doi:10.13108/2018-10-4-85

ON SOME LINEAR OPERATORS ON FOCK TYPE SPACE

I.KH. MUSIN

Abstract. We consider a lower semi-continuous function φ in \mathbb{R}^n depending on the absolute values of the variables and growing faster than $a \ln(1 + ||x||)$ for each positive a. In terms of this function, we define a Hilbert space F_{φ}^2 of entire functions in \mathbb{C}^n . This is a natural generalization of a classical Fock space. In this paper we provide an alternative description of the space F_{φ}^2 in terms of the coefficients in the power expansions for the entire functions in this space. We mention simplest properties of reproducing kernels in the space F_{φ}^2 . We consider the orthogonal projector from the space L^2_{φ} of measurable complex-valued functions f in \mathbb{C}^n such that

$$||f||_{\varphi}^{2} = \int_{\mathbb{C}^{n}} |f(z)|^{2} e^{-2\varphi(\operatorname{abs} z)} d\mu_{n}(z) < \infty,$$

where $z = (z_1, \ldots, z_n)$, abs $z = (|z_1|, \ldots, |z_1|)$, on its closed subspace F_{φ}^2 , and for this projector we obtain an integral representation.

We also obtain an integral formula for the trace of a positive linear continuous operator on the space F_{φ}^2 . By means of this formula we find the conditions, under which a weighted operator of the composition on F_{φ}^2 is a Hilbert-Schmidt operator. Two latter results gener-alize corresponding results by Sei-Ichiro Ueki, who studied similar questions for operators in Fock space.

Keywords: entire functions, Fock type space, linear operators, operator trace, weighted composition operators, Hilbert-Schmidt operator.

Mathematics Subject Classification: 32A15, 42B10, 46E22, 47B33

1. INTRODUCTION

On considered problems. Let $H(\mathbb{C}^n)$ be a space of entire functions in \mathbb{C}^n equipped with 1.1. a topology of uniform convergence on compact subset \mathbb{C}^n , $d\mu_n$ be the Lebesgue measure in \mathbb{C}^n , $abs \, u = (|u_1|, \dots, |u_n|) \text{ for } u = (u_1, \dots, u_n) \in \mathbb{R}^n (\mathbb{C}^n).$

By $V(\mathbb{R}^n)$ we denote the set of lower-semi-continuous function $v: \mathbb{R}^n \to \mathbb{R}$ obeying the conditions: i). $v(x) = v(abs x), x \in \mathbb{R}^n;$ i2). $\lim_{x \to \infty} \frac{v(x)}{\ln(1 + \|x\|)} = +\infty;$

 i_3). The restriction of v on $[0,\infty)^n$ does not decrease in each variable. Given $\varphi \in V(\mathbb{R}^n)$, by L^2_{φ} we denote the space of measurable functions $f: \mathbb{C}^n \to \mathbb{C}$ such that

$$||f||_{\varphi}^{2} = \int_{\mathbb{C}^{n}} |f(z)|^{2} e^{-2\varphi(abs\,z)} \, d\mu_{n}(z) < \infty$$

with the scalar product $(f,g)_{\varphi} = \int_{\mathbb{C}^n} f(z)\overline{g(z)}e^{-2\varphi(abs\,z)} d\mu_n(z)$, $f,g \in L^2_{\varphi}$; the space L^2_{φ} is Hilbert. Let $F^2_{\varphi} = L^2_{\varphi} \cap H(\mathbb{C}^n)$. It is easy to show that F^2_{φ} is a closed subspace of the space L^2_{φ} . By Condition i_2), the polynomials belong to F^2_{φ} . The definition of the space F^2_{φ} is a natural generalization of the Fock space and it motivates a study

of a series of problems related both the theory of functions and the operator theory.

I.KH. MUSIN, ON SOME LINEAR OPERATORS ON FOCK TYPE SPACE.

[©] I.KH. MUSIN. 2018.

Submitted August 24, 2018.

I.KH. MUSIN

In the present paper we provide an alternative description of the space F_{φ}^2 and we restrict ourselves by considering an operator of orthogonal projection from L_{φ}^2 into F_{φ}^2 and by finding the conditions under which a weighted composition operator from F_{φ}^2 into F_{φ}^2 is a Hilbert-Schmidt operator.

1.2. Notations. Given $u = (u_1, \ldots, u_n)$, $v = (v_1, \ldots, v_n) \in \mathbb{R}^n(\mathbb{C}^n)$, we let $\langle u, v \rangle := u_1v_1 + \cdots + u_nv_n$, ||u|| is the Euclidean norm in u.

For $\varphi \in V(\mathbb{R}^n)$, $\alpha = (\alpha_1, \ldots, \alpha_n) \in \mathbb{Z}_+^n$, $z = (z_1, \ldots, z_n) \in \mathbb{C}^n$ $|\alpha| := \alpha_1 + \ldots + \alpha_n$ is the length of a multi-index α , $\tilde{\alpha} := (\alpha_1 + 1, \ldots, \alpha_n + 1)$, $z^{\alpha} := z_1^{\alpha_1} \cdots z_n^{\alpha_n}$,

$$c_{\alpha}(\varphi) := \int_{\mathbb{C}^n} |z_1|^{2\alpha_1} \cdots |z_n|^{2\alpha_n} e^{-2\varphi(abs\,z)} \, d\mu_n(z), \ e_{\alpha}(z) = \frac{z^{\alpha}}{\sqrt{c_{\alpha}(\varphi)}}$$

Given R > 0, by Π_R we denote the polydisk $\{z \in \mathbb{C}^n : |z_1| < R, \dots, |z_n| < R\}$.

For a function u with the domain containing the set $(0, \infty)^n$, we define a function u[e] in \mathbb{R}^n by the rule: $u[e](x) = u(e^{x_1}, \ldots, e^{x_n}), x = (x_1, \ldots, x_n) \in \mathbb{R}^n$.

The Young-Fenchel transform of the function $u : \mathbb{R}^n \to [-\infty, +\infty]$ is a function $u^* : \mathbb{R}^n \to [-\infty, +\infty]$ defined by the formula $u^*(x) = \sup_{y \in \mathbb{R}^n} (\langle x, y \rangle - u(y)), \ x \in \mathbb{R}^n.$

Given a Hilber space H, by $(f,g)_H$ we denote the scalar product in H, while $||x||_H$ stands for the Hilbert norm of an element $x \in H$. Instead of $(f,g)_{F^2_{\alpha}}$ we write $(f,g)_{\varphi}$.

1.3. Main results. Theorem 1 provides a description of entire functions forming the space F_{φ}^2 in terms of the coefficients in their power expansions. The simplest properties of the reproducing kernels of the space F_{φ}^2 are given in Section 2. An explicit form for the orthogonal projector from L_{φ}^2 into F_{φ}^2 is obtained in Theorem 3. In Section 3 we obtain an integral formula for the trace of a linear continuous operator on F_{φ}^2 , see Theorem 4. It is employed in proof of Theorem 5, in which there formulated the conditions, under which a weighted composition operator on F_{φ}^2 is a Hilbert-Schmidt operator. Theorem 5 generalizes the main result of work [2], in which weighted compositions operators were considered in the Fock space. Its proof follows the main line of that of Theorem 1 in [2].

2. Space
$$F_{\varphi}^2$$

2.1. Preliminaries.

Proposition. Let $\varphi \in V(\mathbb{R}^n)$. Then

$$(\varphi[e])^*(x) < +\infty \quad for \quad x \in [0,\infty)^n, \qquad \lim_{\substack{x \to \infty, \\ x \in [0,\infty)^n}} \frac{(\varphi[e])^*(x)}{\|x\|} = +\infty,$$
$$c_\alpha(\varphi) \ge \frac{\pi^n}{\tilde{\alpha}_1 \cdots \tilde{\alpha}_n} e^{2(\varphi[e])^*(\tilde{\alpha})}, \quad \alpha \in \mathbb{Z}_+^n.$$

Proof. The first statement can be proved by straightforward calculations.

For each $x \in [0, \infty)^n$ and $t \in \mathbb{R}^n$ we have $(\varphi[e])^*(x) \ge \langle x, t \rangle - (\varphi[e])(t)$. In particular, this implies that for each M > 0

$$(\varphi[e])^*(x) \ge M \|x\| - \varphi[e]\left(\frac{Mx}{\|x\|}\right) \ge M \|x\| - \varphi(e^M, \dots, e^M), \quad x \in [0, \infty)^n \setminus \{0\}.$$

This proves the second statement.

The third statement can be proved by an approach used in the proof of Lemma 2 in [3]. \Box

Corollary. Let $\varphi \in V(\mathbb{R}^n)$. Then for each M > 0 there exists a constant $C_M > 0$ such that $c_{\alpha}(\varphi) \ge C_M M^{|\alpha|}$ for each $\alpha \in \mathbb{Z}_+^n$.

2.2. Orthonormal basis in F_{α}^2 .

Theorem 1. Let $\varphi \in V(\mathbb{R}^n)$ and an entire function $f(z) = \sum_{|\alpha| \ge 0} a_{\alpha} z^{\alpha}$ belongs to F_{φ}^2 . Then

$$\sum_{|\alpha| \geqslant 0} |a_{\alpha}|^2 c_{\alpha}(\varphi) < \infty, \qquad \|f\|_{\varphi}^2 = \sum_{|\alpha| \geqslant 0} |a_{\alpha}|^2 c_{\alpha}(\varphi)$$

87

Vice versa, let a sequence $(a_{\alpha})_{|\alpha|\geq 0}$ of complex numbers a_{α} is such that the series $\sum_{|\alpha|\geq 0} |a_{\alpha}|^2 c_{\alpha}(\varphi)$ converges. Then $f(z) = \sum_{|\alpha|\geq 0} a_{\alpha} z^{\alpha} \in H(\mathbb{C}^n)$ and $f \in F_{\varphi}^2$. Proof. Let $f(z) = \sum_{|\alpha|\geq 0} a_{\alpha} z^{\alpha} \in H(\mathbb{C}^n)$. The chain of identities $\|f\|_{\varphi}^2 = \int_{\mathbb{C}^n} |f(z)|^2 e^{-2\varphi(abs\ z)} \ d\mu_n(z) = \lim_{R\to\infty} \int_{\Pi_R} |f(z)|^2 e^{-2\varphi(abs\ z)} \ d\mu_n(z)$ $= \lim_{R\to\infty} \int_{\Pi_R} \sum_{|\alpha|\geq 0} a_{\alpha} z^{\alpha} \sum_{|\beta|\geq 0} \overline{a}_{\beta} \overline{z}^{\beta} e^{-2\varphi(abs\ z)} \ d\mu_n(z)$ $= \lim_{R\to\infty} \sum_{\alpha,\beta\in\mathbb{Z}^n_+} a_{\alpha}\overline{a}_{\beta} \int_{\Pi_R} z^{\alpha} \overline{z}^{\beta} e^{-2\varphi(abs\ z)} \ d\mu_n(z)$ $= \lim_{R\to\infty} \sum_{|\alpha|\geq 0} \int_{\Pi_R} |a_{\alpha}|^2 |z_1|^{2\alpha_1} \cdots |z_n|^{2\alpha_n} e^{-2\varphi(abs\ z)} \ d\mu_n(z)$

$$R \to \infty \int_{\Pi_R} \sum_{|\alpha| \ge 0} |a_{\alpha}|^2 |z_1|^{2\alpha_1} \cdots |z_n|^{2\alpha_n} e^{-2\varphi(abs \ z)} \ d\mu_n(z)$$
$$= \sum_{|\alpha| \ge 0} |a_{\alpha}|^2 \int_{\mathbb{C}^n} |z_1|^{2\alpha_1} \cdots |z_n|^{2\alpha_n} e^{-2\varphi(abs \ z)} \ d\mu_n(z) = \sum_{|\alpha| \ge 0} |a_{\alpha}|^2 c_{\alpha}(\varphi)$$

shows that $f \in F_{\varphi}^2$ if and only if $\sum_{|\alpha| \ge 0} |a_{\alpha}|^2 c_{\alpha}(\varphi) < \infty$.

Vice versa, the convergence of the series $\sum_{|\alpha| \ge 0} |a_{\alpha}|^2 c_{\alpha}(\varphi)$ and Corollary yield that for each $\varepsilon > 0$ there exists a number $c_{\varepsilon} > 0$ such that $|a_{\alpha}| \le c_{\varepsilon} \varepsilon^{|\alpha|}$ for each $\alpha \in \mathbb{Z}_{+}^{n}$. This means that $f(z) = \sum_{|\alpha| \ge 0} a_{\alpha} z^{\alpha}$ is an entire function in \mathbb{C}^{n} . The above identities imply that $f \in F_{\varphi}^{2}$.

Lemma 1. Let $\varphi \in V(\mathbb{R}^n)$ and an entire function $f(z) = \sum_{|\alpha| \ge 0} a_{\alpha} z^{\alpha}$ belongs to F_{φ}^2 . Then $(f, e_{\alpha})_{\varphi} = a_{\alpha} \sqrt{c_{\alpha}(\varphi)}$ for each $\alpha \in \mathbb{Z}_+^n$.

Proof. For each $\alpha \in \mathbb{Z}^n_+$ we have

$$\begin{split} (f, e_{\alpha})_{\varphi} &= \lim_{R \to \infty} \int_{\Pi_{R}} f(z) \overline{e_{\alpha}(z)} e^{-2\varphi(abs\,z)} \, d\mu_{n}(z) \\ &= \lim_{R \to \infty} \sum_{|\beta| \ge 0} a_{\beta} \sqrt{c_{\beta}(\varphi)} \int_{\Pi_{R}} e_{\beta}(z) \overline{e_{\alpha}(z)} e^{-2\varphi(abs\,z)} \, d\mu_{n}(z) \\ &= a_{\alpha} \sqrt{c_{\alpha}(\varphi)} \lim_{R \to \infty} \int_{\Pi_{R}} |e_{\alpha}(z)|^{2} e^{-2\varphi(abs\,z)} \, d\mu_{n}(z) \\ &= a_{\alpha} \sqrt{c_{\alpha}(\varphi)} \int_{\mathbb{C}^{n}} |e_{\alpha}(z)|^{2} e^{-2\varphi(abs\,z)} \, d\mu_{n}(z) = a_{\alpha} \sqrt{c_{\alpha}(\varphi)} \end{split}$$

Lemma 2. Let $\varphi \in V(\mathbb{R}^n)$. Then the system $\{e_\alpha\}_{\alpha \in \mathbb{Z}^n_+}$ is an orthonormal basis in F_{φ}^2 . *Proof.* The system $\{e_\alpha\}_{\alpha \in \mathbb{Z}^n_+}$ is orthogonal in F_{φ}^2 . Indeed, for each $\alpha, \beta \in \mathbb{Z}^n_+ : \alpha \neq \beta$ we have

$$\int_{\Pi_R} e_{\alpha}(z) \overline{e_{\beta}(z)} e^{-2\varphi(abs\,z)} \, d\mu_n(z) = 0, \qquad R > 0,$$

I.KH. MUSIN

and hence,

$$(e_{\alpha}, e_{\beta})_{\varphi} = \int_{\mathbb{C}^n} e_{\alpha}(z) \overline{e_{\beta}(z)} e^{-2\varphi(abs\ z)} \ d\mu_n(z) = \lim_{R \to \infty} \int_{\Pi_R} e_{\alpha}(z) \overline{e_{\beta}(z)} e^{-2\varphi(abs\ z)} \ d\mu_n(z) = 0.$$

It is obvious that $||e_{\alpha}||_{\varphi} = 1$ for each $\alpha \in \mathbb{Z}_{+}^{n}$. An orthonormal in F_{φ}^{2} system $\{e_{\alpha}\}_{\alpha \in \mathbb{Z}_{+}^{n}}$ is complete since by Theorem 1 and Lemma 1 for each function $f(z) = \sum_{|\alpha| \ge 0} a_{\alpha} z^{\alpha} \in F_{\varphi}^{2}$ we have $||f||_{\varphi}^{2} = \sum_{|\alpha| \ge 0} |(f, e_{\alpha})_{\varphi}|^{2}$. Thus, the system $\{e_{\alpha}\}_{\alpha \in \mathbb{Z}_{+}^{n}}$ forms an orthonormal basis in F_{ω}^2 .

2.3. Reproducing kernels for F_{φ}^2 . We define a function $\mathcal{K} : \mathbb{C}^{2n} \to \mathbb{C}$ by the rule

$$\mathcal{K}(z,w) = \sum_{|\alpha| \ge 0} \frac{z^{\alpha} w^{\alpha}}{c_{\alpha}(\varphi)} , z, w \in \mathbb{C}^{n}.$$

Since by Corollary for each M > 0 there exists a constant $C_M > 0$ such that

$$c_{\alpha}(\varphi) \ge C_M M^{|\alpha|}, \qquad \alpha \in \mathbb{Z}^n_+,$$
(1)

it is clear that $\mathcal{K} \in H(\mathbb{C}^{2n})$.

For $z \in \mathbb{C}^n$ we define the function $\mathcal{K}_z : \mathbb{C}^n \to \mathbb{C}$ by the rule $\mathcal{K}_z(w) = \mathcal{K}(z, w)$.

Lemma 3. Let $\varphi \in V(\mathbb{R}^n)$, $z \in \mathbb{C}^n$. Then $\mathcal{K}_z \in F_{\varphi}^2$, and $\|\mathcal{K}_z\|_{\varphi}^2 = \mathcal{K}(z,\overline{z})$.

Proof. By ν we denote the measure in \mathbb{C}^n defined by the rule $d\nu(z) = e^{-2\varphi(abs\,z)} d\mu_n(z)$. Let $z \in \mathbb{C}^n$. For each R > 0 we have

$$\begin{split} \int_{\Pi_R} |\mathcal{K}_z(w)|^2 \, d\,\nu(w) &= \int_{\Pi_R} \sum_{|\alpha| \ge 0} \frac{z^\alpha w^\alpha}{c_\alpha(\varphi)} \sum_{|\beta| \ge 0} \frac{\overline{z}^\beta \overline{w}^\beta}{c_\beta(\varphi)} \, d\,\nu(w) \\ &= \sum_{\alpha,\beta \in \mathbb{Z}_+^n} \frac{z^\alpha}{c_\alpha(\varphi)} \frac{\overline{z}^\beta}{c_\beta(\varphi)} \int_{\Pi_R} w^\alpha \overline{w}^\beta \, d\,\nu(w) = \sum_{|\alpha| \ge 0} \frac{|z^\alpha|^2}{c_\alpha^2(\varphi)} \int_{\Pi_R} |w^\alpha|^2 \, d\,\nu(w) \\ &= \int_{\Pi_R} \sum_{|\alpha| \ge 0} \frac{|z^\alpha|^2 |w^\alpha|^2}{c_\alpha^2(\varphi)} \, d\,\nu(w). \end{split}$$

Therefore,

$$\begin{aligned} \|\mathcal{K}_{z}\|_{\varphi}^{2} &= \int_{\mathbb{C}^{n}} |\mathcal{K}_{z}(w)|^{2} \, d\,\nu(w) = \lim_{R \to \infty} \int_{\Pi_{R}} \sum_{|\alpha| \ge 0} \frac{|z^{\alpha}|^{2} |w^{\alpha}|^{2}}{c_{\alpha}^{2}(\varphi)} \, d\,\nu(w) \\ &= \int_{\mathbb{C}^{n}} \sum_{|\alpha| \ge 0} \frac{|z^{\alpha}|^{2} |w^{\alpha}|^{2}}{c_{\alpha}^{2}(\varphi)} \, d\,\nu(w) = \sum_{|\alpha| \ge 0} \frac{|z^{\alpha}|^{2}}{c_{\alpha}^{2}(\varphi)} \int_{\mathbb{C}^{n}} |w^{\alpha}|^{2} \, d\,\nu(w) = \sum_{|\alpha| \ge 0} \frac{|z^{\alpha}|^{2}}{c_{\alpha}(\varphi)} \, .\end{aligned}$$

Thus, $\mathcal{K}_z \in F_{\varphi}^2$ since by inequality (1) the series $\sum_{|\alpha| \ge 0} \frac{|z^{\alpha}|^2}{c_{\alpha}(\varphi)}$ converges uniformly on compact subsets in \mathbb{C}^n and $\|\mathcal{K}_z\|_{\varphi}^2 = \mathcal{K}(z, \overline{z}).$

Lemma 4. Let $\varphi \in V(\mathbb{R}^n)$. Then for all $\alpha \in \mathbb{Z}^n_+$ and $z \in \mathbb{C}^n$ the identities hold

$$(e_{\alpha}, \mathcal{K}_{\overline{z}})_{\varphi} = \int_{\mathbb{C}^n} e_{\alpha}(w) \mathcal{K}(z, \overline{w}) e^{-2\varphi(abs\,w)} \, d\mu_n(w) = e_{\alpha}(z).$$

Proof. Let $\alpha \in \mathbb{Z}_+^n$ and $z \in \mathbb{C}^n$. Then for each R > 0

$$\int_{\Pi_R} e_{\alpha}(w) \mathcal{K}(z, \overline{w}) e^{-2\varphi(abs\,w)} \, d\mu_n(w) = \int_{\Pi_R} e_{\alpha}(w) \sum_{|\beta| \ge 0} e_{\beta}(z) \overline{e_{\beta}(w)} e^{-2\varphi(abs\,w)} \, d\mu_n(w)$$
$$= \sum_{|\beta| \ge 0} e_{\beta}(z) \int_{\Pi_R} e_{\alpha}(w) \overline{e_{\beta}(w)} e^{-2\varphi(abs\,w)} \, d\mu_n(w)$$

$$= e_{\alpha}(z) \int_{\Pi_R} |e_{\alpha}(w)|^2 e^{-2\varphi(abs\,w)} \, d\mu_n(w)$$

We obtain that

$$\int_{\mathbb{C}^n} e_{\alpha}(w) \mathcal{K}(z,\overline{w}) e^{-2\varphi(abs\,w)} \, d\mu_n(w) = \lim_{R \to \infty} \int_{\Pi_R} e_{\alpha}(w) \mathcal{K}(z,\overline{w}) e^{-2\varphi(abs\,w)} \, d\mu_n(w)$$
$$= e_{\alpha}(z) \lim_{R \to \infty} \int_{\Pi_R} |e_{\alpha}(w)|^2 e^{-2\varphi(abs\,w)} \, d\mu_n(w)$$
$$= e_{\alpha}(z) \int_{\mathbb{C}^n} |e_{\alpha}(w)|^2 e^{-2\varphi(abs\,w)} \, d\mu_n(w) = e_{\alpha}(z).$$

Theorem 2. Let $\varphi \in V(\mathbb{R}^n)$. Then for each $f \in F_{\varphi}^2$

$$f(z) = \int_{\mathbb{C}^n} f(w) \mathcal{K}(z, \overline{w}) e^{-2\varphi(abs\,w)} \, d\mu_n(w), \ z \in \mathbb{C}^n.$$

Proof. Let $f \in F_{\varphi}^2$. For each $z \in \mathbb{C}^n$ we have

$$\int_{\mathbb{C}^n} f(w) \mathcal{K}(z, \overline{w}) e^{-2\varphi(abs \ w)} \ d\mu_n(w) = (f, \mathcal{K}_{\overline{z}})_{\varphi} = \left(\sum_{|\alpha| \ge 0} (f, e_{\alpha})_{\varphi} e_{\alpha}, \mathcal{K}_{\overline{z}} \right)_{\varphi} \\ = \sum_{|\alpha| \ge 0} (f, e_{\alpha})_{\varphi} (e_{\alpha}, \mathcal{K}_{\overline{z}})_{\varphi} = \sum_{|\alpha| \ge 0} (f, e_{\alpha})_{\varphi} e_{\alpha}(z) = f(z).$$

Remark 1. For each $f \in F_{\varphi}^2$, thanks to the plurisubharmonicity of $|f|^2$ we have

$$|f(z)|^2 \leq \frac{1}{\nu_n(1)} \int_{\|w-z\| \leq 1} |f(w)|^2 d\mu_n(w), \quad z \in \mathbb{C}^n,$$

where $\nu_n(1)$ is the volume of the unit ball in \mathbb{C}^n . Therefore,

$$|f(z)|^{2} \leq \frac{1}{\nu_{n}(1)} \exp(\sup_{\|w-z\| \leq 1} 2\varphi(abs \ w)) \|f\|_{\varphi}^{2}.$$
(2)

By estimate (2), for each $z \in \mathbb{C}^n$, a linear functional $\delta_z : F_{\varphi}^2 \to \mathbb{C}$ acting by the rule $\delta_z(f) = f(z)$ is continuous and therefore, there exists the unique function $K_z \in F_{\varphi}^2$ such that for each $f \in F_{\varphi}^2$ we have $f(z) = (f, K_z)_{\varphi}$. The functions K_z $(z \in \mathbb{C}^n)$ are called reproducing kernels for F_{φ}^2 . At that, $K_z(w) = \mathcal{K}(\overline{z}, w) = \mathcal{K}_{\overline{z}}(w)$. In particular, this implies that $||K_z||_{\varphi}^2 = \mathcal{K}(z, \overline{z})$.

3. Special classes of linear operators on F_{φ}^2

3.1. Orthogonal projector on F_{φ}^2 .

Theorem 3. Let $\varphi \in V(\mathbb{R}^n)$, $P_{\varphi}: L^2_{\varphi} \to F^2_{\varphi}$ be an orthogonal projector. Then

$$P_{\varphi}(f)(z) = \int_{\mathbb{C}^n} f(w) \mathcal{K}(z, \overline{w}) e^{-2\varphi(abs\,w)} \, d\mu_n(w), \ z \in \mathbb{C}^n.$$
(3)

Proof. Let $f \in L^2_{\varphi}$, then $P_{\varphi}(f)$ can be represented as the series $P_{\varphi}(f) = \sum_{|\alpha| \ge 0} (f, e_{\alpha})_{\varphi} e_{\alpha}$ converging in E^2 . For each $x \in \mathbb{C}^n$ we have

 $F_{\varphi}^2.$ For each $z\in \mathbb{C}^n$ we have

$$\begin{split} P_{\varphi}(f)(z) &= \sum_{|\alpha| \ge 0} (f, e_{\alpha})_{\varphi} e_{\alpha}(z) = (f, \sum_{|\alpha| \ge 0} \overline{e_{\alpha}(z)} e_{\alpha})_{\varphi} \\ &= (f, \mathcal{K}_{\overline{z}})_{\varphi} = \int_{\mathbb{C}^n} f(w) \mathcal{K}(z, \overline{w}) e^{-2\varphi(abs \, w)} \, d\mu_n(w). \end{split}$$

89

Remark 2. Identity (3) can be written as $P_{\varphi}(f)(z) = (f, K_z)_{\varphi}$.

3.2. Trace of positive linear continuous operator on F_{ω}^2 .

Definition 1. A linear continuous operator A on a Hilbert space H is called positive if $(Ax, x)_H \ge 0$ for each $x \in H$.

It is known [4, 12.32, Thm.] that a positive linear continuous operator A on a Hilbert space H is self-adjoin.

Definition 2. Let H be a Hilbert space, A be a positive linear continuous operator in H and $\{\psi_k\}_{k\in\mathbb{N}}$ be an orthonormalized basis in H. The trace tr (A) of the operator A is defined as tr $(A) = \sum_{k=1}^{\infty} (A(\psi_k), \psi_k)_H$.

It is known [5, Lms. 5.6.2, 5.5.1] that the definition of the trace of an operator A is independent on the basis in H.

Theorem 4. Let A be a positive linear continuous operator on F_{φ}^2 . Then

$$\operatorname{tr}(A) = \int_{\mathbb{C}^n} (A(K_z), K_z)_{\varphi} e^{-2\varphi(abs\,z)} \, d\mu_n(z).$$

Proof. We have

$$\begin{split} \int_{\mathbb{C}^n} (A(K_z), K_z)_{\varphi} e^{-2\varphi(abs\ z)}\ d\mu_n(z) &= \lim_{R \to \infty} \int_{\Pi_R} (A(K_z), K_z)_{\varphi} e^{-2\varphi(abs\ z)}\ d\mu_n(z) \\ &= \lim_{R \to \infty} \int_{\Pi_R} (A(\sum_{|\alpha| \geqslant 0} \overline{e_\alpha(z)} e_\alpha), \sum_{|\beta| \geqslant 0} \overline{e_\beta(z)} e_\beta)_{\varphi} e^{-2\varphi(abs\ z)}\ d\mu_n(z) \\ &= \lim_{R \to \infty} \int_{\Pi_R} \sum_{\alpha, \beta \in \mathbb{Z}^n_+} \overline{e_\alpha(z)} e_\beta(z) (A(e_\alpha), e_\beta)_{\varphi} e^{-2\varphi(abs\ z)}\ d\mu_n(z) \\ &= \lim_{R \to \infty} \sum_{\alpha, \beta \in \mathbb{Z}^n_+} \int_{\Pi_R} \overline{e_\alpha(z)} e_\beta(z) (A(e_\alpha), e_\beta)_{\varphi} e^{-2\varphi(abs\ z)}\ d\mu_n(z) \\ &= \lim_{R \to \infty} \sum_{|\alpha| \ge 0} \int_{\Pi_R} |e_\alpha(z)|^2 (A(e_\alpha), e_\alpha)_{\varphi} e^{-2\varphi(abs\ z)}\ d\mu_n(z) \\ &= \lim_{R \to \infty} \int_{\Pi_R} \sum_{|\alpha| \ge 0} |e_\alpha(z)|^2 (A(e_\alpha), e_\alpha)_{\varphi} e^{-2\varphi(abs\ z)}\ d\mu_n(z) \\ &= \int_{\mathbb{C}^n} \sum_{|\alpha| \ge 0} |e_\alpha(z)|^2 (A(e_\alpha), e_\alpha)_{\varphi} e^{-2\varphi(abs\ z)}\ d\mu_n(z) \\ &= \int_{\|\alpha\| \ge 0} (A(e_\alpha), e_\alpha)_{\varphi} \int_{\mathbb{C}^n} |e_\alpha(z)|^2 e^{-2\varphi(abs\ z)}\ d\mu_n(z) \\ &= \sum_{|\alpha| \ge 0} (A(e_\alpha), e_\alpha)_{\varphi} = \operatorname{tr}(A). \end{split}$$

Remark 3. We note that a trace formula of such kind for a positive linear continuous operator in the Bergman space on the unit circle was provided in work [1], see Proposition 6.3.2, while for the case of a Fock space of the functions of many variables it was given in work [2], see Lemma 1.

3.3. Weighted composition operator on F_{φ}^2 .

Definition 3. Let H be a Hilbert space and $\{\psi_k\}_{k \in \mathbb{N}}$ be an orthonormalized basis in H. A linear continuous operator $A: H \to H$ is called a Hilbert-Schmidt operator if $\sum_{k=1}^{\infty} \|A(\psi_k)\|_H^2 < \infty$.

It is known [5, Lm. 5.5.1] that sum of the series is independent on the basis in H.

Theorem 5. Let a holomorphic mapping $h : \mathbb{C}^n \to \mathbb{C}^n$ and a function $u \in H(\mathbb{C}^n)$ are such that the linear operator $uC_h: f \in F^2_{\varphi} \to u(\widehat{f \circ h})$ is continuous on F^2_{φ} . Then the following conditions are equivalent:

- 1) uC_h is a Hilbert-Schmidt operator;
- $2) \int_{\mathbb{C}^n} |u(z)|^2 \mathcal{K}(h(z), \overline{h(z)}) e^{-2\varphi(abs\,z)} d\mu_n(z) < \infty.$ $3) \int_{\mathbb{C}^n} \left(\int_{\mathbb{C}^n} |u(w)|^2 |K_z(h(w))|^2 e^{-2(\varphi(abs\,w) + \varphi(abs\,z))} d\mu_n(w) \right) d\mu_n(z) < \infty.$

Proof. Conditions 1) and 2) are equivalent. Indeed, since

$$\sum_{|\alpha| \ge 0} \|uC_h(e_\alpha)\|_{\varphi}^2 = \sum_{|\alpha| \ge 0} \int_{\mathbb{C}^n} |u(z)|^2 \frac{|h_1(z)|^{2\alpha_1} \cdots |h_n(z)|^{2\alpha_n}}{c_\alpha(\varphi)} e^{-2\varphi(abs\,z)} \, d\mu_n(z)$$
$$= \int_{\mathbb{C}^n} |u(z)|^2 \sum_{|\alpha| \ge 0} \frac{|h_1(z)|^{2\alpha_1} \cdots |h_n(z)|^{2\alpha_n}}{c_\alpha(\varphi)} e^{-2\varphi(abs\,z)} \, d\mu_n(z)$$
$$= \int_{\mathbb{C}^n} |u(z)|^2 \mathcal{K}(h(z), \overline{h(z)}) e^{-2\varphi(abs\,z)} \, d\mu_n(z),$$

the operator uC_h is Hilbert-Schmidt if and only if

$$\int_{\mathbb{C}^n} |u(z)|^2 \mathcal{K}(h(z), \overline{h(z)}) e^{-2\varphi(abs\,z)} \, d\mu_n(z) < \infty.$$

Let us show that Conditions 1) and 3) are also equivalent. It is obvious that the operator uC_h on F_{φ}^2 is Hilbert-Schmidt if and only if the trace of the operator $(uC_h)^*uC_h$ is finite. By Theorem 4, this is true if and only if

$$\int_{\mathbb{C}^n} ((uC_h)^* uC_h(K_z), K_z)_{\varphi} e^{-2\varphi(abs\,z)} \, d\mu_n(z) < \infty.$$

And since

$$((uC_h)^* uC_h(K_z), K_z)_{\varphi} = (uC_h(K_z), uC_h(K_z))_{\varphi}$$
$$= \int_{\mathbb{C}^n} |u(w)|^2 |K_z(h(w))|^2 e^{-2\varphi(abs\,w)} \, d\mu_n(w),$$

then uC_h on F_{φ}^2 is a Hilbert-Schmidt operator if and only if

$$\int_{\mathbb{C}^n} \left(\int_{\mathbb{C}^n} |u(w)|^2 |K_z(h(w))|^2 e^{-2(\varphi(abs\,w) + \varphi(abs\,z))} \, d\mu_n(w) \right) \, d\mu_n(z) < \infty.$$

BIBLIOGRAPHY

- 1. K. Zhu. Operator theory in function spaces. Marcel Dekker, New York (1990).
- 2. Sei-Ichiro Ueki. Hilbert-Schmidt Weighted Composition Operator on the Fock space // Int. Journal of Math. Analysis, Vol. 1:16, 769–774 (2007).
- 3. I.Kh. Musin. On a Hilbert space of entire functions // Ufimskji Matem. Zhurn. 9:3, 111-118 (2017). [Ufa Math. J. 9:3, 109–117 (2017).]
- 4. W. Rudin. Functional analysis. McGraw-Hill Book Comp., New York (1973).
- 5. E. Brian Davies. *Linear operators and their spectra*. Cambridge Univ. Press, Cambridge (2007).

Ildar Khamitovich Musin, Institute of Mathematics, Ufa Federal Research Center, RAS, Chernyshevskii str. 112, 450077, Ufa, Russia E-mail: musin_ildar@mail.ru