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SPECTRAL THEORY OF FUNCTIONS IN STUDYING

PARTIAL DIFFERENTIAL OPERATORS

A.G. BASKAKOV, E.E. DIKAREV

Abstract. The work is devoted to studying the spectral properties of differential operators
with constant coefficients defined on subspaces of bounded continuous functions. Our main
methods are spectral theory of Banach modules, theory of functions, abstract harmonic
analysis and theory of representations, which were developed and described in detail in the
monograph by A. G. Baskakov “Harmonic Analysis in Banach Modules and the Spectral
Theory of Linear Operators”, Voronezh, VSU Publ., 2016. We introduce the algebra of
polynomials by means of which we define differential operators. We also introduce closed
subspaces of the space of bounded continuous functions called homogeneous function spaces,
which play an important role in the analysis. An important class of spectrally homogeneous
spaces is introduced as well. We obtain results relating the zero set of a polynomial with
the properties of kernels and images of differential operators defined by these polynomials.
We define the notion of a regular at infinity polynomial (ellipticity-type conditions) and we
provide important examples of partial differential operators defined by such polynomials.
The conditions of invertibility of such differential operators are obtained. In particular,
we obtain criteria of invertibility in spectrally homogeneous spaces and spaces of periodic
function. We get a result on coincidence of the spectrum of a differential operator with the
image of polynomial generating this operator in spectrally homogeneous spaces. Conditions
of compactness of the resolvent of partial differential operators defined by polynomials
regular at the infinity are found.

Keywords: patrial differential operator, regular polynomial, Beurling spectrum of func-
tion, spectrum of operator, Banach module, kernel and image of linear operator, invertibility
of operator
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1. Introduction and main results

We consider an algebra P = P(R𝑁) of polynomials of form

𝑝 : R𝑁 → C, 𝑝(𝜉) =
∑︁
|𝛼|6𝑚

𝑎𝛼𝜉
𝛼, 𝑎𝛼 ∈ C, 𝛼 ∈ Z𝑁+ , 𝜉 ∈ R𝑁 , (1)

where 𝜉𝛼 = 𝜉𝛼1
1 · · · · · 𝜉𝛼𝑁

𝑁 , 𝜉 = (𝜉1, . . . , 𝜉𝑁) ∈ R
𝑁 , 𝛼 = (𝛼1, . . . , 𝛼𝑁) ∈ Z

𝑁
+ , Z+ = N ∪ {0},

𝑚,𝑁 ∈ N.
By means of the polynomials in the algebra P(R𝑁) we introduce differential operators acting

in subspaces of the Banach space Cb = Cb(R𝑁) of continuous and bounded on R𝑁 functions
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equipped with the norm ‖𝑥‖ = sup
𝜏∈R𝑁

⃒⃒
𝑥(𝜏)

⃒⃒
. We study their spectral properties: we describe

the properties of the kernel, image and the spectrum and obtain the invertibility conditions.
The present work was essentially motivated by the paper by E. Mukhamadiev, A.N. Naimov,

A.Kh. Sattorov [1], in which there were obtained the necessary and sufficient conditions for the
invertibility in Cb of the differential operators constructed by a certain class of polynomials
described in Example 3 after Definition 7.

The definition of the operators and the study of their spectral properties relies essentially on
the spectral theory of function and the spectral theory of Banach moduli. This is why first we
recall some employed notions and results from works [2], [3], [4], [5], [6].

By the symbol L1 = L1(R𝑁) we denote the Banach algebra of summable on R𝑁 classes of
measurable complex functions with the convolution of the function

(𝑓 * 𝑔)(𝜏) =

∫︁
R𝑁

𝑓(𝜏 − 𝑠)𝑔(𝑠) d𝑠, 𝜏 ∈ R𝑁 , 𝑓, 𝑔 ∈ L1(R𝑁),

as the multiplication and wit the norm ‖𝑓‖1 =
∫︀
R𝑁

⃒⃒
𝑓(𝜏)

⃒⃒
d𝜏, 𝑓 ∈ L1(R𝑁).

The symbol ̂︀𝑓 : R𝑁 → C stands for the Fourier transform

̂︀𝑓(𝜆) =

∫︁
R𝑁

𝑓(𝜏)e−i(𝜆,𝜏) d𝜆, 𝜆 = (𝜆1, . . . , 𝜆𝑁) ∈ R𝑁 ,

of a function 𝑓 ∈ L1(R𝑁). By (𝜆, 𝜏) we denote the scalar product of vectors 𝜆, 𝜏 ∈ R𝑁 .
The algebra of Fourier transforms with the pointwise multiplication of the functions in

L1(R𝑁) is denoted by ̂︁L1(R𝑁).

Definition 1. A complex Banach space X is called a Banach L1(R𝑁) modulus if there defined
a bilinear mapping

(𝑓, 𝑥) ↦→ 𝑓𝑥 : L1(R𝑁) × X → X

with the following properties:

1) (𝑓 * 𝑔)𝑥 = 𝑓(𝑔𝑥), 𝑓, 𝑔 ∈ L1(R𝑁), 𝑥 ∈ X;
2) ‖𝑓𝑥‖ 6 ‖𝑓‖1‖𝑥‖, 𝑓 ∈ L1(R𝑁), 𝑥 ∈ X;
3) if 𝑓𝑥 = 0 for each 𝑓 ∈ L1(R𝑁), then 𝑥 = 0 (a non-degenerate property of the modulus).

In what follows, by EndX we denote a Banach algebra of linear bounded operators (endo-
morphisms) acting in the complex Banach space X.

Usually the structure of a Banach L1(R𝑁)–modulus on the Banach space X is defined by
means of some strongly continuous isometric representation 𝑇 : R𝑁 → EndX by the following
formula

𝑓𝑥 =

∫︁
R𝑁

𝑓(𝜏)𝑇 (−𝜏)𝑥 d𝜏, 𝑓 ∈ L1, 𝑥 ∈ X. (2)

The Banach space Cb(R𝑁) is a Banach L1(R𝑁)–modulus, whose structure is defined by the
convolution of the functions

(𝑓 * 𝑥)(𝜏) =

∫︁
R𝑁

𝑓(𝑠)𝑥(𝜏 − 𝑠) d𝑠 =

∫︁
R𝑁

𝑓(𝜏 − 𝑠)𝑥(𝑠) d𝑠, 𝜏 ∈ R𝑁 , 𝑓 ∈ L1, 𝑥 ∈ Cb. (3)

We mention the estimate ‖𝑓 * 𝑥‖ 6 ‖𝑓‖1‖𝑥‖.
In the Banach space Cb = Cb(R𝑁) we consider the group of isometries

𝑆 : R𝑁 → End Cb,
(︀
𝑆(𝜏)𝑥

)︀
(𝑠) = 𝑥(𝑠+ 𝜏), 𝑠, 𝜏 ∈ R𝑁 , 𝑥 ∈ Cb.
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Despite this group is not strongly continuous, nevertheless, formula (2) is reduced to formula (3)
for 𝑇 = 𝑆 (here X = Cb).

Differential operators are defined on Banach spaces of functions by the following definition.

Definition 2. A non-zero closed subspace F = F(R𝑁) in Cb = Cb(R𝑁) is called a homoge-
neous space of continuous functions if the following conditions hold:

1) the subspace F is invariant with respect to the operators 𝑆(𝜏), 𝜏 ∈ R𝑁 ;
2) F is a submodulus in a L1(R𝑁)–modulus Cb(R𝑁), that is, 𝑓 * 𝑥 ∈ F for each function

𝑓 ∈ L1(R𝑁), 𝑥 ∈ F.

The following closed subspaces in Cb(R𝑁) are homogeneous.

1. The subspace Cb,u = Cb,u(R𝑁) of uniformly continuous functions in Cb(R𝑁).
2. The subspace C0 = C0(R

𝑁) ⊂ Cb,u of functions vanishing at infinity.
3. The subspace Csl,∞ = Csl,∞(R𝑁) ⊂ Cbu of slowly varying functions: 𝑥 ∈ Csl,∞ ig

lim
|𝜏 |→∞

⃦⃦
𝑆(𝜏)𝑥− 𝑥

⃦⃦
= 0, where |𝜏 | = |𝜏1| + · · · + |𝜏𝑁 | for each 𝜏 ∈ R𝑁 .

4. The subspace CΩ = CΩ(R𝑁) of periodic functions in Cb with the group of periods Ω ⊂ R
𝑁 ;

the factor group R𝑁/Ω is isomorphic to 𝜔Z𝑁 with 𝜔 = (𝜔1, . . . , 𝜔𝑁) ∈ R𝑁
+ , R+ = (0,∞)).

5. The subspace AP = AP(R𝑁) of Bohr almost periodic functions (see [7], [8]): AP(R𝑁) =
span

{︀
e𝜆

⃒⃒
𝜆 ∈ R𝑁

}︀
, where e𝜆(𝜏) = ei(𝜆,𝜏), 𝜏 ∈ R𝑁 .

6. The subspace AP∞ = AP∞(R𝑁) of almost periodic at infinity functions (see [9], [10], [11])
defined by the identity

AP∞ = span
{︀

e𝜆(𝜏)𝑥
⃒⃒
𝜆 ∈ R𝑁 , 𝑥 ∈ Csl,∞

}︀
.

Other spaces of homogeneous functions form spectral subspaces, see Definition 6. We note
that in all homogeneous spaces the norm is induced from Cb(R𝑁).

Definition 3. A homogeneous space of functions F is called spectrally homogeneous if all
functions 𝑥e𝜆, 𝜆 ∈ R𝑁 , 𝑥 ∈ F, belong to F(R𝑁).

All aforementioned examples of homogeneous spaces apart of the space of periodic func-
tions CΩ and the space Csl,∞ are spectrally homogeneous.

We proceed to constructing differential operators in some homogeneous space of functions
F = F(R𝑁). In order to do this, we consider a sublagebra M of the functions in the algebra
L1(R𝑁) whose Fourier transform is compactly supported. If 𝑓 ∈ M, it follows from the formula
of the inverse Fourier transform

𝑓(𝜏) =
1

(2𝜋)𝑁

∫︁
R𝑁

̂︀𝑓(𝜆)ei(𝜆,𝜏) d𝜆 =
1

(2𝜋)𝑁

∫︁
𝑉

̂︀𝑓(𝜆)ei(𝜆,𝜏) d𝜆, 𝜏 ∈ R𝑁 ,

where 𝑉 is a compact neighbourhood in R𝑁 containing the support supp ̂︀𝑓 of the function ̂︀𝑓 ,
that the subalgebra M possesses the following properties:

1) Each function 𝑓 ∈ M possesses all partial derivatives

D𝑘𝑓, 1 6 𝑘 6 𝑁, D𝛼𝑓 = (−1)|𝛼|D𝛼1
1 . . .D𝛼𝑁

𝑁 𝑓, 𝛼 = (𝛼1, . . . , 𝛼𝑁) ∈ Z𝑁+ ,

and they all belong both to the Banach algebra L1(R𝑁) and the algebra C0(R
𝑁);

2) Each function 𝑓 : R𝑁 → C in M admits an extension on C to the functions of a finite
exponential type [12];

3) The subalgebra M is dense in L1(R𝑁).

Thus, the operators

D𝛼 = D𝛼1
1 . . .D𝛼𝑁

𝑁 : M → M, 𝛼 ∈ Z𝑁+ ,
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are well-defined on the algebra M and they are continuous in the topology of the Schwarz space.
We consider an arbitrary polynomial 𝑝 ∈ P(R𝑁) of form (1) and for each 𝑓 ∈ M and 𝑥 ∈ F

we let
A𝑝(𝑓 * 𝑥) = 𝑝(𝑓) * 𝑥, (4)

where 𝑝(𝑓) =
∑︀

|𝛼|6𝑚
𝑎𝛼D𝛼𝑓 is a function in the algebra M.

Definition 4. A differential operator A𝑝 : D(A𝑝) ⊂ F → F is defined as follows. A function
𝑥 ∈ F is in the domain D(A𝑝) of the operator A𝑝 if there exists a function 𝑦 ∈ F such that for
each function 𝑓 ∈ M the identities hold:∑︁

|𝛼|6𝑚

𝑎𝛼D𝛼(𝑓 * 𝑥) = 𝑝(𝑓) * 𝑥 = 𝑓 * 𝑦, 𝑝(𝑓) =
∑︁
|𝛼|6𝑚

𝑎𝛼D𝛼𝑓 ∈ L1(R𝑁).

We observe that the operator A𝑝 is well-defined since the function 𝑦 is determined uniquely
by the function 𝑥 ∈ F. Otherwise, if a function 𝑥 would have been mapped by this rule into
two functions 𝑦, 𝑧 ∈ F, the identity 𝑓 * (𝑦− 𝑧) = 0 had been satisfied for each function 𝑓 ∈ M.
Therefore, since M is dense in the algebra L1(R𝑁), we obtain that 𝑦 − 𝑧 = 0.

The constructed operator A𝑝 : D(A𝑝) ⊂ F → F will be often denoted shortly by A𝑝,F. His
linearity is implied by its well-defined property. A close but not coinciding definition was given
in [13].

Lemma 1. The operator A𝑝,F is closed and commutes with the convolution operators
𝑆(𝑓)𝑥 = 𝑓 * 𝑥, 𝑥 ∈ F, 𝑓 ∈ L1(R𝑁), as well as with the operators 𝑆(𝜏), 𝜏 ∈ R

𝑁 , of trans-
lation of functions in F.

We observe that the commuting of the linear operator 𝐴 : D(𝐴) ⊂ X → X and a bounded
operator 𝐵 ∈ EndX, where X is a Banach space, means that 𝐵D(𝐴) ⊂ D(𝐴) and the identities
𝐴𝐵𝑥 = 𝑥, 𝑥 ∈ X, 𝐵𝐴𝑦 = 𝑦, 𝑦 ∈ D(𝐴), hold.

While defining other homogeneous spaces and proving the main results we shall employ the
Beurling spectrum of the vectors in Banach L1(R𝑁)–moduli and its properties, see [2], [3], [14],
[15], [16], [17], [18]. As such homogeneous spaces, the spectral subspaces in the homogeneous
space F will serve, see Definition 2.

Let X be a Banach L1(R𝑁)–modulus.

Definition 5. Beurling spectrum of a vector 𝑥 ∈ X is the set of the elements in R𝑁 of the
form

Λ(𝑥) =
{︁
𝜆0 ∈ R𝑁

⃒⃒
𝑓𝑥 ̸= 0 for each function 𝑓 ∈ L1(R𝑁), satisfyinĝ︀𝑓(𝜆0) ̸= 0

}︀
= R

𝑁 ∖
{︀
𝜇0 ∈ R𝑁

⃒⃒
there exists a function 𝑓 ∈ L1(R𝑁)

such that ̂︀𝑓(𝜇0) ̸= 0 and 𝑓𝑥 = 0
}︁
.

Beurling spectrum of a subset X0 in X is the set in R𝑁 of the form

Λ(X0) =
⋃︁
𝑥∈X0

Λ(𝑥) = R
𝑁 ∖

{︀
𝜇0 ∈ R𝑁

⃒⃒
there exists a function 𝑓 ∈ L1(R𝑁)

such that ̂︀𝑓(𝜇0) ̸= 0 and 𝑓𝑥 = 0 for each vector 𝑥 in X0

}︀
.

The Beurling spectrum Λ(𝑥) of each function 𝑥 ∈ Cb coincides with the support of the
Fourier transform of a function 𝑥 regarded as a distribution [19], [20], [21], [22]. For instance,
the Beurling spectrum Λ(𝑥) of almost each periodic function 𝑥 ∈ AP(R𝑁) coincides with the
Bohr spectrum of the function 𝑥, see [2], [3]. This property is employing in the proof of
Theorem 7.
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Definition 6. For each closed set ∆ in R𝑁 , the subspace X(∆) in X of the form

X(∆) = {𝑥 ∈ X | Λ(𝑥) ⊂ ∆}
is called a spectral submodulus in a L1(R𝑁)–modulus X. If X = F, then the spectral submodulus
F(∆) is called spectral subspace.

We note that Λ
(︀
X(∆)

)︀
⊂ ∆ but not necessary the identity. At that we observe that each

internal point 𝜆0 ∈ Int ∆ is contained in Λ
(︀
X(∆)

)︀
.

Lemma 2. For each vector 𝑥 in the domain D(A𝑝,F) of the operator A𝑝,F the inclusion of
the spectra

Λ(A𝑝,F𝑥) ⊂ Λ(𝑥), 𝑥 ∈ D(A𝑝,F) (5)

holds true.

For each polynomial 𝑝 in P(R𝑁), by the symbol Z(𝑝) we denote the set of its zeroes:

Z(𝑝) = {𝜆 ∈ R𝑁 | 𝑝(𝜆) = 0}. (6)

The following statements on the kernel of the operator A𝑝,F hold.

Theorem 1. The kernel KerA𝑝,F =
{︀
𝑥 ∈ D(A𝑝,F)

⃒⃒
A𝑝,F𝑥 = 0

}︀
is contained in the spectral

subspace F(∆), where ∆ = Z(𝑝), and is a closed submodulus in F invariant with respect to the
operators 𝑆(𝜏), 𝜏 ∈ R𝑁 .

Theorem 2. Let the set Z(𝑝) of zeroes of a polynomial 𝑝 is at most countable and D(A𝑝,F) ⊂
Cb,u(R𝑁); the latter means that the functions in the domain are uniformly continuous. Then
the following properties hold:

1) KerA𝑝,F ⊂ AP(R𝑁), that is, the functions in the kernel KerA𝑝,F are Bohr almost contin-
uous;

2) KerA𝑝,F is a separable subspace in Cb,u;
3) KerA𝑝,F = {0}, that is, the operator A𝑝,F is injective if F = C0;
4) the kernel of the operator A𝑝,F is finite-dimensional if the set Z(𝑝) is finite; at that, it

consists of trigonometric polynomials;
5) A𝑝,F is a injective operator if Z(𝑝) is the empty set.

In the next two theorems we formulate the properties of the image ImA𝑝,F of the opera-
tor A𝑝,F.

Theorem 3. The subspace ImA𝑝,F is a submodulus (not necessarily closed) in F invariant
with respect to the operators 𝑆(𝜏), 𝜏 ∈ R𝑁 .

Theorem 4. The image ImA𝑝,F of the operator A𝑝,F possesses the following properties:

1) ImA𝑝,F contains a spectral subspace F(∆) for each compact set ∆ ⊂ R
𝑁 with the property

∆ ∩ Z(𝑝) = ∅;
2) ImA𝑝,F is a dense in F subspace if F ⊂ Cb,u and Z(𝑝) = ∅;
3) ImA𝑝,C0 (here F = C0) is a dense in C0 subspace if the set Z(𝑝) contains no finite limiting

points;
4) ImA𝑝,F ⊂ C0 if F = Csl and 𝑝(0) = 0.

While obtaining the conditions of invertibility of the operator A𝑝,F and especially the crite-
rions for a non-empty resolvent set 𝜌(A𝑝,F) of this operator, we are led to restrictions for the
behavior of the polynomial at infinity. The conditions given below are motivated by the aim
to represent the inverse operator as a convolution with some function in the algebra L1(R𝑁).
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Definition 7. The polynomial 𝑝 ∈ P(R𝑁) is called regular at infinity if there exists a number
𝑅 > 0 and a pair of functions 𝑓1, 𝑓0 in the algebra L1(R𝑁) such that

𝑝(𝜆)̂︀𝑓1(𝜆) − ̂︀𝑓0(𝜆) = 1 (7)

for all vectors 𝜆 = (𝜆1, . . . , 𝜆𝑁) ∈ R𝑁 obeying the condition |𝜆| = |𝜆1| + · · · + |𝜆𝑁 | > 𝑅.

The set of regular at infinity polynomials is denoted by the symbol Preg,∞(R𝑁).
We note that the polynomials defining elliptic operators are regular at infinity, see, for in-

stance, [21, Ch. 2, Sect. 12].
Let us provide more specific examples of regular at infinity polynomials:

1) 𝑝1(𝜉) = 𝜉1 + i𝜉2, 𝜉 = (𝜉1, 𝜉2) ∈ R2, 𝑝1 ∈ P(R2);

2) 𝑝2(𝜉) =
𝑁∑︀
𝑘=1

𝜉2𝑘, 𝜉 = (𝜉1, . . . , 𝜉𝑁) ∈ R𝑁 , 𝑝2 ∈ P(R𝑁);

3) 𝑝3(𝜉) =
𝑁∏︀
𝑘=1

𝑝𝑘(𝜉𝑘) +
∑︀

|𝛼𝑘|6𝑚𝑘−1

𝑎𝛼𝜉
𝛼, where 𝑝𝑘 : R → C, 1 6 𝑘 6 𝑁 , are polynomials of

degree 𝑚𝑘,
𝑚∑︀
𝑘=1

𝑚𝑘 = 𝑁 and 𝛼 = (𝛼1, . . . , 𝛼𝑁) ∈ Z𝑁+ .

The first polynomial generates the operator A𝑝1 = 𝜕
𝜕𝜉1

+ i 𝜕
𝜕𝜉2

; the second does the Laplace

operator A𝑝2 = ∆, and the third polynomial was considered in paper [1] while constructing and
studying the invertibility conditions of the corresponding differential operator A𝑝3 .

Theorem 5. Let 𝑝 ∈ Preg,∞(R𝑁). The operator A𝑝 : D(A𝑝) ⊂ F → F is invertible if and
only if the condition

Z(𝑝) ∩ Λ(F) = ∅ (8)

holds true, where Λ(F) is the Beurling spectrum of a L1(R𝑁)–modulus F. If condition (8) is
satisfied, the inverse operator A−1

𝑝 admits the representation

A−1
𝑝 𝑦 = 𝑔 * 𝑦, 𝑦 ∈ F, (9)

for some function 𝑔 ∈ L1(R𝑁).

In view of the identity Λ(F) = R
𝑁 for a spectrally homogeneous space F, see Remark 2,

Theorem 5 implies immediately the following statement.

Theorem 6. Let 𝑝 : R𝑁 → C be a regular at infinity polynomial and F be a non-zero spec-
trally homogeneous space. The operator A𝑝,F is invertible if and only if

Z(𝑝) = ∅.

If the latter holds, the operator inverse for A𝑝,F admits representation (9), where the Fourier
transform of the function 𝑔 reads as

̂︀𝑔(𝜆) =
1

𝑝(𝜆)
, 𝜆 ∈ R𝑁 .

In the proof of the next theorem we shall employ the identity [2], [3]:

Λ(CΩ) =

{︂
2𝜋

(︁𝑘1
𝜔1

, . . . ,
𝑘𝑁
𝜔𝑁

)︁ ⃒⃒⃒
𝑘 = (𝑘1, . . . , 𝑘𝑁) ∈ Z𝑁 ,

𝜔 = (𝜔1, . . . , 𝜔𝑁) ∈ R𝑁
+ , is a set in the group of periods Ω

}︁
.
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Theorem 7. If 𝑝 ∈ Preg,∞(R𝑁), then the operator A𝑝 : D(A𝑝) ⊂ CΩ → CΩ = CΩ(R𝑁) is
invertible if and only if the condition

Z(𝑝) ∩
{︁

2𝜋
(︁𝑘1
𝜔1

, . . . ,
𝑘𝑁
𝜔𝑁

)︁ ⃒⃒⃒
𝑘 = (𝑘1, . . . , 𝑘𝑁) ∈ Z𝑁

}︁
= ∅ (10)

holds true. Under condition (10), the inverse operator is defined by the formula

(A−1
𝑝 𝑦)(𝜏) =

∫︁
𝐾

𝐺(𝜏 − 𝑠)𝑦(𝑠) d𝑠,

where 𝐾 = [0, 𝜔1] × · · · × [0, 𝜔𝑁 ] is a compact set and Φ ∈ L1(𝐾), 𝐺 : 𝐾 → C is a summable
on 𝐾 function with a Fourier series of the form

𝐺(𝜏) ∼
∑︁
𝑘∈Z𝑁

1

𝑝
(︁

2𝜋
(︁
𝑘1
𝜔1
, . . . , 𝑘𝑁

𝜔𝑁

)︁)︁ei2𝜋(𝑘,̃︀𝜔), 𝜏 ∈ R𝑁 ,

where ̃︀𝜔 =
(︁

1
𝜔1
, . . . , 1

𝜔𝑁

)︁
.

Theorem 8. For 𝑝 ∈ Preg,∞(R𝑁) the spectrum 𝜎(A𝑝,F) of the operator A𝑝,F is represented
as

𝜎(A𝑝,F) = 𝑝
(︀
Λ(F)

)︀
=

{︀
𝑝(𝜆)

⃒⃒
𝜆 ∈ Λ(F)

}︀
.

If F is a spectrally homogeneous space, then

𝜎(A𝑝,F) = Im 𝑝 = 𝑝(R𝑁).

Theorem 9. Let 𝑝 ∈ Preg,∞(R𝑁) and the Beurling spectrum Λ(F) of a homogeneous space F

has no finite limiting points in R𝑁 . Then the operator A𝑝,F has a compact resolvent.

2. Harmonic analysis in Banach moduli over algebra L1(R𝑁)

Let X be a Banach L1(R𝑁)–modulus and 𝑇 : R𝑁 → EndX is an isometric representation not
necessarily strongly continuous.

Definition 8. We shall say that the structure of a Banach L1(R)–modulus X is associated
with a representation 𝑇 if for all 𝑓 ∈ L1(R𝑁), 𝑥 ∈ X and 𝜏 ∈ R𝑁 the identities hold

𝑇 (𝜏)(𝑓𝑥) =
(︀
𝑆(𝜏)𝑓

)︀
𝑥 = 𝑓

(︀
𝑇 (𝜏)𝑥

)︀
, 𝜏 ∈ R𝑁 .

For such modulus X we employ the symbol (X, 𝑇 ).

In particular, the structure of a Banach L1(R𝑁)–modulus on Cb(R𝑁) is associated with the
representation 𝑆 : R𝑁 → End Cb.

The vectors in a Banach L1(R𝑁)–modulus (X, 𝑇 ) have the following properties, see [2], [3],
[14], [15], [16], [17]). The symbol 𝑇 (𝑓) stands for the operator 𝑇 (𝑓) ∈ EndX, 𝑇 (𝑓)𝑥 = 𝑓𝑥,
𝑥 ∈ X, where 𝑓 ∈ L1(R𝑁) is an arbitrary function. Thus, 𝑆(𝑓) is a convolution operator in
each homogeneous space F.

Lemma 3. The Beurling spectrum of the vectors in Banach L1(R𝑁)–modulus X possess the
following properties

1) Λ(𝑥) is a closed set for each vector 𝑥 ∈ X and Λ(𝑥) = ∅ if and only if 𝑥 = 0;
2) Λ(B1𝑥1 + B2𝑥2) ⊂ Λ(𝑥1) ∪ Λ(𝑥2) for each two operators B1,B1 ∈ EndX commuting with

the operators 𝑇 (𝑓), 𝑓 ∈ L1(R𝑁), and for all vectors 𝑥1, 𝑥2 ∈ X;

3) Λ(𝑓𝑥) ⊂
(︀
supp ̂︀𝑓 )︀ ∩ Λ(𝑥) for all 𝑓 ∈ L1(R𝑁), 𝑥 ∈ X;

4) 𝑓𝑥 = 0 if
(︀
supp ̂︀𝑓 )︀ ∩ Λ(𝑥) = ∅, where 𝑓 ∈ L1(R𝑁), L1(R𝑁);
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5) 𝑓𝑥 = 𝑥 if the set Λ(𝑥) is compact and ̂︀𝑓 = 1 in some neighbourhood of the set Λ(𝑥), where
𝑥 ∈ X, 𝑓 ∈ L1(R𝑁);

6) if Λ(𝑥) = {𝜆1, . . . , 𝜆𝑛} is a finite set for a vector 𝑥 ∈ X, then it is represented as 𝑥 =
𝑥1 + · · · + 𝑥𝑛, where the vectors 𝑥𝑘, 1 6 𝑘 6 𝑛, possess the properties Λ(𝑥𝑘) = {𝜆𝑘},
𝑇 (𝜏)𝑥𝑘 = ei𝜆𝑘𝜏𝑥𝑘, 𝜏 ∈ RN, 𝑓𝑥𝑘 = 𝑇 (𝑓𝑘)𝑥𝑘 = ̂︀𝑓(𝜆𝑘)𝑥𝑘, 1 6 𝑘 6 𝑛;

7) if a subset X0 ⊂ X1 is dense in X1, then Λ(X1) =
⋃︀
𝑥∈X0

Λ(𝑥). If 𝑥 = lim
𝑛→∞

𝑥𝑛, then

Λ(𝑥) ⊂
⋃︀
𝑛>1

Λ(𝑥𝑛).

Remark 1. Property 6) for a function 𝑥 in L1(R𝑁)–modulus Cb(R𝑁) means that it can be
represented as a trigonometric polynomial

𝑥(𝜏) = 𝛼1e
i(𝜆1,𝜏) + · · · + 𝛼𝑛ei(𝜆𝑛,𝜏), 𝜏 ∈ R𝑁 , 𝛼𝑘 ∈ Cr {0}, 1 6 𝑘 6 𝑛.

The Beurling spectrum of this function is a set Λ(𝑥) = {𝜆1, . . . , 𝜆𝑛}.

Remark 2. The definition of the Beurling spectrum implies the identity

Λ(𝑥e𝜆) = {𝜆} + Λ(𝑥) = {𝜆+ 𝜇 | 𝜇 ∈ Λ(𝑥)}
for all 𝜆 ∈ R𝑁 , 𝑥 ∈ Cb and each non-zero function 𝑥 in Cb.

In what follows we employ essentially the Loomis theorem [23]; its vector analogue was proved
in paper [15]. It was proved for the functions defined on a locally compact Abelian group.

Theorem 10 (Loomis). Let the Beurling spectrum Λ(𝑥) of a function 𝑥 in Cb,u(R𝑁) is at
most countable. Then the function 𝑥 is Bohr almost periodic; 𝑥 ∈ AP(R𝑁).

Besides the algebra ̂︁L1(R𝑁), we consider the algebrâ︂L1
loc(R

𝑁) =
{︀
𝐹 : R𝑁 → C

⃒⃒ ̂︀𝑓𝐹 ∈ ̂︁L1(R𝑁) for each function 𝑓 ∈ L1(R𝑁)

with a compact support supp ̂︀𝑓}︀.
Remark 3. The inclusion holds:

P(R𝑁) ⊂ ̂︂L1
loc(R

𝑁). (11)

Remark 4. A Banach algebra L1(R𝑁) is regular [2], [3], [4], [24], [25], that is, for each open
covering R𝑁 of form R

𝑁 = 𝑈1 ∪ · · · ∪ 𝑈𝑛 ∪ 𝑈∞, where 𝑈𝑘, 1 6 𝑘 6 𝑛, are compact sets, there
exist functions 𝑓1, . . . , 𝑓𝑛 in the algebra L1(R𝑁) such that

1) supp ̂︀𝑓𝑘 ⊂ 𝑈𝑘, 1 6 𝑘 6 𝑛;

2) supp
(︀
1− ̂︀𝑓1 − · · · − ̂︀𝑓𝑛)︀ ⊂ 𝑈∞;

where 1(𝜆) = 𝜆, 𝜆 ∈ R𝑁 , is the function identically equalling to one.

The next statement [2], [4], [24], [25] will be employed essentially in the proof of the main
results.

Theorem 11 (Wiener). Let 𝜙 ∈ ̂︂L1
loc(R

𝑁) and 𝜙 belongs to the algebra ̂︁L1(R𝑁) at infinity,

that is, there exists a number 𝑅 > 0 and a function 𝜙∞ ∈ ̂︁L1(R𝑁) such that 𝜙(𝜆) = 𝜙∞(𝜆) for

all 𝜆 ∈ R𝑁 satisfying the condition |𝜆| > 𝑅. Then 𝜙 ∈ ̂︁L1(R𝑁).

Lemma 4. Let the function 𝜙 ∈ ̂︂L1
loc(R

𝑁) possesses the following property: there exists a

number 𝑅 > 0 and a function ̂︀𝜓 ∈ ̂︁L1(R𝑁) such that
⃒⃒ ̂︀𝜓(𝜆)

⃒⃒
6 1

3
for |𝜆| > 𝑅 and 𝜙(𝜆) = ̂︁𝜙1(𝜆)

1− ̂︀𝜓(𝜆) ,
|𝜆| > 𝑅, for some function ̂︁𝜙1 ∈ ̂︁L1(R𝑁). Then ̂︀𝜙 ∈ ̂︁L1(R𝑁).
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Proof. In view of the Wiener theorem 11, it is sufficient to establish a local belonging of the

function 𝜙 at infinity to the algebra ̂︁L1(R𝑁). We consider the function ̂︁𝜓1 ∈ ̂︁L1(R𝑁) with

the properties: ̂︁𝜓1(𝜆) = 𝜙(𝜆), |𝜆| > 𝑅, max
𝜆∈R𝑁

⃒⃒̂︁𝜓1(𝜆)
⃒⃒
6 1

2
. Then the spectrum 𝜎(𝜓1) of the

function 𝜓1 as of an element in the Banach algebra L1(R𝑁) [4], [5] coincides with the set̂︁𝜓1(R
𝑁) and this is why it lies in the circle

{︀
𝜆 ∈ C

⃒⃒
|𝜆| 6 1

2

}︀
. We represent the function 1

1−̂︁𝜓1

as 1

1−̂︁𝜓1
=

∞∑︀
𝑛=0

̂︁𝜓1

𝑛
= 1 + ̂︁𝜓2, where ̂︁𝜓2 ∈ ̂︁L1(R𝑁). Therefore, the function ̂︁𝜙1

1−̂︁𝜓1
belongs to the

algebra ̂︁L1(R𝑁), and this is why the function 𝜙 belongs to the algebra L1(R𝑁) at infinitey.

In the algebra ̂︁L1(R𝑁) we consider a bounded approximative unit (𝑓𝑛), which is constructed
as follows.

We consider a function 𝑓0 in the algebra L1(R), for which ̂︀𝑓(0) = 1 and supp ̂︀𝑓0 ⊂ [−1, 1].

For instance, this can be a function 𝑓0 with ̂︀𝑓0(𝜆) =
(︀
1 − |𝜆|

)︀
𝜒[−1,1](𝜆), 𝜆 ∈ R, where 𝜒[−1,1] is

the characteristic function of the segment [−1, 1]. We let

̂︀𝑓𝑛(𝜏) =
𝑁∏︁
𝑘=1

̂︀𝑓0(︁ 1

𝑛
𝜏𝑘

)︁
, 𝜏 = (𝜏1, . . . , 𝜏𝑁) ∈ R𝑁 , 𝑛 > 1. (12)

Then the sequence of the functions

𝑓𝑛(𝜏) =
1

(2𝜋)𝑁

∫︁
R𝑁

̂︀𝑓𝑛(𝜆)ei(𝜆,𝜏) d𝜆, 𝜏 ∈ R𝑁 , 𝑛 > 1, (13)

forms a bunded approximative unit in the algebra L1(R𝑁).

3. Proof of main results

We consider some properties of regular at infinity polynomials. While proving them, we shall
employ (11).

Lemma 5. Let 𝑝 ∈ Preg,∞(R𝑁) and ∆ be closed set possessing the property Z(𝑝) ∩ ∆ = ∅(︀
dist

(︀
Z(𝑝),∆

)︀
> 0

)︀
. Then Z(𝑝) is compact and for each two open sets 𝑈, 𝑉 ∈ R𝑁 possessing

the properties: 𝑈 ⊃ Z(𝑝), 𝑈 is compact, ∆ ⊂ 𝑉 , 𝑈 ∩ 𝑉 = ∅, there exist functions 𝑔0, 𝑔1 in the
algebra L1(R𝑁) such that

1) ̂︀𝑔0(𝜆) = 1 in some neighbourhood of the set Z(𝑝);
2) supp ̂︀𝑔0 ⊂ 𝑈 ;
3) 𝑝(𝜆)̂︀𝑔1(𝜆) − ̂︀𝑔0(𝜆) = 1, 𝜆 ∈ R𝑁 ;

4) if Z(𝑝) = ∅, then the function 1
𝑝
belongs to the algebra ̂︁L1(R𝑁)

(︀
here 𝑔0 = 0, 𝑔1 = 1

𝑝

)︀
.

Proof. We employ the notations from Definition 7 of a regular at infinity polynomial 𝑝. In view

of the property lim
|𝜆|→∞

⃒⃒ ̂︀𝑓0(𝜆)
⃒⃒

= 0, by identity (7) we obtain that there exists a number 𝑅 > 0

such that
⃒⃒
𝑓0(𝜆)

⃒⃒
6 1

2
for |𝜆| > 𝑅. This is why by (7) we get the identity

1

𝑝(𝜆)
=

̂︀𝑓1(𝜆)

1− ̂︀𝑓0(𝜆)
, |𝜆| > 𝑅.

It follows from Lemma 4 that the function 1
𝑝

belongs to the algebra ̂︁L1(R𝑁) at infinity.

We consider the function ̂︀𝑔0 ∈ L1(R𝑁), for which ̂︀𝑔0 = 1 in some compact neighbourhood 𝑈0

of the set Z(𝑝) and supp ̂︀𝑔0 ⊂ 𝑈 ; here we employ the normality of the algebra L1(R𝑁), see [2],

[3]. By Wiener theorem 11, the function ̂︀𝑔1 = 1− ̃︀𝑔0
𝑝

belongs to the algebra ̂︁L1(R𝑁). The

function 𝑔0 can be also constructed straightforwardly by constructing a smooth function ̂︀𝑔0
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with prescribed properties. The constructed functions 𝑔0 and 𝑔1 possess all mentioned in the
formulation properties 1 – 4. The proof is complete.

Lemma 6. Let a polynomial 𝑝 ∈ P(R𝑁) is represented as 𝑝 = 𝑝1+𝑝2, where 𝑝1 ∈ Preg,∞(R𝑁),

and a function 𝑝2
𝑝1

belongs to the algebra ̂︁L1(R𝑁) at infinity. Then 𝑝 ∈ Preg,∞(R𝑁).

The statement of the lemma follows Wiener theorem 11.

Corollary 1. A polynomial 𝑝3 : R𝑛 → C (see Example 3 after Definition 7) employed for
defining differential operators studied in paper [1] is regular at infinity.

In fact, this statement was established in paper [1].

Proof of Lemma 1. Let a sequence of the functions (𝑥𝑛, 𝑦𝑛) in the graph

Γ(A𝑝,F) =
{︀

(𝑥, 𝑦)
⃒⃒
𝑥 ∈ D(A𝑝,F), 𝑦 = A𝑝,F

}︀
⊂ F × F

of the operator A𝑝,F converge to (𝑥0, 𝑦0) in the Banach space F × F equipped by the norm⃦⃦
(𝑥, 𝑦)

⃦⃦
= ‖𝑥‖+‖𝑦‖, 𝑥, 𝑦 ∈ F. Then for each function 𝑓 ∈ M (supp ̂︀𝑓 is compact) the sequence

(𝑓 *𝑥𝑛, 𝑓 *𝑦𝑛) in F×F possesses the following properties: it converges to (𝑓 *𝑥0, 𝑓 *𝑦0) ∈ F×F,
(𝑓 * 𝑥𝑛) ∈ D(A𝑝,F) and for 𝑝(𝑓) =

∑︀
|𝛼|6𝑚

𝑎𝛼D𝛼𝑓 the identities hold, see (4):

A𝑝,F(𝑓 * 𝑥0) = 𝑝(𝑓) * 𝑥0 = lim
𝑛→∞

𝑝(𝑓) * 𝑥𝑛 = lim
𝑛→∞

𝑓 * 𝑦𝑛 = 𝑓 * 𝑦0, 𝑛 > 1.

It follows from the definition of the operator A𝑝,F that (𝑥0, 𝑦0) ∈ Γ(A𝑝,F), that is, A𝑝,F is a
closed operator.

The above arguing implies also the commutation of the operator A𝑝,F with the convolution
operators 𝑆(𝑓), 𝑓 ∈ M. Since the subalgebra M is dense in the algebra L1(R𝑁), the proven
closedness of the operator A𝑝,F implies that it commutes with each operator 𝑆(𝑓), 𝑓 ∈ L1(R𝑁).

Let us prove the commutation of the translation operators 𝑆(𝜏), 𝜏 ∈ R
𝑁 , of the func-

tions in F with the operator A𝑝,F. This commutation property is equivalent to the property(︀
𝑆(𝜏)𝑥, 𝑆(𝜏)𝑦

)︀
∈ Γ(A𝑝,F) for each 𝜏 ∈ R𝑁 and each (𝑥, 𝑦) ∈ Γ(A𝑝,F). If 𝑓 ∈ M, then 𝑆(𝜏)𝑓 ∈ M

and this is why
(︀
𝑓 * 𝑆(𝜏)𝑥, 𝑓 * 𝑆(𝜏)𝑦

)︀
∈ Γ(A𝑝,F), that is,

(︀
𝑆(𝜏)𝑥, 𝑆(𝜏)𝑦

)︀
∈ Γ(A𝑝,F). The proof

is complete.

Corollary 2. KerA𝑝,F is a closed submodulus in F.

We recall that the main statements of the paper were obtained by employing the set Z(𝑝) of
zeroes of the polynomial 𝑝 defined by identity (6). As a rule, we employ formula (1) for the
considered polynomial 𝑝.

While studying the kernel KerA𝑝,F of the operator A𝑝,F, we employ essentially the next
lemma.

Lemma 7. Let a function 𝑥 belongs to the kernel KerA𝑝,F of the operator A𝑝,F. Then its
Beurling spectrum Λ(𝑥) obeys the inclusion

Λ(𝑥) ⊂ Z(𝑝) ∩ Λ(F) ⊂ Z(𝑝). (14)

Proof. Assume that a vector 𝜆0 in R𝑁 does not belong to the set Z(𝑝). Thus, 𝑝(𝜆0) ̸= 0. We

consider the function 𝑓 in M such that ̂︀𝑓(𝜆0) ̸= 0 and (supp ̂︀𝑓) ∩ Z(𝑝) = ∅. By Corollary 2 we
obtain that 𝑓 * 𝑥 ∈ D(A𝑝,F). The identities

0 = 𝑓 *A𝑝,F𝑥 = A𝑝,F(𝑓 * 𝑥) = 𝑔 * 𝑥 = 0
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hold, where 𝑔 =
∑︀

|𝛼|6𝑚
𝑎𝛼D𝛼𝑓 . Since ̂︀𝑔(𝜆0) = ̂︀𝑝(𝜆0) ̂︀𝑓(𝜆0) ̸= 0, Definition 5 of the Beurling

spectrum implies that 𝜆0 /∈ Λ(𝑥). This is why Λ(𝑥) ⊂ Z(𝑝). Taking into consideration that
Λ(𝑥) ⊂ Λ(F), we arrive at (14). The proof is complete.

Proof of Theorems 1 and 3. Since the operator A𝑝,F is closed, its kernel is closed. Lemma 1
implies the commutation of the operator A𝑝,F with the convolution operators 𝑆(𝑓), 𝑓 ∈ L1,
and translation operators 𝑆(𝜏), 𝜏 ∈ R

𝑁 . This is why 𝑆(𝑓)KerA𝑝,F ⊂ KerA𝑝,F, 𝑓 ∈ L1,
𝑆(𝜏)KerA𝑝,F ⊂ KerA𝑝,F, 𝜏 ∈ R𝑁 , 𝑆(𝑓)ImA𝑝,F ⊂ ImA𝑝,F, 𝑓 ∈ L1, and 𝑆(𝜏)ImA𝑝,F ⊂ ImA𝑝,F,
𝜏 ∈ R

𝑁 . Thus, KerA𝑝,F is a closed submodulus in F and ImA𝑝,F is a submodulus in F.
Lemma 7 yields the inclusion KerA𝑝,F ⊂ F(∆), where ∆ = Z(𝑝). The proof is complete.

Proof of Theorem 2. Lemma 7 implies the countability of the set Λ(𝑥) if 𝑥 ∈ KerA𝑝,F. Since 𝑥 ∈
Cb,u(R𝑁), by Loomis theorem 10 it is almost periodic. Since the set Λ(KerA𝑝,F) ⊂ Z(𝑝)∩Λ(F)
is at most countable, by the approximation theorem for almost periodic functions [7] we infer
that the submodulus KerA𝑝,F ⊂ Cb,u(R𝑁) is close. Thus, we have established properties 1)
and 2).

If F = C0, thanks to AP(R𝑁) ∩ C0 = {0}, we obtain KerA𝑝,F = {0}.
A finite dimension of the kernel KerA𝑝,F under the condition of a finiteness of the set Z(𝑝)∩

Λ(F) is implied by Property 6) in Lemma 3 and Remark 1.
The result of paper [26] imply that the subspace AP(R𝑁)∩Csl(R

𝑁) is either zero or consists
of constant functions. The proof is complete.

In the proof of Lemma 2 and other theorems we shall make use of the following lemma.

Lemma 8. Let F be a homogeneous space with a compact Beurling spectrum ∆ = Λ(F).
Then for each polynomial 𝑝 ∈ P(R𝑁) of form (1), the operator A𝑝,F is bounded and can be
represented as

A𝑝,F𝑥 =
(︁ ∑︁

|𝛼|6𝑚

𝑎𝛼D𝛼𝑓
)︁
* 𝑥, 𝑥 ∈ F, (15)

where 𝑓 is an arbitrary function from the algebra M ⊂ L1(R𝑁) such that ̂︀𝑓 = 1 in some
neighbourhood of the set ∆. The estimate holds ‖A𝑝,F‖ 6 ‖𝑔‖1, where 𝑔 =

∑︀
|𝛼|6𝑚

𝑎𝛼D𝛼𝑓 .

Proof. It follows from Property 5) of Lemma 3 that 𝑓 * 𝑥 = 𝑥 for each function 𝑓 obeying the
assumptions of the lemma. Then representation (15) follows the definition if the operator A𝑝,F.
The proof is complete.

Thus, the spectral subspace F(∆) is an invariant subspace for the operators A𝑝,F, 𝑝 ∈ P(R𝑁).

Proof of Lemma 2. Let 𝑥 be a vector in D(A𝑝,F) and 𝑦 = A𝑝,F𝑥. It follows from the def-
inition A𝑝,F that 𝑓 * 𝑥 ∈ D(A𝑝,F) for each function 𝑓 in the subalgebra M ⊂ L1(R𝑁) and

𝑓 * 𝑦 = A𝑝,F(𝑓 * 𝑥). If 𝜆0 /∈ Λ(𝑥), then we consider a function 𝑓 ∈ M such that ̂︀𝑓(𝜆0) ̸= 0 and

(supp ̂︀𝑓) ∩ Λ(𝑥) = ∅. Then 𝑓 * 𝑥 = 0, see Property 4 of Lemma 3, and therefore, 𝑓 * 𝑦 = 0,
that is, 𝜆0 /∈ Λ(𝑦). Thus, Λ(𝑦) ⊂ Λ(𝑥) and we have completed the proof of inclusion (5).

Proof of Theorem 4. We first prove Property 1). Let a compact set ∆ in R𝑁 obey ∆∩Z(𝑝) = ∅.
The regularity of the algebra L1(R𝑁) implies (see [24]) the existence of a function 𝑓 ∈ M such

that 𝑝 ̂︀𝑓 = 1 in some neighbourhood of the compact set ∆.
Let 𝑦 be an arbitrary function in the spectral modulus F(∆) and 𝑥 = 𝑓 * 𝑦. The vector 𝑥

has a compact Beurling spectrum Λ(𝑥), and this is why 𝑥 ∈ D(A𝑝,F) and the identity holds:

A𝑝,F𝑥 =
(︁ ∑︁

|𝛼|6𝑚

𝑎𝛼D𝛼𝑓
)︁
* 𝑦 = 𝑔 * 𝑦, (16)
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where ̂︀𝑔 = 𝑝 ̂︀𝑓 = 1 in some neighbourhood of the set Λ(𝑦) ⊂ ∆. This is why Property 5) of
Lemma 3 implies 𝑔 * 𝑦 = 𝑦, that is, by 16 we obtain A𝑝,F𝑥 = 𝑦. Thus, we have established the
inclusion F(∆) ⊂ ImA𝑝,F.

We proceed to proving Property 2). Due to the condition Z(𝑝) = ∅, the proven first property
implies that each spectral submodulus F(∆), where ∆ is a compact set, is contained in ImA𝑝,F.
Let 𝑦 be an arbitrary function in F ⊂ Cb,u. We consider an approximative unit (𝑓𝑛) in the
algebra L1(R𝑁) constructed in the end of Section 2. Then, see [2], [3], [16], [17], lim

𝑛→∞
𝑓𝑛 *𝑦 = 𝑦.

Since Λ(𝑓𝑛 *𝑦) ⊂ supp ̂︀𝑓𝑛, 𝑛 > 1, are compact set, then 𝑓𝑛 *𝑦 ∈ ImA𝑝,F, 𝑛 > 1, by Property 1).
Therefore, 𝑦 ∈ ImA𝑝,F.

We proceed to proving Property 3). Let 𝑦 be an arbitrary function in C0(R
𝑁). For the

considered approximative unit (𝑓𝑛) in the algebra L1(R𝑁) (see (12), (13)), the sequence of
the functions 𝑦𝑛 = 𝑓𝑛 * 𝑦, 𝑛 > 1, possesses the following properties: lim

𝑛→∞
𝑦𝑛 = 𝑦 thanks to

the uniform continuity of the function 𝑦 and ∆𝑛 = Λ(𝑦𝑛) ⊂ supp ̂︀𝑓𝑛 ⊂ [−1, 1]𝑁 , 𝑛 > 1, are
compact sets. This is why it is sufficient to show that each function 𝑧 ∈ C0(R

𝑁) with a compact
spectrum Λ(𝑧) is in the closure of the image ImA𝑝,C0 .

First we assume that Λ(𝑧)∩ Z(𝑝) = {𝜆0} is a single point set. We consider a sequence of the
functions (𝜙𝑛) in the algebra L1(R𝑁) with the following properties: sup

𝑛>1
‖𝜙𝑛‖ < ∞, ̂︁𝜙𝑛 = 0 in

some neighbourhood 𝑉𝑛 of the point 𝜆0 and lim
𝑛→∞

𝜙𝑛 * 𝑔 = 0 for each function 𝑔 in the algebra

L1(R𝑁) obeying the identity ̂︀𝑔(𝜆0) = 0. In works [2], [3], [15], [16], [26], [27], this sequence was
called 𝜆0–sequence. It was also established there that for a function 𝑥 ∈ Cb,u(R𝑁), there exiss
the uniform in 𝜏 ∈ R𝑁 limit

lim
𝑛→∞

1

𝑛𝑁

𝑛∫︁
0

· · ·
𝑛∫︁

0

𝑥(𝑠+ 𝜏)e−i(𝜆0,𝑠+𝜏) d𝑠 = 𝑥0(𝜏), 𝜏 ∈ R𝑁 ,

then the limit lim
𝑛→∞

𝜙𝑛 * 𝑥 exists as well and they coincide. Such result follows general ergodic

theorems [2], [3]. The first limit 𝑥0 for 𝑥 = 𝑧 is the zero function since the function 𝑧 belongs to

the space C0(R
𝑁)

)︀
, and hence lim

𝑛→∞
𝜙𝑛 * 𝑧 = 0. Let 𝑓 be a function in L1(R𝑁) such that ̂︀𝑓 = 1

in some neighbourhood of the compact set Λ(𝑧). Then 𝑓 * 𝑧 = 𝑧 by Property 5 of Lemma 3.
Let 𝑧𝑛 = 𝑧 − 𝜙𝑛 * 𝑧 = 𝑓 * (𝑧 − 𝜙𝑛 * 𝑧), 𝑛 > 1. By Property 3) of Lemma 3 we obtain that

Λ(𝑧𝑛) ⊂ supp
(︀ ̂︀𝑓 − ̂︀𝑓̂︁𝜙𝑛)︀ ∩ Λ(𝑧), 𝑛 > 1. Therefore, 𝜆0 /∈ Λ(𝑧𝑛) and Λ(𝑧𝑛) ∩ Z(𝑝) = ∅. This is

why Property 1 implies 𝑧 ∈ ImA𝑝,C0 . If Λ(𝑧)∩ Z(𝑝) = {𝜆1, . . . , 𝜆𝑛} is a finite zet, we represent
the function 𝑧 as 𝑧 = 𝑓1 * 𝑧+ · · ·+ 𝑓𝑛 * 𝑧, where the functions 𝑓𝑘, 1 6 𝑘 6 𝑛, are in the algebra
L1(Z) and they possess the following properties: the function 𝑓 = 𝑓1 + · · · + 𝑓𝑛 has a Fourier

transform ̂︀𝑓 = 1 in some neighbourhood of the compact set Λ(𝑧), ̂︀𝑓𝑘(𝜆𝑘) = 1, 1 6 𝑘 6 𝑛,

𝜆𝑘 /∈ supp ̂︀𝑓𝑛 for 𝑘 ̸= 𝑛. Then Λ(𝑧𝑘)∩ Z(𝑝) = {𝜆𝑘}, 1 6 𝑘 6 𝑛, and thanks to the above proven
facts, 𝑧𝑘 ∈ ImA𝑝,C0 , 1 6 𝑘 6 𝑛. Therefore, 𝑧 ∈ ImA𝑝,C0 .

Let us prove Property 4). Let 𝑦 = A𝑝,Csl
𝑥, where 𝑥 ∈ D(A𝑝,Csl

). We consider the sequence of
functions (𝜙𝑛) in the algebra L1(R𝑁) introduced in the proof of Property 3 and the sequence
𝑦𝑛 = 𝜙𝑛 * 𝑦, 𝑛 > 1, in Csl(R

𝑁). It follows from the results of paper [26] that 𝑦 − 𝑦0 ∈ C0(R
𝑁),

𝑛 > 1. Lemma 7 and Definition 4 imply that 𝑦𝑛 = 𝜙𝑛 * 𝑦 = A𝑝,Csl
(𝜙𝑛 * 𝑥) = 𝑝(𝜙𝑛) * 𝑥, where

𝑝(𝜙𝑛) =
∑︀

|𝛼|6𝑚
𝑎𝛼D𝛼𝜙𝑛, 𝑝(𝜙𝑛) = 𝑝̂︁𝜙𝑛, and each of the functions 𝑝̂︁𝜙𝑛, 𝑛 > 1, can be represented

as ̂︀𝑔̂︁𝜙𝑛, where ̂︀𝑔 = 𝑝 ̂︀𝑓 and 𝑓 ∈ L1(R𝑁), ̂︀𝑓 = 1 in the neighbourhood of supp̂︁𝜙1. This is why,
in view of the property ̂︀𝑔(0) = 0, we obtain that lim

𝑛→∞

⃦⃦
𝑝(𝜙𝑛)

⃦⃦
1

= 0. Therefore, lim
𝑛→∞

‖𝑦𝑛‖ = 0

and this implies 𝑦 ∈ C0(R
𝑁). The proof is complete.
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Lemma 9. Let 𝑝 ∈ Preg,∞(R𝑁) and 𝑔0, 𝑔1 be functions in the algebra L1(R𝑁) obeying the
assumptions 5. Then the following identities hold

Im𝑆(𝑔1) = D(A𝑝,F) ⊂ Cb,u(R𝑁), A𝑝,F𝑆(𝑔1) − 𝑆(𝑔0) = 𝐼 ∈ EndF (17)

and
𝑔1 *A𝑝,F𝑥− 𝑔0 * 𝑥 = 𝑥, 𝑥 ∈ D(A𝑝,F). (18)

Proof. Let 𝑥 be a function in D(A𝑝,F) and 𝑓 ∈ M. Since the operator 𝑆(𝑓) commutes
with the operator A𝑝,F, see Lemma 1, we have 𝑆(𝑓)𝑥 ∈ D(A𝑝,F), and then the function
𝑦 = 𝑆(𝑓)

(︀
A𝑝,F𝑆(𝑔1) − 𝑆(𝑔0)

)︀
𝑥 can be represented as 𝑦 = A𝑝,F𝑆(𝑓 * 𝑔1) − 𝑆(𝑓 * 𝑔0)𝑥 = 𝑔 * 𝑥,

where ̂︀𝑔(𝜆) = 𝑝(𝜆) ̂︀𝑓(𝜆)̂︀𝑔1(𝜆) − ̂︀𝑓(𝜆)̂︀𝑔0(𝜆) = 0, 𝜆 ∈ R𝑁 . Thus, 𝑆(𝑓)𝑦 = 0 for each function 𝑓
in M. The property M = L1(R𝑁) implies that 𝑓 * 𝑦 = 0 for each function 𝑓 in the algebra
L1(R𝑁) and this is why 𝑦 = 0. This completes the proof of identity (17). The proven fact
implies Im𝑆(𝑔1) ⊂ D(A𝑝,F).

In the same way we establish identity (18). It follows from identities (17) and (18) that
D(A𝑝,F) = Im𝑆(𝑔1). Since the functions in the image of the convolution operator are uniformly
continuous, we arrive at D(A𝑝,F) ⊂ Cb,u. The proof is complete.

Lemma 10. If the operator A𝑝,F is invertible, it is invertible on all spectral submoduli in F

and the property holds:
Z(𝑝) ∩ Λ(F) = ∅. (19)

Proof. Assume that condition (10) is not satisfied and let 𝜆0 ∈ Z(𝑝) ∩ Λ(F). We consider any
compact neighbourhood ∆ containing the point 𝜆0 and the restriction AΔ = A𝑝,F|F(∆) of the
operator A𝑝,F on the spectral subspace F(∆). Let us prove that 𝜆0 ∈ Λ

(︀
F(∆)

)︀
and therefore,

F(∆) is a non-zero subspace in F. In order to do this, we consider a function 𝑓 in the algebra

L1(R𝑁) with the properties ̂︀𝑓(𝜆0) ̸= 0 and supp ̂︀𝑓 ⊂ ∆. Then 𝑓 * 𝑥 ∈ F(∆), 𝜆0 ∈ Λ(𝑓 * 𝑥).
Hence, 0 ̸= 𝑓𝑥 ∈ F(∆).

According Lemma 8, the operator AΔ is bounded
(︀
AΔ ∈ EndF(∆)

)︀
, and by the proven

above it is invertible and the inverse A−1
Δ ∈ EndF(∆) is the restriction of the operator A−1

𝑝,F on

the spectral subspace F(∆). It follows from Lemma 9 that the operator A−1
𝑝 is the convolution

operator with the function 𝑔1 ∈ L1(R𝑁). To prove this, it is sufficient to choose a function 𝑔0
so that

(︀
supp ̂︀𝑔0)︀ ∩ ∆ = ∅. Since ̂︀𝑔1 = 𝑝 in some neighbourhood of the set ∆, then ̂︀𝑔1(𝜆0) =

𝑝(𝜆0) = 0. Since the algebra L1(R𝑁) satisfies the Ditkin condition [2], [3], there exists a
bounded sequence (𝜙𝑛) in the algebra L1(R𝑁) with the following properties: ̂︁𝜙𝑛 = 0 in some
open neighbourhood 𝑉𝑛 ⊂ ∆ of the point 𝜆0 for each 𝑛 ∈ N and lim

𝑛→∞
‖𝜙𝑛 * 𝑔1‖1 = 0. We

consider the sequence 𝐴𝑛 ∈ EndF(∆), 𝑛 > 1, of form

A𝑛 = AΔ − 𝑆(𝜙𝑛)AΔ = 𝑆(𝑔1 − 𝜙𝑛 * 𝑔1), 𝑛 > 1.

This representation implies that

‖AΔ −A𝑛‖ =
⃦⃦
𝑆(𝜙𝑛)𝑆(𝑔)

⃦⃦
= ‖𝑆(𝜙𝑛 * 𝑔𝑛)‖ → 0, 𝑛→ ∞.

Let ∆𝑛 be a compact neighbourhood of the point 𝜆0 contained 𝑉𝑛. Since the point 𝜆0 belongs
to the set Λ

(︀
F(∆)

)︀
and 𝜆0 ∈ ∆, then F(∆𝑛) is a non-zero spectral subspace in F. Since the

function ̂︀𝑔1−̂︁𝜙𝑛 ̂︀𝑔1 vanishes in the vicinity of the set ∆𝑛, it follows from Property 3 of Lemma 3
that {0} ≠ F(∆𝑛) ⊂ KerA𝑛 for each 𝑛 > 1. Thus, we obtain that the invertible operator AΔ is
a limit (in the operator norm) of a sequence of non-invertible operators 𝐴𝑛, 𝑛 > 1. This leads
us to a contradiction and completes the proof.

We note that Lemma 10 can be proved very easily in the case, when F contains the subspace
AP(R𝑁).



16 A.G. BASKAKOV, E.E. DIKAREV

Proof of Theorem 5. The necessity of condition (8) was established in Lemma 10.
Assume that condition (8) holds. Since the polynomial 𝑝 is regular at infinity, by Lemma 5

there exist functions 𝑔, 𝑔0 ∈ L1(R𝑁), for which Conditions 1, 2 of Lemma 5 are satisfied. The
regularity at infinity of the polynomial 𝑝 implies that the set of its zeroes Z(𝑝) is compact.
Condition (8) yields that

dist
(︀
Z(𝑝),Λ(F)

)︀
= inf

𝜆∈Z(𝑝)
𝜇∈Λ(F)

|𝜆− 𝜇| > 0.

We turn to Lemma 5, letting ∆ = Λ(F), and consider the functions 𝑔0, 𝑔1 ∈ L1(R𝑁) in this
lemma.

Let us prove that the convolution operator 𝑆(𝑔) is inverse for the operator A𝑝,F. The definition
of the function ̂︀𝑔1 implies immediately that

̂︀𝑔1 − 1 = ̂︀𝑔0 ∈ ̂︁L1(R𝑁),

this is why by Lemma 9 we obtain that Im𝑆(𝑔1) = D(A𝑝,F), and there hold identities (17), (18)
in the assumptions of Lemma 9. Since ̂︀𝑔0 = 0 in some neighbourhood of the set Λ(F), then
𝑔0 *𝑥 = 0 for each function 𝑥 in F, that is, 𝑆(𝑔0) is a zero operator. Therefore, the operato A𝑝,F

is invertible and A−1
𝑝,F = 𝑆(𝑔). The proof is complete.

As it was mentioned above, Theorem 6 follows Theorem 5.

Proof of Theorem 7. The first of the theorem is due to Theorem 5. It implies that the op-
erator A−1

𝑝 is of form (9). By this formula we infer that the Fourier series of the periodic

function A−1
𝑝 𝑦 reads as

(A−1
𝑝 𝑦)(𝜏) ∼

∑︁
𝑘∈Z

̃︀𝑔(𝜆𝑘)e
i(𝜆𝑘,𝜏) =

∑︁
𝑘∈Z

1

𝑝
(︁

2𝜋
(︁
𝑘1
𝜔1
, . . . , 𝑘𝑁

𝜔𝑁

)︁)︁ei(𝜆𝑘,𝜏),

each function A−1
𝑝 𝑦, 𝑦 ∈ CΩ, possesses the Fourier series of the form(︀

A−1
𝑝 𝑦

)︀
(𝜏) ∼

∑︁
𝑘∈Z𝑁

̂︀𝑔(𝜆𝑘)e
i2𝜋(𝜆𝑘,𝜏) =

∑︁
𝑘∈Z𝑁

1

𝑝
(︁

2𝜋
(︁
𝑘1
𝜔1
, . . . , 𝑘𝑁

𝜔𝑁

)︁)︁ei2𝜋(𝜆𝑘,𝜏), 𝜏 ∈ R𝑁 ,

where ̃︀𝜔 =
(︁

1
𝜔1
, . . . , 1

𝜔𝑁

)︁
, 𝜆𝑘 =

(︁
𝑘1
𝜔1
, . . . , 𝑘𝑁

𝜔𝑁

)︁
. It is straightforward to check, the Fourier series

of the function

𝑧(𝜏) =

∫︁
𝐾

𝐺(𝜏 − 𝑠)𝑦(𝑠) d𝑠, 𝜏 ∈ R𝑁 ,

coincides with the above Fourier series of the function A−1
𝑝 𝑦 and this is why the function A−1

𝑝 𝑦
coincides with the function 𝑧. The proof is complete.

Proof of Theorem 8. For each 𝜆0 ∈ C the operator A𝑝,F−𝜆0𝐼 coincides with the operator A𝑝0,F,
where 𝑝0(𝜆) = 𝑝(𝜆) − 𝜆0, 𝜆 ∈ R𝑁 . Thanks to Lemma 5, it is clear that the polynomial 𝑝0, as
well as 𝑝, is regular at infinity and this is why the operator A𝑝,F − 𝜆0𝐼 is invertible if and only
if the condition 𝜆0 /∈ 𝑝

(︀
Λ(F)

)︀
holds. Thus, we have established identity (8). For a spectrally

homogeneous space Λ(F) = R
𝑁 we have and this is why in this case identity (8) holds true.

The proof is complete.

Proof of Theorem 9. Since the set Λ(F) has no finite limiting points, the property 𝑝 ∈
Preg,∞(R𝑁) and Theorem 8 imply that the resolvent set 𝜌(A𝑝,F) is non-empty. In what fol-
lows, without loss of generality, we assume that 𝜆0 = 0. Then Theorem 5 implies that the
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inverse operator A−1
𝑝,F is represented as(︀

A−1
𝑝,F𝑥

)︀
= 𝑔 * 𝑥, 𝑥 ∈ F (20)

for some function 𝑔 ∈ L1(R𝑁). We consider the aforementioned approximative unit (𝑓𝑛) in the
algebra L1(R𝑁) and a sequence of the operators

𝐴𝑛𝑥 = 𝑆(𝑓𝑛)A−1
𝑝,F𝑥 = 𝑆(𝑓𝑛)𝑆(𝑔)𝑥, 𝑥 ∈ F, 𝑛 > 1.

Then
⃦⃦
A−1
𝑝,F − 𝐴𝑛

⃦⃦
6 ‖𝑔 − 𝑓𝑛 * 𝑔‖1 → 0, 𝑛→ ∞.

Let us prove that each of the operators 𝐴𝑛, 𝑛 > 1, is a finite rank operator. The image
Im𝑆(𝑔) of the operator is contained in the subspace F ∩ Cb,u, and it follows from Properties 2
and 3 of Lemma 3 that Λ

(︀
Im𝑆(𝑔)

)︀
⊂ Λ(F), that is, it is either countable or finite set. Therefore,

by Loomis theorem 10, Im𝑆(𝑔) ⊂ AP(R𝑁). Let

Λ
(︀
Im𝑆(𝑔)

)︀
= {𝜆𝑘 | 𝑘 > 1} ⊂ R

𝑁 ,

where lim
𝑘→∞

|𝜆𝑘| = ∞; for the sake of definiteness, we assume that Λ(F) is a countable set.

By assumption, supp ̂︀𝑓𝑛 is a compact set and each of the sets Λ(Im𝐴𝑛), 𝑛 > 1, is finite
and consists of the trigonometric polynomials, see Remark 1. This is why Im𝐴𝑛 is a finite-
dimensional subspace in F. Therefore, the operator A−1

𝑝,F ∈ EndF is compact as a limit of finite
rank operators. The proof is complete.

We note that the main results of the paper are also true for the operators acting in real
functions spaces and at that, one can employ the approach developed in papers [18], [28], [29].
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