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SPECTRAL ASYMPTOTICS FOR FOURTH ORDER

DIFFERENTIAL OPERATOR WITH TWO TURNING POINTS

L.G. VALIULLINA, Kh.K. ISHKIN, R.I. MARVANOV

Abstract. The paper is devoted to studying the asymptotics of the spectrum of a
self-adjoint operator 𝑇 generated by a fourth-order differential expression in the space
𝐿2(0,+∞) under the assumption that the coefficients of the expression have a power growth
at infinity such that: a) the deficiency index of the corresponding minimal operator is (2,2),
b) for sufficiently large positive values of a spectral parameter, the differential equation
𝑇𝑦 = 𝜆𝑦 has two turning points: a finite one and +∞, c) the roots of the characteris-
tic equation grow not with the same rate. The latter assumption leads one to significant
difficulties in studying the asymptotics of the counting function for the spectrum by the tra-
ditional Carleman–Kostyuchenko method based on estimates of the resolvent far from the
spectrum and Tauberian theorems. Curiously enough, the method of reference equations
used to solve the more subtle problem of finding asymptotic expansions of the eigenval-
ues themselves, and therefore more sensitive (compared to the Carleman–Kostyuchenko
method) to the behavior of the coefficients in the differential expression is more effective
in the considered situation: imposing some constraints on coefficients such as smoothness
and regular growth at infinity, we obtain an asymptotic equation for the spectrum of the
operator 𝑇 . This equation allows one to write out the first few terms of the asymptotic
expansion for the eigenvalues of the operator 𝑇 in the case when the coefficients have a
power growth. We also note that so far the method of reference equations has been used
only in the case of the presence of the only turning point.
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1. Introduction

Let 𝑇 be a lower semi-bounded self-adjoint operator acting in some infinite-dimensional
separable Hilbert space with a discrete spectrum. The latter means that the spectrum consists
of countably many eigenvalues of finite multiplicity and possess the unique accumulation point
+∞. Let {𝜆𝑛}∞𝑛=1 be the eigenvalues of the operator 𝑇 taken in the ascending order counting
multiplicities. The asymptotic behavior of the sequence {𝜆𝑛}∞𝑛=1 can be written in terms of the
eigenvalues or in terms of the counting function of the spectrum 𝑁(𝜆) =

∑︀
𝜆𝑛<𝜆

1:

𝜆𝑛 ∼𝑓(𝑛), 𝑛 → +∞, (1)

𝑁(𝜆) ∼𝑔(𝜆), 𝜆 → +∞, (2)

where 𝑓 , 𝑔 are some increasing mutually inverse functions defined in some neighbourhood of
the point +∞. Formulae (1) and (2) are not always equivalent. For instance, if 𝑓(𝜆) = 𝐶𝑒𝜆,
where 𝐶 is a positive constant, then formula (1) implies (2). By formula (2) is equivalent
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to 𝑁(𝜆) ∼ ln𝜆, 𝜆 → +∞, which obviously does not yield (1). It is easy to check that as
𝑔(𝜆) = 𝐶𝑒𝜆, formula (2) is stronger than (1).

The considered examples show that the non-equivalence of formulae (1) and (2) is not only
since the function 𝑁(𝜆) is defined up to 𝑂(1) but because of how “well” the behavior of the
functions 𝑓 and 𝑔 at infinity is. The condition of the “well” behavior is well-known [1]: if

lim
𝛿→1+0

lim sup
𝑥→+∞

𝑓(𝛿𝑥)

𝑓(𝑥)
= 1, (3)

then for each increasing sequence {𝜆𝑛} with asymptotics (2), estimate (1) is true as well. The
same statement is true for the implication (1) ⇒ (2). The functions obeying condition (3) are
called pseudo regularly varying functions (PRV-functions). Because of numerous applications,
especially in probability theory, PRV-functions were studied rather well, see [2] and the refer-
ences therein. We note that PRV-functions are natural generalizations of RV-class of regularly
varying functions introduced by Karamata in 1903 in its basic work [3]. The results by Kara-
mata together with further developments and generalizations turned out to be exceptionally
fruitful for various fields in mathematics, see [4, 5].

Being applied, condition (3) is not always effective. Suppose that for some operator we
succeed to obtain estimate (2) but we need to find a more precise asymptotics

𝜆𝑛 ∼ 𝑓(𝑛) + 𝑂(𝛼𝑛), 𝑛 → +∞, (4)

where sequence {𝛼𝑛} decays with a prescribed rate. It is clear that even if the function 𝑔 satisfies
condition (3), formula (4) should not follow (2). Thus, under condition (3), formula (4) can be
stronger than formula (2).

A more essential difference is between the methods of obtaining estimates (4) and (2). One of
the main methods for studying asymptotics 𝑁(𝜆) going back to work [6] by Carleman is based
on estimating the resolvent (𝑇 −𝜆)−1 or some function of the resolvent for large 𝜆 far from the
spectrum of 𝑇 followed by applying Tauberian theorems, see, for instance, [7]. We note that
Tauberian method can be successfully applied also to non-self-adjoint operators [8], [9]. But
once we want to find several first terms in asymptotics expansion (4), the Tauberian technique
is no longer applicable. The reason is that we have to descend to the spectrum and to study the
asymptotics of solutions to the equation 𝑇𝑦 = 𝜆𝑦 as 𝜆 goes to infinity along a set containing the
spectrum of the operator 𝑇 . In the case, when 𝑇 is a singular ordinary differential operator [10],
the latter circumstance usually gives rise to turning points [11, Ch. III, Sect. 1], which complicate
essentially the problem on finding asymptotic expansions for solutions to the equation 𝑇𝑦 = 𝜆𝑦.
This is why, at least for ordinary differential operators, the problem on finding expansion (4)
is often more complicated than a similar problem for 𝑁(𝜆)1. In this context, an operator, for
which formula (4) can be obtained easier than (2), should be regarded as a curious incident.

The paper is devoted to obtaining formula (4) for one of such operators. This operator,
denoted by 𝑇 , acts in the space 𝐿2(0,+∞) by the rule:

𝑇𝑦 = ℒ(𝑦) := 𝑦(4) − 2(𝑝(𝑥)𝑦′)′ + 𝑞(𝑥)𝑦 (5)

on the functions

𝐷(𝑇 ) =
{︀
𝑦 ∈ 𝐿2(0,+∞) : 𝑦[𝑘] ∈ 𝐴𝐶[0,+∞) (𝑘 = 0, 3),

ℒ(𝑦) ∈ 𝐿2(0,+∞), 𝑦(0) = 𝑦′′(0) = 0, lim
𝑥→+∞

[𝑦, 𝑦](𝑥) = 0

}︂
.

1For some operators, for instance, for partial differential operators, the leading term in expansion (1) can be
found only from (2) by inverting the function 𝑔.
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Here

[𝑦, 𝑧] =
2∑︁

𝑘=1

(︀
𝑦[𝑘−1]𝑧[2−𝑘] − 𝑦[2−𝑘]𝑧[𝑘−1]

)︀
,

𝑦[𝑘] is the 𝑘th quasi-derivative [10, Sect. 15] of a function 𝑦: 𝑦[𝑘] = 𝑦(𝑘) as 𝑘 = 0, 2 and
𝑦[3] = 2𝑝𝑦′ − 𝑦′′′. The symbol 𝐴𝐶[0,+∞) stands for the set of functions absolutely continuous
on each segment [0, 𝑏], 𝑏 > 0. Hereinafter we assume that the functions 𝑝 and 𝑞 are real and
summable on each interval (0, 𝑏), 𝑏 > 0. Under such assumptions, 𝑇 is a closed symmetric
operator with the deficiency index (𝑛, 𝑛), where 0 6 𝑛 6 2, see [10, Sect. 17, Subsect. 5]. If 𝑇
is self-adjoint, that is, 𝑛 = 0, and for some 𝑎 > 0 the functions 𝑝 and 𝑞 are non-negative almost
everywhere in (𝑎,∞), then it follows from the proof of Lemma 2 in work [12] that 𝑇 coincides
with the operator associated with a lower-bounded closed quadratic form

𝑙[𝑦] =

∫︁ ∞

0

(︀
|𝑦′′|2 + 2𝑝|𝑦′|2 + 𝑞|𝑦|2

)︀
𝑑𝑡,

𝐷(𝑙) =
{︀
𝑦 ∈ 𝐿2(0,∞) :

√
𝑞𝑦,

√
𝑝𝑦′ ∈ 𝐿2(𝑎,∞), 𝑦′′ ∈ 𝐿2(0,∞), 𝑦(0) = 0

}︀
,

and hence, it is lower semi-bounded. If in addition we assume that

𝑞(𝑥) → +∞, 𝑥 → ∞, (6)

then by the minimax principle [13, Ch. XIII, Sect. 1], the operator 𝑇 has a discrete spectrum.
As it has been mentioned above, to obtain asymptotic estimates (1) or (2), it is important

to know the behavior of fundamental system of solutions (FSS) to the equation

𝑦(4) − 2(𝑝(𝑥)𝑦′)′ + 𝑞(𝑥)𝑦 = 𝜆𝑦 (7)

for large 𝑥 > 0 and 𝜆 > 0, respectively, for 𝜆 < 0. The behavior of FSS depends essentially on
the behavior of characteristic roots 𝜇𝑖(𝑥, 𝜆), (𝑖 = 1, 4), of the equation

𝜇4 − 2𝑝𝜇2 + 𝑞 − 𝜆 = 0.

We have:
𝜇1,2 = ±

√
𝜈1, 𝜇3,4 = ±

√
𝜈2, (8)

where 𝜈1,2 = 𝑝±
√
𝐷, 𝐷 = 𝑝2 + 𝜆− 𝑞. Hereinafter the branch of the root

√
𝑧 is chosen so that√

𝑧 > 0 as 𝑧 > 0. Thus, if 𝑞 satisfies (6) and

𝑝2(𝑥) = 𝑜(𝑞(𝑥)), 𝑥 → ∞, (9)

there exist positive constants 𝐴, 𝐵 and 𝐶 such that as 𝑥 > 𝑎, 𝜆 < −𝐶, 𝑘, 𝑗 = 1, 4, we have

𝐵 6

⃒⃒⃒⃒
𝜇𝑘(𝑥, 𝜆)

𝜇𝑗(𝑥, 𝜆

⃒⃒⃒⃒
6 𝐴. (10)

Conditions (10) play important role while deriving estimate (2) for quasi-differential operator
of arbitrary order [7, Ch. VIII]. As this condition fails, the asymptotic structure of FSS for
equation (7) can become much more complicated, see [14] and the references therein. First,
this complexity is due to the fact that the characteristic roots grow not at the same rate at
infinite, which is a degenerate case. For instance, if 𝑝(𝑥) → +∞, 𝑥 → ∞, and

𝑞(𝑥) = 𝑜(𝑝2(𝑥)), 𝑥 → ∞, (11)

then
𝜇𝑗+2(𝑥, 𝜆) = 𝑜 (𝜇𝑗(𝑥, 𝜆)) (𝑗 = 1, 2), 𝑥 → +∞.

Second, part of these roots can glue into a multiple root at some points called turning points.
As it has been mentioned above, the presence of the latter cause many troubles in studying the
asymptotics of FSS, see [11], [15] and further references. Moreover, if

𝑞(𝑥) = 𝑥𝛼, 𝑝(𝑥) =
√︀

𝑥2𝛽 + 𝑥𝛾 cos𝑥𝛿 + 𝑥𝛼, 0 < 𝛼, 𝛾 < 2𝛽, 𝛿 > 0, (12)
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then by formulae (8) we see that as 𝜆 = −𝑟, 𝑟 ≫ 1, subject to the sign of 𝛿 + 𝛾 − 2𝛽,
equation (7) has either finite or infinite number of turning points determined by the equation
𝑥2𝛽 + 𝑥𝛾 cos𝑥𝛿 = 𝑟. In the vicinity of each turning point, the standard asymptotic estimates
(WKB-estimates for second order equations and their analogues for higher order equations and
systems [11]) do not work.

This is why under condition (11) and for large negative 𝜆 we have to deal with troubles of
both types. Nevertheless, Carleman-Kostyuchenko method for obtaining formula (2) can be
also applied in this situation, we just should go to the complex 𝜆-plane (see [14] and also [7]).

However, in the degenerate case and of course with a more detailed information on behavior
of the functions 𝑝 and 𝑞 one can succeed to obtain formula (4) under imposed conditions for 𝑝
and 𝑞 and this formula is stronger than (2). At that, the troubles cased by the presence of the
turning points turn out to be less than in problem on finding formula (2)!

There different methods thank to which one can overcome problems related with the turning
points and to obtain formula (2) for operators 𝑇 . One of them, see, for instance, [14], [16],
is the aforementioned going to the complex 𝜆-plane, namely, the studying of the asymptotics
of the Green function of the operator 𝑇 for large 𝜆 in some non-real ray leaving the origin
and the applying of some Tauberian theorem [8], [9], [17]. Another method coming back to
Langer’s work [18] allows one to obtain an approximate solution to equation (7) suitable both
at the turning point and far from it. This method is effective in self-adjoint and non-self-adjoint
spectral problems [15], [19], [20]. Exactly thanks to Langer’s method, one succeeds to obtain
formula (4) with the estimate

𝛼𝑛 = 𝑛−𝑚, 𝑚 = const > 0, (13)

in degenerate case (11), when the coefficients 𝑝 and 𝑞 grow at a power rate and satisfy some
additional smoothness conditions and conditions of regular growth at infinity, cf. Theorem 2.
We stress once again: on one hand, estimates (4) and (13) involve much more information
about the spectrum of the asymptotics of the operator 𝑇 in comparison with estimate (2) and
on the other hand, Langer’s method can be helpless for obtaining estimate (2) in some case, as
in example (12)).

2. Formulation of main results

We impose the following restrictions on real functions 𝑝 and 𝑞:
1) There exists 𝑥0 > 0 such that the functions 𝑝 and 𝑞 are summable on (0, 𝑥0).
2) As 𝑥 > 𝑥0, where 𝑥0 > 0 is a constant, the functions 𝑝 and 𝑞 possess absolutely continuous

derivatives satisfying the inequalities:

𝑎1𝑥
𝛼−1 6 𝑞′(𝑥) 6 𝐴1𝑥

𝛼−1, 𝑏1𝑥
𝛽−1 6 𝑝′(𝑥) 6 𝐵1𝑥

𝛽−1, (14)

where 𝑎1, 𝐴1, 𝑏1, 𝐵1, 𝛼, 𝛽 are positive constants, and

𝛼 < 2𝛽; (15)

the second derivatives of the functions 𝑝 and 𝑞 are sign-definite almost everywhere.

Remark 1. It follows from inequalities (14) that as 𝑥 > 𝑥1 (𝑥1 > 𝑥0),

𝑎𝑥𝛼 6 𝑞(𝑥) 6 𝐴𝑥𝛼, 𝑏𝑥𝛽 6 𝑝(𝑥) 6 𝐵𝑥𝛽, (16)

where 𝑎, 𝐴, 𝑏, 𝐵 are positive constants. Therefore, [10, Sect. 24, Thm. 2], the spectrum of each
self-adjoint extension of the minimal operator generated by expression (5) is discrete.

In what follows, under additional restrictions for the functions 𝑝 and 𝑞 we obtain a double
asymptotics for solutions to the equation ℒ(𝑦) = 𝜆𝑦, see [11, Ch. II, Sect. 7]. In particular,
this implies that the deficiency indices of the minimal operator 𝑇0 generated by the differential
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expression ℒ𝑦 in 𝐿2(0,+∞) (see [10, Ch. V, Sect. 17]) is equal to (2,2). The latter fact yields
the self-adjointness of the operator 𝑇 .

By relations (8) and inequalities (15), (16) we see that for each 𝜆 ≫ 1, equation (7) possesses
the unique turning point 𝑎𝜆 determined by the condition 𝑞(𝑎𝜆) = 𝜆. At this point, there merge
the roots 𝜇3,4 coinciding with the characteristic root for the Sturm-Liouville equation

− 𝑦′′ +
𝑞 − 𝜆

𝑝 +
√︀

𝑝2 + 𝜆− 𝑞
𝑦 = 0. (17)

In work [21], under Conditions 1), 2) and 0 < 𝛽 < 𝛼+2, the asymptotics of FSS to equation (7)
was found for large 𝜆 > 0; this asymptotics was uniform in 𝑥 > 0. Employing this asymptotics,
there was obtain an asymptotic equation for the spectrum allowing one to obtain several first
terms in expansion (4), (13) in the case 𝑞(𝑥) = 𝑥𝛼, 𝑝(𝑥) = 𝑥𝛽.

While constructing asymptotics of FSS, it turned out that for large 𝜆, two solutions in FSS
can be approximated uniformly in 𝑥 > 0 by solutions of equation (17). In the case 𝛽 > 𝛼+2 such
approximation became inappropriate in a neighbourhood of the infinity; this neighbourhood
depended on 𝜆 > 0. That related with the fact that as 𝛽 > 𝛼 + 2, the point 𝑥 = +∞ is also a
turning point and this is to construct the asymptotics of solutions to equation (17) at infinity
one had to choose another reference equation. While choosing such equation, we shall need
more detailed in comparison with Condition 2) information on behavior of the functions 𝑝 and
𝑞 at infinity. Namely, we assume that the function 𝑝 satisfies the following condition:

3) 𝑝(𝑘)(𝑥) = (𝑥𝛽)(𝑘) + 𝑂
(︀
𝑥𝛽−𝑘−𝜀

)︀
on [𝑥0,∞) 𝑘 = 0, 1, 2, 𝜀 > 0.

In the case 𝛽 = 𝛼 + 2 we impose one more condition:
4) 𝑞(𝑥) = 𝑥𝛼 + 𝑂(𝑥𝛼−𝜎), 𝜎 > 0, on [𝑥0,+∞).
It is obvious that the functions of form

𝑝(𝑥) = 𝑥𝛽 + 𝑅(𝑥), 𝑞(𝑥) = 𝑥𝛼 + 𝑉 (𝑥), (18)

with 𝑅, 𝑉 ∈ 𝐶0[0,+∞) satisfy Conditions 1)–4).

Theorem 1. Assume that as 𝛽 > 𝛼+2, Conditions 1)–3) hold and as 𝛽 = 𝛼+2, Condition 4)
is satisfied as well. Then the eigenvalues of the operator 𝑇 with sufficiently large indices are
determined by the equation

sin Φ(𝜆) + 𝐾(𝜆) cos Φ(𝜆) + 𝑂(𝜆−𝛿) = 0, (19)

where

Φ(𝜆) =
√
𝜆

∫︁ ∞

0

(︁
𝑝 +

√︀
𝑝2 + 𝜆

)︁− 1
2
𝑑𝑡 +

𝜋

4
− 𝜋

2(𝛽 − 2)

√︀
(𝛽 − 1)2 + 2𝐶, (20)

𝐶 =

{︂
0 as 𝛽 > 2 + 𝛼,

1 as 𝛽 = 2 + 𝛼,
(21)

𝐾(𝜆) = − 5

72

(︁
Φ(𝜆) − 𝜋

4

)︁−1

+
1

2

∫︁ 𝑎𝜆

0

|𝜈2|−
1
2

(︂
𝑏2 + 𝑏′ −𝐾(𝑡, 𝜆) +

𝐷′𝜈 ′
2𝜈2

8𝐷2

)︂
𝑑𝑡, (22)

𝑏 =
𝑝′

2
√
𝐷
, 𝜈2 = 𝑝−

√
𝐷, 𝐷 = 𝑝2 + 𝜆− 𝑞, (23)

𝛿 =

⎧⎪⎪⎨⎪⎪⎩
min

{︂
1

2
,
2(𝛽 − 𝛼− 2)

𝛽 − 2
,

2𝜀

𝛽 − 2

}︂
as 𝛽 > 𝛼 + 2,

min

{︂
1

2
,

2𝜎

𝛽 − 2
,

3𝜀

𝛽 − 2

}︂
as 𝛽 = 𝛼 + 2.

(24)
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If the functions 𝑝 and 𝑞 are of form (18), then

𝛿 =

⎧⎪⎪⎨⎪⎪⎩
min

{︂
1

2
+

1

𝛽
,
2(𝛽 − 𝛼− 2)

𝛽 − 2

}︂
as 𝛽 > 𝛼 + 2,

1

2
+

1

𝛽
as 𝛽 = 𝛼 + 2.

Theorem 2. Assume that the functions 𝑝 and 𝑞 are of form (18). Then for 2 + 𝛼 < 𝛽 <
2 + 2𝛼 the spectrum of the operator 𝑇 has the asymptotics:

𝜆𝑘 = 𝑚
4𝛽
𝛽+2

𝑘 +
4𝛽

𝛽 + 2
𝐶−1

0

{︃
𝐶1𝑚

2(𝛽−1)
𝛽+2

𝑘 − 𝐶2𝑚
2(𝛽−2)
𝛽+2

𝑘 + 𝐶3𝑚
((𝛽−2)2+2𝛼𝛽)

𝛽2−4

𝑘

}︃
+ 𝑂

(︀
𝑘−𝑚

)︀
, (25)

where

𝑚𝑘 = 𝐶−1
0 𝜋

(︂
𝑘 +

𝛽

4(𝛽 − 2)

)︂
,

𝐶0 =

∫︁ ∞

0

(︁
𝑥𝛽 +

√︀
𝑥2𝛽 + 1

)︁− 1
2
𝑑𝑥, 𝐶1 =

1

2

∫︁ ∞

0

𝑅(𝑥)𝑑𝑥,

𝐶2 =
𝛽

8

∫︁ ∞

0

[︂̃︀𝜈2 1
2 ̃︀𝐷− 1

2 𝑡𝛽−2

(︂
−2𝛽 ̃︀𝐷−1 + 𝛽 ̃︀𝐷−2 − 3

4
𝛽𝑡𝛽 ̃︀𝐷− 1

2 + 1

)︂
+

+
3𝛽 − 4

(𝛽 − 2)2
̃︀𝑄−2̃︀𝜈− 1

2

]︂
𝑑𝑡− (3𝛽 − 4)𝛽

8(𝛽 − 2)2
𝐶−1

0 ,

̃︀𝜈 = 𝑡𝛽 +
√︀̃︀𝐷, ̃︀𝐷 = 𝑡2𝛽 + 1, ̃︀𝑄 =

∫︁ ∞

𝑡

̃︀𝜈− 1
2𝑑𝑡, 𝛾 =

𝛽 − 1

𝛽 − 2
,

𝐶3 =
𝜋

2

(︂
𝛽 − 2√

2

)︂− 2𝛼
𝛽−2
∫︁ ∞

0

𝑡−
2𝛼
𝛽−2

+1𝐽2
𝛾 (𝑡)𝑑𝑡, 𝐽𝛾 is the Bessel function of first kind,

𝑚 = min

{︂
1

2
+

1

𝛽
,
3

4
,

2(𝛽 − 𝛼− 2)

𝛽 − 2
,

1

2
+

𝛽 − 𝛼− 2

𝛽 − 2

}︂
− 3𝛽 − 2

𝛽 + 2
.

As 𝛽 > 2 + 2𝛼, similar formulae hold true.

3. Proof of Theorems 1

3.1. Reduction of main equation to canonical form. We introduce notations. Let 𝜒(𝑥)
be an infinitely differentiable function equalling one on [0, 𝑥0] and vanishing on [𝑥0 + 1,∞). We
denote

𝑝1(𝑥) = 𝑝(𝑥)(1 − 𝜒(𝑥)), 𝑞1(𝑥) = 𝑞(𝑥)(1 − 𝜒(𝑥)), 𝑓(𝑥, 𝜆, 𝜇) = 𝜇4 − 2𝑝1𝜇
2 + 𝑞1 − 𝜆,

𝐴1 =

⎛⎜⎜⎝
0 1 0 0
0 0 1 0
0 2𝑝1 0 −1

𝑞1 − 𝜆 0 0 0

⎞⎟⎟⎠ , 𝐴2 = 𝜒

⎛⎜⎜⎝
0 0 0 0
0 0 0 0
0 2𝑝 0 0
𝑞 0 0 0

⎞⎟⎟⎠ .

We let 𝑌 = (𝑦, 𝑦[1], 𝑦[2], 𝑦[3])𝑇 , where 𝑦[𝑘] stands for the 𝑘th quasi-derivative [10]. Then the
equation ℒ𝑦 = 𝜆𝑦 is equivalent to the system of equations

𝑌 ′ = (𝐴1 + 𝐴2)𝑌. (26)

We introduce the matrices

𝐴0 = diag(𝐴01, 𝐴02),

𝐴01 =
√
𝜈1diag(1,−1), 𝐴02 =

(︂
0 1
𝜈2 0

)︂
, (27)
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𝑇 = 𝐷− 1
4

(︂
𝐼2 𝐼2
Λ1 Λ2

)︂
diag(𝑀𝑊, 𝐼2), (28)

where 𝐼𝑛 is the unit matrix of 𝑛th order,

Λ1 = diag(𝜈1,−𝜈2), Λ2 = diag(𝜈2,−𝜈1),

𝑊 =

(︂
1 1
1 −1

)︂
, 𝑀1 = diag(𝜈

− 1
4

1 , 𝜈
1
4
1 ),

𝐵1 = −𝑇−1𝑇 ′, 𝐵2 = 𝑇−1𝐴2𝑇. (29)

We let

𝐵1 =

(︂
𝐵11 𝐵12

𝐵21 𝐵22

)︂
, 𝑋 =

(︂
𝑋11 𝑋12

𝑋21 𝑋22

)︂
,

𝑋11 = −1

2
𝐴−1

01 𝐵11, 𝑋22 = − 𝑝

2
√
𝐷

(︂
0 0
1 0

)︂
,

𝑋12 = − 1

2
√
𝐷

(𝐴01(𝐵12 + 𝐵12𝐴02) , (30)

𝑋21 = − 1

2
√
𝐷

(𝐵21𝐴01 + 𝐴02𝐵21) .

The following relations can be checked easily:

𝑇−1𝐴𝑇 = 𝐴0, 𝑋𝐴0 − 𝐴0𝑋 = 𝐵1.

Then the substitution
𝑌 = 𝑇 (𝐼4 + 𝑋)𝑉

reduces equation (26) to the form
𝑉 ′ = (𝐴0 + 𝑍1)𝑉, (31)

where
𝑍1 = (𝐼4 + 𝑋)−1(𝐵1𝑋 −𝑋 ′ + 𝐵2(𝐼4 + 𝑋)). (32)

3.2. reference solutions. We introduce the notations:

𝜉 =

(︂
𝛽 − 2

2

∫︁ ∞

𝑥

𝑑𝑡

𝜈
1
2

)︂− 2
𝛽−2

, 𝜈 = 𝑝1 +
√︁

𝑝21 + 𝜆,

𝐵 = (𝜉′)
− 1

2 , 𝑄1 =

∫︁ 𝑥

0

𝜈
1
2
1 𝑑𝑡, 𝑄2 =

√
𝜆

∫︁ ∞

𝑥

𝑑𝑡

𝜈
1
2

.

We choose reference solutions as

𝑉0 = diag(𝑉01, 𝑉02), 𝑉01 = diag(exp𝑄1, exp(−𝑄1)), 𝑉02 =

(︂
𝑣1 𝑣2
𝑣′1 𝑣′2

)︂
,

𝑣1 = 𝐵𝜉
1
2𝐽𝛾(𝑄2), 𝑣2 = 𝐵𝜉

1
2𝑌𝛾(𝑄2),

𝛾 =

⎧⎪⎪⎨⎪⎪⎩
𝛽 − 1

𝛽 − 2
as 𝛽 > 𝛼 + 2,√︀

(𝛽 − 1)2 + 2

𝛽 − 2
as 𝛽 = 𝛼 + 2.

Here 𝐽𝛾 and 𝑌𝛾 are Bessel function of first and second kind, respectively, [22]. Then

𝑉 ′
0 = (𝐴0 + 𝑍2)𝑉0, (33)

where

𝑍2 = diag(0, 𝑍0),
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𝑍0 =

[︃(︂
𝛽(𝛽 − 2)

4
+

𝐶

2

)︂(︂
𝜉′

𝜉

)︂2

+
𝐵′′

𝐵
− 𝑞1

𝜈1

(︃
1 − 𝜆

𝜈(
√
𝐷 +

√︀
𝑝21 + 𝜆)

)︃]︃(︂
0 0
1 0

)︂
,

and the constant 𝐶 is defined by formula (21).
We introduce the functions

𝜙 =
𝜆

𝜈
, 𝑝0 =

⎧⎨⎩
√
𝜙 as 𝑥 6 𝑏𝜆,

1

𝑥
as 𝑥 > 𝑏𝜆,

where 𝑏𝜆 is the root of the equation
√
𝜆𝑄2(𝑏𝜆, 𝜆) = 1. It is easy to see that for sufficiently large

𝜆 > 0 the root 𝑏𝜆 is determined uniquely. We also let

𝑃 = diag(1, 1, 1, 𝑝0), 𝐷 = diag(𝐷1, 𝐷2), (34)

𝐷1 = 𝑉01, 𝐷2 =

{︃
diag

(︀
𝜆𝛾/2𝜉−𝑟, 𝜆−𝛾/2𝜉𝑟

)︀
as 𝑥 > 𝑏𝜆,

𝜙− 1
4 𝐼2 as 𝑥 6 𝑏𝜆,

(35)

𝑟 =
1

2

(︁√︀
(𝛽 − 1)2 + 2𝐶 + 1

)︁
,̃︀𝑉0 = 𝑃−1𝑉0𝐷

−1, ̃︀𝑉 = 𝑃−1𝑉 𝐷−1. (36)

Then ̃︀𝑉0 = diag(𝐼2, ̃︁𝑉02), at that, see [22, Sect. 7.13], as 𝑥 6 𝑀−1𝜆1/(𝛽−2), (𝑀 ≫ 1), we have

̃︁𝑉02 =

√︂
𝛽 − 2

𝜋

(︂
cos Φ1 sin Φ1

sin Φ1 − cos Φ1

)︂
·
[︂
𝐼2 +

1

2

(︂
𝛾2 − 1

4

)︂(︁√
𝜆
)︁−1

(︂
0 1
−1 0

)︂
+ 𝑂

(︂
𝜙− 1

2
𝜈 ′

𝜈
+

1

𝜆𝑄2
2

)︂]︂
,

Φ1 =𝑄2 − (2𝛾 + 1)𝜋/4.

(37)

Moreover, for sufficiently large 𝑀 > 0, Λ0 > 0 there exist positive constants 𝐶1, 𝐶2 such that

𝐶1 < |̃︁𝑉02(𝑥, 𝜆| < 𝐶2 for all 𝑥 > 𝑀𝜆
1

𝛽−2 , 𝜆 > Λ0.

3.3. Integral equation. We have,

𝑉 = 𝑉0 +

∫︁
Γ(𝑥)

𝑉0(𝑥, 𝜆)𝑉0(𝑡, 𝜆)𝑍(𝑡, 𝜆)𝑉 (𝑡, 𝜆)𝑑𝑡,

where 𝑍 = 𝑍1 − 𝑍2, see (31) and (33). We multiply left and right hand side of this equation

by 𝑃−1 and 𝐷−1, respectively (cf. (36)), and we obtain the equation for ̃︀𝑉̃︀𝑉 = ̃︀𝑉0 + 𝐴(𝜆)̃︀𝑉 , (38)

where the operator 𝐴(𝜆) acts by the formula:

(𝐴(𝜆)̃︀𝑉 )(𝑥, 𝜆) = ̃︀𝑉0(𝑥, 𝜆)

∫︁
Γ(𝑥)

𝐴(𝑥, 𝑡, 𝜆)̃︀𝑉 (𝑡, 𝜆)𝐷(𝑡, 𝜆)𝐷−1(𝑥, 𝜆)𝑑𝑡 =: ̃︀𝑉0(𝑥, 𝜆)𝐴1(𝜆)̃︀𝑉 , (39)

𝐴(𝑥, 𝑡, 𝜆) = 𝐷(𝑥, 𝜆)𝐷−1(𝑡, 𝜆)( ̃︀𝑉0

−1
𝑃−1𝑍𝑃 )(𝑡, 𝜆). (40)

By Γ(𝑥) = ((𝛾𝑖𝑗, 𝑥)) we denote a matrix with entries (𝛾𝑖𝑗, 𝑥) being the intervals over which we
integrate the element standing in 𝑖th row and 𝑗th column of the matrix integrand. We choose
them as follows: 𝛾𝑖𝑗 = +∞ as (𝑖, 𝑗) = (3, 2), (4, 2), (4, 3) as 𝛾𝑖𝑗 = 0 for other (𝑖, 𝑗). It follows
from definition (34)–(35) of the matrix 𝐷 that under such choice all exponential factors in (40)
are bounded. Then the norm of the operator 𝐴(𝜆) in the space 𝑍 satisfies the estimate

‖𝐴(𝜆)‖ = 𝑂(𝐼(𝜆)), 𝐼(𝜆) =

∫︁ ∞

0

‖𝐺(𝑡, 𝜆)‖ 𝑑𝑡, (41)
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𝐺(𝑡, 𝜆) = 𝑃−1(𝑡, 𝜆)𝑍(𝑡, 𝜆)𝑃 (𝑡, 𝜆).

Straightforward calculations show that

𝐺(𝑡, 𝜆) = diag(0, 𝐺0) + 𝑂(𝑔), (42)

where

𝐺0 =

(︂
0 𝑔1
𝑔2 0

)︂
, 𝑔 = 𝜈

− 1
2

1

(︃(︂
𝜈 ′
1

𝜈1

)︂2

+
𝜈 ′′
1

𝜈1

)︃
,

𝑔1 =
1

8

𝑝0√
𝐷

(︂
𝐷′

𝐷

𝜈 ′
1√
𝐷

+ 8𝜒𝑝

)︂
, (43)

𝑔2 =
1

4𝑝0

(︃
−1

4

(︂
𝜈 ′

𝜈

)︂2

+
𝜈 ′′

𝜈
− 𝛽(3𝛽 − 4) + 8𝑐

(𝛽 − 2)2
𝜆𝑄−2

2 𝜈−1 − 4𝑞

𝜈1

)︃
. (44)

Lemma 1. Let the functions 𝑝 and 𝑞 satisfy Conditions 1)–3), and in the case 𝛽 = 𝛼 + 2,
Condition 4) is satisfied as well. Then

𝐼(𝜆) = 𝑂(𝜆−𝑚), 𝜆 → +∞, (45)

𝑚 =

⎧⎪⎪⎨⎪⎪⎩
min

{︂
1

4
,
𝛽 − 𝛼− 2

𝛽 − 2
,

𝜀

𝛽 − 2

}︂
as 𝛽 > 𝛼 + 2,

min

{︂
1

4
,

𝜎

𝛽 − 2
,

𝜀

𝛽 − 2

}︂
as 𝛽 = 𝛼 + 2,

where 𝜎 and 𝜀 are positive constants from Conditions 3) and 4).

Proof. By relations (41) and (42) we have

𝐼(𝜆) = 𝑂

(︂∫︁ ∞

0

(𝑔 + |𝑔1| + |𝑔2|)𝑑𝑡
)︂
.

Simple estimates based on inequalities (14), (16) and Condition 2) show that∫︁ ∞

0

(𝑔 + |𝑔1|)𝑑𝑡 = 𝑂
(︁
𝜆− 1

4
− 1

2𝛽

)︁
, 𝜆 → +∞.

In order to estimate the integral 𝐼1(𝜆) =
∞∫︀
0

|𝑔2| 𝑑𝑡, we split it into two integrals

𝐼1 =

(︂∫︁ 𝑐𝜆

0

+

∫︁ ∞

𝑐𝜆

)︂
|𝑔2| 𝑑𝑡 = 𝐼11 + 𝐼12, 𝑐𝜆 = 𝜆1/2𝛽,

and we observe that Conditions 3), 4) imply:

𝑔2 = 𝑂
(︀
𝑥−2

(︀
𝑥−𝛿 + 𝜆𝑥−2𝛽

)︀)︀
, 𝑐−1

𝜆 𝑥 → ∞,

𝛿 =

{︂
min {𝜀, 𝛽 − 𝛼− 2} as 𝛽 > 𝛼 + 2,

min {𝜀, 𝜎} as 𝛽 = 𝛼 + 2.
(46)

This easily yields (45).

Three numbers determining 𝑚 in (45) are of different nature. The first number depends on
the smoothness of the function 𝑝 in the vicinity of zero. The second number, 𝛽−𝛼−2

𝛽−2
or 𝜎

𝛽−2
,

is subject to the choice of reference solutions and in the sense, it characterizes the precision
of the method. The latter number is determined by the relative smallness of the function
𝑅(𝑥) = 𝑝(𝑥) − 𝑥𝛽 in the vicinity of infinity. In the limiting case, we assume that the function
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𝑅(𝑥) is compactly supported, the number 𝜀 disappears in (46). If we additionally assume that
the function 𝑉 = 𝑞 − 𝑥𝛼 in Condition 4) is compactly supported, then as 𝛽 = 𝛼 + 2, we have

𝑔2 = 𝑂(𝜆𝑥−2−2𝛽), 𝑐−1
𝜆 𝑥 → ∞.

Thus, the following lemma holds.

Lemma 2. Let the functions 𝑝 and 𝑞 be of form (18). Then

𝐼(𝜆) = 𝑂(𝜆−𝑚), 𝜆 → ∞,

𝑚 =

⎧⎪⎪⎨⎪⎪⎩
min

{︂
1

4
+

1

2𝛽
,
𝛽 − 𝛼− 2

𝛽 − 2

}︂
as 𝛽 > 𝛼 + 2,

1

4
+

1

2𝛽
as 𝛽 = 𝛼 + 2.

3.4. Completion of proof of Theorem 1. It follows from Lemma 1 that as 𝜆 → ∞,

𝑌 (𝑥, 𝜆) = 𝑇𝑃 (𝐼4 + 𝑜(1)) ̃︀𝑉0(𝐼4 + 𝑜(1))𝐷(𝑥, 𝜆)

uniformly in 𝑥 > 0. Hence, the deficiency indices of the minimal operator 𝑇0 are equal (2,2).
Hence, the operator 𝑇 is self-adjoin and the equation for the eigenvalues is of the form:

det
[︁
𝐶2
̃︀𝑉 (0, 𝜆)

(︁
𝐸4 + 𝐴1(𝜆) ̃︀𝑉0(0, 𝜆) + 𝑂(𝐼2(𝜆)

)︁
𝐶𝑇

1

]︁
= 0, (47)

where

𝐶1 =

(︂
0 1 0 0
0 0 1 0

)︂
, 𝐶2 =

(︂
1 1 0 0
0 0 1 0

)︂
.

It is easy to check that [𝐴1(𝜆) ̃︀𝑉0𝐶
𝑇
1 ](0, 𝜆) is of the form

(︁
𝐴1(𝜆) ̃︀𝑉0𝐶

𝑇
1

)︁
(0, 𝜆) =

⎛⎜⎜⎝
𝛼11 𝛼12

0 0
𝛼31 0
𝛼41 𝛼42

⎞⎟⎟⎠ , (48)

and

𝛼42 =
𝜋

𝛽 − 2

∫︁ ∞

0

(𝑔1𝜔12𝜔21 − 𝑔2𝜔
2
11)𝑓(𝑡, 𝜆)𝑑𝑡 + 𝑂(|𝛽(𝜆)|),

where 𝜔𝑖𝑗 denote the entries of the matrix ̃︁𝑉02,

𝑓(𝑡, 𝜆) =

{︃
1 as 𝑡 6 𝑏𝜆,

𝜆𝛾𝜉−(𝛽−1)(𝑡, 𝜆) as 𝑡 > 𝑏𝜆,
(49)

𝛽(𝜆) = 𝜆− 1
2

∫︁ ∞

0

(︃
𝑞′1𝑝1𝑝

′
1

(𝑝21 + 𝜆)
7
4

+
𝑞′′1

(𝑝21 + 𝜆)
3
4

)︃
𝑑𝑡,

and all other non-zero entries in (48) obey the estimate

𝛼𝑖𝑗 = 𝑂

(︂
𝜆−1/4

∫︁ 𝑥0+1

0

|𝜒𝑝| exp(−𝛿0𝑄1)𝑑𝑡

)︂
+ 𝑂

(︁
𝜆− 3

4

)︁
+ 𝑂

(︀
𝑄−2

2 (0, 𝜆)
)︀
, (𝑖, 𝑗) ̸= (4, 2). (50)

But
𝛽(𝜆) = 𝑂

(︁
𝜆− 3

4
−𝛽−𝛼−1

2𝛽

)︁
,

therefore, equation (47) can be written as

𝜔11(0, 𝜆) + 𝛼42(𝜆)𝜔12(0, 𝜆) + 𝑂(𝐼2(𝜆) + 𝑄−2
2 (0, 𝜆)) = 0. (51)

Let

𝐾(𝜆) =
𝛽(3𝛽 − 4) + 8𝑐

8(𝛽 − 2)2
𝑄−1

2 (0, 𝜆) +
𝜋

𝛽 − 2

∫︁ ∞

0

(𝑔1𝜔21𝜔12 − 𝜔2
11𝑔2)𝑓(𝑡, 𝜆)𝑑𝑡, (52)
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where 𝐶, 𝑓(𝑡, 𝜆), 𝑔1, 𝑔2 are defined respectively by (21), (49), (43), (44). Replying 𝜔11 and 𝜔12

by their asymptotics in (52) in accordance with (37), we obtain equation (19). The proof is
complete.

4. Proof of Theorem 2

4.1. Quantization parameter. It follows from equation (19) that

Φ(𝜆𝑘) = 𝜈𝑘𝜋 + 𝑜(1), 𝑘 → ∞, (53)

where 𝜈𝑘 = 𝜈𝑘(𝛼, 𝛽) is a positive integer number, a quantization parameter. Let us show that
𝜈𝑘(𝛼, 𝛽) = 𝑘.

Let 𝜆𝑘(𝛽) be a 𝑘th eigenvalue of the operator 𝑇 as 𝑝 = 𝑥𝛽, 𝑞 = 0 and let {𝜇𝑘}∞1 be the
spectrum of the problem

𝑦(4) = 𝜆𝑦, 0 6 𝑥 6 1, (54)

𝑦(0) = 𝑦′′(0) = 0, 𝑦(1) = 𝑦′(1) = 0. (55)

Lemma 3. For each fixed 𝑘

𝜆𝑘(𝛽) → 𝜇𝑘, 𝛽 → +∞.

Proof. It follows from Lemma 2 of work [12] that the quadratic form of the operator 𝑇 reads as

𝑙[𝑦] =

∫︁ ∞

0

(|𝑦′′|2 + 2𝑥𝛽 |𝑦′|2)𝑑𝑥,

𝐷(𝑙) =
{︀
𝑦 ∈ 𝐿2(0,∞) : 𝑦, 𝑦′ ∈ 𝐴𝐶[0,+∞), 𝑦′′ ∈ 𝐿2(0,∞), 𝑦(0) = 0

}︀
.

We denote by 𝑦𝑘(𝛽) = 𝑦𝑘(𝛽, 𝑥) and 𝑧𝑘 = 𝑧𝑘(𝑥) the 𝑘th normalized eigenfunction of the operator
𝑇 and of problem (54)–(55), respectively. Then if we continue 𝑧𝑘 by zero on [1,∞), then

𝑧𝑘 ∈ 𝐷(𝑙) and 𝑙[𝑧𝑘] = 𝜇𝑘 + 𝜀𝑘, where 𝜀𝑘 =
1∫︀
0

2𝑥𝛽 |𝑓 ′
𝑘|

2 𝑑𝑥. By the minimax principle [13, Ch.

XIII, Thm. XIII.3] we conclude that

𝜆𝑘(𝛽) 6 𝜇𝑘 + 𝜀𝑘 (𝑘 = 1, 2, . . . ), (56)

and for each fixed 𝑘 we have 𝜀𝑘 → +0 as 𝛽 → +∞. Then employing the inequalities∫︁ ∞

1

𝑥𝛽 |𝑦′𝑘(𝛽, 𝑥)|2 𝑑𝑥 6 𝜇𝑘 + 𝜀𝑘,

∫︁ ∞

1

|𝑦′′𝑘(𝛽, 𝑥)|2 𝑑𝑥 6 𝜇𝑘 + 𝜀𝑘,

by simple calculations we get that

𝑦𝑘(1) = 𝑜(1), 𝑦′𝑘(1) = 𝑜(1), 𝛽 → +∞. (57)

for each fixed 𝑘. But ∫︁ 1

0

|𝑦′′𝑘(𝛽, 𝑥)|2 𝑑𝑥 < 𝜆𝑘(𝛽),

and hence, taking into consideration (57), we conclude tha fo each 𝜀 > 0 and for each 𝑘 ∈ N
there exists a positive number 𝐵(𝑘, 𝜀) such that for each 𝛽 > 𝐵(𝑘, 𝜀) there exists a function 𝑣𝑘
in the domain of quadratic form (54)–(55), for which∫︁ 1

0

|𝑣′′𝑘 |
2
𝑑𝑥 < 𝜆𝑘(𝛽) + 𝜀.

By latter inequality and the minimax principle we obtain:

𝜇𝑘 6 𝜆𝑘(𝛽) + 𝜀, 𝛽 > 𝐵(𝑘, 𝜀).

Together with inequality (56) this complete the proof.
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Lemma 4. For each 𝛽 > 2

Φ(𝜆𝑘(𝛽)) = 𝑘𝜋 + 𝑜(1), 𝑘 → ∞.

Proof. The equation for the eigenvalues of problem (54)–(55) is of the form

sin
(︁
𝜇

1
4 − 𝜋

4

)︁
+ exp

(︁
−2𝜇

1
4

)︁
cos
(︁
𝜇

1
4 − 𝜋

4

)︁
= 0,

and applying Rouché theorem, we obtain

𝜇
1
4
𝑘 = 𝜋

(︂
𝑘 +

1

4

)︂
+ 𝑜(1), 𝑘 → +∞.

But as 𝛽 → ∞ (see (20)),

Φ(𝜆) = 𝜆
1
4 − 𝜋

4
+ 𝑜(1),

and in (53) we have 𝜈𝑘(𝛽) = 𝑘 for sufficiently large 𝛽. According Theorem 1 in [12], the function
𝜆𝑘(·) is continuous on (2,∞) and therefore, the function 𝜈𝑘(·) is also continuous on (2,∞), so
that 𝜈𝑘(𝛽) = 𝑘 as 𝛽 > 2.

Lemma 5. Let 𝜆𝑘(𝛼, 𝛽)∞1 be the eigenvalues of the operator 𝑇 with 𝑞(𝑥) = 𝑥𝛼, 𝑝 = 𝑥𝛽. Then

Φ(𝜆𝑘(𝛼, 𝛽)) = 𝑘𝜋 + 𝑜(1), 𝑘 → ∞.

Proof. Since 𝜆𝑘(𝛼, 𝛽) is continuous on Ω = {𝛽 > 2 + 𝛼, 𝛼 > −1} ∪ {𝛽 > 2}, see Theorem 1
in [12]) and the term 𝑜(1) in (53) is small uniformly in each compact set 𝐾 in Ω, then 𝜈𝑘(𝛼, 𝛽)
is continuous on Ω. But 𝜈𝑘(0, 𝛽) = 𝑘, cf. Lemma 15, therefore, 𝜈𝑘(𝛼, 𝛽) = 𝑘 in Ω.

4.2. Completion of proof of Theorem 2. We have

𝑄2(0, 𝜆) = 𝜆
1
4
+ 1

2𝛽

∫︁ ∞

0

(︁
𝑡𝛽 +

√︀
𝑡2𝛽 + 1

)︁− 1
2
𝑑𝑡 = 𝐶0𝜆

1
4
+ 1

2𝛽 ,

and the problem is hence reduced to studying the asymptotics of 𝐾(𝜆). Replacing 𝜔11, 𝜔12,

𝜔21 in integral (52) by their asymptotics according (37), changing the variable 𝑡 ↦−→ 𝜆
1
2𝛽 𝜏 , we

obtain supposing 𝜒 = 0 in (43):

𝐾(𝜆) = −𝐶1𝜆
− 1

4 + 𝐶2𝜆
− 1

4
− 1

2𝛽 + 𝑘(𝜆) + 𝑂(𝜆− 1
2
− 1

2𝛽 ),

𝑘(𝜆) =
𝜋

𝛽 − 2

∫︁ ∞

0

𝑝−1
0 𝑞𝜈−1𝜔2

11𝑓(𝑡, 𝜆)𝑑𝑡.

By the definition of ̃︀𝑉0(𝑥, 𝜆) (see (36)) we have

𝑘(𝜆) =
𝜋

2

∫︁ ∞

0

𝜆− 1
2 𝑞𝜈− 1

2𝑄(𝑡, 𝜆)𝐽2
𝛾

(︁√
𝜆𝑄
)︁
𝑑𝑡,

where

𝑄 =

∫︁ ∞

𝑡

𝜈− 1
2𝑑𝑡.

Let 𝛽 < 2𝛼 + 2. Then splitting the integral 𝑘(𝜆) into the sum

𝑘(𝜆) =
𝜋

2

[︂∫︁ 𝑐𝜆

0

+

∫︁ ∞

𝑐𝜆

]︂
𝜆− 1

2 𝑞𝜈− 1
2𝑄𝐽2

𝛾

(︁√
𝜆𝑄
)︁
𝑑𝑡,

where

𝑐𝜆 = 𝑏𝜆𝜆
−𝜀, 0 < 𝜀 <

1

𝛽 − 2
− 1

2𝛽
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and replacing 𝐽𝛾

(︁√
𝜆𝑄
)︁

by its asymptotics in the first integral and replacing 𝑞 in the second

integral by the expression

(︃ √
2

𝛽 − 2
𝑄

)︃− 2𝛼
𝛽−2

thanks to Conditions 3) and 4), we obtain

𝑘(𝜆) = 𝐶3𝜆
−𝛽−𝛼−2

𝛽−2 + 𝑂
(︁
𝜆− 1

2
−𝛽−𝛼−2

𝛽−2

)︁
.

Substituting now 𝐾 into equation (19) and resolving it with respect to 𝜆 taking into consider-
ation Lemma 5, we obtain (25). The proof is complete.

Remark 2. The case 𝛽 > 2𝛼 + 2 differs from the above considered one only by the asymp-
totics of the integral 𝑘(𝜆). It is easy to see that as 𝛽 > 2𝛼 + 2, we have

𝑘(𝜆) ∼ const𝜆− 1
2
−𝛽−2−2𝛼

4𝛽 ,

and the term 𝐶3𝑚
− 1

2
+ 2𝛼𝛽

𝛽2−4

𝑘 in (25) should be replaced by the term of form const · 𝑚
− 1

2
+ 𝛼

𝛽+2

𝑘 .

As 𝛽 = 2𝛼 + 2, we have 𝑘(𝜆) = const · 𝜆− 1
2 ln𝜆 and this gives rise to the term of form

const ·𝑚
− 2

𝛽−2

𝑘 ln𝑚𝑘 in (25).

Theorem 3. Let the functions 𝑝 and 𝑞 be of form (18) and 𝛽 = 𝛼 + 2. Then

𝜆𝑘 = 𝑚
4𝛽
𝛽+2

𝑘 +
4𝛽

𝛽 + 2
𝐶−1

0

{︂
𝐶1𝑚

5𝛽−4
2(𝛽+2)

𝑘 − 𝐶2𝑚
2(𝛽−2)
𝛽+2

𝑘

}︂
+ 𝑂(𝑘−𝑚),

where 𝑚𝑘 = 𝐶−1
0 𝜋

(︃
𝑘 − 1

4
+

√︀
(𝛽 − 1)2 + 2

2(𝛽 − 2)

)︃
, the constants 𝐶0, 𝐶1 are defined in the same

way as in the case 𝛽 > 2 + 𝛼:

𝐶2 =
𝛽

8

∫︁ ∞

0

[︃̃︀𝜈 1
2 ̃︀𝐷− 1

2 𝑡𝛽−2

(︃
−2𝛽̃︀𝐷 +

𝛽̃︀𝐷2
− 3𝛽𝑡𝛽√︀̃︀𝐷 + 1

)︃

+
3(𝛽 − 4)𝛽 + 8

𝛽(𝛽 − 2)2
̃︀𝑄−2̃︀𝜈− 1

2 − 8𝑡𝛽−2̃︀𝜈−1

]︂
𝑑𝑡− 3(𝛽 − 4)𝛽 + 8

(𝛽 − 2)2
𝐶−1

0 ,

𝑚 = min

{︂
1

2
+

1

𝛽
,
3

4
,
2(𝛽 − 2 − 𝛼)

𝛽 − 2

}︂
− 3𝛽 − 2

𝛽 + 2
.

Proof. Arguing as in the proof of the previous theorem, we get

𝐾(𝜆) = −𝐶1𝜆
− 1

4 + 𝐶2𝜆
− 1

4
− 1

2𝛽 + 𝑂
(︀
𝜆−1/2−1/𝛽

)︀
,

and this implies the statement of the theorem.

5. On density of eigenvalues and singular values of
non-self-adjoint anharmonic oscillator

Let 𝐻(𝛼, 𝜃) be an operator acting in 𝐿2(0,+∞) by the rule

𝐷(𝐻(𝛼, 𝜃)) = {𝑦 ∈ 𝐿2(0,+∞) : 𝑦, 𝑦′ ∈ 𝐴𝐶[0,+∞),

− 𝑦′′ + 𝑒𝑖𝜃𝑥𝛼𝑦 ∈ 𝐿2(0,+∞), 𝑦(0) = 0},
(58)

𝐻(𝛼, 𝜃)𝑦 = −𝑦′′ + 𝑒𝑖𝜃𝑥𝛼𝑦. (59)

Here 𝜃 ∈ (−𝜋, 𝜋), 𝛼 ∈ (0,+∞) are constants, 𝐴𝐶[0,+∞) is the set of the functions absolutely
continuous on each segment [0, 𝑎], 𝑎 > 0. The operator 𝐻(𝛼, 𝜃) is called a non-self-adjoint
anharmonic oscillator [23].
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The operator 𝐻(𝛼, 𝜃) was studied by many authors, see [20], [24], [25], [23], [26] and the
references therein. It is known, cf. [24], [20], that for each |𝜃| < 𝜋 the spectrum of 𝐻(𝛼, 𝜃) is
discrete, all eigenvalues are simple (of algebraic multiplicity 1), are located on the ray arg 𝑧 =
2𝜃
2+𝛼

:

𝜆𝑛(𝛼, 𝜃) = 𝜆𝑛(𝛼, 0)𝑒
2𝜃𝑖
2+𝛼 , (60)

𝜆𝑛(𝛼, 0) ∼

(︃
𝜋∫︀ 1

0

√
1 − 𝑡𝛼𝑑𝑡

)︃ 2𝛼
2+𝛼

𝑛
2𝛼
2+𝛼 , 𝑛 → ∞. (61)

As it was shown in [23],

‖(𝐻(𝛼, 𝜃) − 𝑟𝑒𝑖𝛽)−1‖ → ∞, 𝑟 → +∞,

uniformly in 𝛽 ∈
[︀
𝛿, 2𝜃

2+𝛼
− 𝛿
]︀
∪
[︀

2𝜃
2+𝛼

+ 𝛿, 𝜃 − 𝛿
]︀
, 𝛿 > 0. Therefore, for arbitrary small 𝛿 > 0

there exists 𝑅𝛿 > 0 such that 𝜀-pseudospectrum of the operator 𝐻(𝛼, 𝜃)

𝜎𝜀(𝐻(𝛼, 𝜃)) = 𝜎(𝐻(𝛼, 𝜃)) ∪
{︀
𝑧 ∈ C ∖ 𝜎(𝐻(𝛼, 𝜃)) :

⃦⃦
(𝐻(𝛼, 𝜃) − 𝑧)−1

⃦⃦
> 𝜀−1

}︀
contains the sectors{︂

𝑟𝑒𝑖𝛽 : 𝑟 > 𝑅𝛿, 𝛿 6 𝛽 6
2𝜃

2 + 𝛼
− 𝛿

}︂
and

{︂
𝑟𝑒𝑖𝛽 : 𝑟 > 𝑅𝛿,

2𝜃

2 + 𝛼
+ 𝛿 6 𝛽 6 𝜃 − 𝛿

}︂
.

According a known formula [27], we have

𝜎𝜀(𝑇 ) =

⎧⎨⎩ ⋃︁
‖𝑉 ‖6𝜀

𝜎(𝑇 + 𝑉 )

⎫⎬⎭.

This means that the operator 𝐻(𝛼, 𝜃) is spectrally unstable: its spectrum can change essentially
under rather small perturbations [28]. While studying the spectral properties of the perturba-
tions of such operators by traditional for self-adjoint case methods based on Tauberian theorems
(see [9]), an estimate for the density of so-called singular values is important; these numbers are

the eigenvalues of the absolute value of the operator: |𝐻(𝛼, 𝜃)| =
√︀
𝐻(𝛼, 𝜃)*𝐻(𝛼, 𝜃). It is easy

to confirm that 𝑀 := 𝐻(𝛼, 𝜃)*𝐻(𝛼, 𝜃) is a self-adjoint operator in 𝐿2(0,+∞) generated by the
differential expression 𝑙(𝑙𝑦) and the boundary conditions 𝑦(0) = 𝑦′′(0) = 0, where 𝑙𝑦 = −𝑦′′+𝑞𝑦,
𝑙𝑦 = −𝑦′′ + 𝑞𝑦. By help of the standard change 𝑌 = (𝑦, 𝑙𝑦, 𝑦′, (𝑙𝑦)′)𝑡, the equation 𝑀𝑦 = 𝑠𝑦 is
reduced to the spectral problem

𝑌 ′ = 𝐴𝑌, (62)

𝑌1(0) = 𝑌3(0) = 0,

where

𝐴 =

⎛⎜⎜⎝
0 0 1 0
0 0 0 1
𝑞 −1 0 0
−𝑠 𝑞 0 0

⎞⎟⎟⎠ .

The eigenvalues of the matrix 𝐴 are ±
√︁

cos 𝜃𝑟 ±
√︀

𝑠− sin2 𝜃𝑟2, and hence, for large 𝑠 > 0,
equation (62) possesses two turning points, at which one or two pairs of the eigenvalues co-
incide. These points generate additional troubles while studying the asymptotics of solutions
to equation (62). Nevertheless, these troubles are pure technical and they can be overcome
as above, by means of reference equations method. In contrast to equation (7), both turning
points of equation (62) are finite and this is why reference solutions corresponding to these



38 L.G. VALIULLINA, Kh.K. ISHKIN, R.I. MARVANOV

points are to be expressed in terms of the Airy functions. Not dwelling on details, we only note
that thanks to coercive estimate

(𝑀𝑦, 𝑦) > (1 − 𝛿)
(︀
‖𝑦′′‖2 + ‖𝑟𝑦‖2

)︀
− 𝐶𝛿‖𝑦‖2,

where 0 < 𝛿 = 𝛿(𝜃) < 1, 𝐶𝛿 > 0, 𝑟 = 𝑥𝛼, one can obtain a needed estimate:

lim inf
𝜆→+∞

𝑁(𝐻(𝛼, 𝜃), 𝜆)

𝑁(|𝐻(𝛼, 𝜃)|, 𝜆)
> 0,

see Theorem 1 in [9]. We stress once again that calculating at least the leading term in the
asymptotics for the spectrum of the operator 𝑀 as in Sections 4, 5 or employing Tauberian
technique as in work [17], one can show that

𝑁(|𝐻(𝛼, 𝜃)|, 𝜆) ∼ const · 𝜆
2𝛼
2+𝛼 , 𝜆 → +∞. (63)

In view of this we mention work [29], in which formula (63) was established for an arbitrary
dissipative operator 𝐴 in the Shatten-von Neumann class S𝑝 as 𝑝 6 𝜋

2𝜃𝐴
, where 𝜃𝐴 is the opening

of the angle
Num (𝐴) =

{︀
(𝐴𝑓, 𝑓) : 𝑓 ∈ 𝐷(𝐴), ‖𝑓‖ = 1

}︀
.

In our case the latter assumption is absent.
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