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ON SOME LINEAR OPERATORS ON FOCK TYPE SPACE

I.KH. MUSIN

Abstract. We consider a lower semi-continuous function 𝜙 inR𝑛 depending on the absolute
values of the variables and growing faster than 𝑎 ln(1 + ‖𝑥‖) for each positive 𝑎. In terms
of this function, we define a Hilbert space 𝐹 2

𝜙 of entire functions in C𝑛. This is a natural
generalization of a classical Fock space. In this paper we provide an alternative description
of the space 𝐹 2

𝜙 in terms of the coefficients in the power expansions for the entire functions

in this space. We mention simplest properties of reproducing kernels in the space 𝐹 2
𝜙.

We consider the orthogonal projector from the space 𝐿2
𝜙 of measurable complex-valued

functions 𝑓 in C𝑛 such that

‖𝑓‖2𝜙 =

∫︁
C𝑛

|𝑓(𝑧)|2𝑒−2𝜙(abs 𝑧) 𝑑𝜇𝑛(𝑧) <∞,

where 𝑧 = (𝑧1, . . . , 𝑧𝑛), abs 𝑧 = (|𝑧1|, . . . , |𝑧1|), on its closed subspace 𝐹 2
𝜙, and for this

projector we obtain an integral representation.
We also obtain an integral formula for the trace of a positive linear continuous operator

on the space 𝐹 2
𝜙. By means of this formula we find the conditions, under which a weighted

operator of the composition on 𝐹 2
𝜙 is a Hilbert-Schmidt operator. Two latter results gener-

alize corresponding results by Sei-Ichiro Ueki, who studied similar questions for operators
in Fock space.

Keywords: entire functions, Fock type space, linear operators, operator trace, weighted
composition operators, Hilbert-Schmidt operator.
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1. Introduction

1.1. On considered problems. Let 𝐻(C𝑛) be a space of entire functions in C𝑛 equipped with
a topology of uniform convergence on compact subset C𝑛, 𝑑𝜇𝑛 be the Lebesgue measure in C𝑛,
𝑎𝑏𝑠 𝑢 = (|𝑢1|, . . . , |𝑢𝑛|) for 𝑢 = (𝑢1, . . . , 𝑢𝑛) ∈ R𝑛 (C𝑛).

By 𝑉 (R𝑛) we denote the set of lower-semi-continuous function 𝑣 : R𝑛 → R obeying the conditions:
𝑖1). 𝑣(𝑥) = 𝑣(𝑎𝑏𝑠 𝑥), 𝑥 ∈ R𝑛;

𝑖2). lim
𝑥→∞

𝑣(𝑥)

ln(1 + ‖𝑥‖)
= +∞;

𝑖3). The restriction of 𝑣 on [0,∞)𝑛 does not decrease in each variable.
Given 𝜙 ∈ 𝑉 (R𝑛), by 𝐿2

𝜙 we denote the space of measurable functions 𝑓 : C𝑛 → C such that

‖𝑓‖2𝜙 =

∫︁
C𝑛

|𝑓(𝑧)|2𝑒−2𝜙(𝑎𝑏𝑠 𝑧) 𝑑𝜇𝑛(𝑧) <∞

with the scalar product (𝑓, 𝑔)𝜙 =
∫︀
C𝑛 𝑓(𝑧)𝑔(𝑧)𝑒

−2𝜙(𝑎𝑏𝑠 𝑧) 𝑑𝜇𝑛(𝑧), 𝑓, 𝑔 ∈ 𝐿2
𝜙; the space 𝐿2

𝜙 is Hilbert.

Let 𝐹 2
𝜙 = 𝐿2

𝜙 ∩ 𝐻(C𝑛). It is easy to show that 𝐹 2
𝜙 is a closed subspace of the space 𝐿2

𝜙. By

Condition 𝑖2), the polynomials belong to 𝐹 2
𝜙.

The definition of the space 𝐹 2
𝜙 is a natural generalization of the Fock space and it motivates a study

of a series of problems related both the theory of functions and the operator theory.
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In the present paper we provide an alternative description of the space 𝐹 2
𝜙 and we restrict ourselves

by considering an operator of orthogonal projection from 𝐿2
𝜙 into 𝐹 2

𝜙 and by finding the conditions

under which a weighted composition operator from 𝐹 2
𝜙 into 𝐹 2

𝜙 is a Hilbert-Schmidt operator.

1.2. Notations. Given 𝑢 = (𝑢1, . . . , 𝑢𝑛), 𝑣 = (𝑣1, . . . , 𝑣𝑛) ∈ R𝑛(C𝑛), we let ⟨𝑢, 𝑣⟩ := 𝑢1𝑣1 + · · · +
𝑢𝑛𝑣𝑛, ‖𝑢‖ is the Euclidean norm in 𝑢.

For 𝜙 ∈ 𝑉 (R𝑛), 𝛼 = (𝛼1, . . . , 𝛼𝑛) ∈ Z𝑛
+, 𝑧 = (𝑧1, . . . , 𝑧𝑛) ∈ C𝑛 |𝛼| := 𝛼1 + . . .+ 𝛼𝑛 is the length of

a multi-index 𝛼, 𝛼̃ := (𝛼1 + 1, . . . , 𝛼𝑛 + 1), 𝑧𝛼 := 𝑧𝛼1
1 · · · 𝑧𝛼𝑛

𝑛 ,

𝑐𝛼(𝜙) :=

∫︁
C𝑛

|𝑧1|2𝛼1 · · · |𝑧𝑛|2𝛼𝑛𝑒−2𝜙(𝑎𝑏𝑠 𝑧) 𝑑𝜇𝑛(𝑧), 𝑒𝛼(𝑧) =
𝑧𝛼√︀
𝑐𝛼(𝜙)

.

Given 𝑅 > 0, by Π𝑅 we denote the polydisk {𝑧 ∈ C𝑛 : |𝑧1| < 𝑅, . . . , |𝑧𝑛| < 𝑅}.
For a function 𝑢 with the domain containing the set (0,∞)𝑛, we define a function 𝑢[𝑒] in R𝑛 by the

rule: 𝑢[𝑒](𝑥) = 𝑢(𝑒𝑥1 , . . . , 𝑒𝑥𝑛), 𝑥 = (𝑥1, . . . , 𝑥𝑛) ∈ R𝑛.
The Young-Fenchel transform of the function 𝑢 : R𝑛 → [−∞,+∞] is a function 𝑢* : R𝑛 →

[−∞,+∞] defined by the formula 𝑢*(𝑥) = sup
𝑦∈R𝑛

(⟨𝑥, 𝑦⟩ − 𝑢(𝑦)), 𝑥 ∈ R𝑛.

Given a Hilber space 𝐻, by (𝑓, 𝑔)𝐻 we denote the scalar product in 𝐻, while ‖𝑥‖𝐻 stands for the
Hilbert norm of an element 𝑥 ∈ 𝐻. Instead of (𝑓, 𝑔)𝐹 2

𝜙
we write (𝑓, 𝑔)𝜙.

1.3. Main results. Theorem 1 provides a description of entire functions forming the space 𝐹 2
𝜙 in

terms of the coefficients in their power expansions. The simplest properties of the reproducing kernels
of the space 𝐹 2

𝜙 are given in Section 2. An explicit form for the orthogonal projector from 𝐿2
𝜙 into

𝐹 2
𝜙 is obtained in Theorem 3. In Section 3 we obtain an integral formula for the trace of a linear

continuous operator on 𝐹 2
𝜙, see Theorem 4. It is employed in proof of Theorem 5, in which there

formulated the conditions, under which a weighted composition operator on 𝐹 2
𝜙 is a Hilbert-Schmidt

operator. Theorem 5 generalizes the main result of work [2], in which weighted compositions operators
were considered in the Fock space. Its proof follows the main line of that of Theorem 1 in [2].

2. Space 𝐹 2
𝜙

2.1. Preliminaries.

Proposition. Let 𝜙 ∈ 𝑉 (R𝑛). Then

(𝜙[𝑒])*(𝑥) < +∞ for 𝑥 ∈ [0,∞)𝑛, lim
𝑥→∞,

𝑥∈[0,∞)𝑛

(𝜙[𝑒])*(𝑥)

‖𝑥‖
= +∞,

𝑐𝛼(𝜙) >
𝜋𝑛

𝛼̃1 · · · 𝛼̃𝑛
𝑒2(𝜙[𝑒])

*(𝛼̃), 𝛼 ∈ Z𝑛
+.

Proof. The first statement can be proved by straightforward calculations.
For each 𝑥 ∈ [0,∞)𝑛 and 𝑡 ∈ R𝑛 we have (𝜙[𝑒])*(𝑥) > ⟨𝑥, 𝑡⟩ − (𝜙[𝑒])(𝑡). In particular, this implies

that for each 𝑀 > 0

(𝜙[𝑒])*(𝑥) >𝑀‖𝑥‖ − 𝜙[𝑒]

(︂
𝑀𝑥

‖𝑥‖

)︂
>𝑀‖𝑥‖ − 𝜙(𝑒𝑀 , . . . , 𝑒𝑀 ), 𝑥 ∈ [0,∞)𝑛 ∖ {0}.

This proves the second statement.
The third statement can be proved by an approach used in the proof of Lemma 2 in [3].

Corollary. Let 𝜙 ∈ 𝑉 (R𝑛). Then for each 𝑀 > 0 there exists a constant 𝐶𝑀 > 0 such that

𝑐𝛼(𝜙) > 𝐶𝑀𝑀
|𝛼| for each 𝛼 ∈ Z𝑛

+.

2.2. Orthonormal basis in 𝐹 2
𝜙.

Theorem 1. Let 𝜙 ∈ 𝑉 (R𝑛) and an entire function 𝑓(𝑧) =
∑︀

|𝛼|>0

𝑎𝛼𝑧
𝛼 belongs to 𝐹 2

𝜙. Then

∑︁
|𝛼|>0

|𝑎𝛼|2𝑐𝛼(𝜙) <∞, ‖𝑓‖2𝜙 =
∑︁
|𝛼|>0

|𝑎𝛼|2𝑐𝛼(𝜙).
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Vice versa, let a sequence (𝑎𝛼)|𝛼|>0 of complex numbers 𝑎𝛼 is such that the series
∑︀

|𝛼|>0

|𝑎𝛼|2𝑐𝛼(𝜙)

converges. Then 𝑓(𝑧) =
∑︀

|𝛼|>0

𝑎𝛼𝑧
𝛼 ∈ 𝐻(C𝑛) and 𝑓 ∈ 𝐹 2

𝜙.

Proof. Let 𝑓(𝑧) =
∑︀

|𝛼|>0

𝑎𝛼𝑧
𝛼 ∈ 𝐻(C𝑛). The chain of identities

‖𝑓‖2𝜙 =

∫︁
C𝑛

|𝑓(𝑧)|2𝑒−2𝜙(𝑎𝑏𝑠 𝑧) 𝑑𝜇𝑛(𝑧) = lim
𝑅→∞

∫︁
Π𝑅

|𝑓(𝑧)|2𝑒−2𝜙(𝑎𝑏𝑠 𝑧) 𝑑𝜇𝑛(𝑧)

= lim
𝑅→∞

∫︁
Π𝑅

∑︁
|𝛼|>0

𝑎𝛼𝑧
𝛼
∑︁
|𝛽|>0

𝑎𝛽𝑧
𝛽𝑒−2𝜙(𝑎𝑏𝑠 𝑧) 𝑑𝜇𝑛(𝑧)

= lim
𝑅→∞

∑︁
𝛼,𝛽∈Z𝑛

+

𝑎𝛼𝑎𝛽

∫︁
Π𝑅

𝑧𝛼𝑧𝛽𝑒−2𝜙(𝑎𝑏𝑠 𝑧) 𝑑𝜇𝑛(𝑧)

= lim
𝑅→∞

∑︁
|𝛼|>0

∫︁
Π𝑅

|𝑎𝛼|2|𝑧1|2𝛼1 · · · |𝑧𝑛|2𝛼𝑛𝑒−2𝜙(𝑎𝑏𝑠 𝑧) 𝑑𝜇𝑛(𝑧)

= lim
𝑅→∞

∫︁
Π𝑅

∑︁
|𝛼|>0

|𝑎𝛼|2|𝑧1|2𝛼1 · · · |𝑧𝑛|2𝛼𝑛𝑒−2𝜙(𝑎𝑏𝑠 𝑧) 𝑑𝜇𝑛(𝑧)

=

∫︁
C𝑛

∑︁
|𝛼|>0

|𝑎𝛼|2|𝑧1|2𝛼1 · · · |𝑧𝑛|2𝛼𝑛𝑒−2𝜙(𝑎𝑏𝑠 𝑧) 𝑑𝜇𝑛(𝑧)

=
∑︁
|𝛼|>0

|𝑎𝛼|2
∫︁
C𝑛

|𝑧1|2𝛼1 · · · |𝑧𝑛|2𝛼𝑛𝑒−2𝜙(𝑎𝑏𝑠 𝑧) 𝑑𝜇𝑛(𝑧) =
∑︁
|𝛼|>0

|𝑎𝛼|2𝑐𝛼(𝜙)

shows that 𝑓 ∈ 𝐹 2
𝜙 if and only if

∑︀
|𝛼|>0

|𝑎𝛼|2𝑐𝛼(𝜙) <∞.

Vice versa, the convergence of the series
∑︀

|𝛼|>0

|𝑎𝛼|2𝑐𝛼(𝜙) and Corollary yield that for each 𝜀 > 0 there

exists a number 𝑐𝜀 > 0 such that |𝑎𝛼| 6 𝑐𝜀𝜀
|𝛼| for each 𝛼 ∈ Z𝑛

+. This means that 𝑓(𝑧) =
∑︀

|𝛼|>0

𝑎𝛼𝑧
𝛼 is

an entire function in C𝑛. The above identities imply that 𝑓 ∈ 𝐹 2
𝜙.

Lemma 1. Let 𝜙 ∈ 𝑉 (R𝑛) and an entire function 𝑓(𝑧) =
∑︀

|𝛼|>0

𝑎𝛼𝑧
𝛼 belongs to 𝐹 2

𝜙. Then (𝑓, 𝑒𝛼)𝜙 =

𝑎𝛼
√︀
𝑐𝛼(𝜙) for each 𝛼 ∈ Z𝑛

+.

Proof. For each 𝛼 ∈ Z𝑛
+ we have

(𝑓, 𝑒𝛼)𝜙 = lim
𝑅→∞

∫︁
Π𝑅

𝑓(𝑧)𝑒𝛼(𝑧)𝑒
−2𝜙(𝑎𝑏𝑠 𝑧) 𝑑𝜇𝑛(𝑧)

= lim
𝑅→∞

∑︁
|𝛽|>0

𝑎𝛽

√︁
𝑐𝛽(𝜙)

∫︁
Π𝑅

𝑒𝛽(𝑧)𝑒𝛼(𝑧)𝑒
−2𝜙(𝑎𝑏𝑠 𝑧) 𝑑𝜇𝑛(𝑧)

=𝑎𝛼
√︀
𝑐𝛼(𝜙) lim

𝑅→∞

∫︁
Π𝑅

|𝑒𝛼(𝑧)|2𝑒−2𝜙(𝑎𝑏𝑠 𝑧) 𝑑𝜇𝑛(𝑧)

=𝑎𝛼
√︀
𝑐𝛼(𝜙)

∫︁
C𝑛

|𝑒𝛼(𝑧)|2𝑒−2𝜙(𝑎𝑏𝑠 𝑧) 𝑑𝜇𝑛(𝑧) = 𝑎𝛼
√︀
𝑐𝛼(𝜙).

Lemma 2. Let 𝜙 ∈ 𝑉 (R𝑛). Then the system {𝑒𝛼}𝛼∈Z𝑛
+
is an orthonormal basis in 𝐹 2

𝜙.

Proof. The system {𝑒𝛼}𝛼∈Z𝑛
+
is orthogonal in 𝐹 2

𝜙. Indeed, for each 𝛼, 𝛽 ∈ Z𝑛
+ : 𝛼 ̸= 𝛽 we have∫︁

Π𝑅

𝑒𝛼(𝑧)𝑒𝛽(𝑧)𝑒
−2𝜙(𝑎𝑏𝑠 𝑧) 𝑑𝜇𝑛(𝑧) = 0, 𝑅 > 0,
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and hence,

(𝑒𝛼, 𝑒𝛽)𝜙 =

∫︁
C𝑛

𝑒𝛼(𝑧)𝑒𝛽(𝑧)𝑒
−2𝜙(𝑎𝑏𝑠 𝑧) 𝑑𝜇𝑛(𝑧) = lim

𝑅→∞

∫︁
Π𝑅

𝑒𝛼(𝑧)𝑒𝛽(𝑧)𝑒
−2𝜙(𝑎𝑏𝑠 𝑧) 𝑑𝜇𝑛(𝑧) = 0.

It is obvious that ‖𝑒𝛼‖𝜙 = 1 for each 𝛼 ∈ Z𝑛
+.

An orthonormal in 𝐹 2
𝜙 system {𝑒𝛼}𝛼∈Z𝑛

+
is complete since by Theorem 1 and Lemma 1 for each

function 𝑓(𝑧) =
∑︀

|𝛼|>0

𝑎𝛼𝑧
𝛼 ∈ 𝐹 2

𝜙 we have ‖𝑓‖2𝜙 =
∑︀

|𝛼|>0 |(𝑓, 𝑒𝛼)𝜙|2. Thus, the system {𝑒𝛼}𝛼∈Z𝑛
+
forms

an orthonormal basis in 𝐹 2
𝜙.

2.3. Reproducing kernels for 𝐹 2
𝜙. We define a function 𝒦 : C2𝑛 → C by the rule

𝒦(𝑧, 𝑤) =
∑︁
|𝛼|>0

𝑧𝛼𝑤𝛼

𝑐𝛼(𝜙)
, 𝑧, 𝑤 ∈ C𝑛.

Since by Corollary for each 𝑀 > 0 there exists a constant 𝐶𝑀 > 0 such that

𝑐𝛼(𝜙) > 𝐶𝑀𝑀
|𝛼|, 𝛼 ∈ Z𝑛

+, (1)

it is clear that 𝒦 ∈ 𝐻(C2𝑛).
For 𝑧 ∈ C𝑛 we define the function 𝒦𝑧 : C

𝑛 → C by the rule 𝒦𝑧(𝑤) = 𝒦(𝑧, 𝑤).

Lemma 3. Let 𝜙 ∈ 𝑉 (R𝑛), 𝑧 ∈ C𝑛. Then 𝒦𝑧 ∈ 𝐹 2
𝜙, and ‖𝒦𝑧‖2𝜙 = 𝒦(𝑧, 𝑧).

Proof. By 𝜈 we denote the measure in C𝑛 defined by the rule 𝑑 𝜈(𝑧) = 𝑒−2𝜙(𝑎𝑏𝑠 𝑧) 𝑑𝜇𝑛(𝑧). Let 𝑧 ∈ C𝑛.
For each 𝑅 > 0 we have∫︁

Π𝑅

|𝒦𝑧(𝑤)|2 𝑑 𝜈(𝑤) =
∫︁
Π𝑅

∑︁
|𝛼|>0

𝑧𝛼𝑤𝛼

𝑐𝛼(𝜙)

∑︁
|𝛽|>0

𝑧𝛽𝑤𝛽

𝑐𝛽(𝜙)
𝑑 𝜈(𝑤)

=
∑︁

𝛼,𝛽∈Z𝑛
+

𝑧𝛼

𝑐𝛼(𝜙)

𝑧𝛽

𝑐𝛽(𝜙)

∫︁
Π𝑅

𝑤𝛼𝑤𝛽 𝑑 𝜈(𝑤) =
∑︁
|𝛼|>0

|𝑧𝛼|2

𝑐2𝛼(𝜙)

∫︁
Π𝑅

|𝑤𝛼|2 𝑑 𝜈(𝑤)

=

∫︁
Π𝑅

∑︁
|𝛼|>0

|𝑧𝛼|2|𝑤𝛼|2

𝑐2𝛼(𝜙)
𝑑 𝜈(𝑤).

Therefore,

‖𝒦𝑧‖2𝜙 =

∫︁
C𝑛

|𝒦𝑧(𝑤)|2 𝑑 𝜈(𝑤) = lim
𝑅→∞

∫︁
Π𝑅

∑︁
|𝛼|>0

|𝑧𝛼|2|𝑤𝛼|2

𝑐2𝛼(𝜙)
𝑑 𝜈(𝑤)

=

∫︁
C𝑛

∑︁
|𝛼|>0

|𝑧𝛼|2|𝑤𝛼|2

𝑐2𝛼(𝜙)
𝑑 𝜈(𝑤) =

∑︁
|𝛼|>0

|𝑧𝛼|2

𝑐2𝛼(𝜙)

∫︁
C𝑛

|𝑤𝛼|2 𝑑 𝜈(𝑤) =
∑︁
|𝛼|>0

|𝑧𝛼|2

𝑐𝛼(𝜙)
.

Thus, 𝒦𝑧 ∈ 𝐹 2
𝜙 since by inequality (1) the series

∑︀
|𝛼|>0

|𝑧𝛼|2
𝑐𝛼(𝜙)

converges uniformly on compact subsets in

C𝑛 and ‖𝒦𝑧‖2𝜙 = 𝒦(𝑧, 𝑧).

Lemma 4. Let 𝜙 ∈ 𝑉 (R𝑛). Then for all 𝛼 ∈ Z𝑛
+ and 𝑧 ∈ C𝑛 the identities hold

(𝑒𝛼,𝒦𝑧)𝜙 =

∫︁
C𝑛

𝑒𝛼(𝑤)𝒦(𝑧, 𝑤)𝑒−2𝜙(𝑎𝑏𝑠𝑤) 𝑑𝜇𝑛(𝑤) = 𝑒𝛼(𝑧).

Proof. Let 𝛼 ∈ Z𝑛
+ and 𝑧 ∈ C𝑛. Then for each 𝑅 > 0∫︁

Π𝑅

𝑒𝛼(𝑤)𝒦(𝑧, 𝑤)𝑒−2𝜙(𝑎𝑏𝑠𝑤) 𝑑𝜇𝑛(𝑤) =

∫︁
Π𝑅

𝑒𝛼(𝑤)
∑︁
|𝛽|>0

𝑒𝛽(𝑧)𝑒𝛽(𝑤)𝑒
−2𝜙(𝑎𝑏𝑠𝑤) 𝑑𝜇𝑛(𝑤)

=
∑︁
|𝛽|>0

𝑒𝛽(𝑧)

∫︁
Π𝑅

𝑒𝛼(𝑤)𝑒𝛽(𝑤)𝑒
−2𝜙(𝑎𝑏𝑠𝑤) 𝑑𝜇𝑛(𝑤)
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=𝑒𝛼(𝑧)

∫︁
Π𝑅

|𝑒𝛼(𝑤)|2𝑒−2𝜙(𝑎𝑏𝑠𝑤) 𝑑𝜇𝑛(𝑤).

We obtain that∫︁
C𝑛

𝑒𝛼(𝑤)𝒦(𝑧, 𝑤)𝑒−2𝜙(𝑎𝑏𝑠𝑤) 𝑑𝜇𝑛(𝑤) = lim
𝑅→∞

∫︁
Π𝑅

𝑒𝛼(𝑤)𝒦(𝑧, 𝑤)𝑒−2𝜙(𝑎𝑏𝑠𝑤) 𝑑𝜇𝑛(𝑤)

=𝑒𝛼(𝑧) lim
𝑅→∞

∫︁
Π𝑅

|𝑒𝛼(𝑤)|2𝑒−2𝜙(𝑎𝑏𝑠𝑤) 𝑑𝜇𝑛(𝑤)

=𝑒𝛼(𝑧)

∫︁
C𝑛

|𝑒𝛼(𝑤)|2𝑒−2𝜙(𝑎𝑏𝑠𝑤) 𝑑𝜇𝑛(𝑤) = 𝑒𝛼(𝑧).

Theorem 2. Let 𝜙 ∈ 𝑉 (R𝑛). Then for each 𝑓 ∈ 𝐹 2
𝜙

𝑓(𝑧) =

∫︁
C𝑛

𝑓(𝑤)𝒦(𝑧, 𝑤)𝑒−2𝜙(𝑎𝑏𝑠𝑤) 𝑑𝜇𝑛(𝑤), 𝑧 ∈ C𝑛.

Proof. Let 𝑓 ∈ 𝐹 2
𝜙. For each 𝑧 ∈ C𝑛 we have∫︁

C𝑛

𝑓(𝑤)𝒦(𝑧, 𝑤)𝑒−2𝜙(𝑎𝑏𝑠 𝑤) 𝑑𝜇𝑛(𝑤) =(𝑓,𝒦𝑧)𝜙 =

⎛⎝∑︁
|𝛼|>0

(𝑓, 𝑒𝛼)𝜙𝑒𝛼,𝒦𝑧

⎞⎠
𝜙

=
∑︁
|𝛼|>0

(𝑓, 𝑒𝛼)𝜙(𝑒𝛼,𝒦𝑧)𝜙 =
∑︁
|𝛼|>0

(𝑓, 𝑒𝛼)𝜙𝑒𝛼(𝑧) = 𝑓(𝑧).

Remark 1. For each 𝑓 ∈ 𝐹 2
𝜙, thanks to the plurisubharmonicity of |𝑓 |2 we have

|𝑓(𝑧)|2 6 1

𝜈𝑛(1)

∫︁
‖𝑤−𝑧‖61

|𝑓(𝑤)|2 𝑑𝜇𝑛(𝑤), 𝑧 ∈ C𝑛,

where 𝜈𝑛(1) is the volume of the unit ball in C𝑛. Therefore,

|𝑓(𝑧)|2 6 1

𝜈𝑛(1)
exp( sup

‖𝑤−𝑧‖61
2𝜙(𝑎𝑏𝑠 𝑤)) ‖𝑓‖2𝜙. (2)

By estimate (2), for each 𝑧 ∈ C𝑛, a linear functional 𝛿𝑧 : 𝐹 2
𝜙 → C acting by the rule 𝛿𝑧(𝑓) = 𝑓(𝑧)

is continuous and therefore, there exists the unique function 𝐾𝑧 ∈ 𝐹 2
𝜙 such that for each 𝑓 ∈ 𝐹 2

𝜙 we

have 𝑓(𝑧) = (𝑓,𝐾𝑧)𝜙. The functions 𝐾𝑧 (𝑧 ∈ C𝑛) are called reproducing kernels for 𝐹 2
𝜙. At that,

𝐾𝑧(𝑤) = 𝒦(𝑧, 𝑤) = 𝒦𝑧(𝑤). In particular, this implies that ‖𝐾𝑧‖2𝜙 = 𝒦(𝑧, 𝑧).

3. Special classes of linear operators on 𝐹 2
𝜙

3.1. Orthogonal projector on 𝐹 2
𝜙. .

Theorem 3. Let 𝜙 ∈ 𝑉 (R𝑛), 𝑃𝜙 : 𝐿2
𝜙 → 𝐹 2

𝜙 be an orthogonal projector. Then

𝑃𝜙(𝑓)(𝑧) =

∫︁
C𝑛

𝑓(𝑤)𝒦(𝑧, 𝑤)𝑒−2𝜙(𝑎𝑏𝑠𝑤) 𝑑𝜇𝑛(𝑤), 𝑧 ∈ C𝑛. (3)

Proof. Let 𝑓 ∈ 𝐿2
𝜙, then 𝑃𝜙(𝑓) can be represented as the series 𝑃𝜙(𝑓) =

∑︀
|𝛼|>0

(𝑓, 𝑒𝛼)𝜙 𝑒𝛼 converging in

𝐹 2
𝜙. For each 𝑧 ∈ C𝑛 we have

𝑃𝜙(𝑓)(𝑧) =
∑︁
|𝛼|>0

(𝑓, 𝑒𝛼)𝜙 𝑒𝛼(𝑧) = (𝑓,
∑︁
|𝛼|>0

𝑒𝛼(𝑧)𝑒𝛼)𝜙

=(𝑓,𝒦𝑧)𝜙 =

∫︁
C𝑛

𝑓(𝑤)𝒦(𝑧, 𝑤)𝑒−2𝜙(𝑎𝑏𝑠𝑤) 𝑑𝜇𝑛(𝑤).
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Remark 2. Identity (3) can be written as 𝑃𝜙(𝑓)(𝑧) = (𝑓,𝐾𝑧)𝜙.

3.2. Trace of positive linear continuous operator on 𝐹 2
𝜙.

Definition 1. A linear continuous operator 𝐴 on a Hilbert space 𝐻 is called positive if (𝐴𝑥, 𝑥)𝐻 > 0
for each 𝑥 ∈ 𝐻.

It is known [4, 12.32, Thm.] that a positive linear continuous operator 𝐴 on a Hilbert space 𝐻 is
self-adjoin.

Definition 2. Let 𝐻 be a Hilbert space, 𝐴 be a positive linear continuous operator in 𝐻 and
{𝜓𝑘}𝑘∈N be an orthonormalized basis in 𝐻. The trace tr (𝐴) of the operator 𝐴 is defined as tr (𝐴) =
∞∑︀
𝑘=1

(𝐴(𝜓𝑘), 𝜓𝑘)𝐻 .

It is known [5, Lms. 5.6.2, 5.5.1] that the definition of the trace of an operator 𝐴 is independent
on the basis in 𝐻.

Theorem 4. Let 𝐴 be a positive linear continuous operator on 𝐹 2
𝜙. Then

tr (𝐴) =

∫︁
C𝑛

(𝐴(𝐾𝑧),𝐾𝑧)𝜙𝑒
−2𝜙(𝑎𝑏𝑠 𝑧) 𝑑𝜇𝑛(𝑧).

Proof. We have∫︁
C𝑛

(𝐴(𝐾𝑧),𝐾𝑧)𝜙𝑒
−2𝜙(𝑎𝑏𝑠 𝑧) 𝑑𝜇𝑛(𝑧) = lim

𝑅→∞

∫︁
Π𝑅

(𝐴(𝐾𝑧),𝐾𝑧)𝜙𝑒
−2𝜙(𝑎𝑏𝑠 𝑧) 𝑑𝜇𝑛(𝑧)

= lim
𝑅→∞

∫︁
Π𝑅

(𝐴(
∑︁
|𝛼|>0

𝑒𝛼(𝑧)𝑒𝛼),
∑︁
|𝛽|>0

𝑒𝛽(𝑧)𝑒𝛽)𝜙𝑒
−2𝜙(𝑎𝑏𝑠 𝑧) 𝑑𝜇𝑛(𝑧)

= lim
𝑅→∞

∫︁
Π𝑅

∑︁
𝛼,𝛽∈Z𝑛

+

𝑒𝛼(𝑧)𝑒𝛽(𝑧)(𝐴(𝑒𝛼), 𝑒𝛽)𝜙𝑒
−2𝜙(𝑎𝑏𝑠 𝑧) 𝑑𝜇𝑛(𝑧)

= lim
𝑅→∞

∑︁
𝛼,𝛽∈Z𝑛

+

∫︁
Π𝑅

𝑒𝛼(𝑧)𝑒𝛽(𝑧)(𝐴(𝑒𝛼), 𝑒𝛽)𝜙𝑒
−2𝜙(𝑎𝑏𝑠 𝑧) 𝑑𝜇𝑛(𝑧)

= lim
𝑅→∞

∑︁
|𝛼|>0

∫︁
Π𝑅

|𝑒𝛼(𝑧)|2(𝐴(𝑒𝛼), 𝑒𝛼)𝜙𝑒−2𝜙(𝑎𝑏𝑠 𝑧) 𝑑𝜇𝑛(𝑧)

= lim
𝑅→∞

∫︁
Π𝑅

∑︁
|𝛼|>0

|𝑒𝛼(𝑧)|2(𝐴(𝑒𝛼), 𝑒𝛼)𝜙𝑒−2𝜙(𝑎𝑏𝑠 𝑧) 𝑑𝜇𝑛(𝑧)

=

∫︁
C𝑛

∑︁
|𝛼|>0

|𝑒𝛼(𝑧)|2(𝐴(𝑒𝛼), 𝑒𝛼)𝜙𝑒−2𝜙(𝑎𝑏𝑠 𝑧) 𝑑𝜇𝑛(𝑧)

=
∑︁
|𝛼|>0

(𝐴(𝑒𝛼), 𝑒𝛼)𝜙

∫︁
C𝑛

|𝑒𝛼(𝑧)|2𝑒−2𝜙(𝑎𝑏𝑠 𝑧) 𝑑𝜇𝑛(𝑧)

=
∑︁
|𝛼|>0

(𝐴(𝑒𝛼), 𝑒𝛼)𝜙 = tr (𝐴).

Remark 3. We note that a trace formula of such kind for a positive linear continuous operator in
the Bergman space on the unit circle was provided in work [1], see Proposition 6.3.2, while for the case
of a Fock space of the functions of many variables it was given in work [2], see Lemma 1.

3.3. Weighted composition operator on 𝐹 2
𝜙. .

Definition 3. Let 𝐻 be a Hilbert space and {𝜓𝑘}𝑘∈N be an orthonormalized basis in 𝐻. A linear

continuous operator 𝐴 : 𝐻 → 𝐻 is called a Hilbert-Schmidt operator if
∞∑︀
𝑘=1

‖𝐴(𝜓𝑘)‖2𝐻 <∞.
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It is known [5, Lm. 5.5.1] that sum of the series is independent on the basis in 𝐻.

Theorem 5. Let a holomorphic mapping ℎ : C𝑛 → C𝑛 and a function 𝑢 ∈ 𝐻(C𝑛) are such that
the linear operator 𝑢𝐶ℎ : 𝑓 ∈ 𝐹 2

𝜙 → 𝑢(𝑓 ∘ ℎ) is continuous on 𝐹 2
𝜙. Then the following conditions are

equivalent:
1) 𝑢𝐶ℎ is a Hilbert-Schmidt operator;

2)
∫︀
C𝑛 |𝑢(𝑧)|2𝒦(ℎ(𝑧), ℎ(𝑧))𝑒−2𝜙(𝑎𝑏𝑠 𝑧) 𝑑𝜇𝑛(𝑧) <∞.

3)
∫︀
C𝑛

(︀∫︀
C𝑛 |𝑢(𝑤)|2|𝐾𝑧(ℎ(𝑤))|2𝑒−2(𝜙(𝑎𝑏𝑠𝑤)+𝜙(𝑎𝑏𝑠 𝑧)) 𝑑𝜇𝑛(𝑤)

)︀
𝑑𝜇𝑛(𝑧) <∞.

Proof. Conditions 1) and 2) are equivalent. Indeed, since∑︁
|𝛼|>0

‖𝑢𝐶ℎ(𝑒𝛼)‖2𝜙 =
∑︁
|𝛼|>0

∫︁
C𝑛

|𝑢(𝑧)|2 |ℎ1(𝑧)|
2𝛼1 · · · |ℎ𝑛(𝑧)|2𝛼𝑛

𝑐𝛼(𝜙)
𝑒−2𝜙(𝑎𝑏𝑠 𝑧) 𝑑𝜇𝑛(𝑧)

=

∫︁
C𝑛

|𝑢(𝑧)|2
∑︁
|𝛼|>0

|ℎ1(𝑧)|2𝛼1 · · · |ℎ𝑛(𝑧)|2𝛼𝑛

𝑐𝛼(𝜙)
𝑒−2𝜙(𝑎𝑏𝑠 𝑧) 𝑑𝜇𝑛(𝑧)

=

∫︁
C𝑛

|𝑢(𝑧)|2𝒦(ℎ(𝑧), ℎ(𝑧))𝑒−2𝜙(𝑎𝑏𝑠 𝑧) 𝑑𝜇𝑛(𝑧),

the operator 𝑢𝐶ℎ is Hilbert-Schmidt if and only if∫︁
C𝑛

|𝑢(𝑧)|2𝒦(ℎ(𝑧), ℎ(𝑧))𝑒−2𝜙(𝑎𝑏𝑠 𝑧) 𝑑𝜇𝑛(𝑧) <∞.

Let us show that Conditions 1) and 3) are also equivalent. It is obvious that the operator 𝑢𝐶ℎ on
𝐹 2
𝜙 is Hilbert-Schmidt if and only if the trace of the operator (𝑢𝐶ℎ)

*𝑢𝐶ℎ is finite. By Theorem 4, this
is true if and only if ∫︁

C𝑛

((𝑢𝐶ℎ)
*𝑢𝐶ℎ(𝐾𝑧),𝐾𝑧)𝜙𝑒

−2𝜙(𝑎𝑏𝑠 𝑧) 𝑑𝜇𝑛(𝑧) <∞.

And since

((𝑢𝐶ℎ)
*𝑢𝐶ℎ(𝐾𝑧),𝐾𝑧)𝜙 =(𝑢𝐶ℎ(𝐾𝑧), 𝑢𝐶ℎ(𝐾𝑧))𝜙

=

∫︁
C𝑛

|𝑢(𝑤)|2|𝐾𝑧(ℎ(𝑤))|2𝑒−2𝜙(𝑎𝑏𝑠𝑤) 𝑑𝜇𝑛(𝑤),

then 𝑢𝐶ℎ on 𝐹 2
𝜙 is a Hilbert-Schmidt operator if and only if∫︁
C𝑛

(︂∫︁
C𝑛

|𝑢(𝑤)|2|𝐾𝑧(ℎ(𝑤))|2𝑒−2(𝜙(𝑎𝑏𝑠𝑤)+𝜙(𝑎𝑏𝑠 𝑧)) 𝑑𝜇𝑛(𝑤)

)︂
𝑑𝜇𝑛(𝑧) <∞.
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