(ℋ) we choose a subspace U such that the operators of form 𝐴− ̃︀𝐵, where ̃︀𝐵 ∈ U,
are of a simple structure and hence, these operators are simple enough for studying the spectral

characteristics we are interesting in. If the operator 𝐴 − 𝐵 is similar to the operator 𝐴 − ̃︀𝐵,
according Definition 1, it possesses the same properties.

We proceed to the formulations of the main definitions and theorems of the method of similar
operators.

Definition 2. Let U be a linear subspace of the operators and 𝐽 : U → U, Γ : U → Endℋ be
transformers, that is, linear operators in the space of linear operators. A triple (U, 𝐽,Γ) is called
an admissible triple for the operator 𝐴, and U is called a space of admissible perturbations if
the following conditions hold:

1) U is a Banach space with a norm ‖ · ‖* continuously embedded into L𝐴(ℋ);
2) 𝐽 and Γ are continuous transformers and 𝐽 is a projector;
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3) (Γ𝑋)𝐷(𝐴) ⊂ 𝐷(𝐴), 𝐴(Γ𝑋) − (Γ𝑋)𝐴 = 𝑋 − 𝐽𝑋 for each 𝑋 ∈ U and 𝑌 = Γ𝑋 is the
unique solution of the equation

𝐴𝑌 − 𝑌 𝐴 = 𝑋 − 𝐽𝑋 (4)

satisfying the condition 𝐽𝑌 = 𝑂, where 𝑂 is the zero operator;
4) 𝑋(Γ𝑌 ), (Γ𝑌 )𝑋 ∈ U for each 𝑋, 𝑌 ∈ U and there exists a constant 𝛾 > 0 such that

‖Γ‖ 6 𝛾 and max{‖𝑋(Γ𝑌 )‖*, ‖(Γ𝑋)𝑌 ‖*} 6 𝛾‖𝑋‖*‖𝑌 ‖*;
5) for each 𝑋 ∈ U and each 𝜀 > 0 there exists a number 𝜆𝜀 ∈ 𝜌(𝐴) such that ‖𝑋(𝐴−𝜆𝜀𝐼)−1‖ <

𝜀.

We observe that while constructing an admissible triple for particular classes of the opera-
tors, as a space U, one chooses some convenient Banach or Hilbert space. The operator 𝐽 is
constructed so that the final perturbing operator, an analogue of the operator 𝐵, has a rather
simple structure. The definition of the operator Γ is closely related with the definition of the
transformation operator 𝑈 , which arises in Definition 1. Properties 3) – 5) of the admissi-
ble triple are needed for solvability of some nonlinear equations arising while making similarity
transformation. We note that a construction of the admissible tripe is possible via a non-unique
way. The main criterions for its choice are the presence of needed properties of the involved
transformers and the convenience of its usage.

We proceed to the main theorem on similarity.

Theorem 1. Let (U, 𝐽,Γ) be an admissible triple for an operator 𝐴. If 𝐵 ∈ U and the
condition

‖𝐽‖‖𝐵‖*‖Γ‖ <
1

4
(5)

holds, then the operator 𝐴−𝐵 is similar to the operator 𝐴− 𝐽𝑋*, where the operator 𝑋* ∈ U
is a solution to the nonlinear operator equation

𝑋 = 𝐵Γ𝑋 − (Γ𝑋)𝐽𝐵 − (Γ𝑋)𝐽(𝐵Γ𝑋) + 𝐵 = Φ(𝑋) (6)

considered in the space U. This solution can be found by the simple iterations method letting
𝑋0 = 𝑂, 𝑋1 = 𝐵 and so forth. At that, the operator Φ : U → U is contracting in the ball
{𝑋 ∈ U : ‖𝑋 − 𝐵‖* 6 3‖𝐵‖*}, and the similarity transformation of the operator 𝐴 − 𝐵 into
the operator 𝐴− 𝐽𝑋* is made by the invertible operator 𝐼 + Γ𝑋* ∈ Endℋ.

The proof of this theorem can be found in [22, Thm. 1.5] and in [23, Thm. 19.2]. Condition
(5) ensures the solvability of nonlinear equation (6). The form of this equation is directly
related with the transformation operator 𝐼 + Γ𝑋*. At that, conditions 3) – 5) of Definition 2
ensures the invertibility of this operator and its invariance with respect to the domain of the
operator 𝐴. Thus, the operators 𝐴−𝐵 and 𝐴− 𝐽𝑋* satisfy all properties of similar operators
in Definition 1.

Now we apply the described general scheme to abstract operators, whose spectral properties
coincide with the properties of the operator 𝐿.

As an unperturbed operator 𝐴 : 𝐷(𝐴) ⊂ ℋ → ℋ we choose a self-adjoint operator with a
discrete spectrum, whose matrix representation has a block-diagonal form with entries 𝒜𝑛 in
an orthonormal basis 𝑒𝑛,𝑖, 𝑛 ∈ N, 𝑖 = 1, 2, . . . ,𝑚, in the space ℋ. Assume that the operator
𝐴 possesses simple eigenvalues 𝜆𝑛,𝑖, 𝑛 ∈ N, 𝑖 = 1, 2, . . . ,𝑚. Then the spectrum 𝜎(𝐴) of the
operator 𝐴 can be represented as

𝜎(𝐴) = ∪𝑛∈N𝜎𝑛,

where 𝜎𝑛 ∩ 𝜎𝑗 = ∅, 𝑛 ̸= 𝑗, 𝑛, 𝑗 ∈ N, and each of the sets 𝜎𝑛 consists of 𝑚 elements. Moreover,
we shall assume that the spectrum of the operator 𝐴 satisfies condition (1).
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By the symbol 𝑃𝑛, 𝑛 ∈ N, we denote the Riesz projector constructed by the spectral set 𝜎𝑛.
For each 𝑥 ∈ ℋ we define it as follows:

𝑃𝑛𝑥 =
𝑚∑︁
𝑖=1

(𝑥, 𝑒𝑛,𝑖)𝑒𝑛,𝑖. (7)

Hereinafter by S2(ℋ) we denote the ideal of the Hilbere-Schmidt operators with the norm
‖ · ‖2, see [31, Ch. 3, Sect. 9]. To each operator 𝑋 ∈ S2(ℋ), we associate a block matrix
𝑋 = (𝑋𝑛𝑗), 𝑛, 𝑗 ∈ N, formed by the operators 𝑋𝑛𝑗 = 𝑃𝑛𝑋𝑃𝑗. Since the projectors 𝑃𝑛, 𝑛 ∈ N,
are orthonormal projectors, we define then norm in S2(ℋ) by the formula

‖𝑋‖2 =

(︂ ∑︁
𝑛,𝑗∈N

‖𝑃𝑛𝑋𝑃𝑗‖22
)︂ 1

2

.

Now we proceed to constructing an admissible triple. As a space of admissible perturbations
U we choose the space S2(ℋ).

We introduce a transformer 𝐽 : S2(ℋ) → S2(ℋ) as follows:

𝐽𝑋 =
∞∑︁
𝑗=1

𝑃𝑗𝑋𝑃𝑗, 𝑋 ∈ S2(ℋ). (8)

For each 𝑘 ∈ N we define a family of transformers 𝐽𝑘 by the formula:

𝐽𝑘𝑋 = 𝐽(𝑋 − 𝑃(𝑘)𝑋𝑃(𝑘)) + 𝑃(𝑘)𝑋𝑃(𝑘) = 𝑃(𝑘)𝑋𝑃(𝑘) +
∞∑︁

𝑗=𝑘+1

𝑃𝑗𝑋𝑃𝑗, (9)

where 𝑋 ∈ S2(ℋ) and 𝑃(𝑘) =
∑︀𝑘

𝑙=1 𝑃𝑙. Since 𝑋 belongs to the space S2(ℋ), the series in (8)
and (9) are convergent.

Now we construct the operator Γ : S2(ℋ) → S2(ℋ). In order to do this, we denote the
operator Γ𝑋 by 𝑌 and we consider the block matrix (𝑌𝑛𝑗), 𝑛, 𝑗 ∈ N, of this operator. We denote
the restriction of the operator 𝐴 on the subspace ℋ𝑛 as 𝐴|ℋ𝑛 = 𝒜𝑛𝐼𝑛, where ℋ𝑛 = Im𝑃𝑛, 𝐼𝑛
is the identity mapping in ℋ𝑛. Then equation (4) in condition 3) of Definition 2 for matrix
entries 𝑌𝑛𝑗 is written as

𝒜𝑛𝑌𝑛𝑗 − 𝑌𝑛𝑗𝒜𝑗 = 𝑋𝑛𝑗, 𝑛 ̸= 𝑗, 𝑛, 𝑗 ∈ N.

At that, the inequality

‖𝑌𝑛𝑗‖2 6
‖𝑋𝑛𝑗‖2

dist(𝜎𝑛, 𝜎𝑗)
, 𝑌𝑛𝑛 = 𝒪,

holds true.
We define the family of transformers Γ𝑘, 𝑘 ∈ N, as follows:

Γ𝑘𝑋 = Γ𝑋 − Γ(𝑃(𝑘)𝑋𝑃(𝑘)) = Γ𝑋 − 𝑃(𝑘)(Γ𝑋)𝑃(𝑘). (10)

Remark 1. We note that under the above construction, the transformers 𝐽𝑘 and Γ𝑘, 𝑘 ∈ N,
are obtained by cutting out a finite dimensional block of size 𝑚𝑘 ×𝑚𝑘 located in the left upper
corner of the matrix representation of the operators 𝐽 and Γ. Therefore, they differ from the
operators 𝐽 and Γ by finite rank operators. Moreover, it is easy to show that ‖Γ‖2 6 𝐶 and
according condition (5), the norm ‖𝐵‖2 should be small enough. The employing of the operators
𝐽𝑘 and Γ𝑘 allows us to omit this restriction for the operator 𝐵.

Remark 2. The definition of the operators 𝐽𝑘 and Γ𝑘 implies immediately the relations:

(𝐽𝑘𝑋)𝑃𝑛 = 𝑃𝑛(𝐽𝑋)𝑃𝑛 = 𝑃𝑛𝑋𝑃𝑛, Γ𝑘(𝑃𝑛𝑋𝑃𝑛) = 𝑂,

𝑃𝑛((𝐽𝑘𝑋)Γ𝑘𝑌 )𝑃𝑛 = 𝑂 (11)

for all elements 𝑋, 𝑌 ∈ S2(ℋ).
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Thus, we have constructed the triple (S2(ℋ), 𝐽𝑘,Γ𝑘). To apply Theorem 1, we need to show
that this triple is admissible. The proof of this fact is given in the next lemma, in which we
also provide an estimate allowing us to omit the restriction for the operator 𝐵 mentioned in
Remark 1.

Lemma 1. For each 𝑘 ∈ N, the triple (S2(ℋ), 𝐽𝑘,Γ𝑘) is admissible for the operator 𝐴 and
the constant 𝛾 = 𝛾(𝑘) in Definition 2 satisfies the estimate:

‖Γ𝑘‖2 6 𝛾 = 𝑑−1
𝑘 . (12)

Proof. We are going to check all properties in Definition 2. The first property holds thanks to
that of the space S2(ℋ).

Let us check property 2). By the construction, the operators 𝐽𝑘 and Γ𝑘 are continuous
transformers. In view of formula (9), we have

‖𝐽𝑘𝑋‖22 6 ‖𝑃(𝑘)𝑋𝑃(𝑘)‖22 +
∞∑︁

𝑗=𝑘+1

‖𝑃𝑗𝑋𝑃𝑗‖22 6 ‖𝑋‖22.

And if the matrix 𝑋 is block-diagonal, that is, 𝑋 =
∞∑︀
𝑗=1

𝑃𝑗𝑋𝑃𝑗, then 𝐽𝑘𝑋 = 𝑋. Hence,

‖𝐽𝑘𝑋‖2 = ‖𝑋‖2 and ‖𝐽𝑘‖2 = 1.
The proof of the properties 3) and 5) follows the same scheme as [27, Thm. 5].
We proceed to proving property 4). Let 𝑋, 𝑌 ∈ S2(ℋ). Then in view of condition (1), the

following estimates hold true:
∞∑︁

𝑛,𝑗=𝑘+1
�̸�=𝑗

‖(𝑋Γ𝑘𝑌 )𝑛𝑗‖22 6‖𝑋‖22
∞∑︁

𝑛,𝑗=𝑘+1
�̸�=𝑗

‖𝑌𝑛𝑗‖22
dist2 (𝜎𝑛, 𝜎𝑗)

6

(︂
min
𝑛 ̸=𝑗

𝑛,𝑗>𝑘+1

dist (𝜎𝑛, 𝜎𝑗)

)︂−2

‖𝑋‖22‖𝑌 ‖22 6 𝑑−2
𝑘 ‖𝑋‖22‖𝑌 ‖22 < ∞.

(13)

Therefore, 𝑋Γ𝑘𝑌 ∈ S2(ℋ). In the same way we prove that the operator (Γ𝑘𝑌 )𝑋 belongs to
the space S2(ℋ). Moreover, estimate (13) implies immediately inequality (12).

Thus, the triple (S2(ℋ), 𝐽𝑘,Γ𝑘) is an admissible one for the operator 𝐴.

Hereafter till the end of this section we assume that the perturbation 𝐵 belongs to the space
S2(ℋ). Then on the base of Lemma 1 and abstract Theorem 1, we can formulate the main
similarity theorem for the considered operator 𝐴−𝐵.

Theorem 2. Let a number 𝑘 ∈ N be such that the condition

‖𝐵‖2 <
𝑑𝑘
4
. (14)

Then the operator 𝐴−𝐵 is similar to the operator 𝐴− 𝐽𝑘𝑋*, where 𝑋* ∈ S2(ℋ) is a solution
to a nonlinear equation

𝑋 = 𝐵Γ𝑘𝑋 − (Γ𝑘𝑋)(𝐽𝑘𝐵) − (Γ𝑘𝑋)𝐽𝑘(𝐵Γ𝑘𝑋) + 𝐵, (15)

which can be found by the method of simple iterations letting 𝑋0 = 𝑂, 𝑋1 = 𝐵, . . . . The
similarity transformation of the operator 𝐴 − 𝐵 into the operator 𝐴 − 𝐽𝑘𝑋* is made by the
operator 𝐼 + Γ𝑘𝑋*, that is, the identity

𝐴−𝐵 = (𝐼 + Γ𝑘𝑋*)(𝐴− 𝐽𝑘𝑋*)(𝐼 + Γ𝑘𝑋*)
−1

holds true.

We observe that by (1), condition (14) of this theorem holds for a sufficiently large 𝑘.
Theorem 2 allows us to obtain an information about the spectrum of the operator 𝐴−𝐵.
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Theorem 3. Let the assumptions of Theorem 2 be satisfied. Then the operator 𝐴 − 𝐵
possesses a discrete spectrum coinciding with the spectrum of the operator

𝐴− 𝐽𝑘𝑋* = 𝐴− 𝑃(𝑘)𝑋*𝑃(𝑘) −
∞∑︁

𝑛=𝑘+1

𝑃𝑛𝑋*𝑃𝑛. (16)

The identities

𝜎(𝐴−𝐵) = 𝜎(𝐴(𝑘))
⋃︁(︂ ⋃︁

𝑛>𝑘+1

𝜎(𝐴𝑛)

)︂
= 𝜎(𝑘)

⋃︁(︂ ⋃︁
𝑛>𝑘+1

𝜎𝑛

)︂
(17)

hold, where the operator 𝐴(𝑘) is the restriction of the operator 𝐴−𝐽𝑘𝑋* on an invariant subspace
ℋ(𝑘) = Im𝑃(𝑘) and 𝐴𝑛 is the restriction of the operator 𝐴 − 𝐽𝑘𝑋* on ℋ𝑛 = Im𝑃𝑛. The sets
𝜎(𝑘), 𝜎𝑛, 𝑛 > 𝑘 + 1, are mutually disjoint.

Proof. Since the operator 𝐴 is an operator with a discrete spectrum and the operator 𝐽𝑘𝑋* is
bounded, the operator 𝐴− 𝐽𝑘𝑋* is also an operator with a discrete spectrum. By Theorem 2,
the operators 𝐴−𝐵 and 𝐴−𝐽𝑘𝑋* are similar. Therefore, the operator 𝐴−𝐵 is also an operator
with a discrete spectrum and the identity 𝜎(𝐴−𝐵) = 𝜎(𝐴− 𝐽𝑘𝑋*) holds true.

Representation (16) follows (9). Moreover, by Theorem 2 and the properties of similar
operators, see, for instance, [25, Lm. 1], we conclude that the operator 𝐴 − 𝐽𝑘𝑋* of form
(16) commutes with all projectors 𝑃(𝑘), 𝑃𝑛, 𝑛 > 𝑘 + 1. Hence, the subspaces ℋ(𝑘) = Im𝑃(𝑘),
ℋ𝑛 = Im𝑃𝑛, 𝑛 > 𝑘 + 1, are invariant for this operator. Since 𝐴 − 𝐽𝑘𝑋* has a discrete
spectrum, for each 𝜆0 ∈ 𝜎(𝐴 − 𝐽𝑘𝑋*), there exists and eigenvector 𝑥0 ∈ 𝐷(𝐴) such that
(𝐴− 𝐽𝑘𝑋*)𝑥0 = 𝜆0𝑥0. Thus, the form of the operator 𝐽𝑘𝑋* implies the identities

𝐴(𝑘)𝑃(𝑘)𝑥0 = 𝜆0𝑃(𝑘)𝑥0, 𝐴𝑛𝑃𝑛𝑥0 = 𝜆0𝑃𝑛𝑥0, 𝑛 > 𝑘 + 1, (18)

where 𝐴(𝑘) is the restriction of the operator 𝐴− 𝐽𝑘𝑋* on the invariant subspace ℋ(𝑘) = Im𝑃(𝑘)

and 𝐴𝑛 is the restriction of the operator 𝐴 − 𝐽𝑘𝑋* on ℋ𝑛 = Im𝑃𝑛. Since the system of the
projectors 𝑃(𝑘), 𝑃𝑛, 𝑛 > 𝑘 + 1, is a partition of the unity, it follows from (18) that at least
one of the vectors 𝑃(𝑘)𝑥0, 𝑃𝑛𝑥0, 𝑛 > 𝑘 + 1, is non-zero. Therefore, 𝜆0 is an eigenvalue of the
corresponding operator in the family of the operators 𝐴(𝑘), 𝐴𝑛, 𝑛 > 𝑘+1. Thus, the right hand
side of identity (17) is a subset of the set 𝜎(𝐴− 𝐽𝑘𝑋*) = 𝜎(𝐴− 𝐵). The opposite inclusion is
obvious. Hence, identity (17) holds true.

Now we are in position to formulate and prove the main theorem of the present section; this
theorem is devoted to asymptotic formulae for the arithmetic means of the eigenvalues of the
operator 𝐴−𝐵.

Theorem 4. Let condition (14) hold and the spectrum of the operator 𝐴− 𝐵 can be repre-
sented as (17). Then the sets 𝜎𝑛, 𝑛 > 𝑘 + 1, contain at most 𝑚 elements and the arithmetic
mean for each of these sets coincide with the arithmetic mean of the eigenvalues of the matrix

A𝑛 = 𝒜𝑛 −B𝑛 + C𝑛. (19)

Here 𝒜𝑛 is the 𝑛th block in the block-diagonal representation of the matrix 𝐴, B𝑛 is a matrix
of size 𝑚×𝑚 with entries (𝐵𝑒𝑛,𝑖, 𝑒𝑛,𝑖), 𝑖 = 1, . . . ,𝑚. The matrix C𝑛 satisfies the estimate

‖C𝑛‖ 6
2

𝑑𝑛
‖𝑃𝑛𝐵 − 𝑃𝑛𝐵𝑃𝑛‖2‖𝐵𝑃𝑛 − 𝑃𝑛𝐵𝑃𝑛‖2, 𝑛 > max{𝑘 + 1, 𝑛0}, (20)

where 𝑛0 is an index starting with the inequality holds: ‖𝐵‖2 6 𝑑𝑛
6
.

Proof. We apply the projector 𝑃𝑛 to identity (15). In view of Remark 2, we obtain the identity

𝑃𝑛𝑋*𝑃𝑛 = 𝑃𝑛𝐵𝑃𝑛 + 𝑃𝑛(𝐵Γ𝑘𝑋*)𝑃𝑛. (21)
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We represent the operator 𝑃𝑛(𝐵Γ𝑘𝑋*)𝑃𝑛 as

𝑃𝑛(𝐵Γ𝑘𝑋*)𝑃𝑛 = 𝑃𝑛(𝐵 − 𝐽𝑘𝐵)(Γ𝑘𝑋*)𝑃𝑛 = (𝑃𝑛𝐵 − 𝑃𝑛𝐵𝑃𝑛)(Γ𝑘𝑋*)𝑃𝑛.

Hence,
‖𝑃𝑛(𝐵Γ𝑘𝑋*)𝑃𝑛‖2 6 ‖𝑃𝑛𝐵 − 𝑃𝑛𝐵𝑃𝑛‖2‖(Γ𝑘𝑋*)𝑃𝑛‖2. (22)

Applying formulae (11), we obtain (Γ𝑘𝑋*)𝑃𝑛 = Γ𝑘(𝑋*−𝐽𝑘𝑋*)𝑃𝑛, 𝑛 > 𝑘+1. Thus, the estimate

‖(Γ𝑘𝑋*)𝑃𝑛‖2 6
‖𝑋*𝑃𝑛 − 𝑃𝑛𝑋*𝑃𝑛‖2

𝑑𝑛
.

is true. In view of Remark 2, by (21) we get the relation:

𝑃𝑛𝑋*𝑃𝑛 = 𝑃𝑛𝐵𝑃𝑛 + 𝑃𝑛𝐵Γ𝑘(𝑋* − 𝑃𝑛𝑋*𝑃𝑛)𝑃𝑛, 𝑛 > 𝑘 + 1.

We apply the projector 𝑃𝑛 from the right to (15). This gives the identity:

𝑋*𝑃𝑛 − 𝑃𝑛𝑋*𝑃𝑛 =𝐵𝑃𝑛 − 𝑃𝑛𝐵𝑃𝑛 + 𝐵Γ𝑘(𝑋* − 𝑃𝑛𝑋*𝑃𝑛)𝑃𝑛

− Γ𝑘(𝑋* − 𝑃𝑛𝑋*𝑃𝑛)𝑃𝑛𝐵𝑃𝑛 − 𝑃𝑛𝐵Γ𝑘(𝑋* − 𝑃𝑛𝑋*𝑃𝑛)𝑃𝑛.

Hence,

‖𝑋*𝑃𝑛 − 𝑃𝑛𝑋*𝑃𝑛‖2 6 ‖𝐵𝑃𝑛 − 𝑃𝑛𝐵𝑃𝑛‖2 +
3

𝑑𝑛
‖𝐵‖2‖𝑋*𝑃𝑛 − 𝑃𝑛𝑋*𝑃𝑛‖2.

And therefore, for 𝑛 ∈ N such that the inequality 3
𝑑𝑛
‖𝐵‖2 6 1

2
holds, we obtain

‖𝑋*𝑃𝑛 − 𝑃𝑛𝑋*𝑃𝑛‖2 6 2‖𝐵𝑃𝑛 − 𝑃𝑛𝐵𝑃𝑛‖2.
Thus,

‖(Γ𝑘𝑋*)𝑃𝑛‖2 6
2‖𝐵𝑃𝑛 − 𝑃𝑛𝐵𝑃𝑛‖2

𝑑𝑛
.

It follows from this estimate and (22) that

‖𝑃𝑛(𝐵Γ𝑘𝑋*)𝑃𝑛‖2 6
2

𝑑𝑛
‖𝑃𝑛𝐵 − 𝑃𝑛𝐵𝑃𝑛‖2‖𝐵𝑃𝑛 − 𝑃𝑛𝐵𝑃𝑛‖2 (23)

for 𝑛 > max{𝑘 + 1, 𝑛0}, where 𝑛0 is an index starting with which the inequality ‖𝐵‖2 6 𝑑𝑛
6

holds.
By considering the restriction of the operator 𝐴−𝐽𝑘𝑋* on Im𝑃𝑛 and taking into consideration

identity (21), we obtain representation (19).

3. Preliminary similarity transformation of operator 𝐿

In this section we return back to studying the operator 𝐿 generated by an infinite block
matrix J. As the space ℋ𝑚, the space 𝑙2(N,C𝑚) serves. As an unperturbed operator, we
consider a self-adjoint operator 𝐿0 : 𝐷(𝐿0) ⊂ ℋ → ℋ generated by the Jacobi matrix

A :=

⎛⎜⎜⎝
𝒜1 𝒪 𝒪 𝒪 . . .
𝒪 𝒜2 𝒪 𝒪 . . .
𝒪 𝒪 𝒜3 𝒪 . . .
...

...
...

...
. . .

⎞⎟⎟⎠
on the domain 𝐷(𝐿0) = {𝑢 ∈ 𝑙2(N,C𝑚) : A𝑢 ∈ 𝑙2(N,C𝑚)} and acting by the rule (𝐿0𝑢)𝑛 =
𝒜𝑛𝑢𝑛, 𝑛 ∈ N, 𝑢 ∈ 𝐷(𝐿0).

We recall that the eigenvalues of the operator 𝐿0 are simple. As above, by 𝜎𝑛 we denote the
spectrum of the matrix 𝒜𝑛 and assume that condition (1) holds. Thus, the spectrum 𝜎(𝐿0) of
the operator 𝐿0 can be represented as

𝜎(𝐿0) = ∪𝑛∈N𝜎𝑛,

where 𝜎𝑛 ∩ 𝜎𝑗 = ∅, 𝑛 ̸= 𝑗, 𝑛, 𝑗 ∈ N, and each of the sets 𝜎𝑛 consists of 𝑚 entries.
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We consider a standard basis in the space 𝑙2(N,C𝑚), in which the operator 𝐿0 is represented
by the matrix A. Namely, it consists of the vectors

𝑒𝑛,𝑖 = {∆𝑖
𝑛,𝑗}∞𝑗=1,

where 𝑛 ∈ N, 𝑖 = 1, . . . ,𝑚, ∆𝑖
𝑛,𝑗 = (0, 0, . . . , 0)𝑡 ∈ C𝑚 for 𝑗 ̸= 𝑛, 𝑡 denotes the transposition,

∆𝑖
𝑛,𝑛 = (𝛿1,𝑖, 𝛿2,𝑖, . . . , 𝛿𝑚,𝑖)

𝑡 ∈ C𝑚 and 𝛿𝑠,𝑖 is the Kronecker delta.
As above, by the symbol 𝑃𝑛, 𝑛 ∈ N, we denote the Riesz projector constructed by the spectral

set 𝜎𝑛 and defined by formula (7).
As a perturbation 𝐵, we choose the operator generated by an infinite block matrix

B :=

⎛⎜⎜⎜⎝
𝒪 ℬ1 𝒪 𝒪 . . .̃︀ℬ1 𝒪 ℬ2 𝒪 . . .

𝒪 ̃︀ℬ2 𝒪 ℬ3 . . .
...

...
...

...
. . .

⎞⎟⎟⎟⎠ .

Direct calculations show that conditions (1)–(3) formulated in Introduction ensure the 𝐿0-
relative compactness of the operator 𝐵, for more details see [32, Ch.14]. And therefore, the
operator 𝐿0 −𝐵 has a discrete spectrum.

Since the operator 𝐵 does not belong to the space of admissible perturbations S2(ℋ), we
can not apply the abstract scheme constructed in Section 2. Because of this we need to make

a preliminary similarity transformation of the operator 𝐿0 − 𝐵 in the operator 𝐿0 − ̃︀𝐵, wherẽ︀𝐵 belongs to the space S2(ℋ).

Remark 3. The form of the matrix B and the fact that the operator 𝐽𝑘 defined in (9) is a
diagonalizable operator imply the identities 𝐽𝑘𝐵 = 𝑂 and (Γ𝑘𝐵)𝐽𝑘𝐵 = 𝑂.

The following lemma will allows to make a preliminary similarity transformation.

Lemma 2. There exists a number 𝑞 ∈ N such that the operators 𝐵, 𝐽𝑞𝐵, Γ𝑞𝐵 satisfy the
following conditions

(a) Γ𝑞𝐵 ∈ Endℋ and ‖Γ𝑞𝐵‖2 < 1;
(b) (Γ𝑞𝐵)D(𝐿0) ⊂ D(𝐿0);
(c) 𝐵Γ𝑞𝐵, (Γ𝑞𝐵)𝐽𝑞𝐵 ∈ S2(ℋ);
(d) 𝐿0(Γ𝑞𝐵)𝑥− (Γ𝑞𝐵)𝐿0𝑥 = 𝐵𝑥− (𝐽𝑞𝐵)𝑥, 𝑥 ∈ D(𝐿0);
(e) for each 𝜀 > 0 there exists 𝜆𝜀 ∈ 𝜌(𝐿0) such that ‖𝐵(𝐿0 − 𝜆𝜀𝐼)−1‖ < 𝜀.

Proof. Let us prove property (𝑎). By 𝑏𝑙𝑟𝑠𝑖 we denote the quantity (𝐵𝑒𝑟,𝑖, 𝑒𝑙,𝑠)𝑙2(N,C𝑚), then

𝑏𝑙𝑟𝑠𝑖 =

⎧⎪⎨⎪⎩
0, |𝑟 − 𝑙| > 1, 𝑙 = 𝑟,̃︀𝑏𝑟𝑠𝑖, 𝑙 = 𝑟 + 1,

𝑏𝑟−1
𝑠𝑖 , 𝑙 = 𝑟 − 1,

(24)

where ̃︀𝑏𝑟𝑠𝑖 is an entry in the matrix ̃︀ℬ𝑟 and 𝑏𝑟−1
𝑠𝑖 is an entry of the matrix ℬ𝑟−1, 𝑠, 𝑖 = 1, . . . ,𝑚.

Now we are going to show that Γ𝑞𝐵 is a Hilbert-Schmidt operator. In order to do this, let us
first establish that Γ𝐵 belongs to S2(ℋ). Condition (2) and formula (24) imply the estimate

∞∑︁
𝑙,𝑟=1

𝑚∑︁
𝑠,𝑖=1

|(Γ𝐵𝑒𝑟,𝑖, 𝑒𝑙,𝑠)𝑙2(N,C𝑚)|2 6
∞∑︁
𝑟=2

𝑚∑︁
𝑠,𝑖=1

|𝑏𝑟−1
𝑠𝑖 |2

dist2(𝜎𝑟, 𝜎𝑟−1)
+

∞∑︁
𝑟=1

𝑚∑︁
𝑠,𝑖=1

|̃︀𝑏𝑟𝑠𝑖|2
dist2(𝜎𝑟, 𝜎𝑟+1)

=
∞∑︁
𝑟=2

‖ℬ𝑟−1‖2

dist2(𝜎𝑟, 𝜎𝑟−1)
+

∞∑︁
𝑟=1

‖ ̃︀ℬ𝑟‖2

dist2(𝜎𝑟, 𝜎𝑟+1)

=
∞∑︁
𝑟=1

‖ℬ𝑟‖2 + ‖ ̃︀ℬ𝑟‖2

dist2(𝜎𝑟, 𝜎𝑟+1)
< ∞.

(25)
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Thus, Γ𝐵 ∈ S2(ℋ). Since by formula (10) the operators Γ𝑞𝐵, 𝑞 ∈ N, differ from the operator
Γ𝐵 by a finite rank operator, then Γ𝑞𝐵 is also a Hilbert-Schmidt operator, that is, Γ𝑞𝐵 ∈
S2(ℋ) ⊂ Endℋ. Moreover, it also follows from (10) that

lim
𝑞→∞

‖Γ𝑞𝐵‖22 = lim
𝑞→∞

‖Γ𝐵 − 𝑃(𝑞)(Γ𝐵)𝑃(𝑞)‖22 = lim
𝑞→∞

∑︁
max{𝑛,𝑗}
>𝑞+1

‖𝑃𝑛(Γ𝑞𝐵)𝑃𝑗‖22 = 0.

Thus, in view of Remark 2, we can choose a sufficiently large 𝑞 ∈ N, for which the inequality
‖Γ𝑞𝐵‖2 6 1

2
< 1 holds.

To prove properties (𝑏) and (𝑑), it is sufficient to reproduce the arguing in the proof of
Lemma 7 in [24].

We proceed to proving property (𝑐). Employing conditions (3) and (24), we obtain the
following estimates

∞∑︁
𝑙,𝑟=1

𝑚∑︁
𝑠,𝑖=1

|(𝐵Γ𝐵𝑒𝑟,𝑖, 𝑒𝑙,𝑠)𝑙2(N,C𝑚)|2 6
∞∑︁
𝑟=3

𝑚∑︁
𝑠,𝑖=1

|
𝑚∑︀

ℎ=1

𝑏𝑟−2
𝑠ℎ 𝑏𝑟−1

ℎ𝑖 |2

dist2(𝜎𝑟, 𝜎𝑟−1)

+
∞∑︁
𝑟=1

𝑚∑︁
𝑠,𝑖=1

|
𝑚∑︀

ℎ=1

̃︀𝑏𝑟+1
𝑠ℎ

̃︀𝑏𝑟ℎ𝑖|2
dist2(𝜎𝑟, 𝜎𝑟+1)

+
∞∑︁
𝑟=2

𝑚∑︁
𝑠,𝑖=1

⃒⃒⃒⃒ 𝑚∑︀
ℎ=1

̃︀𝑏𝑟−1
𝑠ℎ 𝑏𝑟−1

ℎ𝑖

dist(𝜎𝑟, 𝜎𝑟−1)
+

𝑚∑︀
ℎ=1

𝑏𝑟𝑠ℎ
̃︀𝑏𝑟ℎ𝑖

dist(𝜎𝑟, 𝜎𝑟+1)

⃒⃒⃒⃒2

6
∞∑︁
𝑟=3

𝑚∑︁
𝑠,𝑖=1

(︂
𝑚∑︀

ℎ=1

|𝑏𝑟−2
𝑠ℎ |2

)︂(︂
𝑚∑︀

ℎ=1

|𝑏𝑟−1
ℎ𝑖 |2

)︂
dist2(𝜎𝑟, 𝜎𝑟−1)

+
∞∑︁
𝑟=1

𝑚∑︁
𝑠,𝑖=1

(︂
𝑚∑︀

ℎ=1

|̃︀𝑏𝑟+1
𝑠ℎ |2

)︂(︂
𝑚∑︀

ℎ=1

|̃︀𝑏𝑟ℎ𝑖|2)︂
dist2(𝜎𝑟, 𝜎𝑟+1)
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∞∑︁
𝑟=2

𝑚∑︁
𝑠,𝑖=1

(︂
𝑚∑︀

ℎ=1

|̃︀𝑏𝑟−1
𝑠ℎ |2

)︂(︂
𝑚∑︀

ℎ=1

|𝑏𝑟−1
ℎ𝑖 |2

)︂
dist2(𝜎𝑟, 𝜎𝑟−1)

+ 2
∞∑︁
𝑟=2

𝑚∑︁
𝑠,𝑖=1

(︂
𝑚∑︀

ℎ=1

|𝑏𝑟𝑠ℎ|2
)︂(︂

𝑚∑︀
ℎ=1

|̃︀𝑏𝑟ℎ𝑖|2)︂
dist2(𝜎𝑟, 𝜎𝑟+1)

=
∞∑︁
𝑟=3

‖ℬ𝑟−2‖2‖ℬ𝑟−1‖2

dist2(𝜎𝑟, 𝜎𝑟−1)
+

∞∑︁
𝑟=1

‖ ̃︀ℬ𝑟+1‖2‖ ̃︀ℬ𝑟‖2

dist2(𝜎𝑟, 𝜎𝑟+1)

+ 2
∞∑︁
𝑟=2

‖ ̃︀ℬ𝑟−1‖2‖ℬ𝑟−1‖2

dist2(𝜎𝑟, 𝜎𝑟−1)
+ 2

∞∑︁
𝑟=2

‖ℬ𝑟‖2‖ ̃︀ℬ𝑟‖2

dist2(𝜎𝑟, 𝜎𝑟+1)

6𝐶

(︂ ∞∑︁
𝑟=1

‖ℬ𝑟‖2‖ℬ𝑟+1‖2

dist2(𝜎𝑟+2, 𝜎𝑟+1)
+

∞∑︁
𝑟=1

‖ ̃︀ℬ𝑟‖2‖ ̃︀ℬ𝑟+1‖2

dist2(𝜎𝑟, 𝜎𝑟+1)
+

∞∑︁
𝑟=1

‖ℬ𝑟‖2‖ ̃︀ℬ𝑟‖2

dist2(𝜎𝑟, 𝜎𝑟+1)

)︂
< ∞.

(26)

This implies that the operator 𝐵Γ𝐵 is a Hilbert-Schmidt operator and hence, 𝐵Γ𝑞𝐵 ∈ S2(ℋ).
It follows from Remark 3 that (Γ𝑞𝐵)𝐽𝑞𝐵 ∈ S2(ℋ).
Property 𝑒) is implied by the self-adjointness of the operator 𝐿0, the relative 𝐿0-compactness

of the operator 𝐵 and [32, Lm 14.3].

The next lemma is devoted to additional estimates, which will be employed in the proof of
the main theorem in the next section. We provide this lemma here since its proof involves the
arguing used in checking properties 𝑎) and 𝑐) in Lemma 2.

Lemma 3. The following estimates hold:

‖𝑃𝑛(Γ𝑞𝐵)‖2 6 𝑑−1
𝑛

(︂
‖ ̃︀ℬ𝑛−1‖2 + ‖ℬ𝑛‖2

)︂ 1
2

, (27)
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‖(Γ𝑞𝐵)𝑃𝑛‖2 6 𝑑−1
𝑛

(︂
‖ℬ𝑛−1‖2 + ‖ ̃︀ℬ𝑛‖2

)︂ 1
2

, (28)

‖𝑃𝑛(𝐵Γ𝑞𝐵)‖2 6𝐶𝑑−1
𝑛

(︂
‖ ̃︀ℬ𝑛−1‖2‖ ̃︀ℬ𝑛−2‖2 + ‖ ̃︀ℬ𝑛−1‖2‖ℬ𝑛−1‖2

+ ‖ℬ𝑛‖2‖ℬ𝑛+1‖2 + ‖ ̃︀ℬ𝑛‖2‖ℬ𝑛‖2
)︂ 1

2

,

(29)

‖(𝐵Γ𝑞𝐵)𝑃𝑛‖2 6𝐶𝑑−1
𝑛

(︂
‖ℬ𝑛−2‖2‖ℬ𝑛−1‖2 + ‖ ̃︀ℬ𝑛−1‖2‖ℬ𝑛−1‖2

+ ‖ ̃︀ℬ𝑛‖2‖ℬ𝑛‖2 + ‖ ̃︀ℬ𝑛+1‖2‖ ̃︀ℬ𝑛‖2
)︂ 1

2

,

(30)

‖𝑃𝑛(𝐵Γ𝑞𝐵)𝑃𝑛‖2 6 𝐶𝑑−1
𝑛

(︂
‖ ̃︀ℬ𝑛−1‖2‖ℬ𝑛−1‖2 + ‖ℬ𝑛‖2‖ ̃︀ℬ𝑛‖2

)︂ 1
2

. (31)

Proof. To prove estimates (27) and (28), in (25) we let 𝑙 = 𝑛 and 𝑟 = 𝑛. This yields:

‖𝑃𝑛(Γ𝑞𝐵)‖22 6
‖ ̃︀ℬ𝑛−1‖2

dist2(𝜎𝑛−1, 𝜎𝑛)
+

‖ℬ𝑛‖2

dist2(𝜎𝑛, 𝜎𝑛+1)
6 𝑑−2

𝑛

(︂
‖ ̃︀ℬ𝑛−1‖2 + ‖ℬ𝑛‖2

)︂
,

‖(Γ𝑞𝐵)𝑃𝑛‖22 6
‖ℬ𝑛−1‖2

dist2(𝜎𝑛, 𝜎𝑛−1)
+

‖ ̃︀ℬ𝑛‖2

dist2(𝜎𝑛, 𝜎𝑛+1)
6 𝑑−2

𝑛

(︂
‖ℬ𝑛−1‖2 + ‖ ̃︀ℬ𝑛‖2

)︂
.

To prove estimates (29) and (30), in (26) we let 𝑙 = 𝑛 and 𝑟 = 𝑛:

‖𝑃𝑛(𝐵Γ𝑞𝐵)‖22 6
‖ℬ𝑛‖2‖ℬ𝑛+1‖2

dist2(𝜎𝑛+2, 𝜎𝑛+1)
+ 2

‖ ̃︀ℬ𝑛−1‖2‖ℬ𝑛−1‖2

dist2(𝜎𝑛, 𝜎𝑛−1)
+ 2

‖ ̃︀ℬ𝑛‖2‖ℬ𝑛‖2

dist2(𝜎𝑛, 𝜎𝑛+1)
+

‖ ̃︀ℬ𝑛−1‖2‖ ̃︀ℬ𝑛−2‖2

dist2(𝜎𝑛, 𝜎𝑛−1)

62𝑑−2
𝑛

(︂
‖ ̃︀ℬ𝑛−1‖2‖ ̃︀ℬ𝑛−2‖2 + ‖ ̃︀ℬ𝑛−1‖2‖ℬ𝑛−1‖2 + ‖ ̃︀ℬ𝑛‖2‖ℬ𝑛‖2 + ‖ℬ𝑛‖2‖ℬ𝑛+1‖2

)︂
,

‖(𝐵Γ𝑞𝐵)𝑃𝑛‖22 6
‖ℬ𝑛−2‖2‖ℬ𝑛−1‖2

dist2(𝜎𝑛, 𝜎𝑛−1)
+ 2

‖ ̃︀ℬ𝑛−1‖2‖ℬ𝑛−1‖2

dist2(𝜎𝑛, 𝜎𝑛−1)
+ 2

‖ ̃︀ℬ𝑛‖2‖ℬ𝑛‖2

dist2(𝜎𝑛, 𝜎𝑛+1)
+

‖ ̃︀ℬ𝑛+1‖2‖ ̃︀ℬ𝑛‖2

dist2(𝜎𝑛, 𝜎𝑛+1)

62𝑑−2
𝑛

(︂
‖ℬ𝑛−2‖2‖ℬ𝑛−1‖2 + ‖ ̃︀ℬ𝑛−1‖2‖ℬ𝑛−1‖2 + ‖ ̃︀ℬ𝑛‖2‖ℬ𝑛‖2 + ‖ ̃︀ℬ𝑛‖2‖ ̃︀ℬ𝑛+1‖2

)︂
.

Letting 𝑙 = 𝑛 and 𝑟 = 𝑛 in (26), we obtain

‖𝑃𝑛(𝐵Γ𝑞𝐵)𝑃𝑛‖22 62

(︂
‖ ̃︀ℬ𝑛−1‖2‖ℬ𝑛−1‖2

dist2(𝜎𝑛, 𝜎𝑛−1)
+

‖ℬ𝑛‖2‖ ̃︀ℬ𝑛‖2

dist2(𝜎𝑛, 𝜎𝑛+1)

)︂
62𝑑−2

𝑛

(︂
‖ ̃︀ℬ𝑛−1‖2‖ℬ𝑛−1‖2 + ‖ℬ𝑛‖2‖ ̃︀ℬ𝑛‖2

)︂
.

The following theorem holds [25, Thm. 2], [24, Thm. 9].

Theorem 5. Under the assumptions of Lemma 2, the operator 𝐿0 − 𝐵 is similar to the

operator 𝐿0 − 𝐽𝐵 − ̃︀𝐵, where ̃︀𝐵 = (𝐼 + Γ𝐵)−1(𝐵Γ𝐵 − (Γ𝐵)𝐽𝐵), and the identity holds:

(𝐿0 −𝐵)(𝐼 + Γ𝐵) = (𝐼 + Γ𝐵)(𝐿0 − 𝐽𝐵 − ̃︀𝐵).

On the base of this theorem and Remark 3 we formulate the first similarity theorem.
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Theorem 6. Let a number 𝑞 ∈ N be such that the condition

‖Γ𝑞𝐵‖2 6
1

2
(32)

is satisfied. Then the operator 𝐿 = 𝐿0 − 𝐵 is similar to the operator 𝐿0 − ̃︀𝐵, where ̃︀𝐵 belongs
to S2(ℋ) and reads as ̃︀𝐵 = (𝐼 + Γ𝑞𝐵)−1(𝐵Γ𝑞𝐵). (33)

At that, the identity holds:

(𝐿0 −𝐵)(𝐼 + Γ𝑞𝐵) = (𝐼 + Γ𝑞𝐵)(𝐿0 − ̃︀𝐵).

Formula (33) obviously implies the chain of identities:

̃︀𝐵 =

(︂ ∞∑︁
𝑗=0

(−1)𝑗(Γ𝑞𝐵)𝑗
)︂

(𝐵Γ𝑞𝐵) = 𝐵Γ𝑞𝐵 − (Γ𝑞𝐵)(𝐼 + Γ𝑞𝐵)−1(𝐵Γ𝑞𝐵). (34)

Theorem 6 allows us to reduce the study of the operator 𝐿 to the study of the operator

𝐿0 − ̃︀𝐵, where ̃︀𝐵 already belongs to the space of admissible perturbations S2(ℋ). Thus, the
general theory of the method of similar operators and the constructions made in Section 2 are

valid for the operator 𝐿0− ̃︀𝐵. Taking this into consideration, we formulate the second similarity
theorem.

Theorem 7. There exists a number 𝑘 ∈ N, 𝑘 > 𝑞 + 1, such that inequalities (14) and (32)
hold. Then the operator 𝐿 is similar to the operator 𝐿0 − 𝐽𝑘𝑋*, where 𝑋* is a solution to a
nonlinear equation

𝑋 = ̃︀𝐵Γ𝑘𝑋 − (Γ𝑘𝑋)(𝐽𝑘 ̃︀𝐵) − (Γ𝑘𝑋)𝐽𝑘( ̃︀𝐵Γ𝑘𝑋) + ̃︀𝐵 (35)

and the operator ̃︀𝐵 is defined by formula (34).

4. Main result

In this section we prove the main theorem on asymptotic formulae for the eigenvalues of
the operator 𝐿. To prove this theorem, we employ an explicit matrix representation for the
operator 𝐽𝑘(𝐵Γ𝑘𝐵). Before proceeding to the proof, we make the following remark.

Remark 4. The matrix representation of the operator 𝐽𝑘(𝐵Γ𝑘𝐵) is block-diagonal and its
𝑛th is represented as

𝒟𝑛 = ̃︀ℬ𝑛−1𝒞𝑛−1 + ℬ𝑛
̃︀𝒞𝑛, (36)

where the entries of the matrices 𝒞𝑛−1 and ̃︀𝒞𝑛 read as

𝑐𝑛−1
𝑖𝑗 =

𝑏𝑛−1
𝑖𝑗

𝜆𝑛−1
𝑖 − 𝜆𝑛

𝑗

, ̃︀𝑐𝑛𝑖𝑗 =
̃︀𝑏𝑛𝑖𝑗

𝜆𝑛+1
𝑖 − 𝜆𝑛

𝑗

,

and 𝜆𝑛
𝑖 is the 𝑖th eigenvalue of the matrix 𝒜𝑛, 𝑏

𝑛−1
𝑖𝑗 and ̃︀𝑏𝑛𝑖𝑗 are the entries of the matrices ℬ𝑛−1

and ̃︀ℬ𝑛.

Definition 3. Given a bounded matrix 𝒜 acting in C𝑚, the arithmetic mean of its eigenval-
ues is defined as ̂︀𝜆 =

1

𝑚

𝑚∑︁
𝑖=1

𝜆𝑖,

where 𝜆𝑖 are the eigenvalues of the matrix 𝐴.
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Theorem 8. There exists a number 𝑘 ∈ N, for which the spectrum of the operator 𝐿 is
represented as

𝜎(𝐿) = 𝜎(𝑘) ∪ (∪𝑛>𝑘+1𝜎𝑛), (37)

where 𝜎(𝑘) is a finite set, and 𝜎𝑛 is at most 𝑚-point set. Each of the sets 𝜎𝑛 coincides with
the spectrum of the restriction of the operator 𝐿 on the subspace Im𝑃𝑛, and for the arithmetic

mean of the eigenvalues ̂︀𝜆𝑛, 𝑛 > 𝑘 + 1, of the set 𝜎𝑛 the asymptotic representation holds:

̂︀𝜆𝑛 =
1

𝑚
tr 𝒜𝑛 −

1

𝑚
tr 𝒟𝑛 + 𝛽𝑛, (38)

or ̂︀𝜆𝑛 =
1

𝑚

𝑚∑︁
𝑖=1

𝜆𝑛,𝑖 −
1

𝑚

𝑚∑︁
𝑖=1

𝜇𝑛,𝑖 + 𝛽𝑛, (39)

where the sequence 𝛽𝑛 is defined in (43), tr 𝒜𝑛, tr 𝒟𝑛 and 𝜆𝑛,𝑖, 𝜇𝑛,𝑖, 𝑖 = 1, 2, . . . ,𝑚, are
respectively the traces and the eigenvalues of the matrices 𝒜𝑛 and 𝒟𝑛, while the matrix 𝒟𝑛 is
defined in (36).

Proof. By Theorem 7, the operator 𝐿 is similar to the operator 𝐿0 − 𝐽𝑘𝑋*, where 𝑋* is a
solution to equation (35). Then, in view of Theorem 3, the spectrum of the operator 𝐿 can be
represented as

𝜎(𝐿) = 𝜎(𝐿0 − 𝐽𝑘𝑋*) = 𝜎(𝐴(𝑘)) ∪ (∪𝑛>𝑘+1𝜎(𝐴𝑛)) = 𝜎(𝑘) ∪ (∪𝑛>𝑘+1𝜎𝑛),

where 𝐴(𝑘) is the restriction of the operator 𝐿0 − 𝐽𝑘𝑋* on Im𝑃(𝑘) and 𝐴𝑛 is the restriction of
the operator 𝐿0 − 𝐽𝑘𝑋* on Im𝑃𝑛. Since the dimension of the space Im𝑃(𝑘) is finite, the set
𝜎(𝐴(𝑘)) = 𝜎(𝑘) is finite. Therefore, representation (37) holds true.

We are going to prove formulae (38) and (39). By the construction of the transformers 𝐽𝑘
and Γ𝑘 we have 𝐽𝑘(Γ𝑘𝑋*)𝐽𝑘 ̃︀𝐵 = 𝑂. Taking this identity into consideration and employing
formulae (33) and (35), we represent the operator 𝐿0 − 𝐽𝑘𝑋* as

𝐿0 − 𝐽𝑘𝑋* =𝐿0 − 𝐽𝑘(𝑋* − ̃︀𝐵 + ̃︀𝐵) = 𝐿0 − 𝐽𝑘 ̃︀𝐵 − 𝐽𝑘(𝑋* − ̃︀𝐵)

=𝐿0 − 𝐽𝑘(𝐵Γ𝑘𝐵) − 𝐽𝑘( ̃︀𝐵Γ𝑘𝑋*) + 𝑇,

where the operator 𝑇 involves all remaining terms in the operator ̃︀𝐵.

Now we employ Theorem 4. Since the operator ̃︀𝐵 belongs to the space of admissible per-

turbations S2(ℋ), formula (19) and estimate (20) hold, where the operator ̃︀𝐵 serves as the
operator 𝐵.

Let us find an exact estimate in formula (20). Applying the operator 𝑃𝑛 from the left and
right to (34) and taking into consideration the identity 𝐽𝑘𝐵 = 𝑂, we get:̃︀𝐵𝑃𝑛 − 𝑃𝑛

̃︀𝐵𝑃𝑛 = (𝐵Γ𝑘𝐵)𝑃𝑛 − 𝑃𝑛(𝐵Γ𝑘𝐵)𝑃𝑛 + (𝑃𝑛(Γ𝑘𝐵) − Γ𝑘𝐵)(𝐼 + Γ𝑘𝐵)−1(𝐵Γ𝑘𝐵)𝑃𝑛,

𝑃𝑛
̃︀𝐵 − 𝑃𝑛

̃︀𝐵𝑃𝑛 = 𝑃𝑛(𝐵Γ𝑘𝐵) − 𝑃𝑛(𝐵Γ𝑘𝐵)𝑃𝑛 + 𝑃𝑛(Γ𝑘𝐵)(𝐼 + Γ𝑘𝐵)−1((𝐵Γ𝑘𝐵)𝑃𝑛 −𝐵Γ𝑘𝐵).

We estimate the norm of both sides in the obtained identities:

‖ ̃︀𝐵𝑃𝑛 − 𝑃𝑛
̃︀𝐵𝑃𝑛‖2 6‖(𝐵Γ𝑘𝐵)𝑃𝑛‖2 + ‖𝑃𝑛(𝐵Γ𝑘𝐵)𝑃𝑛‖2

+
‖𝑃𝑛(Γ𝑘𝐵)‖2 + ‖Γ𝑘𝐵‖2

1 − ‖Γ𝑘𝐵‖2
‖(𝐵Γ𝑘𝐵)𝑃𝑛‖2

(40)

and
‖𝑃𝑛

̃︀𝐵 − 𝑃𝑛
̃︀𝐵𝑃𝑛‖2 6‖𝑃𝑛(𝐵Γ𝑘𝐵)‖2 + ‖𝑃𝑛(𝐵Γ𝑘𝐵)𝑃𝑛‖2

+
‖𝑃𝑛(Γ𝑘𝐵)‖2
1 − ‖Γ𝑘𝐵‖2

(‖(𝐵Γ𝑘𝐵)‖2 + ‖(𝐵Γ𝑘𝐵)𝑃𝑛‖2).
(41)
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Substituting estimates (27)–(31) into (40) and (41) and bearing in mind the inequality ‖Γ𝑘𝐵‖ 6
1
2
, we obtain:

‖ ̃︀𝐵𝑃𝑛 − 𝑃𝑛
̃︀𝐵𝑃𝑛‖2‖𝑃𝑛

̃︀𝐵 − 𝑃𝑛
̃︀𝐵𝑃𝑛‖2 6

𝐶

𝑑2𝑛

(︂
‖ℬ𝑛−2‖2‖ℬ𝑛−1‖2 + ‖ℬ𝑛‖2‖ℬ𝑛+1‖2

+ ‖ ̃︀ℬ𝑛−1‖2‖ℬ𝑛−1‖2 + ‖ ̃︀ℬ𝑛‖2‖ℬ𝑛‖2

+ ‖ ̃︀ℬ𝑛−1‖2‖ ̃︀ℬ𝑛−2‖2 + ‖ ̃︀ℬ𝑛+1‖2‖ ̃︀ℬ𝑛‖2
)︂
.

Hence, inequality (23) implies the estimate

‖𝑃𝑛( ̃︀𝐵Γ𝑘𝑋*)𝑃𝑛‖2 6 𝐶𝛽𝑛, (42)

where

𝛽𝑛 = 𝑑−3
𝑛

(︂
‖ℬ𝑛−2‖2‖ℬ𝑛−1‖2 + ‖ℬ𝑛‖2‖ℬ𝑛+1‖2 + ‖ ̃︀ℬ𝑛−1‖2‖ℬ𝑛−1‖2

+ ‖ ̃︀ℬ𝑛‖2‖ℬ𝑛‖2 + ‖ ̃︀ℬ𝑛−1‖2‖ ̃︀ℬ𝑛−2‖2 + ‖ ̃︀ℬ𝑛+1‖2‖ ̃︀ℬ𝑛‖2
)︂
.

(43)

The form of the operator 𝐽𝑘(𝐵Γ𝑘𝐵), see formula (31), implies that the arithmetic means of

its eigenvalues are of order 𝑑−1
𝑛 (‖ ̃︀ℬ𝑛−1ℬ𝑛−1‖ + ‖ℬ𝑛

̃︀ℬ𝑛‖), that is, they are not involved into the
remaining terms but are selected as a separate term in formula (39).

Since in a finite-dimensional space the spectral trace coincides with the matrix one, the
arithmetic mean of the eigenvalues of the restriction of the operator 𝐿0 − 𝐽𝑘(𝐵Γ𝑘𝐵) on the

subspace Im𝑃𝑛 is determined as 1
𝑚

tr𝒜𝑛 − 1
𝑚

tr𝒟𝑛 or respectively 1
𝑚

𝑚∑︀
𝑖=1

𝜆𝑛,𝑖 − 1
𝑚

𝑚∑︀
𝑖=1

𝜇𝑛,𝑖. Taking

into consideration estimates (23) and (42), we arrive at formulae (38) and (39).

5. Examples

We first assume that the matrices 𝒜𝑛, ℬ𝑛, ̃︀ℬ𝑛 are of size 1 × 1, that is, 𝒜𝑛 := 𝑎𝑛, ℬ𝑛 := 𝑏𝑛,̃︀ℬ𝑛 := 𝑐𝑛 and the matrix J is an infinite scalar tridiagonal matrix.
1. Following work [14], we assume that the entries of the matrix J read as

𝑎𝑛 = 𝑛2 + 𝑐1𝑛 + 𝑐2𝑛
−1 + 𝑐3𝑛

−2 + 𝑂(𝑛−3), 𝑏𝑛 = 𝑐𝑛 = −𝑔 − 𝑝1𝑛
−1 − 𝑝2𝑛

−2 + 𝑂(𝑛−3),

where 𝑐𝑗, 𝑝𝑗 ∈ R, 𝑗 = 1, 2, 3, 𝑏𝑛 ̸= 0. The operator 𝐿 generated by the matrix J has a discrete
spectrum. Let us find the asymptotics for its eigenvalues.

It is obvious that the eigenvalues of the operator 𝐿0 generated by the matrix A, see Section 3,
satisfy the identity

𝜆𝑛 = 𝑛2 + 𝑐1𝑛 + 𝑐2𝑛
−1 + 𝑐3𝑛

−2 + 𝑂(𝑛−3).

In order to be able to apply Theorem 8, we need to check conditions (2) and (3). It is obvious
that the series

∞∑︁
𝑛=1

2(𝑔 + 𝑝1𝑛
−1 + 𝑝2𝑛

−2 + 𝑂(𝑛−3))2

(𝜆𝑛+1 − 𝜆𝑛)2

converges. Hence, condition (2) is satisfied. Let us check condition (3). The relations hold
true:

∞∑︁
𝑛=1

𝑏2𝑛𝑏
2
𝑛+1

(𝜆𝑛+2 − 𝜆𝑛+1)2
+

∞∑︁
𝑛=1

𝑏2𝑛𝑏
2
𝑛+1

(𝜆𝑛 − 𝜆𝑛+1)2
+

∞∑︁
𝑛=1

𝑏2𝑛𝑏
2
𝑛

(𝜆𝑛 − 𝜆𝑛+1)2
6

6𝐶
∞∑︁
𝑛=1

𝑔4

(2𝑛 + 1 + 𝑐1 − 𝑐2𝑛−1(𝑛 + 1)−1 + 𝑂(𝑛−3))2
6 𝐶𝑔4

∞∑︁
𝑛=1

1

4𝑛2
< ∞.
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Thus, we can apply Theorem 8. Then the eigenvalues ̃︀𝜆𝑛 of the operator 𝐿 satisfy the following
asymptotic representation: ̃︀𝜆𝑛 = 𝜆𝑛 − 𝜇𝑛 + 𝑂(𝑛−3),

where

𝜇𝑛 =
𝑏2𝑛−1

𝜆𝑛−1 − 𝜆𝑛

+
𝑏2𝑛

𝜆𝑛+1 − 𝜆𝑛

,

see (36). Substituting initial values into this expression, we arrive at a final asymptotic formula:

̃︀𝜆𝑛 = 𝑛2 + 𝑐1𝑛 + 𝑐2𝑛
−1 + 𝑐3𝑛

−2 +
𝑔2

2
𝑛−2 + 𝑂(𝑛−3).

This formula agrees with Theorem 3.1 of work [14].
2. Assume that the entries of an infinite tridiagonal matrix J satisfy the following conditions:
𝑎) 𝑎𝑛 ∈ R, |𝑎𝑛| → ∞ as 𝑛 → ∞,
𝑏) (|𝑏𝑛| + |𝑐𝑛−1|)/𝑎𝑛 → 0 as 𝑛 → ∞,
𝑐) 𝑏𝑛 ̸= 0, 𝑐𝑛 ̸= 0, 𝑛 ∈ N.

Then the operator 𝐿 generated by J has a discrete spectrum and all eigenvalues of this operator
have geometric multiplicity equal to 1, see [10]. If in addition we assume that all numbers
𝑎𝑛, 𝑛 ∈ N, are different and conditions (2) and (3) are satisfied, namely the following series
converge:

𝑑)
∞∑︀
𝑛=1

|𝑏𝑛|2 + |𝑐𝑛|2
(𝑎𝑛+1 − 𝑎𝑛)2

< ∞

𝑒)
∞∑︀
𝑛=1

|𝑏𝑛|2|𝑏𝑛+1|2
(𝑎𝑛+2 − 𝑎𝑛+1)

2 +
∞∑︀
𝑛=1

|𝑐𝑛|2|𝑐𝑛+1|2
(𝑎𝑛+1 − 𝑎𝑛)2

+
∞∑︀
𝑛=1

|𝑏𝑛|2|𝑐𝑛|2
(𝑎𝑛+1 − 𝑎𝑛)2

< ∞.

Then, by applying Theorem 8, we find asymptotic formulae for the eigenvalues of the operator
𝐿:

𝜆𝑛 = 𝑎𝑛 −
𝑐𝑛−1𝑏𝑛−1

𝑎𝑛−1 − 𝑎𝑛
− 𝑏𝑛𝑐𝑛

𝑎𝑛+1 − 𝑎𝑛
+ 𝛽𝑛,

where

𝛽𝑛 = 𝑂

(︂
(𝑎𝑛+1 − 𝑎𝑛)−3

(︂ ∑︁
𝑠=0,2

(|𝑏𝑛−2+𝑠|2|𝑏𝑛−1+𝑠|2 + |𝑐𝑛−1+𝑠|2|𝑐𝑛−2+𝑠|2) +
∑︁
𝑠=0,1

|𝑐𝑛−𝑠|2|𝑏𝑛−𝑠|2
)︂)︂

.

We note that this example allows us to find the asymptotics for the eigenvalues of some Hill op-
erators with a trigonometric potential, in particular, some Mathieu operators, see, for instance,
[21].

In the following examples we consider infinite block tridiagonal matrices.
3. Suppose that the eigenvalues of the matrices 𝒜𝑛 satisfy the representations

𝜆𝑛,𝑖 = 𝑐𝑛,𝑖𝑛
𝛼(1 + 𝜀𝑛,𝑖), 𝛼 > 0, 𝑐𝑛,𝑖 are some constants independent of 𝑛 and 𝜀𝑛,𝑖 → 0 as 𝑛 → ∞,

𝑖 = 1, . . . ,𝑚. Let ̃︀ℬ𝑛 = ℬ*
𝑛 and ‖ℬ𝑛‖ = 𝐶𝑛𝛽(1 + 𝛾𝑛), 𝛾𝑛 → 0 as 𝑛 → ∞, 𝛽 > 0. It is obvious

that condition (2) holds as 𝛼 > 𝛽 + 3
2
, and condition (3) is satisfied as 𝛼 > 2𝛽 + 3

2
. Then

as 𝛼 > 2𝛽 + 3
2

both conditions are satisfied. For these values of the parameters 𝛼 and 𝛽, the
operator 𝐿 with the domain

𝐷(𝐿) = {𝑢 ∈ 𝑙2(N,C𝑚) :
∞∑︁
𝑛=1

‖𝒜𝑛𝑢𝑛‖2 < ∞}

generated by the Jacobi matrix J is a lower-semibounded self-adjoint operator in the space
𝑙2(N,C𝑚). The spectrum of the operator 𝐿 consists of its eigenvalues, and the asymptotics of

their arithmetic means ̂︀𝜆𝑛 is determined according Theorem 8:

̂︀𝜆𝑛 =
1

𝑚
𝑛𝛼

𝑚∑︁
𝑖=1

𝑐𝑛,𝑖(1 + 𝜀𝑛,𝑖) −
1

𝑚
tr𝒟𝑛 + 𝛽𝑛,
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where the matrix 𝒟𝑛 is defined in (36), and 𝛽𝑛 = 𝑂(𝑛4𝛽−3𝛼+3).
4. Assume that the eigenvalues of the matrices 𝒜𝑛 are represented as 𝜆𝑛,𝑖 = 𝑛𝛼(1 + 𝜀𝑛,𝑖),

𝜀𝑛,𝑖 → 0 as 𝑛 → ∞, 𝑖 = 1, . . . ,𝑚. Suppose that the matrices ̃︀ℬ𝑛 = ℬ*
𝑛 are constant. Then

conditions (2) and (3) hold as 𝛼 > 3
2
. At that, the spectrum of the operator 𝐿 consists of its

eigenvalues and the asymptotics for their arithmetic means ̂︀𝜆𝑛 is due to Theorem 8:

̂︀𝜆𝑛 = 𝑛𝛼(1 + 𝜀𝑛,𝑖) −
1

𝑚
𝑛1−𝛼

(︂ 𝑚∑︁
ℎ=1

𝑚∑︁
𝑖=1

𝑏𝑛−1
ℎ𝑖 𝑏𝑛−1

𝑖ℎ

𝑑𝑛−1
ℎ,𝑖 (1 + 𝛾𝑛−1

ℎ,𝑖 )
+

𝑚∑︁
ℎ=1

𝑚∑︁
𝑖=1

𝑏𝑛ℎ𝑖𝑏
𝑛
𝑖ℎ

𝑑𝑛ℎ,𝑖(1 + 𝛾𝑛
ℎ,𝑖)

)︂
+ 𝛽𝑛,

where 𝑏𝑛ℎ𝑖, 𝑏𝑛𝑖ℎ are the entries of the matrices 𝐵*
𝑛 and 𝐵𝑛, respectively, 𝜀𝑛,𝑖, 𝛾

𝑛−1
ℎ,𝑖 , 𝛾𝑛

ℎ,𝑖 are in-

finitesimal sequences and 𝑑𝑛−1
ℎ,𝑖 , 𝑑𝑛ℎ,𝑖 are constant numbers independent of 𝑛 and arising in the

expressions 𝜆𝑛−1,𝑖 − 𝜆𝑛,𝑖 and 𝜆𝑛+1,𝑖 − 𝜆𝑛,𝑖, 𝛽𝑛 = 𝑂(𝑛−3𝛼+3).
The next two examples are devoted to generalized Jacobi matrices. First we are going to

show that such matrix can be represented as a block Jacobi matrix. Namely, we consider a
generalized Jacobi matrix of dimension 2𝑚 with real entries 𝑐𝑝,𝑗, 𝑝, 𝑗 ∈ N, and 𝑐𝑝,𝑗 = 𝑐𝑗,𝑝,
𝑐𝑝,𝑗 = 0 as |𝑝− 𝑗| > 𝑚 and 𝑐𝑝,𝑝+𝑚 ̸= 0, that is, this matrix has 2𝑚+ 1 diagonals some of which
can be zero except the last ones, see, for instance, [19], [33]. It is obvious that such generalized
Jacobi matrix can be represented as an infinite block tridiagonal matrix J with matrix entries
𝒜𝑛, ℬ𝑛 and ℬ*

𝑛 of size 𝑚×𝑚, which are of the form:

𝒜𝑛 =

⎛⎜⎜⎝
𝑐𝑛𝑚,𝑛𝑚 𝑐𝑛𝑚,𝑛𝑚+1 . . . 𝑐𝑛𝑚,(𝑛+1)𝑚−1

𝑐𝑛𝑚+1,𝑛𝑚 𝑐𝑛𝑚+1,𝑛𝑚+1 . . . 𝑐𝑛𝑚+1,(𝑛+1)𝑚−1
...

...
. . .

...
𝑐(𝑛+1)𝑚−1,𝑛𝑚 𝑐(𝑛+1)𝑚−1,𝑛𝑚+1 . . . 𝑐(𝑛+1)𝑚−1,(𝑛+1)𝑚−1

⎞⎟⎟⎠ ,

ℬ𝑛 =

⎛⎜⎜⎝
𝑐𝑛𝑚,(𝑛+1)𝑚 0 . . . 0
𝑐𝑛𝑚+1,(𝑛+1)𝑚 𝑐𝑛𝑚+1,(𝑛+1)𝑚+1 . . . 0

...
...

. . .
...

𝑐(𝑛+1)𝑚−1,(𝑛+1)𝑚 𝑐(𝑛+1)𝑚−1,(𝑛+1)𝑚+1 . . . 𝑐(𝑛+1)𝑚−1,(𝑛+2)𝑚−1

⎞⎟⎟⎠ .

Assume that the operator 𝐿 generated by this generalized infinite Jacobi matrix has a discrete
spectrum. Moreover, all eigenvalues 𝜆𝑛,𝑖, 𝑖 = 1, . . . ,𝑚, 𝑛 ∈ N, of an unperturbed operator 𝐿0

with the domain

𝐷(𝐿0) = {𝑢 ∈ 𝑙2(N,C𝑚) :
∞∑︁
𝑛=1

‖𝒜𝑛𝑢𝑛‖2 < ∞}

and acting by the formula (𝐿0𝑢)𝑛 = 𝒜𝑛𝑢𝑛, 𝑛 ∈ N, 𝑢 ∈ 𝐷(𝐿0), are different and the matrices
ℬ𝑛 and ℬ*

𝑛 satisfy conditions (2) and (3). Then by Theorem 8 we can determine the arithmetic
mean of the eigenvalues of the operator 𝐿.

5. Assume that the generalized Jacobi matrix has only three non-zero diagonals (the main
one and two last off-diagonals) and its entries satisfy all aforementioned conditions. Then the
arithmetic mean of the eigenvalues of the operator 𝐿 is determined by the formula

̂︀𝜆𝑛 =
1

𝑚

𝑚−1∑︁
𝑖=0

𝑐𝑛,𝑚+𝑖

− 1

𝑚

𝑚−1∑︁
𝑖=0

(︂
𝑐2𝑛𝑚+𝑖,(𝑛−1)𝑚+𝑖

𝑐(𝑛−1)𝑚,(𝑛−1)𝑚+𝑖+1 − 𝑐𝑛𝑚,𝑛𝑚+𝑖+1

+
𝑐2𝑛𝑚+𝑖,(𝑛+1)𝑚+𝑖

𝑐(𝑛+1)𝑚,(𝑛+1)𝑚+𝑖+1 − 𝑐𝑛𝑚,𝑛𝑚+𝑖+1

)︂
+ 𝛽𝑛,

where 𝛽𝑛 is defined in (43).
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6. Assume that a generalized Jacobi matrix has five non-zero diagonals, then it can be
represented as a tridiagonal Jacobi matrix with matrix entries of size 2 × 2, that is,

𝒜𝑛 =

(︂
𝑐2𝑛,2𝑛 𝑐2𝑛,2𝑛+1

𝑐2𝑛+1,2𝑛 𝑐2𝑛+1,2𝑛+1

)︂
, ℬ𝑛 =

(︂
𝑐2𝑛,2(𝑛+1) 0
𝑐2𝑛+1,2(𝑛+1) 𝑐2𝑛+1,2(𝑛+1)+1

)︂
.

Suppose that all aforementioned conditions are satisfied and the operator 𝐿 generated by a
generalized Jacobi matrix has a discrete spectrum. It is obvious that the eigenvalues of the
matrix 𝒜𝑛 are given by the formula

𝜆𝑛,𝑖 =
1

2

(︂
𝑐2𝑛,2𝑛 + 𝑐2𝑛+1,2𝑛+1 ± [(𝑐2𝑛,2𝑛 − 𝑐2𝑛+1,2𝑛+1)

2 + 4𝑐2𝑛,2𝑛+1𝑐2𝑛+1,2𝑛]
1
2

)︂
, 𝑖 = 1, 2.

Hence, according Theorem 8, the arithmetic mean of the eigenvalues of the operator 𝐿 satisfies

̂︀𝜆𝑛 =
1

2
(𝑐2𝑛,2𝑛 + 𝑐2𝑛+1,2𝑛+1) −

1

2

1∑︁
𝑖=0

(︂
𝑐22𝑛,2(𝑛−1)+𝑖

𝜆𝑛−1,𝑖+1 − 𝜆𝑛,𝑖+1

+
𝑐22𝑛+𝑖,2(𝑛+1)+𝑖

𝜆𝑛+1,𝑖+1 − 𝜆𝑛,𝑖+1

)︂
+ 𝛽𝑛,

where 𝛽𝑛 is defined in (43).
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