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CONSERVATION LAWS FOR VOLTERRA CHAIN

WITH INITIAL STEP-LIKE CONDITION

R.CH. KULAEV, A.B. SHABAT

Abstract. In the present work we study a system of equations in the Volterra chain with
initial step-like condition. The solutions to the Cauchy problem are sought in the class of
positive functions. The nature of the problem is in some sense close to the problem on
collapse of a discontinuity for the Korteweg-de-Vries equation. We show that the solution
to the Cauchy problem for the Volterra chani can be constructed as a Taylor series. For
bounded initial conditions, we obtain estimates implying that the convergence series exceeds
zero. We formulate a local existence and uniqueness theorem for the solution to the Cauchy
problem with bounded initial conditions.

We consider a special condition of the break of the Volterra chain: 𝑏𝑛𝑏𝑛+1 = 1, 𝑛 >
𝑁 > 2. We provide specified estimates for solutions of the break of the chain. We prove
that under the break, the solutions to the chain are defined for all positive time. We also
establish two conservation laws for the broken chain. One of the laws follows the break
condition, while the other is implied by the Lagrange property.

Keywords: Volterra chain, Langmuir chain, integrable systems, conservation laws, prob-
lem on collapse of an initial discontinuity.
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Introduction

In the present work wee study equations of Volterra chain [1]:

𝑏̇𝑛 = 𝑏𝑛(𝑏𝑛+1 − 𝑏𝑛−1), 𝑏𝑛 = 𝑏𝑛(𝑡), 𝑡 ∈ R, 𝑛 ∈ Z. (1)

Many works are devoted to system (1) (see, for instance, [2]–[5] and the references therein). Such
interest is not only due to various applications, but also due to the fact that the Volterra chain
is an interesting example of an integrable differential-difference model, which can be studied in the
framework of the method of the inverse scattering problem. It is well-known that the method of the
inverse scattering problem allows one to study in details the Cauchy problem for an infinite Volterra
chain in the case of a fast decaying initial data (see [4]) and in a periodic case (see [6]).

In the present work, the main attention is paid to studying the properties of positive solutions to
the Cauchy problem for the Volterra chain with step-like initial data:

𝑏𝑛(0) =

⎧⎪⎨⎪⎩
𝑎, 𝑛 < 0,

𝑐, 𝑛 = 0,

𝑏, 𝑛 > 0,

(2)

where 𝑎, 𝑏, 𝑐 are given non-negative numbers, and we also study a particular case on the half-line:

𝑏0(𝑡) = 0, 𝑏̇𝑛 = 𝑏𝑛(𝑏𝑛+1 − 𝑏𝑛−1), 𝑡 > 0, 𝑏𝑛(0) = 1, 𝑛 > 1, (3)
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corresponding to the choice 𝑎 = 𝑐 = 0. We discuss solvability and breaking conditions for the Volterra
chain. We note that the Volterra chain is a difference analogue of the Korteweg-de-Vries equation and
in the continuous limit, this chain becomes this equation [7, Ch. 1, Sect. 7]. The Cauchy problem for
the Korteweg-de-Vries equation with a step-like initial data was considered in work by A.V. Gurevich
and L.P. Pitaevskii [8] in the framework of studying a non-stationary structure of collisionless shock
wave. Further developing and the results in this theory can be found in work by B.A. Dubrovin
and S.P. Novikov [9] in a section devoted to the discontinuity collapse in the KdV theory and to
asymptotics as 𝑡 ≫ 1 for KdV solution with a step-like initial condition.

Considering positive solutions of system (1), we take into consideration that as numerical experi-
ments show, omitting the positivity condition gives rise to breakup of the solution to Cauchy prob-
lem (1), (2) (or to problem (3)) in a finite time. The positivity of solutions of system (1) allows us to
introduce new dynamical variables 𝑦𝑛(𝑡) = log 𝑏𝑛(𝑡) and write the Volterra chain as

𝑦̇𝑛 = 𝑒𝑦𝑛+1 − 𝑒𝑦𝑛−1 , 𝑛 ∈ Z. (4)

The solution to the Cauchy problem for equations (4) with given initial conditions 𝑦𝑛(0) can be
represented as a power series1

𝑦𝑛(𝑡) = 𝑦𝑛(0) +
𝑦
(1)
𝑛 (0)

1!
𝑡+ · · ·+ 𝑦

(𝑘)
𝑛 (0)

𝑘!
𝑡𝑘 + . . . , (5)

but the issue on the convergence radius for this series, it analytic continuation and a character of
singular points at the boundary of its convergence circle is still open. This is why a more appropriate
way of proving the solvability of the Cauchy problem is the successive approximations method. The
structure of right hand sides in differential equations of chain (4) allows us to formaly the theorem on
local solvability of the Cauchy problem for infinite system (4) with initial conditions {𝑦𝑛(0)} ∈ 𝑙∞.

Nowadays there are various break conditions for chain (1) keeping the integrability properties. For
instance, in work [3], there was considered a break compatible with the conservations laws, while
in [10] a break was compatible with higher symmetries. In the present paper we consider the break of
the chain (3) determined by the conditions

𝑏𝑛𝑏𝑛+1 = 1, 𝑛 > 𝑁,

for some fixed 𝑁 > 2. For instance,in the simplest case 𝑁 = 2, system of equations (1) becomes

𝑏̇1 = 𝑏1𝑏2, 𝑏̇2 = 1− 𝑏1𝑏2, 𝑡 > 0,

and is reduced to Ricatti equation

𝑏̇1 + 𝑏21 = (𝑡+ 2)𝑏1,

whose solution is well-defined on the entire half-line and is expressed via the probability integral. As
𝑁 > 2, for broken chain (3) we establish two conservation laws, one being implied the break condition,
while the other follows the Lagrangian of the broken system. Moreover, the first conservation law
ensures the possibility of continuing the solutions of closed chain (3) on the entire half-line in the
general case 𝑁 > 2. Altogether, as numerical experiments show, in problem (3) we can select three
time intervals: 1) an initial interval 0 6 𝑡 < 𝑅, where 𝑅 is the convergence radius of Taylor series (5);

2) a period of linear growth 𝑏1(𝑡); 3) a segment of quasi-stationary growth as 𝑏̇1(𝑡) ≈ 0 and 𝑏1(𝑡) ≈ 4,
see Section 13.

1. Solvability of Cauchy problem

In the present section we consider the solvability of the Cauchy problem

𝑦̇𝑛 = 𝑒𝑦𝑛+1 − 𝑒𝑦𝑛−1 , 𝑦𝑛(0) = 𝑦𝑛,0, 𝑛 ∈ Z. (6)

In introduce a function of two variables 𝑓(𝑥) = 𝑓(𝑥1, 𝑥2) = 𝑒𝑥1 − 𝑒𝑥2 defined in the square Π = {𝑥 :
−𝜌 6 𝑥1, 𝑥2 6 𝜌}. It is obvious that

𝑀 = max
𝑥∈Π

|𝑓(𝑥)| = 𝑒𝜌 − 𝑒−𝜌. (7)

1The superscripts stands for the order of the derivative
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Also, since

max
𝑥∈Π

|∇𝑓(𝑥)| =
√
2𝑒𝜌,

the function 𝑓 satisfies the Lipschitz condition in

|𝑓(𝑥*)− 𝑓(𝑥)| 6
√
2𝑒𝜌 (|𝑥*1 − 𝑥1|+ |𝑥*2 − 𝑥2|)

in Π. Returning back to problem (6), we introduce the notations

y(𝑡) = {𝑦𝑛(𝑡)}𝑛∈Z , y𝑘 = {𝑦𝑘,𝑛(𝑡)}𝑛∈Z , 𝐹 (y) = {𝐹𝑛(y)}𝑛∈Z = {𝑓(𝑦𝑛+1, 𝑦𝑛−1)}𝑛∈Z .

Then Cauchy problem for system (6) becomes

ẏ(𝑡) = 𝐹 (y(𝑡)), y(0) = y0. (8)

By 𝐶[(𝜉, 𝜂); 𝑙∞] we denote the set of the functions y : (𝜉, 𝜂) → 𝑙∞ such that 𝑦𝑛(𝑡) ∈ 𝐶(𝜉, 𝜂) for
all 𝑛 ∈ Z. Here 𝑙∞ stands for the space of bounded sequences of real numbers. To each function
y ∈ 𝐶[(𝜉, 𝜂); 𝑙∞], we associate a real-valued function

‖y(𝑡)‖ := sup
𝑛∈Z

|𝑦𝑛(𝑡)| < ∞

defined on the same segment (𝜉, 𝜂).
It is easy to see that the Cauchy problem (8) is equivalent to the integral equation

y(𝑡) = y0 +

𝑡∫︁
0

𝐹 (y(𝑠))𝑑𝑠. (9)

We assume that a solution to integral equation (9) exists if there exists an interval (𝜉, 𝜂) ∋ 0 and a
function y ∈ 𝐶[(𝜉, 𝜂); 𝑙∞] satisfying equation (9).

Theorem 1. For all 𝜌 > 0 and y0 ∈ 𝑙∞ there exists a unique solution of integral equation (9)
defined at least on the interval (−ℎ, ℎ), where ℎ = 𝜌

𝑀 , and such that sup
|𝑡|<ℎ

‖y(𝑡)− y0‖ 6 𝜌.

Proof. The theorem is proved by the standard scheme by means of the successive approximations
method. Cauchy problem (8) is reduced to a problem with zero initial conditions. This is why, thanks
to the condition y0 ∈ 𝑙∞, without loss of generality we can suppose that y0 = 0.

Taking into consideration the properties of the function 𝐹 , it is easy to see that if sup
𝑡

‖y*(𝑡)‖ 6 𝜌,

sup
𝑡

‖y(𝑡)‖ 6 𝜌, then for each 𝑛 ∈ Z, the Lipschitz condition

|𝐹𝑛(y
*(𝑡))− 𝐹𝑛(y(𝑡))| 6 𝐿

(︀
|𝑦*𝑛+1(𝑡)− 𝑦𝑛+1(𝑡)|+ |𝑦*𝑛−1(𝑡)− 𝑦𝑛−1(𝑡)|

)︀
, 𝐿 =

√
2𝑒𝜌

holds true. This allows to introduce the sequence of approximations

y𝑘(𝑡) =

𝑡∫︁
0

𝐹 (y𝑘−1(𝑠))𝑑𝑠, 𝑘 = 1, 2, . . .

and to reproduce “classical” arguing.
Step 1. Well-defined property of iterations. If we restrict our considerations by the

segment −ℎ < 𝑡 < ℎ, where ℎ = 𝜌/𝑀 and the quantity 𝑀 is defined by formula (7), then the
procedure of successive approximations is well-defined thanks to the estimates

|𝑦𝑘,𝑛(𝑡)| 6

⃒⃒⃒⃒
⃒⃒

𝑡∫︁
0

|𝐹𝑛(y𝑘−1(𝑠))| 𝑑𝑠

⃒⃒⃒⃒
⃒⃒ 6 𝑀 |𝑡|.
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Step 2. Construction of majorant series. In view of the Lipschitz condition, we have

|𝑦1,𝑛(𝑡)| 6

⃒⃒⃒⃒
⃒⃒

𝑡∫︁
0

|𝐹𝑛(0)| 𝑑𝑠

⃒⃒⃒⃒
⃒⃒ 6 ℎ,

|𝑦𝑘+1,𝑛(𝑡)− 𝑦𝑘,𝑛(𝑡)| 6

⃒⃒⃒⃒
⃒⃒

𝑡∫︁
0

|𝐹𝑛(y𝑘(𝑠))− 𝐹𝑛(y𝑘−1(𝑠))| 𝑑𝑠

⃒⃒⃒⃒
⃒⃒

6𝐿

⃒⃒⃒⃒
⃒⃒

𝑡∫︁
0

|𝑦𝑘,𝑛+1(𝑠)− 𝑦𝑘−1,𝑛+1(𝑠)|+ |𝑦𝑘,𝑛−1(𝑠)− 𝑦𝑘−1,𝑛−1(𝑠)| 𝑑𝑠

⃒⃒⃒⃒
⃒⃒ 6 2ℎ

𝐿𝑘|𝑡|𝑘

𝑘!
.

Step 3. Proof of uniqueness. If ŷ and y are two solutions, then by the Lipschitz condition we
obtain

‖ŷ(𝑡)− y(𝑡)‖ 6 2𝜌
𝐿𝑘|𝑡|𝑘

𝑘!

for all 𝑡 ∈ (−ℎ, ℎ) and 𝑘 ∈ N. The proof is complete.

Corollary 1. In the case of step (2), for sufficiently small time, the sum of first derivatives of the
functions 𝑏𝑛 satisfying system of equations (1) is constant and is equal to

∞∑︁
𝑛=−∞

𝑏̇𝑛 = 𝑏2 − 𝑎2. (10)

2. Break of Volterra chain and conservation laws

We consider Volterra chain (3) and we complete it a break condition defined for some fixed 𝑁 > 1
by identities

𝑏𝑛(𝑡)𝑏𝑛+1(𝑡) = 1, 𝑛 > 𝑁. (11)

The break condition of the chain gives easily the relation

𝑏̇1 + · · ·+ 𝑏̇𝑁 = 1, 𝑁 > 2, (12)

which implies immediately one conservation law:

𝑏1 + 𝑏2 + . . .+ 𝑏𝑁 = 𝑁 + 𝑡. (13)

In particular, the latter identity implies two-sided estimates (see Section 3)

1 6 𝑏1(𝑡) < 𝑁 + 𝑡, 0 < 𝑏𝑛(𝑡) < 𝑁 − 1 + 𝑡, 2 6 𝑛 6 𝑁,

allowing us to specify the value ℎ in Theorem 1 and to formulate the following statement.

Proposition 1. There exists a unique solution of problem (3), (11), which can be continued to the
entire half-line 𝑡 > 0.

Let us show that as 𝑁 > 2, system of equations (3) is reduced to deforming of exponential systems
of series 𝐴 with a positive definite quadratic form in a Lagragian.

To simplify the writing, we introduce the notation 𝛽𝑛 = 𝑏𝑛𝑏𝑛+1 and we rewrite problem (6) in terms
of 𝛽𝑛. Employing relations (3), (11), we get

(log 𝛽1)𝑡 =
𝑏̇1
𝑏1

+
𝑏̇2
𝑏2

= 𝑏3 + 𝑏2 − 𝑏1,

(log 𝛽𝑛)𝑡 =
𝑏̇𝑛
𝑏𝑛

+
𝑏̇𝑛+1

𝑏𝑛+1
= 𝑏𝑛+1 − 𝑏𝑛−1 + 𝑏𝑛+2 − 𝑏𝑛, 1 < 𝑛 < 𝑁,

(log 𝛽𝑛)𝑡 = 0, 𝑛 > 𝑁.
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By (11) this implies a finite system of second order equations

(log 𝛽𝑛)𝑡𝑡 =

⎧⎪⎨⎪⎩
−2𝛽𝑛 + 𝛽𝑛+2, 𝑛 = 1, 2,

𝛽𝑛−2 − 2𝛽𝑛 + 𝛽𝑛+2, 2 < 𝑛 < 𝑁 − 2,

𝛽𝑛−2 − 2𝛽𝑛 + 1, 𝑛 = 𝑁 − 2, 𝑁 − 1.

(14)

We observe that the equations involving the derivatives of the functions log 𝛽𝑛 with odd indices form
an independent system. This is why, introducing the notations 𝑧𝑘 = log 𝛽2𝑘−1 and 𝑛 =

⌊︀
𝑁
2

⌋︀
, we arrive

at the following system of differential equations⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

𝑧1 = −2𝑒𝑧1 + 𝑒𝑧2 ,

𝑧2 = 𝑒𝑧1 − 2𝑒𝑧2 + 𝑒𝑧3 ,

. . .

𝑧𝑛−1 = 𝑒𝑧𝑛−2 − 2𝑒𝑧𝑛−1 + 𝑒𝑧𝑛 ,

𝑧𝑛 = 𝑒𝑧𝑛−1 − 2𝑒𝑧𝑛 + 1.

Rewriting this system as

z̈+𝐴𝑛exp z = e𝑛, (15)

where 𝐴𝑛 is a three-diagonal matrix with 2 at the main diagonal and −1 on adjoining ones,
exp z = (𝑒𝑧1 , . . . , 𝑒𝑧𝑛)𝑇 and e𝑛 = (0, 0, . . . , 0, 1)𝑇 . We obtain the following statement.

Lemma 1. The Lagrangian of system (15) is written as

𝐿𝑛(z, ż) =
1

2

𝑛∑︁
𝑖,𝑗=1

𝑎𝑖𝑗 𝑧̇𝑖𝑧̇𝑗 +
𝑛∑︁

𝑖=1

𝛾𝑖𝑧𝑖 −
𝑛∑︁

𝑖=1

𝑒𝑧𝑖 , (16)

where 𝑎𝑖𝑗 = 𝑎𝑗𝑖 are the elements of the inverse to 𝐴𝑛 matrix:

𝐴−1
𝑛 = ‖𝑎𝑖𝑗‖, 𝑎𝑖𝑗 =

𝑖(𝑛− 𝑗 + 1)

𝑛+ 1
, 1 6 𝑖 6 𝑗 6 𝑛;

and the numbers 𝛾𝑖 = 𝑖/(𝑛 + 1) are components of the vector 𝛾 = (𝛾1, 𝛾2, . . . , 𝛾𝑛)
𝑇 , satisfying the

algebraic system of equations 𝐴𝑛𝛾 = e𝑛.

Example 1. As 𝑛 = 3, we obtain:

𝑧1 = −2𝛽1 + 𝛽3, 𝑧2 = 𝛽5 − 2𝛽3 + 𝛽1, 𝑧3 = 1− 2𝛽5 + 𝛽3. (17)

The corresponding Lagrangian reads as

𝐿3(z, ż) =
3𝑧̇21 + 4𝑧̇22 + 3𝑧̇23

8
+

2𝑧̇1𝑧̇2 + 𝑧̇1𝑧̇3 + 2𝑧̇2𝑧̇3
4

+
𝑧1 + 2𝑧2 + 3𝑧3

4
− (𝑒𝑧1 + 𝑒𝑧2 + 𝑒𝑧3) .

In addition to Lemma 1 we note that det𝐴𝑛 = 𝑛+ 1 and 𝐴−1
𝑛 → 𝐴 as 𝑛 → ∞,

𝐴 =

⎛⎜⎜⎜⎝
1 1 1 1 1 . . .
1 2 2 2 2 . . .
1 2 3 3 3 . . .

. . .
. . .

. . .
. . .

⎞⎟⎟⎟⎠ , diag𝐴 = (1, 2, 3, 4, 5, . . . )

We also observe that system (3) broken by condition (11) not only preserves the Lagrangian structure
but also in a good accordance with infinite chain (3) if we solve both by the iteration method. Namely,
we reduce both differential system (3) and its break to systems of integral equations in terms of the
variables 𝑦𝑛 = log 𝑏𝑛 and then we solve them by the iteration method. Then in a 𝑘th approximation
y𝑘 = {𝑦𝑘,1, 𝑦𝑘,2, . . . , 𝑦𝑘,𝑛, . . .} for both system the identities 𝑦𝑘,𝑛 = 0 as 𝑛 > 𝑘. Such “triangle” property
of two systems yields that there first 𝑁 − 1 iterations y𝑘 coincide.
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3. Graphs

Below we provide the graphs of the function 𝑏1 for a closed chain corresponding to the values
𝑁 = 5, 7, 101. In all cases the graph of the function 𝑏1 is compared with the line 𝑓(𝑡) = (𝑡+𝑁)

⧸︀⌈︀
𝑁
2

⌉︀
.
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𝑁 = 7. 𝑁 = 21.

200 400 600 800 1000

2

4

6

8

𝑁 = 301.

As the provided graphs show, as 𝑁 increases, the first step of the graph of the solution 𝑏1 to a
closed chain widens unboundedly approaching the value 4. Together with the remark in the end of
Section 2, this allows us to conjecture that the solution 𝑏1 of infinite chain (3) tends asymptotically
to 4 as 𝑡 → +∞.

4. Conclusion

There is still an open question on a possibility of continuing the solution of Cauchy problem (1), (2)
on the entire real line. The issue on solvability of system (1) with unbounded initial data is also of
interest. Trying various initial conditions, we can construct examples, when the corresponding Taylor
series have the zero convergence radius. We hope that the studying of these issues will be fruitful.
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