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STRUCTURE OF SET OF SYMMETRIES FOR

HYPERBOLIC SYSTEMS OF LIOUVILLE TYPE AND

GENERALIZED LAPLACE INVARIANTS

S.YA. STARTSEV

Abstract. The present paper is devoted to hyperbolic systems consisting of 𝑛 partial
differential equations and possessing symmetry drivers, i.e., differential operators mapping
any function of one independent variable into a symmetry of the corresponding system.
The presence of the symmetry drivers is a feature of the Liouville equation and similar
systems. The composition of a differential operator with a symmetry driver is a symmetry
driver again if the coefficients of the differential operator belong to the kernel of a total
derivative. We prove that the entire set of the symmetry drivers is generated via the above
compositions from a basis set consisting of at most 𝑛 symmetry drivers whose sum of orders
is the smallest possible.

We also prove that if a system admits a symmetry driver of order 𝑘 − 1 and generalized
Laplace invariants are well-defined for this system, then the leading coefficient of the sym-
metry driver belongs to the kernel of the 𝑘th Laplace invariant. Basing on this statement,
after calculating the Laplace invariants of a system, we can obtain the lower bound for the
smallest orders of the symmetry drivers for this system. This allows us to check whether
we can guarantee that a particular set of the drivers is a basis set.

Keywords: higher symmetries, symmetry drivers, nonlinear hyperbolic partial differential
systems, Laplace invariants, Darboux integrability.
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1. Introduction

We consider a system of partial differential equations

𝑢𝑥𝑦 = 𝐹 (𝑥, 𝑦, 𝑢, 𝑢𝑥, 𝑢𝑦), (1)

where 𝑢 = (𝑢1;𝑢2; . . . ;𝑢𝑛) and 𝐹 = (𝐹 1;𝐹 2; . . . ;𝐹 𝑛) are 𝑛-dimensional vectors and 𝑢 is a
function of variables 𝑥 and 𝑦. Since in the present paper all relations are considered on solutions
of this system, we can exclude all mixed partial derivatives of 𝑢 by means of system (1) and its
differential implications. This is why without loss of generality we can regard all local objects
like symmetries and the coefficients of differential operators as depending on 𝑥, 𝑦, 𝑢 and its
pure derivatives 𝑢𝑖 := 𝜕𝑖𝑢/𝜕𝑥𝑖, �̄�𝑗 := 𝜕𝑗𝑢/𝜕𝑦𝑗. In what follows we employ the notation 𝑔[𝑢] for
stressing the fact that 𝑔 is a function of finitely many aforementioned variables. By 𝐷𝑥 and 𝐷𝑦

we denote total derivatives in 𝑥 and 𝑦 due to system (1).
In the scalar case, as 𝑛 = 1, one of the most known nonlinear equation of form (1) is the

Liouville equation 𝑢𝑥𝑦 = 𝑒𝑢. It possesses many interesting properties and in particular, as it
was shown in work [1], it admits differential operators 𝜎 = 𝐷𝑥 + 𝑢𝑥 and �̄� = 𝐷𝑦 + 𝑢𝑦 mapping
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ker𝐷𝑦 and ker𝐷𝑥 into solutions 𝑓 of linearized Liouville equation 𝐷𝑥𝐷𝑦(𝑓) = 𝑒𝑢𝑓 . In other
words, 𝜎(𝑔) and �̄�(𝑔) are symmetries of the Liouville equation for all functions 𝑔[𝑢] ∈ ker𝐷𝑦,
𝑔[𝑢] ∈ ker𝐷𝑥, for instance, for all functions depending on 𝑥 and 𝑦 only.

Many integrable systems of form (1) possess a similar property. For instance, we consider
the system

𝑢1
𝑥𝑦 =

𝑢2𝑢1
𝑥𝑢

1
𝑦

𝑢1𝑢2 + 𝑐
, 𝑢2

𝑥𝑦 =
𝑢1𝑢2

𝑥𝑢
2
𝑦

𝑢1𝑢2 + 𝑐
, (2)

where 𝑐 is a non-zero constant. This system is a degenerate case of the Pohlmeyer-Lund-Regge
system and the operators

𝜎1 =

(︂
𝑢1
𝑥

𝑢2
𝑥

)︂
, 𝜎2 =

(︂
𝑢1
𝑥

𝑤

0

)︂
𝐷𝑥 +

(︂
−𝑢1

𝑢2

)︂
, (3)

where 𝜔 = 𝑢1
𝑥𝑢

2
𝑥/(𝑢1𝑢2 + 𝑐), map each scalar function in ker𝐷𝑦 into a symmetry of this system.

In what follows, such operators mapping the kernels of 𝐷𝑦 and 𝐷𝑥 into the symmetries of
system (1) are called respectively drivers of 𝑥- and 𝑦-symmetries. A more careful definition will
be given later and the examples of systems admitting the drivers can be found, in particular,
in [2]–[5].

By the symbol ∘ we denote the operator of composition of operators. It is easy to see that
if an operator 𝑆 is a driver of 𝑥-symmetries, then 𝑆 ∘ 𝛺 is also a driver of 𝑥-symmetries for
each operator 𝛺 =

∑︀𝑚
𝑖=0𝑤𝑖[𝑢]𝐷𝑖

𝑥 such that the scalar functions 𝑤𝑖 lie in the kernel of 𝐷𝑦. A
similar fact is true for the drivers of 𝑦-symmetries. Thus, if system (1) admits the drivers of
symmetries, there exist infinitely many of such drivers and there arises an issue how to describe
briefly this set: whether it is possible to generate this entire set by means of the aforementioned
composition of finitely many basis drivers of symmetries? And if so, then how many drivers
of the symmetries is needed for this basis set; whether, for instance, it is sufficient to have
𝑛 drivers in each of the characteristics or there can be more of them? In the present work
we answer these questions. Namely, we prove that the set of the drivers of the symmetries is
generated by the basis set consisting of at most 𝑛 drivers of the symmetries, the sum of whose
orders is the smallest possible.

We also prove that if system (1) admits a driver of symmetries of order 𝑘 − 1 and the
generalized Laplace invariants are well-defined for them, then the leading coefficient of the
driver of symmetries belongs to the kernel of 𝑘th Laplace invariant. Basing on this statement,
we can calculate the Laplace invariants for system (1) and to obtain the lower bound for the
minimal orders of the drivers of symmetries for this system and to check whether we can ensure
that a given set of drivers is basis. It should be noted that the estimates for the lower orders
of the drivers of symmetries obtained by means of Laplace invariants turn out to be sharp in
all examples the author knows; that is, they provide the exact minimums of the orders.

2. Structure of drivers of symmetries

The symbol ⊤ stands for the matrix transposition. Given a scalar function 𝑔 and a vector
𝑧 = (𝑧1, 𝑧2, . . . , 𝑧𝑛)⊤, by 𝑔𝑧 = 𝜕𝑔/𝜕𝑧 we denote the row

(︀
𝜕𝑔/𝜕𝑧1, 𝜕𝑔/𝜕𝑧2, . . . , 𝜕𝑔/𝜕𝑧𝑛

)︀
. If 𝑔 is a

vector function (𝑔1, 𝑔2, . . . , 𝑔ℓ)⊤, by 𝑔𝑧 we denote the matrix with the rows 𝑔1𝑧 , . . . , 𝑔
ℓ
𝑧. In view

of these standard notations, the total derivatives 𝐷𝑥 and 𝐷𝑦 for each scalar function 𝑔[𝑢] are
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given by the formulae

𝐷𝑥(𝑔) =
𝜕𝑔

𝜕𝑥
+

𝜕𝑔

𝜕𝑢
𝑢1 +

∞∑︁
𝑖=1

(︂
𝜕𝑔

𝜕𝑢𝑖

𝑢𝑖+1 +
𝜕𝑔

𝜕�̄�𝑖

𝐷𝑖−1
𝑦 (𝐹 )

)︂
,

𝐷𝑦(𝑔) =
𝜕𝑔

𝜕𝑦
+

𝜕𝑔

𝜕𝑢
�̄�1 +

∞∑︁
𝑖=1

(︂
𝜕𝑔

𝜕�̄�𝑖

�̄�𝑖+1 +
𝜕𝑔

𝜕𝑢𝑖

𝐷𝑖−1
𝑥 (𝐹 )

)︂
.

The result of applying 𝐷𝑥 and 𝐷𝑦 to the vectors and matrices is defined component-wise. In the
above formulae and hereinafter the zero power of each differentiation is let to be the identity
mapping.

Definition 1. A vector function 𝑓 = (𝑓 1[𝑢], 𝑓 2[𝑢], . . . , 𝑓𝑛[𝑢])⊤ is called symmetry of sys-
tem (1) if 𝐿(𝑓) = 0, where

𝐿 = 𝐷𝑥𝐷𝑦 − 𝐹𝑢𝑥𝐷𝑥 − 𝐹𝑢𝑦𝐷𝑦 − 𝐹𝑢. (4)

Definition 2. The differential operator

𝜎 =
𝑘∑︁

𝑖=0

𝜍𝑖[𝑢]𝐷𝑖
𝑥, 𝜍𝑘 ̸= 0, 𝑘 > 0, (5)

where 𝜍𝑖 are 𝑛-dimensional vectors is called driver of 𝑥-symmetries for system (1) if 𝜎(𝑔) is a
symmetry of this system for each scalar function 𝑔[𝑢] ∈ ker𝐷𝑦. The vector 𝜍𝑘 is called separant
for driver of symmetries (5), and the number 𝑘 is called the order of this driver. We shall say
that the drivers of the symmetries 𝜎1, 𝜎2, . . . , 𝜎𝑟 are mutually independent if the matrix of
size 𝑛× 𝑟 formed by its separants has the rank 𝑟.

In the same way we define the drivers of 𝑦-symmetries: it is sufficient to swap 𝑥 and 𝑦
in Definition 2. Employing the symmetricity of formula (1) with respect to the permutation
𝑥 ↔ 𝑦, below we provide only one of two symmetric definitions and statements.

Lemma 1. If operator (5) is a driver of 𝑥-symmetries, then its coefficients 𝜍𝑖 are independent
of �̄�𝑗 for all 𝑗 > 0, and its separant 𝜍𝑘 lies in the kernel of 𝐷𝑦 − 𝐹𝑢𝑥.

Proof. By the definition of a driver of 𝑥-symmetries, the relation holds 𝐿(𝜎(𝑔)) = 0 for each
function 𝑔(𝑥). Calculating the coefficients at 𝑖th derivative of 𝑔 with respect to 𝑥 in this identity
and taking into the consideration that the function 𝑔 is arbitrary, we arrive at the following
chain of relations:

(𝐷𝑦 − 𝐹𝑢𝑥)(𝜍𝑘) = 0,

(𝐷𝑦 − 𝐹𝑢𝑥)(𝜍𝑖−1) = −𝐿(𝜍𝑖), 0 < 𝑖 6 𝑘.

By the first relation we see that 𝜍𝑘 can not depend on the derivatives of 𝑢 with respect to 𝑦,
while by the second relation that (𝜍𝑖−1)�̄�𝑗

= 0 for all 𝑗 > 0 if 𝜍𝑖 is independent of the derivatives
of 𝑢 with respect to 𝑦.

Definition 3. A set of the drivers of 𝑥-symmetries 𝜎1, 𝜎2, . . . , 𝜎𝑟 is called basis for sys-
tem (1) if the following conditions hold:

1) the drivers in this set are mutually independent;
2) system (1) has no set of mutually independent drivers of 𝑥-symmetries containing more

than 𝑟 drivers;
3) the sum of orders of the drivers in the set is minimal among all sets of 𝑟 mutually inde-

pendent drivers of 𝑥-symmetries of system (1).
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Since there can be at most 𝑛 mutually independent drivers, Condition 2) in Definition 3
holds immediately in the case 𝑟 = 𝑛. But the latter case is not the only possible and, generally
speaking, 𝑟 can be less than 𝑛. For instance, the system

𝑢𝑖
𝑥𝑦 =

𝑛∑︁
𝑗=1

𝐴𝑖
𝑗e

𝑢𝑗

, 𝑖 = 1, 2, . . . , 𝑛, (6)

admits the driver of 𝑥-symmetries (1, 1, . . . , 1)⊤𝐷𝑥 + 𝑢𝑥 for all values of the constants 𝐴𝑖
𝑗, but

in the general situation, it seems to admit no drivers of symmetries with separants different
from the vectors of form (𝑐[𝑢], 𝑐[𝑢], . . . , 𝑐[𝑢])⊤. If the latter is true, then, except some special
cases, we have 𝑟 = 1 for this system.

By Definition 3 we obviously see that the basis set of drivers exists for each system (1)
admitting the drivers of symmetries. This is why the following theorem can be applied to each
such system.

Theorem 1. Let the set of drivers of 𝑥-symmetries 𝜎1, 𝜎2, . . . , 𝜎𝑟 is basis for system (1).
Then each driver of 𝑥-symmetries 𝑆 of this system can be written as

𝑆 =
𝑟∑︁

𝑖=1

𝜎𝑖 ∘𝛺𝑖, (7)

where 𝛺𝑖 are some operators of form
∑︀𝑞𝑖

𝑗=0𝑤𝑖𝑗[𝑢]𝐷𝑗
𝑥 such that 𝑞𝑖 > 0 and the scalar functions

𝑤𝑖𝑗 belong to ker𝐷𝑦.

Proof. We denote the orders of the operators 𝜎1, 𝜎2, . . . , 𝜎𝑟 by 𝑝1, 𝑝2, . . . , 𝑝𝑟, respectively.
Without loss of generality we can assume that these operators are arranged so that their orders
ascend, that is, 𝑝1 6 𝑝2 6 . . . 6 𝑝𝑟. By 𝜍𝑖 we denote the separant of the driver 𝜎𝑖, while 𝜉 and
𝑝 stand for the separant and order of the driver 𝑆.

Let us describe the procedure of successive decreasing of the order of 𝑆 by means of basis
drivers under the assumption 𝑝 > 𝑝𝑟; if this assumption fails, we just skip the first steps in this
procedure and proceed to the steps described in the next paragraphs.

If 𝑝 > 𝑝𝑟, we can write 𝜉 =
∑︀𝑟

𝑖=1 �̃�𝑖[𝑢]𝜍𝑖 by Statement 2 in Definition 3. Taking into
consideration Lemma 1, we obtain

𝑟∑︁
𝑖=1

𝐷𝑦(�̃�𝑖)𝜍𝑖 = (𝐷𝑦 − 𝐹𝑢𝑥) (𝜉) = 0

and 𝐷𝑦(�̃�𝑖) = 0 by the linear independence of the vectors 𝜍𝑖. This is why the operator

𝑆 = 𝑆 −
𝑟∑︁

𝑖=1

𝜎𝑖 ∘ �̃�𝑖𝐷
𝑝−𝑝𝑖
𝑥

is a driver of 𝑥-symmetries (or it just vanishes) and it has the order less than 𝑝. If the order 𝑆
is greater than or equal to 𝑝𝑟, we repeat the described procedure once again applying it 𝑆 and
so forth. Finally, after several steps of the mentioned procedure we either express 𝑆 as (7) or
we represent just several higher order terms of the operator 𝑆 in form (7) and we obtain the
driver of symmetries

𝑆 = 𝑆 −
𝑟∑︁

𝑖=1

𝜎𝑖 ∘
𝑝−𝑝𝑖∑︁
𝑗=0

�̂�𝑖𝑗[𝑢]𝐷𝑗
𝑥, �̂�𝑖𝑗 ∈ ker𝐷𝑦,

of an order 𝑝 < 𝑝𝑟.
Assume that 𝑝ℓ 6 𝑝 < 𝑝ℓ+1. By Statement 2) of Definition 3, we can write out the separant 𝜉

of the driver 𝑆 as 𝜉 =
∑︀𝑟

𝑖=1 �̄�𝑖[𝑢]𝜍𝑖. If �̄�𝑖 ̸= 0 for some 𝑖 > ℓ, we can replace 𝜎𝑖 by 𝑆 and obtain
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a new set of 𝑟 mutually independent drivers with the sum of orders less than
∑︀𝑟

𝑗=1 𝑝𝑗. But this

contradicts Statement 3) in Definition 3. This is why �̄�𝑖 = 0 for all 𝑖 > ℓ and 𝜉 =
∑︀ℓ

𝑖=1 �̄�𝑖[𝑢]𝜍𝑖.
In view of this, we can repeat the aforementioned procedure of order reducing for the driver of
symmetries until we make this order less than 𝑝1.

Repeating the arguing in the previous paragraph in the case 𝑝 < 𝑝1, we obtain that the
driver of the symmetries has an order less than 𝑝1 if and only if its separant is equal to zero and
this contradicts the definition of the driver of the symmetries. Thus, the rest obtained after
reduction of the order to that less than 𝑝1 by the aforementioned procedure, should be zero.
And this means that 𝑆 can be expressed in form (7).

3. Generalized Laplace transformation for the drivers of symmetries

It is easy to see that operator (4) can be represent as

𝐿 =
(︀
𝐷𝑥 − 𝐹𝑢𝑦

)︀
∘ (𝐷𝑦 − 𝐹𝑢𝑥) −𝐻1,

where 𝐻1 = 𝐹𝑢𝑦𝐹𝑢𝑥 + 𝐹𝑢 −𝐷𝑥(𝐹𝑢𝑥). Starting with 𝐻1, we can construct matrices 𝑎𝑖[𝑢], 𝐻𝑖[𝑢]
of size 𝑛× 𝑛, defined by the recurrent formulae

𝐷𝑦(𝐻𝑖𝐻𝑖−1 . . . 𝐻1) + 𝐻𝑖𝐻𝑖−1 . . . 𝐻1𝐹𝑢𝑥 + 𝑎𝑖𝐻𝑖𝐻𝑖−1 . . . 𝐻1 = 0, (8)

𝐻𝑖+1 = 𝐷𝑥(𝑎𝑖) − [𝐹𝑢𝑦 , 𝑎𝑖] + 𝐷𝑦(𝐹𝑢𝑦) + 𝐻𝑖. (9)

Identities (8)–(9) are obtained by straightforward extension of the formulae for the Laplace
invariants 𝐻𝑖 in the scalar case described, for instance, in [6], to the case of systems; the formulae
in the scalar case appropriate also for the case of systems were written out, for instance, in
Introduction in work [5]. It was mentioned in work [7] that at least for some well-known systems
the well-defined objects are not 𝐻𝑖 but the matrices 𝑌𝑖 = 𝐻𝑖𝐻𝑖−1 . . . 𝐻1. This is why we call
the matrices 𝑌𝑖 generalized Laplace 𝑦-invariants of system (1).

In the case det(𝑌𝑖) = 0 equation (8) can have no solution 𝑎𝑖 but if it exists, then 𝑎𝑖 is
not unique. Hence, the matrix 𝐻𝑖+1 and the Laplace invariant 𝑌𝑖+1 are generally speaking
ill-defined: they may be absent or can be defined in a non-unique way. However, at least in
certain interesting cases the generalized Laplace invariants 𝑌𝑖 exist and uniquely defined by
formulae (8)-(9). For instance, as it was shown in [8, 9], all systems of form (6) are among such
cases, for which 𝐴𝑖

𝑗 is a Cartan matrix of a simple Lie algebra.
By formulae (9) we see easily that 𝑌𝑖+1 is independent of the choice of 𝑎𝑖 if and only if(︁
𝐷𝑥 + 𝐹⊤

𝑢𝑦

)︁
(ker𝑌 ⊤

𝑖 ) ⊂ ker𝑌 ⊤
𝑖 . This means, see [7, Thm. 8] or [10, Prop. 3], that there exists

a matrix 𝐵𝑖[𝑢] of size 𝑛× 𝑛 satisfying the operator relation(︀
𝐷𝑥 − 𝐹𝑢𝑦

)︀
∘ 𝑌𝑖 = 𝑌𝑖 ∘ (𝐷𝑥 + 𝐵𝑖) . (10)

Equation (8) can be written as the operator identity

(𝐷𝑦 + 𝑎𝑖) ∘ 𝑌𝑖 = 𝑌𝑖 ∘ (𝐷𝑦 − 𝐹𝑢𝑥) . (11)

In what follows we assume that the generalized Laplace 𝑦-invariants of system (1) exist and
defined uniquely, that is, the relations (10), (11) hold for all 𝑌𝑖, which we shall use for further
arguing.

We introduce the operators

𝑙𝑖 = (𝐷𝑥 − 𝐹𝑢𝑦) ∘ (𝐷𝑦 + 𝑎𝑖) −𝐻𝑖+1,

𝐿𝑖 = (𝐷𝑥 − 𝐹𝑢𝑦) ∘ 𝑌𝑖 ∘ (𝐷𝑦 − 𝐹𝑢𝑥) − 𝑌𝑖+1.
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Denoting −𝐹𝑢𝑥 by 𝑎0 and letting 𝑌0 to be the unit matrix of size 𝑛 × 𝑛, we can assume that
𝑙0 = 𝐿0 = 𝐿. It follows from (11) that

𝐿𝑖 = 𝑙𝑖 ∘ 𝑌𝑖, (12)

(𝐷𝑦 + 𝑎𝑖+1) ∘ 𝐿𝑖 =
[︀
(𝐷𝑦 + 𝑎𝑖+1) ∘ (𝐷𝑥 − 𝐹𝑢𝑦) −𝐻𝑖+1

]︀
∘ 𝑌𝑖 ∘ (𝐷𝑦 − 𝐹𝑢𝑥).

In view of (9), the latter identity can be written as

(𝐷𝑦 + 𝑎𝑖+1) ∘ 𝐿𝑖 = 𝑙𝑖+1 ∘ 𝑌𝑖 ∘ (𝐷𝑦 − 𝐹𝑢𝑥). (13)

Theorem 2. Assume that for system (1) there exist generalized Laplace 𝑦-invariants 𝑌𝑞 for
all positive 𝑞 6 𝑖 + 2 and the Laplace invariant 𝑌𝑖+2 is independent of the choice of solution
𝑎𝑖+1 of equation (8). Suppose also that for this system there exist 𝑛-dimensional vectors 𝛼𝑗[𝑢]
such that 𝛼𝑚 ̸= 0, 𝑚 > 0, and the operator 𝑃𝑖 =

∑︀𝑚
𝑗=0 𝛼𝑗𝐷

𝑗
𝑥 maps each scalar function from

the kernel of 𝐷𝑦 into the kernel of 𝐿𝑖.

We denote by 𝑃𝑖+1 the operator 𝑃𝑖+1 =
∑︀𝑚−1

𝑗=0 �̂�𝑗[𝑢]𝐷𝑗
𝑥, �̂�𝑚−1 = 𝛼𝑚 obtained by dividing the

operator 𝑃𝑖 by the operator 𝐷𝑥 + 𝐵𝑖+1, namely, such that

𝑃𝑖 = (𝐷𝑥 + 𝐵𝑖+1) ∘ 𝑃𝑖+1 + 𝑧[𝑢], (14)

where 𝐵𝑖+1 is determined by formula (10), and 𝑧 is an 𝑛-dimensional vector. Then 𝑃𝑖+1 maps
each scalar function in the kernel of 𝐷𝑦 into the kernel of 𝐿𝑖+1, and the remainder 𝑧 of division
of 𝑃𝑖 by 𝐷𝑥 + 𝐵𝑖+1 belongs to the kernel of 𝑌𝑖+1.

Proof. Let 𝐿𝑖(𝑃𝑖(𝑤)) = 0 for each scalar function 𝑤[𝑢] belonging to ker𝐷𝑦. Then, by (13), the
identity holds:

𝑙𝑖+1

(︀
𝑌𝑖(𝐷𝑦 − 𝐹𝑢𝑥)(𝑃𝑖(𝑤))

)︀
= 0,

that is, the operator 𝑃𝑖 =
∑︀𝑚

𝑗=0 𝛽𝑗𝐷
𝑗
𝑥, where 𝛽𝑗 = 𝑌𝑖(𝐷𝑦−𝐹𝑢𝑥)(𝛼𝑗), maps the kernel of 𝐷𝑦 into

the kernel of 𝑙𝑖+1.
On the other hand, repeating the arguing in the proof of Lemma 1, we obtain that the

condition 𝐿𝑖(𝑃𝑖(𝑤)) = 0 is equivalent to the chain of relations

𝛽𝑚 = 0,

𝛽𝑗−1 = 𝑌𝑖+1𝛼𝑗 − (𝐷𝑥 − 𝐹𝑢𝑦)(𝛽𝑗), 𝑗 = 1,𝑚

0 = 𝑌𝑖+1𝛼0 − (𝐷𝑥 − 𝐹𝑢𝑦)(𝛽0).

(15)

The second of these formulae for 𝑗 = 𝑚 gives 𝛽𝑚−1 = 𝑌𝑖+1𝛼𝑚. Employing this and also the fact
that thanks to (10), the operator 𝐷𝑥 − 𝐹𝑢𝑦 preserves the image of 𝑌𝑖+1, by induction in 𝑘 we

can show that 𝛽𝑚−𝑘 lies in the image of 𝑌𝑖+1 for all 𝑘 = 0,𝑚.
Thus, 𝛽𝑗 = 𝑌𝑖+1�̂�𝑗. Then, taking into consideration (10), we can rewrite the formulae (15)

as
𝑌𝑖+1�̂�𝑚 = 0,

𝑌𝑖+1�̂�𝑗−1 = 𝑌𝑖+1 (𝛼𝑗 − (𝐷𝑥 + 𝐵𝑖+1)(�̂�𝑗)) , 𝑗 = 1,𝑚

0 = 𝑌𝑖+1 (𝛼0 − (𝐷𝑥 + 𝐵𝑖+1)(�̂�0)) .

(16)

Since �̂�𝑗 are defined up to the kernel of 𝑌𝑖+1, we can choose �̂�𝑚 = 0, �̂�𝑚−1 = 𝛼𝑚, and other �̂�𝑗

can be introduced by the formulae

�̂�𝑗−1 = 𝛼𝑗 − (𝐷𝑥 + 𝐵𝑖+1)(�̂�𝑗).

Such choice �̂�𝑗 ensures that the operator 𝑃𝑖+1 =
∑︀𝑚−1

𝑗=0 �̂�𝑗𝐷
𝑗
𝑥 satisfies the relation (14), and

the remainder 𝑧 is defined by the formula 𝑧 = 𝛼0 − (𝐷𝑥 + 𝐵𝑖+1)(�̂�0) and by the latter identity
in (16), 𝑌𝑖+1𝑧 = 0.
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By construction, the operator 𝑃𝑖+1 is related with the operator 𝑃𝑖 by the relation 𝑌𝑖+1𝑃𝑖+1 =
𝑃𝑖 and the operator 𝑃𝑖 maps the kernel of 𝐷𝑦 into the kernel of 𝑙𝑖+1. This is why the operator 𝑃𝑖+1

maps the kernel of 𝐷𝑦 into the kernel of 𝑙𝑖+1 ∘𝑌𝑖+1. But by (12), we have 𝑙𝑖+1 ∘𝑌𝑖+1 = 𝐿𝑖+1.

Corollary 1. Assume that system (1) admits the driver of 𝑥-symmetries of 𝑘th order with
separant 𝜉 and the generalized Laplace 𝑦-invariants 𝑌𝑞 exist and are well-defined for this system
for all positive 𝑞 6 𝑘+1. Then 𝑌𝑖𝜉 = 0 for all 𝑖 > 𝑘, for which there exist the Laplace invariants
𝑌𝑖.

Proof. Applying Theorem 2 multiple times, we obtain that 𝐿𝑘(𝜉𝑓(𝑥)) = 0 for each scalar
function 𝑓 . The latter identity is equivalent to the condition 𝑌𝑘+1𝜉 = 0 by Lemma 1. It remains
to observe that ker𝑌𝑖 ⊂ ker𝑌𝑖+1 for all 𝑖, for which the Laplace invariant 𝑌𝑖+1 exists.

Example 1. As an example, we consider system (2). By straightforward calculations we get

𝑌1 = 𝐻1 =
𝑐

(𝑢1𝑢2 + 𝑐)2

⎛⎝−𝑢1
𝑦𝑢

2
𝑥 𝑢1

𝑥𝑢
1
𝑦

𝑢2
𝑥𝑢

2
𝑦 −𝑢1

𝑥𝑢
2
𝑦

⎞⎠ .

It is easy to see that the kernel of 𝑌1 consists of the vectors collinear to the vector (𝑢1
𝑥, 𝑢

2
𝑥)⊤. By

Corollary 1 this means that system (2) has no driver of 𝑥-symmetreis of zero order mutually
independent with 𝜎1 = (𝑢1

𝑥, 𝑢
2
𝑥)⊤. Thus, drivers (3) define the basis set for this system.

In work [11], for system (2), there were constructed the drivers of the symmetries

𝑆1 =

(︂
𝑢1
𝑥

0

)︂
𝐷𝑥 +

(︃
𝑢1
𝑥𝑥 + 𝑢1

𝑥𝑢
2
𝑥𝑥

𝑢2
𝑥

− 2𝑢1 𝑢1
𝑥𝑢

2
𝑥+𝑢2 (𝑢1

𝑥)
2

𝑢1 𝑢2+𝑐
𝑢2𝑢2

𝑥𝑢
1
𝑥

𝑢1 𝑢2+𝑐

)︃
,

𝑆2 =

(︂
0
𝑢2
𝑥

)︂
𝐷𝑥 +

(︃
2𝑢1 𝑢1

𝑥𝑢
2
𝑥+𝑢2 (𝑢1

𝑥)
2

𝑢1 𝑢2+𝑐
− 2𝑢1

𝑥𝑢
2
𝑥𝑥

𝑢2
𝑥

− 𝑢1
𝑥𝑥

−𝑢2
𝑥𝑥

)︃
.

By Theorem 1, they can be expressed in terms of the basis drivers of symmetries 𝜎1 and 𝜎2

defined by formula (3). Applying the approach used in the proof of Theorem 1, we obtain

𝑆1 = 𝜎2 ∘ 𝜔, 𝑆2 = 𝜎1 ∘ (𝐷𝑥 − �̃�) − 𝜎2 ∘ 𝜔,

where 𝜔 = 𝑢1
𝑥𝑢

2
𝑥/(𝑢1𝑢2 + 𝑐), �̃� = 𝑢2

𝑥𝑥/𝑢
2
𝑥− (𝑢2𝑢1

𝑥)/(𝑢1𝑢2 + 𝑐). A straightforward checking shows
that 𝜔 and �̃� belongs to the kernel of 𝐷𝑦.

Example 2. We denote by eu the vector (exp(𝑢1), exp(𝑢2), . . . , exp(𝑢𝑛))⊤. Then we can
write system (6) as 𝑢𝑥𝑦 = 𝐴eu, where 𝐴 is a constant matrix of size 𝑛× 𝑛. For further arguing
it is also convenient to denote by {𝑧} the diagonal matrix with the diagonal formed by the
coordinates of the vector 𝑧:

{𝑧} := diag{𝑧1, 𝑧2, . . . , 𝑧𝑛}.
In view of this notation we have 𝑌1 = 𝐻1 = 𝐴{eu}. This is why in the general situation (as
det(𝐴) ̸= 0) system (6) has no drivers of 𝑥-symmetries of zero order.

By (8) we can find easily 𝑎1 = −𝐴{𝑢𝑦}𝐴−1 and then by formula (9) we calculate 𝐻2 =
𝐻1 − 𝐴{𝐴eu}𝐴−1 and

𝑌2 = 𝐻2𝐻1 = 𝐴{eu}𝐴{eu} − 𝐴{𝐴eu}{eu} = 𝐴𝐶{eu},

where 𝐶 = {eu}𝐴− {𝐴eu}. We denote by 𝐶 the matrix of size (𝑛− 1) × (𝑛− 1) obtained by
removing the last row and the last column in the matrix 𝐶. It is easy to see that

det(𝐶) = (−1)𝑛−1 exp((𝑛− 1)𝑢𝑛)
𝑛−1∏︁
𝑖=1

𝐴𝑖
𝑛 + . . . ,
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where the dots stand for the terms not involving exp((𝑛− 1)𝑢𝑛), namely, involving exp(𝑢𝑛) in
powers less than 𝑛−1. This is why the matrix 𝐶 is non-degenerate and 𝑌2 has the rank (𝑛−1)
if det(𝐴)

∏︀𝑛−1
𝑖=1 𝐴𝑖

𝑛 ̸= 0. Thus, in the general case system (6) possesses the unique (up to the
right multiplication by a scalar function in ker𝐷𝑦) driver of 𝑥-symmetries of the first order.
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