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ON QUALITATIVE PROPERTIES OF SOLUTIONS TO

QUASILINEAR PARABOLIC EQUATIONS ADMITTING

DEGENERATIONS AT INFINITY

A.B. MURAVNIK

Abstract. We consider the Cauchy problem for a quasilinear parabolic equations 𝜌(𝑥)𝑢𝑡 =
Δ𝑢+𝑔(𝑢)|∇𝑢|2, where the positive coefficient 𝜌 degenerates at infinity, while the coefficient
𝑔 either is a continuous function or have singularities of at most first power. These nonlin-
earities called Kardar–Parisi–Zhang nonlinearities (or KPZ-nonlinearities) arise in various
applications (in particular, in modelling directed polymer and interface growth). Also, they
are of an independent theoretical interest because they contain the second powers of the
first derivatives: this is the greatest exponent such that Bernstein-type conditions for the
corresponding elliptic problem ensure apriori 𝐿∞-estimates of first order derivatives of the
solution via the 𝐿∞-estimate of the solution itself. Earlier, the asymptotic properties of
solutions to parabolic equations with nonlinearities of the specified kind were studied only
for the case of uniformly parabolic linear parts. Once the coefficient 𝜌 degenerates (at
least at infinity), the nature of the problem changes qualitatively, which is confirmed by
the presented study of qualitative properties of (classical) solutions to the specified Cauchy
problem. We find conditions for the coefficient 𝜌 and the initial function guaranteeing the
following behavior of the specified solutions: there exists a (limit) Lipschitz function 𝐴(𝑡)
such that, for any positive 𝑡, the generalized spherical mean of the solution tends to the
specified Lipschitz function as the radius of the sphere tends to infinity. The generalized
spherical mean is constructed as follows. First, we apply a monotone function to a solu-
tion; this monotone function is determined only by the coefficient at the nonlinearity (both
in regular and singular cases). Then we compute the mean over the (𝑛 − 1)-dimensional
sphere centered at the origin (in the linear case, this mean naturally is reduced to a clas-
sical spherical mean). To construct the specified monotone function, we use the Bitsadze
method allowing us to express solutions of the studied quasilinear equations via solutions
of semi-linear equations.

Keywords: parabolic equations, KPZ-nonlinearities, long-time behavior, degeneration at
infinity.
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1. Introduction

Nowadays, the equations of the form 𝜌(𝑥)𝜕𝑢
𝜕𝑡

= ∆𝑢, where 𝜌(𝑥) > 𝜌0 > 0, as well as parabolic
equations of more general form can be regarded as a rather classical object: their complete the-
ory is constructed and deeply developed and this theory shows that these equations inherit the
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properties of their model object, the heat equation. This concerns both issues on well posed-
ness of boundary value problems for the mentioned equations and the qualitative properties of
their solutions including their specific properties, due to which there are principal differences
between these equations and equations of any other type.

The situation becomes essentially much complicated if we weaken the condition imposed for
the coefficient 𝜌: even if we replace the positive definiteness by a global strict positivity, the
coefficient gets a chance to degenerate at infinity being strictly positive at each point. In this
case, the equation can be parabolic at each point and even uniformly parabolic in each bounded
domain, but, for instance, the Cauchy problem in the half-space, the most important type of
problems in the parabolic theory, is no longer classical: the equation loses its type at infinity.
Due to the same reason one cannot guarantee the asymptotic properties of solutions specific
for classical parabolic theory.

At present, the study of parabolic equations with coefficients degenerating at infinity is far
from being complete, but for the linear case, important results were obtained in [1]. In particu-
lar, there were obtained analogues of classical results on stabilization of solutions although these
results have principal differences from the case of uniformly parabolic equations; for instance,
the stabilization is proven for the spherical means of solutions instead for solutions themselves.

In the present work, the mentioned results are extended for some quasilinear equations,
namely, the equations involving the square of the gradient of the uknown functions. Such
nonlinearities called Kardar-Parisi-Zhang nonlinearities (KPZ-nonlinearities) arise in various
applications (see, for instance, [2]–[14]) and they are also of independent theoretical interest.
The reason is that they involve the square of the derivative of the unknown function and as
it is known, see, for instance, [15]-[16], this is the maximal (limiting) exponent, under which
Bernstein-type conditions for the associated elliptic problem ensure apriori 𝐿∞-estimates for
the derivatives of the solution in terms of the 𝐿∞-estimate of the solution itself.

Asymptotic properties of solutions to parabolic and elliptic equations with KPZ-nonlinearity
including singular equations were studied in [17]–[24], but the case of the degeneration at infinity
was not studied before.

An essential part of the results of this work was presented on the International Mathematical
Conference on theory of functions dedicated to centenary of corresponding member of AS USSR
A.F. Leontiev, Ufa, May 2017. The author is grateful to the participants of the conference of
useful discussions encouraging a better understanding of the obtained results and improving of
their presentation.

The author is deeply grateful to A.L. Skubachevskii for a permanent attention to the work
and to V.N. Denisov for valuable remarks.

2. Regular coefficients

Let 𝑛 > 3, while 𝜌 and 𝑢0 be functions defined in R𝑛 such that 𝜌 is positive and the function 𝑔
is continuous on the real axis. We assume that a bounded function 𝑢(𝑥, 𝑡) satisfies the equation

𝜌(𝑥)
𝜕𝑢

𝜕𝑡
= ∆𝑢 + 𝑔(𝑢)|∇𝑢|2, 𝑥 ∈ R𝑛, 𝑡 ∈ (0,+∞), (1)

and the initial condition

𝑢⃒⃒
𝑡=0

= 𝑢0(𝑥), 𝑥 ∈ R𝑛, (2)

in the classical sense. Following [25], on the real line, we define a function 𝑓 as follows:

𝑓(𝑠) =

𝑠∫︁
0

𝑒

𝑥∫︀
0

𝑔(𝜏)𝑑𝜏
𝑑𝑥. (3)
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Then

𝑓 ′(𝑠) = 𝑒

𝑠∫︀
0

𝑔(𝜏)𝑑𝜏
> 0,

that is, the introduced function 𝑓 is strictly monotone and

𝑓 ′′(𝑠) = 𝑔(𝑠)𝑒

𝑠∫︀
0

𝑔(𝜏)𝑑𝜏
, that is, 𝑔(𝑠) =

𝑓 ′′(𝑠)

𝑓 ′(𝑠)
.

We denote the function 𝑓 [𝑢(𝑥, 𝑡)] by 𝑣(𝑥, 𝑡) and we calculate

𝜌(𝑥)
𝜕𝑣

𝜕𝑡
− ∆𝑣 =𝜌(𝑥)𝑓 ′(𝑢)

𝜕𝑢

𝜕𝑡
−

𝑛∑︁
𝑗=1

𝜕

𝜕𝑥𝑗

[︂
𝑓 ′(𝑢)

𝜕𝑢

𝜕𝑥𝑗

]︂

=𝜌(𝑥)𝑓 ′(𝑢)
𝜕𝑢

𝜕𝑡
−

𝑛∑︁
𝑗=1

𝑓 ′′(𝑢)

(︂
𝜕𝑢

𝜕𝑥𝑗

)︂2

−
𝑛∑︁

𝑗=1

𝑓 ′(𝑢)
𝜕2𝑢

𝜕𝑥2
𝑗

=𝑓 ′(𝑢)𝜌(𝑥)
𝜕𝑢

𝜕𝑡
− 𝑓 ′′(𝑢)|∇𝑢|2 − 𝑓 ′(𝑢)∆𝑢

=𝑓 ′(𝑢)

[︂
𝜌(𝑥)

𝜕𝑢

𝜕𝑡
− 𝑓 ′′(𝑢)

𝑓 ′(𝑢)
|∇𝑢|2 − ∆𝑢

]︂
=𝑓 ′(𝑢)

[︂
𝜌(𝑥)

𝜕𝑢

𝜕𝑡
− ∆𝑢− 𝑔(𝑢)|∇𝑢|2

]︂
= 0.

Hence, the function 𝑣(𝑥, 𝑡) satisfies the equation

𝜌(𝑥)
𝜕𝑣

𝜕𝑡
= ∆𝑣, 𝑥 ∈ R𝑛, 𝑡 ∈ (0,+∞), (4)

in the classical sense. Moreover, the function 𝑣(𝑥, 𝑡) is bounded thanks to the continuity of the
function 𝑔 and the boundedness of the function 𝑢, and its trace on the hyperplane {𝑡 = 0} is

equal to a function 𝑓 [𝑢0(𝑥)] def
= 𝑣0(𝑥) bounded on the real axis.

Following [1], in R𝑛 × (0,+∞) we define the function 𝑉 (𝑥, 𝑡) =
𝑡∫︀
0

𝑣(𝑥, 𝜏)𝑑𝜏 . We impose the

following conditions on the functions 𝜌 and 𝑢0:

∙ The Poisson equation with the right hand side −𝜌(𝑥) possesses a solution bounded in R𝑛;
∙ There exists a constant κ, 0 < κ < 1, such that 𝜌 ∈ 𝐶κ+1

loc

(︀
R𝑛

)︀
and 𝑓(𝑢0) ∈ 𝐶κ

loc

(︀
R𝑛

)︀
.

Then, by [1, Th 1.1], there exists a Lipschitz function 𝐴 on [0,+∞) such that the relation

lim
𝑅→∞

1

𝑅𝑛−1

∫︁
|𝑥|=𝑅

𝑉 (𝑥, 𝑡)𝑑𝜎𝑥 =
𝑛𝜋

𝑛
2

Γ
(︀
𝑛
2

+ 1
)︀𝐴(𝑡)

holds for each positive 𝑡 and the relation

lim
𝑅→∞

1

𝑅𝑛−1

∫︁
|𝑥|=𝑅

[𝑉 (𝑥, 𝑡) − 𝐴(𝑡)]𝑑𝜎𝑥 = 0

is satisfied uniformly in 𝑡 ∈ [0, 𝑇 ] for each positive 𝑇 .
Thus, the following statement is true.

Theorem 1. Let 𝑢(𝑥, 𝑡) be a classical bounded solution of the Cauchy problem for equation
(1), where the coefficient 𝑔 is continuous and the coefficient 𝜌(𝑥) and the initial function 𝑢0(𝑥)
satisfy the following conditions:

(i) The equation ∆𝑤 + 𝜌(𝑥) = 0 possesses a bounded in R𝑛 solution;
(ii) There exists a constant κ, 0 < κ < 1, such that 𝜌 ∈ 𝐶κ+1

loc

(︀
R𝑛

)︀
and 𝑓(𝑢0) ∈ 𝐶κ

loc

(︀
R𝑛

)︀
.
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Then there exists a Lipschitz function 𝐴 on [0,+∞) such that the relation

lim
𝑅→∞

1

𝑅𝑛−1

∫︁
|𝑥|=𝑅

𝑡∫︁
0

𝑓 [𝑢(𝑥, 𝜏)]𝑑𝜏𝑑𝜎𝑥 =
2𝜋

𝑛
2

Γ
(︀
𝑛
2

)︀𝐴(𝑡)

holds for each positive 𝑡 and the relation

lim
𝑅→∞

1

𝑅𝑛−1

∫︁
|𝑥|=𝑅

⎛⎝ 𝑡∫︁
0

𝑓 [𝑢(𝑥, 𝜏)]𝑑𝜏 − 𝐴(𝑡)

⎞⎠ 𝑑𝜎𝑥 = 0

is satisfied uniformly in 𝑡 ∈ [0, 𝑇 ] for each positive 𝑇 .

3. Singular coefficients

In equation (1) we let

𝑔(𝑠) = 𝛼𝑠𝛽, (5)

where 𝛽 ∈ (−1, 0) and 𝛼 is an arbitrary real parameter. In this case the assumptions of
Theorem 1 are not satisfied since the coefficient at the nonlinearity has a singularity at the
origin. However, function (3) is still well-defined:

𝑓(𝑠) =

𝑠∫︁
0

𝑒

𝑥∫︀
0

𝛼𝜏𝛽𝑑𝜏
𝑑𝑥 =

𝑠∫︁
0

𝑒
𝛼

𝛽+1
𝑥𝛽+1

𝑑𝑥.

This yields that 𝑓 ′(𝑠) = 𝑒
𝛼

𝛽+1
𝑠𝛽+1

> 0, and hence, 𝑓 is a strictly monotone function. Then,

𝑓 ′′(𝑠) = 𝛼𝑠𝛽𝑒
𝛼

𝛽+1
𝑠𝛽+1

, and therefore, 𝑔(𝑠) = 𝑓 ′′(𝑠)
𝑓 ′(𝑠)

.

Assume that a bounded positive function 𝑢(𝑥, 𝑡) solves equation (1) in the classical sense
with the coefficient 𝑔 defined by relation (5). Then, in the same way as in Section 2, we denote
the function 𝑓 [𝑢(𝑥, 𝑡)] by 𝑣(𝑥, 𝑡) and by straightforward calculations we confirm that it satisfies
equation (4). Moreover, due to the boundedness of the function 𝑢(𝑥, 𝑡) and a strict positivity
of the exponent 𝛽 + 1, the function 𝑣(𝑥, 𝑡) is bounded:

|𝑓 [𝑢(𝑥, 𝑡)]| 6 sup |𝑢|𝑒
|𝛼|
𝛽+1

(sup |𝑢|)𝛽+1

.

Therefore, Theorem 1.1 from [1] can be applied in this case as well. This proves the following
statement.

Theorem 2. Let 𝑢(𝑥, 𝑡) be a classical positive bounded solution of the Cauchy problem for
equation (1), where the coefficient 𝑔 is defined by relation (5), 𝛽 ∈ (−1, 0), 𝛼 ∈ R𝑛, and the
coefficient 𝜌(𝑥) and the initial function 𝑢0(𝑥) satisfy the assumptions of Theorem 1. Then the
statement of Theorem 1 holds true.

4. Limiting case of singular coefficients

In equation (1) we let

𝑔(𝑠) =
𝛼

𝑠
, (6)

where 𝛼 > −1.
In this case substitution (3) is not applicable, but following [25], we can employ the substitu-

tion 𝑓(𝑠) = 𝑠𝛼+1. Assuming that a bounded positive function 𝑢(𝑥, 𝑡) solves equation (1) in the
classical sense with the coefficient 𝑔 defined by relation (6), we denote the function 𝑢𝛼+1(𝑥, 𝑡)
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by 𝑣(𝑥, 𝑡); this function is well-defined and positive in the entire half-space R𝑛×(0,+∞) thanks
to the positivity of the function 𝑢. We calculate:

𝜌(𝑥)
𝜕𝑣

𝜕𝑡
− ∆𝑣 =(𝛼 + 1)𝜌(𝑥)𝑢𝛼𝜕𝑢

𝜕𝑡
−

𝑛∑︁
𝑗=1

𝜕

𝜕𝑥𝑗

[︂
(𝛼 + 1)𝑢𝛼 𝜕𝑢

𝜕𝑥𝑗

]︂

=(𝛼 + 1)𝜌(𝑥)𝑢𝛼𝜕𝑢

𝜕𝑡
− 𝛼(𝛼 + 1)𝑢𝛼−1

𝑛∑︁
𝑗=1

(︂
𝜕𝑢

𝜕𝑥𝑗

)︂2

− (𝛼 + 1)𝑢𝛼∆𝑢

=(𝛼 + 1)𝑢𝛼

[︂
𝜌(𝑥)

𝜕𝑢

𝜕𝑡
− 𝛼

𝑢
|∇𝑢|2 − ∆𝑢

]︂
= 0;

since 𝑢 is a classical solution to equation (1) and is a positive function, all above differentiations
and divisions are legible.

Thus, the function 𝑣(𝑥, 𝑡) is bounded, solves equation (4) in the classical sense and its trace
on the hyperplane {𝑡 = 0} is equal to 𝑢𝛼+1

0 (𝑥).

Following [1], in R𝑛 × (0,+∞) we define a function 𝑉 (𝑥, 𝑡) =
𝑡∫︀
0

𝑣(𝑥, 𝜏)𝑑𝜏 and we suppose

that the function 𝜌 satisfies the assumptions of Theorem 1 and the function 𝑢𝛼+1
0 belongs to

𝐶𝛼
loc

(︀
R𝑛

)︀
. Then, by [1, Th 1.1], there exists a function 𝐴 Lipshitz on [0,+∞) such that the

relation

lim
𝑅→∞

1

𝑅𝑛−1

∫︁
|𝑥|=𝑅

𝑉 (𝑥, 𝑡)𝑑𝑥 =
𝑛𝜋

𝑛
2

Γ
(︀
𝑛
2

+ 1
)︀𝐴(𝑡)

holds for each positive 𝑡 and the relation

lim
𝑅→∞

1

𝑅𝑛−1

∫︁
|𝑥|=𝑅

[𝑉 (𝑥, 𝑡) − 𝐴(𝑡)]𝑑𝑥 = 0

is satisfied uniformly in 𝑡 ∈ [0, 𝑇 ] for each positive 𝑇 .
Thus, the following statement is true.

Theorem 3. Let 𝑢(𝑥, 𝑡) be a classical positive bounded solution to the Cauchy problem for
the equation

𝜌(𝑥)
𝜕𝑢

𝜕𝑡
= ∆𝑢 +

𝛼

𝑢
|∇𝑢|2, 𝑥 ∈ R𝑛, 𝑡 ∈ (0,+∞), (7)

where 𝛼 > −1, the coefficient 𝜌(𝑥) obeys the assumptions of Theorem 1, and the initial function
𝑢0(𝑥) is such that 𝑢𝛼+1

0 ∈ 𝐶κ
loc

(︀
R𝑛

)︀
. Then there exists a Lipschitz function 𝐴 on [0,+∞) such

that the relation

lim
𝑅→∞

1

𝑅𝑛−1

∫︁
|𝑥|=𝑅

𝑈𝛼+1(𝑥, 𝑡)𝑑𝑥 =
𝑛𝜋

𝑛
2

Γ
(︀
𝑛
2

+ 1
)︀𝐴(𝑡)

holds for each positive 𝑡 and the relation

lim
𝑅→∞

1

𝑅𝑛−1

∫︁
|𝑥|=𝑅

[𝑈𝛼+1(𝑥, 𝑡) − 𝐴(𝑡)]𝑑𝑥 = 0

is satisfied uniformly in 𝑡 ∈ [0, 𝑇 ] for each positive 𝑇 , where

𝑈𝑠(𝑥, 𝑡) =

𝑡∫︁
0

𝑢𝑠(𝑥, 𝜏)𝑑𝜏, 𝑠 > 0.
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4.1. Positive definite solutions. If we slightly strengthen the conditions on the solution
assuming that it is not positive, but positive definite, namely, that it is lower bound is positive,
then the condition for the coefficient 𝛼 can be omitted.

For 𝛼 < −1, we apply the same power substitution as for 𝛼 > −1: assuming that a bounded
positive definite function 𝑢(𝑥, 𝑡) satisfies equation (7) in the classical sense, by straightforward
substitution, as in the case 𝛼 > −1, we confirm that the function 𝑣(𝑥, 𝑡) = 𝑢𝛼+1(𝑥, 𝑡) satisfies
equation (4). In order to prove the boundedness of this function, we employ the positive

definiteness of the function 𝑢(𝑥, 𝑡). Indeed, introducing a positive constant 𝛾 def
= − 1 − 𝛼, we

arrive at the inequality

𝑣(𝑥, 𝑡) 6
1

(inf 𝑢)𝛾
.

Applying Theorem 1.1 from [1], we obtain the following statement.

Proposition 1. Let 𝑢(𝑥, 𝑡) be a classical solution of the Cauchy problem for equation (7),
where 𝛼 ̸= −1, inf 𝑢 > 𝐵 > 0, the coefficient 𝜌(𝑥) satisfies the assumptions of Theorem 1, and
the initial function 𝑢0(𝑥) is such that 𝑢𝛼+1

0 ∈ 𝐶κ
loc

(︀
R𝑛

)︀
. Then the statement of Theorem 3 holds

true.

As 𝛼 = −1, we apply the change 𝑣(𝑥, 𝑡) = ln 𝑢(𝑥,𝑡)
𝐵

, where 𝐵 = inf 𝑢 > 0 thanks to the

positive definiteness of the solution 𝑢. Then 𝑢(𝑥, 𝑡) = 𝐵𝑒𝑣(𝑥,𝑡),

𝜕𝑢

𝜕𝑡
= 𝐵𝑒𝑣

𝜕𝑣

𝜕𝑡
,

𝜕𝑢

𝜕𝑥𝑗

= 𝐵𝑒𝑣
𝜕𝑣

𝜕𝑥𝑗

,
𝜕2𝑢

𝜕𝑥2
𝑗

= 𝐵𝑒𝑣
(︁ 𝜕𝑣

𝜕𝑥𝑗

)︁2

+ 𝐵𝑒𝑣
𝜕2𝑣

𝜕𝑥2
𝑗

, 𝑗 = 1, 𝑛.

This implies that

∆𝑢 = 𝐵𝑒𝑣
(︀
∆𝑣 + |∇𝑣|2

)︀
, |∇𝑢|2 = 𝐵2𝑒2𝑣|∇𝑣|2.

Now we take into consideration that 𝑢 satisfies equation (7) as 𝛼 = −1; this yields the relation

0 =𝜌(𝑥)
𝜕𝑢

𝜕𝑡
− ∆𝑢 +

1

𝑢
|∇𝑢|2 = 𝜌(𝑥)𝐵𝑒𝑣

𝜕𝑣

𝜕𝑡
−𝐵𝑒𝑣

(︀
∆𝑣 + |∇𝑣|2

)︀
+

1

𝐵𝑒𝑣
𝐵2𝑒2𝑣|∇𝑣|2

=𝜌(𝑥)𝐵𝑒𝑣
𝜕𝑣

𝜕𝑡
−𝐵𝑒𝑣∆𝑣 = 𝐵𝑒𝑣

(︂
𝜌(𝑥)

𝜕𝑣

𝜕𝑡
− ∆𝑣

)︂
,

and therefore, the function 𝑣(𝑥, 𝑡) is a classical solution to equation (4) bounded thanks to the
boundedness of the function 𝑢(𝑥, 𝑡).

Applying [1, Th 1.1], we get a statement on the behavior of the mean:

lim
𝑅→∞

1

𝑅𝑛−1

∫︁
|𝑥|=𝑅

𝑡∫︁
0

ln
𝑢(𝑥, 𝜏)

𝐵
𝑑𝜏𝑑𝜎𝑥 = lim

𝑅→∞

1

𝑅𝑛−1

∫︁
|𝑥|=𝑅

𝑡∫︁
0

ln𝑢(𝑥, 𝜏)𝑑𝜏𝑑𝜎𝑥 −
2𝜋

𝑛
2 ln𝐵

Γ
(︀
𝑛
2

)︀ 𝑡.

Since the linear function 𝑡 ln𝐵 is Lipschitz on [0,+∞), we can regard the function 𝑡 ln𝐵−𝐴(𝑡),
where 𝐴(𝑡) is a function from [1, Th 1.1], as a new function 𝐴(𝑡). At the same time, we take into
consideration that the function ln 𝑢0

𝐵
= ln𝑢0 − ln𝐵 obviously belongs to each class of locally

Hölder functions if and only if the function ln𝑢0 belongs to the same class. This leads us to
the following statement.

Proposition 2. Let 𝑢(𝑥, 𝑡) be a classical bounded solution of the Cauchy problem for the
equation

𝜌(𝑥)
𝜕𝑢

𝜕𝑡
= ∆𝑢− 1

𝑢
|∇𝑢|2,

where inf 𝑢 > 𝐵 > 0, the coefficient 𝜌(𝑥) satisfies the assumptions of Theorem 1, and the
initial function 𝑢0(𝑥) is such that ln𝑢0 ∈ 𝐶κ

loc

(︀
R𝑛

)︀
. Then there exists a Lipschitz function 𝐴
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on [0,+∞) such that the relation

lim
𝑅→∞

1

𝑅𝑛−1

∫︁
|𝑥|=𝑅

𝑡∫︁
0

ln𝑢(𝑥, 𝜏)𝑑𝜏𝑑𝜎𝑥 =
2𝜋

𝑛
2

Γ
(︀
𝑛
2

)︀𝐴(𝑡)

holds for each positive 𝑡 and the relation

lim
𝑅→∞

1

𝑅𝑛−1

∫︁
|𝑥|=𝑅

⎛⎝ 𝑡∫︁
0

ln𝑢(𝑥, 𝜏)𝑑𝜏 − 𝐴(𝑡)

⎞⎠ 𝑑𝜎𝑥 = 0

is satisfied uniformly in 𝑡 ∈ [0, 𝑇 ] for each positive 𝑇 .

Remark. It is known from [26] that Condition (i) in Theorem 1 (and, hence, in all five
statements of the present work) can be replaced by the following equivalent condition∫︁

R𝑛

𝜌(𝜉 − 𝑥)𝑑𝜉

|𝜉|𝑛−2
∈ 𝐿∞

(︀
R𝑛

)︀
.
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Henri Poincaré Probab. Stat. 48:1, 134–150 (2012).

11. G. Schehr. Extremes of 𝑁 vicious walkers for large 𝑁 : application to the directed polymer and
KPZ interfaces // J. Stat. Phys. 149:3, 385–410 (2012).

12. H. Spohn. KPZ scaling theory and the semidiscrete directed polymer model // in “Random matrix
theory, interacting particle systems and integrable systems”. Cambridge Univ. Press, New York,
65, 483–493 (2014).
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