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UNIFORM CONVERGENCE OF

LAGRANGE-STRUM-LIOUVILLE PROCESSES

ON ONE FUNCTIONAL CLASS

A.Yu. TRYNIN

Abstract. We establish the uniform convergence inside an arbitrary interval (𝑎, 𝑏) ⊂ [0, 𝜋]
for the values of the Lagrange-Sturm-Liouville operators for functions in a class defined
by one-side moduli of continuity and oscillations. Outside this interval, the sequence of
values of the Lagrange-Sturm-Liouville operators may diverge. The conditions describing
this functional class contain a restriction only on the rate and magnitude of the increasing
(or decreasing) of the continuous function. Each element of the proposed class can de-
crease (or, respectively, increase) arbitrarily fast. Popular sets of functions satisfying the
Dini-Lipschitz condition or the Krylov criterion are proper subsets of this class, even if,
under their conditions, the classical modulus of continuity and the variation are replaced
by the one-sided ones. We obtain sharp upper bounds for functions and Lebesgue con-
stants of the Lagrange-Sturm-Liouville processes. We establish sufficient conditions of the
uniform convergence of the Lagrange-Sturm-Liouville processes in terms of the maximal
absolute value of the sum and the maximal sum of the absolute values of the weighted
first order differences. We prove the equiboundedness of the sequence of fundamental func-
tions of Lagrange-Sturm-Liouville processes. Three new operators are proposed, which are
modifications of the Lagrange-Sturm-Liouville operator and they allow one to approximate
uniformly an arbitrary continuous function vanishing at the ends on the segment [0, 𝜋]. All
the results of the work remain valid if the one-sided moduli of continuity and oscillations
are replaced by the classical ones.
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1. Introduction

In [1], G.I. Natanson obtained the Dini-Lipschitz condition of the uniform convergence inside
the interval (0, 𝜋), that is, uniformly on each compact set in (0, 𝜋), for the Lagrange-Sturm-
Liouville processes of form

𝐿𝑆𝐿
𝑛 (𝑓, 𝑥) =

𝑛∑︁
𝑘=1

𝑓(𝑥𝑘,𝑛)
𝑈𝑛(𝑥)

𝑈 ′
𝑛(𝑥𝑘,𝑛)(𝑥− 𝑥𝑘,𝑛)

=
𝑛∑︁

𝑘=1

𝑓(𝑥𝑘,𝑛)𝑙𝑆𝐿𝑘,𝑛(𝑥), (1)

where 𝑈𝑛 is the 𝑛th eigenfunction of the regular Sturm-Liouville problem⎧⎪⎨⎪⎩
𝑈 ′′ + [𝜆− 𝑞]𝑈 = 0,

𝑈 ′(0) − ℎ𝑈(0) = 0,

𝑈 ′(𝜋) +𝐻𝑈(𝜋) = 0

(2)

A.Yu. Trynin, Uniform convergence of Lagrange-Strum-Liouville processes on one func-
tional class.
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with a continuous potential 𝑞 of a bounded variation on [0, 𝜋] and boundary conditions implying
that the leading term in the asymptotics for 𝑈𝑛 is the cosine, that is, ℎ ̸= ±∞, 𝐻 ̸= ±∞.
Here 0 < 𝑥1,𝑛 < 𝑥2,𝑛 < · · · < 𝑥𝑛,𝑛 < 𝜋 are the zeroes of the function 𝑈𝑛. To the study of
the approximative properties of Lagrange-Strum-Liouville operators (1), works [2]–[4] were also
devoted. In work [2], there was established the existence of a continuous on [0, 𝜋] function, whose
interpolation Lagrange-Sturm-Liouville process (1) diverges unboundedly almost everywhere in
[0, 𝜋]. Studies made in [3], [5], [6] showed that under arbitrary small variation of the parameters
in Sturm-Liouville problem (2) (potential 𝑞 or constants ℎ, 𝐻), the approximative properties
of processes (1) can change substantially.

The properties of interpolation operators for functions of Lagrange type (1) are closely related
with the behavior of sinc-approximations

𝐿𝑛(𝑓, 𝑥) =
𝑛∑︁

𝑘=0

sin (𝑛𝑥− 𝑘𝜋)

𝑛𝑥− 𝑘𝜋
𝑓

(︂
𝑘𝜋

𝑛

)︂
=

𝑛∑︁
𝑘=0

(−1)𝑘 sin𝑛𝑥

𝑛𝑥− 𝑘𝜋
𝑓

(︂
𝑘𝜋

𝑛

)︂
(3)

used in the the Whittaker-Kotelnikov-Shannon sampling theory, see [7]–[10]. The most com-
plete survey of the results obtained in studying of the properties of sinc-approximations (3) of
analytic on the real axis functions decaying exponentially at infinity as well as many important
applications of sinc-approximations can be found, for instance, in [9] and [11].

Sinc-approximations are widely used in various numerical methods in mathematical physics
and in approximating functions of both one and several variables [12]–[14], in the theory of
quadrature formulae [9] and in wavelet theory [7], [8], [10].

Before appearing of works [15]–[21], the approximation of such operators on a segment or on
a bounded interval was made only for some classes of analytic functions [9], [22] via reducing
to the case of the axis by means of a conformal mapping. In [21], there was found the upper
estimate for the best approximation of continuous functions by linear combinations of sincs.

The results of the studies in [23] showed that while approximating non-smooth continuous
functions by the values of operators (3), a “resonance” can arise, which leads to an unbounded
growth of the approximation error on the entire interval (0, 𝜋). In [24]–[27] there were proposed
various modifications of sinc-approximations (3) allowing to approximate continuous functions
on the segment [0, 𝜋]. The study of the completeness of the system of syncs (3) in [26] in the
spaces 𝐶[0, 𝜋] and 𝐶0[0, 𝜋] = {𝑓 : 𝑓 ∈ 𝐶[0, 𝜋], 𝑓(0) = 𝑓(𝜋) = 0} allows one to conclude that it
is vainly to construct an operator as linear combinations of sincs approximating uniformly an
arbitrary continuous function on a segment.

The study of Lagrange-Sturm-Liouville operators (1) is also closely related with the approx-
imative properties of the interpolation operators constructed by the solutions of the Cauchy
problem for second order differential equations [28]. The operators proposed in [28] are gen-
eralizations of Lagrange-Sturm-Liouville operators (1) and of classical sinc-approximation (3).
In [29], a series of applications of the results in work [28] was given to studying approximative
properties of classical algebraic interpolation Lagrange polynomials with a matrix of interpo-
lation nodes, each row of which is formed by the zeroes of Jacobi polynomials 𝑃𝛼𝑛,𝛽𝑛

𝑛 with the
parameters depending on 𝑛.

In monograph [4], detailed proofs were given and the misprints made in some formulae in
earlier publications were corrected.

Following the lines of [30]—[37], in the present work we obtain sufficient conditions for the
uniform convergence in the interval (0, 𝜋) of interpolation processes (1) constructed by solutions
to problem (2) in terms of one-sided moduli of continuity and oscillation.

2. Main results

Throughout the work, the potential 𝑞 in Sturm-Liouville problem (2) is assumed to be a
continuous function with a bounded variation on [0, 𝜋]. We also suppose that the eigenfunction
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is normalized by the condition 𝑈𝑛(0) = 1. We consider Robin conditions (2) excluding Dirichlet
type conditions are excluded, that is, ℎ ̸= ±∞, 𝐻 ̸= ±∞. For each 0 6 𝑎 < 𝑏 6 𝜋, 0 < 𝜀 <
(𝑏− 𝑎)/2, we define the indices 𝑝1, 𝑝2, 𝑚1 and 𝑚2 by means of relations

𝑥𝑝1,𝑛 6 𝑎+ 𝜀 < 𝑥𝑝1+1,𝑛, 𝑥𝑝2,𝑛 6 𝑏− 𝜀 < 𝑥𝑝2+1,𝑛,

𝑥𝑘1−1,𝑛 < 𝑎 6 𝑥𝑘1,𝑛, 𝑥𝑘2+1,𝑛 6 𝑏 < 𝑥𝑘2+2,𝑛,

𝑚1 =

[︂
𝑘1
2

]︂
+ 1, 𝑚2 =

[︂
𝑘2
2

]︂ (4)

after adding the points 𝑥0,𝑛 = 0 and 𝑥𝑛+1,𝑛 = 𝜋 to the set of zeroes 𝑥1,𝑛 < 𝑥2,𝑛 < · · · < 𝑥𝑛,𝑛 of
the 𝑛th eigenfunction 𝑈𝑛. Here [𝑧] denotes the integer part of a number 𝑧. If else is not said,
the prime at the sum denotes the absence of the term with the zero denominator.

We denote by Ω the set of all real non-decreasing concave [0, 𝑏− 𝑎] functions 𝜔 vanishing at
zero. Let 𝐶(𝜔𝑙, [𝑎, 𝑏]) be 𝐶(𝜔𝑟, [𝑎, 𝑏]) the set of the elements in the space 𝐶[𝑎, 𝑏] such that for
arbitrary 𝑥 and 𝑥+ ℎ (𝑎 6 𝑥 < 𝑥+ ℎ 6 𝑏) the inequalities hold:

𝑓(𝑥+ ℎ) − 𝑓(𝑥) > −𝐾𝑓𝜔(ℎ) or 𝑓(𝑥+ ℎ) − 𝑓(𝑥) 6 𝐾𝑓𝜔(ℎ), (5)

respectively, where 𝜔 ∈ Ω. Here the choice of a positive constant 𝐾𝑓 depends only on the
function 𝑓 . In this case the function 𝜔(ℎ) is called respectively the left or right modulus of
continuity.

The classical modulus of continuity of a function 𝑓 ∈ 𝐶[𝑎, 𝑏] is denoted as usually by

𝜔(𝑓, 𝛿) = sup
|ℎ|<𝛿;𝑥,𝑥+ℎ∈[𝑎,𝑏]

|𝑓(𝑥+ ℎ) − 𝑓(𝑥)|.

In the case 𝑎 = 0, 𝑏 = 𝜋, the modulus of continuity of 𝑓 ∈ 𝐶[0, 𝜋] is denoted by

𝜔1(𝑓, 𝛿) = sup
|ℎ|<𝛿;𝑥,𝑥+ℎ∈[0,𝜋]

|𝑓(𝑥+ ℎ) − 𝑓(𝑥)|.

The modulus of variation of a function 𝑓 on a segment [𝑎, 𝑏] is the function of a natural
variable

𝑣(𝑛, 𝑓) = sup
𝑇𝑛

𝑛−1∑︁
𝑘=0

|𝑓(𝑡𝑘+1) − 𝑓(𝑡𝑘)|,

where 𝑇𝑛 = {𝑎 6 𝑡0 < 𝑡1 < 𝑡2 < · · · < 𝑡𝑛−1 < 𝑡𝑛 6 𝑏}, 𝑛 ∈ N. We take a non-negative
non-decreasing concave function of a natural argument 𝑣(𝑛). If the modulus of variation of the
function 𝑓 on an interval [𝑎, 𝑏] is such that 𝑣(𝑛, 𝑓) = 𝑂(𝑣(𝑛)) as 𝑛→ ∞, we say that 𝑓 belongs
to the class 𝑉 (𝑣). Here the choice of the constant in 𝑂-symbol depends only on the function 𝑓 .

Similar to the positive (negative) variation of the function, we call a positive (negative)
modulus of variation of a function 𝑓 on a segment [𝑎, 𝑏] respectively the functions of a natural
argument:

𝑣+(𝑛, 𝑓) = sup
𝑇𝑛

𝑛−1∑︁
𝑘=0

(︀
𝑓(𝑡𝑘+1) − 𝑓(𝑡𝑘)

)︀
+

and 𝑣−(𝑛, 𝑓) = inf
𝑇𝑛

𝑛−1∑︁
𝑘=0

(︀
𝑓(𝑡𝑘+1) − 𝑓(𝑡𝑘)

)︀
−,

where

𝑧+ =
𝑧 + |𝑧|

2
, 𝑧− =

𝑧 − |𝑧|
2

, 𝑇𝑛 = {𝑎 6 𝑡0 < 𝑡1 < 𝑡2 < · · · < 𝑡𝑛−1 < 𝑡𝑛 6 𝑏}, 𝑛 ∈ N.

We say that 𝑓 belongs to a class 𝑉 +(𝑣) or 𝑉 −(𝑣) if there exists a function 𝑀𝑓 such that for
each natural 𝑛 the inequality holds:

𝑣+(𝑛, 𝑓) 6𝑀𝑓𝑣(𝑛) or 𝑣−(𝑛, 𝑓) > −𝑀𝑓𝑣(𝑛),

respectively.
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Theorem 1. Let 0 6 𝑎 < 𝑏 6 𝜋, 0 < 𝜀 < (𝑏− 𝑎)/2. If a non-decreasing convex function of
a natural argument 𝑣(𝑛) and a function 𝜔 ∈ Ω are such that

lim
𝑛→∞

min
16𝑚6𝑘2−𝑘1−1

{︃
𝜔
(︁𝜋
𝑛

)︁ 𝑚∑︁
𝑘=1

1

𝑘
+

𝑘2−𝑘1−1∑︁
𝑘=𝑚+1

𝑣(𝑘)

𝑘2

}︃
= 0, (6)

where 𝑘1 and 𝑘2 + 1 are the indices of the smallest and greatest zero of the eigenfunction 𝑈𝑛 in
the segment [𝑎, 𝑏], then for each function 𝑓 ∈ 𝐶(𝜔𝑙[𝑎, 𝑏]) ∩ 𝑉 −(𝑣) (𝑓 ∈ 𝐶(𝜔𝑟[𝑎, 𝑏]) ∩ 𝑉 +(𝑣)) the
relation holds:

lim
𝑛→∞

‖𝑓 − 𝐿𝑆𝐿
𝑛 (𝑓, ·)‖𝐶[𝑎+𝜀,𝑏−𝜀] = 0, (7)

where the Lagrange-Sturm-Liouville operator 𝐿𝑆𝐿
𝑛 (𝑓, ·) was defined in (1).

Remark 1. At that, the relation

lim
𝑛→∞

|𝑓(𝑥) − 𝐿𝑆𝐿
𝑛 (𝑓, 𝑥)| = 0

can fail on the set [0, 𝜋] ∖ [𝑎, 𝑏], see, for instance, [2], [3] and [4].

In the next theorem we obtain an order sharp upper estimate for the growth rate of the
sequence of norms of the Lagrange-Sturm-Liouville operators and functionals (1) acting from
𝐶[0, 𝜋] into 𝐶[0, 𝜋] and from 𝐶[0, 𝜋] into R, respectively. Such sequences are called sequences of
Lebesgue constants and Lebesgue functions. The approximative properties of Lagrange-Sturm-
Liouville operators (1) in the sense of uniform and pointwise convergence depend essentially on
their behavior.

Theorem 2. Let 𝑈𝑛 be the eigenfunction associated with the eigenvalue 𝜆𝑛 of regular Sturm-
Liouville problem (2). Then there exist constants 𝐶1, 𝐶2 and 𝐶3 depending only on the param-
eters of the Sturm-Liouville problem such that for all 𝑥 ∈ [0, 𝜋] and all 𝑛 = 2, 3, 4, . . . Lebesgue
constants and Lebesgue constants of interpolation processes (1) satisfy the inequalities

𝐿𝑆𝐿
𝑛 (𝑥) =

𝑛∑︁
𝑘=1

|𝑙𝑆𝐿𝑘,𝑛(𝑥)| 6 𝐶1|𝑈𝑛(𝑥)| ln𝑛+ 𝐶3, (8)

𝐿𝑆𝐿
𝑛 = max

𝑥∈[0,𝜋]
𝐿𝑆𝐿
𝑛 (𝑥) 6 𝐶2 ln𝑛. (9)

Remark 2. The order sharpness of estimates (8) and (9) follows Theorem 2 and the results
of works [2, Lm. 2] or [4].

The proof of these statements are given in Section 4.

3. Auxiliary statements

Before proving the theorems, we prove a series of auxiliary statements.

Lemma 1. Let 𝑈𝑛 be the eigenfunction associated with the eigenvalue 𝜆𝑛 of regular Sturm-
Liouville problem (2). By 0 < 𝑥1,𝑛 < 𝑥2,𝑛 < · · · < 𝑥𝑛,𝑛 < 𝜋 we denote the zeroes of the function
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𝑈𝑛. Then the following asymptotic formulae hold:

𝑈𝑛(𝑥) = cos𝑛𝑥+
𝛽(𝑥)

𝑛
sin𝑛𝑥+𝑂(𝑛−2), (10)

𝑈 ′
𝑛(𝑥) = −𝑛 sin𝑛𝑥+ 𝛽(𝑥) cos𝑛𝑥+𝑂(𝑛−1), (11)

𝑈 ′′
𝑛(𝑥) = −𝑛2 cos𝑛𝑥− 𝑛𝛽(𝑥) sin𝑛𝑥+𝑂(1), (12)

𝑈 ′
𝑛(𝑥𝑘,𝑛) = (−1)𝑘𝑛+𝑂(𝑛−1), (13)

𝑥𝑘,𝑛 =
2𝑘 − 1

2𝑛
𝜋 + 𝑛−2𝛽

(︁2𝑘 − 1

2𝑛
𝜋
)︁

+𝑂(𝑛−3), (14)√︀
𝜆𝑛 = 𝑛+𝑂(𝑛−1), (15)

where

𝛽(𝑥) = −𝑐𝑥+ ℎ+
1

2

∫︁ 𝑥

0

𝑞(𝜏) 𝑑𝜏, 𝑐 =
1

𝜋

(︁
ℎ+𝐻 +

1

2

∫︁ 𝜋

0

𝑞(𝜏) 𝑑𝜏
)︁
,

and the estimate for the error term in formulae (10)-(14) is uniform either in 𝑥 ∈ [0, 𝜋] or
1 6 𝑘 6 𝑛.

Proof. For the proof of (10), (11) and (15) see, for instance, [39]. Let us make sure that (14)
is true. Let 𝑥𝑘,𝑛 be the 𝑘th zero of the eigenfunction 𝑈𝑛. Asymptotic formula (10) implies the
relation

| cos𝑛𝑥𝑘,𝑛 +
𝛽(𝑥𝑘,𝑛)

𝑛
sin𝑛𝑥𝑘,𝑛| = 𝑂(𝑛−2).

Letting

cos𝛼𝑘,𝑛 :=
𝑛√︀

𝑛2 + 𝛽2(𝑥𝑘,𝑛)
,

we obtain the asymptotic formula⃒⃒⃒
sin
(︀𝜋

2
+ 𝑛𝑥𝑘,𝑛 − 𝛼𝑘,𝑛

)︀⃒⃒⃒
= 𝑂(𝑛−2).

Therefore, the relation ⃒⃒𝜋
2

+ 𝑛𝑥𝑘,𝑛 − 𝛼𝑘,𝑛 − 𝜋𝑘
⃒⃒

= 𝑂(𝑛−2)

holds. But the function 𝛽 is at least continuously differentiable and this is why the asymptotic
formula

𝑥𝑘,𝑛 =
2𝑘 − 1

2𝑛
𝜋 + 𝑛−2𝛽

(︂
2𝑘 − 1

2𝑛
𝜋

)︂
+𝑂(𝑛−3)

holds. Formula (12) follows (10) and (2), and (13) is implied by (11) and (14).

Remark 3. By asymptotic formula (10) we see that the chosen normalization of the eigen-
functions 𝑈𝑛 ensures their equiboundedness.

We denote
M = sup

{︀
|𝑈𝑛(𝑥)|, 𝑥 ∈ [0, 𝜋], 𝑛 ∈ N

}︀
<∞. (16)

Let 𝜌𝜆 = 𝑜
(︀√

𝜆
ln𝜆

)︀
as 𝜆 → +∞. We suppose that that ℎ(𝜆) ∈ R for arbitrary non-negative

𝜆. We denote by 𝑞𝜆 an arbitrary function in the ball 𝑉𝜌𝜆 [0, 𝜋] of the radius 𝜌𝜆 in the space of
functions of bounded variation vanishing at zero, that is,

𝑉 𝜋
0 [𝑞𝜆] 6 𝜌𝜆, 𝜌𝜆 = 𝑜

(︂√
𝜆

ln𝜆

)︂
, as 𝜆→ ∞, 𝑞𝜆(0) = 0. (17)

For an arbitrary potential 𝑞𝜆 ∈ 𝑉𝜌𝜆 [0, 𝜋], as 𝜆→ +∞, the zeroes of the solution to the Cauchy
problem {︃

𝑦′′ +
(︀
𝜆− 𝑞𝜆(𝑥)

)︀
𝑦 = 0,

𝑦(0, 𝜆) = 1, 𝑦′(0, 𝜆) = ℎ(𝜆),
(18)
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or, under the additional condition ℎ(𝜆) ̸= 0,

𝑉 𝜋
0 [𝑞𝜆] 6 𝜌𝜆, 𝜌𝜆 = 𝑜

(︂√
𝜆

ln𝜆

)︂
, as 𝜆→ ∞, 𝑞𝜆(0) = 0, ℎ(𝜆) ̸= 0, (19)

the zeroes of the solution to the Cauchy problem{︃
𝑦′′ +

(︀
𝜆− 𝑞𝜆(𝑥)

)︀
𝑦 = 0,

𝑦(0, 𝜆) = 0, 𝑦′(0, 𝜆) = ℎ(𝜆),
(20)

located in the segment [0, 𝜋] are indexed as follows:

0 6 𝑥0,𝜆 < 𝑥1,𝜆 < . . . < 𝑥𝑛(𝜆), 𝜆 6 𝜋 (𝑥−1,𝜆 < 0, 𝑥𝑛(𝜆)+1,𝜆 > 𝜋). (21)

Here 𝑥−1,𝜆 < 0, and 𝑥𝑛(𝜆)+1,𝜆 > 𝜋 stand for the zeroes of some continuation of the solution to
the Cauchy problem (18) or (20) provided the variation of the potential 𝑞𝜆 is bounded outside
[0, 𝜋]. In [28], [4], there was described the set of continuous on the segment [0, 𝜋] functions
𝑓 , which can be approximated by the values of the following operator uniformly inside the
interval (0, 𝜋). We consider the operator constructed by the solutions to the Cauchy problem
(20) or (21) and mapping each function with finitely many values on the sets {𝑥𝑘,𝜆}𝑛,∞𝑘=0,𝑛=1 into
a continuous function by the rule

𝑆𝜆(𝑓, 𝑥) =
𝑛∑︁

𝑘=0

𝑦(𝑥, 𝜆)

𝑦′(𝑥𝑘,𝜆, 𝜆)(𝑥− 𝑥𝑘,𝜆)
𝑓(𝑥𝑘,𝜆) =

𝑛∑︁
𝑘=0

𝑠𝑘,𝜆(𝑥)𝑓(𝑥𝑘,𝜆). (22)

It is obvious that the value of operator (22) interpolate the function 𝑓 at the nodes {𝑥𝑘,𝜆}𝑛𝑘=0.
We denote

𝐶0[0, 𝜋] = {𝑓 : 𝑓 ∈ 𝐶[0, 𝜋], 𝑓(0) = 𝑓(𝜋) = 0}.

While approximating the functions 𝑓 ∈ 𝐶[0, 𝜋] ∖ 𝐶0[0, 𝜋] by means of operators (1), in the
vicinity of the ends of the segments [0, 𝜋], the Gibbs phenomenon arises (see, for instance, [25,
Thm. 2], [4]). This problem is solved by the generalization of operator (22) proposed in [28,
Form. (1.9)], [4] of form

𝑇𝜆(𝑓, 𝑥) =
𝑛∑︁

𝑘=0

𝑦(𝑥, 𝜆)

𝑦′(𝑥𝑘,𝜆)(𝑥− 𝑥𝑘,𝜆)

{︂
𝑓(𝑥𝑘,𝜆) − 𝑓(𝜋) − 𝑓(0)

𝜋
𝑥𝑘,𝜆 − 𝑓(0)

}︂
+
𝑓(𝜋) − 𝑓(0)

𝜋
𝑥+ 𝑓(0),

(23)
where 𝑦(𝑥, 𝜆) is the solution to the Cauchy problem (18) or (20) and 𝑥𝑘,𝜆 are the zeroes of this
solution.

Proposition 1 ([28, Prop. 9], [4]). Let 𝑦(𝑥, 𝜆) be the solution to Cauchy problem (18) or
(20) and assume that in the case of Cauchy problem (18) conditions (17) are satisfied, while in
the case of Cauchy problem (20), conditions (19) are satisfied. If 𝑓 ∈ 𝐶0[0, 𝜋], then the relation

lim
𝜆→∞

(︁
𝑓(𝑥) − 𝑆𝜆(𝑓, 𝑥) − 1

2

𝑛−1∑︁
𝑘=0

(︀
𝑓(𝑥𝑘+1,𝜆) − 𝑓(𝑥𝑘,𝜆)

)︀
𝑠𝑘,𝜆(𝑥)

)︁
= 0 (24)

holds uniformly on [0, 𝜋].



UNIFORM CONVERGENCE OF LAGRANGE-STRUM-LIOUVILLE PROCESSES . . . 99

Remark 4. It follows from Proposition 1 that the values of the operators

𝐴𝜆(𝑓, 𝑥) =
1

2

𝑛−1∑︁
𝑘=0

(︀
𝑓(𝑥𝑘+1,𝜆) + 𝑓(𝑥𝑘,𝜆)

)︀
𝑠𝑘,𝜆(𝑥),

𝐵𝜆(𝑓, 𝑥) =
1

2

𝑛∑︁
𝑘=1

(︀
𝑓(𝑥𝑘−1,𝜆) + 𝑓(𝑥𝑘,𝜆)

)︀
𝑠𝑘,𝜆(𝑥),

𝐶𝜆(𝑓, 𝑥) =
1

4

𝑛−1∑︁
𝑘=1

(︀
𝑓(𝑥𝑘−1,𝜆) + 2𝑓(𝑥𝑘,𝜆) + 𝑓(𝑥𝑘+1,𝜆)

)︀
𝑠𝑘,𝜆(𝑥)

proposed in [28], [4] approximate an arbitrary element in the space 𝐶0[0, 𝜋] uniformly on the
entire segment [0, 𝜋].

Lemma 2. Let 𝑈𝑛 be the eigenfunction associated with the eigenvalue 𝜆𝑛 of regular Sturm-
Liouville problem (2). Then there exists a constant 𝐶4 depending only on 𝑞, ℎ, 𝐻 such that for
all 𝑥 ∈ [0, 𝜋] and all 𝑛 = 1, 2, 3, . . . the inequality

|𝑙𝑆𝐿𝑘,𝑛(𝑥)| =

⃒⃒⃒⃒
𝑈𝑛(𝑥)

𝑈 ′
𝑛(𝑥𝑘,𝑛)(𝑥− 𝑥𝑘,𝑛)

⃒⃒⃒⃒
6 𝐶4 (25)

holds.

Proof. If for some 1 6 𝑘 6 𝑛 and 𝑛 ∈ N we have 𝑥 = 𝑥𝑘,𝑛, then |𝑙𝑆𝐿𝑘,𝑛(𝑥)| = 1. Consider the case

𝑥 ̸= 𝑥𝑘,𝑛. Assume first that 0 < |𝑥 − 𝑥𝑘,𝑛| 6 𝑛−1, 𝑥 ∈ [0, 𝜋], then by Taylor formula with the
error term in the Lagrange form and (12) and (13) we get the inequality

|𝑙𝑆𝐿𝑘,𝑛(𝑥)| 6
⃒⃒⃒⃒
𝑈 ′
𝑛(𝑥𝑘,𝑛)(𝑥− 𝑥𝑘,𝑛) + 𝑈 ′′

𝑛(𝜉𝑘,𝑛)(𝑥− 𝑥𝑘,𝑛)2/2

𝑈 ′
𝑛(𝑥𝑘,𝑛)(𝑥− 𝑥𝑘,𝑛)

⃒⃒⃒⃒
= 1 +

𝑂(𝑛2)

𝑛+𝑂(𝑛−1)

1

𝑛
6 𝐶4,1

for some constant 𝐶4,1 depending only on the parameters 𝑞, ℎ and 𝐻 of the Sturm-Liouville
problem. It remains to consider the case |𝑥 − 𝑥𝑘,𝑛| > 𝑛−1, 𝑥 ∈ [0, 𝜋]. By asymptotic formulae
(10) and (13) there exists a constant 𝐶4,2 satisfying the inequality

|𝑙𝑆𝐿𝑘,𝑛(𝑥)| 6 𝑛

⃒⃒⃒⃒
𝑈𝑛(𝑥)

𝑈 ′
𝑛(𝑥𝑘,𝑛)

⃒⃒⃒⃒
6

⃒⃒⃒⃒
cos𝑛𝑥+ 𝛽(𝑥)

𝑛
sin𝑛𝑥+𝑂(𝑛−2)

𝑛+𝑂(𝑛−1)

⃒⃒⃒⃒
𝑛 6 𝐶4,2.

Letting 𝐶4 = max(𝐶4,1, 𝐶4,2), we complete the proof.

In what follows we shall need the proof of Theorem 2

Proof of Theorem 2. We choose arbitrary 𝑥 ∈ [0, 𝜋]. We denote by 𝑘0 the index of the node
closest to 𝑥. If there are two such nodes, we choose any of them, say, the left one. We represent
the Lebesgue function of Lagrange-Sturm-Liouville interpolation process (1) as three terms

𝐿𝑆𝐿
𝑛 (𝑥) =

𝑘0−3∑︁
𝑘=1

|𝑙𝑆𝐿𝑘,𝑛(𝑥)| +

𝑘0+2∑︁
𝑘=𝑘0−2

|𝑙𝑆𝐿𝑘,𝑛(𝑥)| +
𝑛∑︁

𝑘=𝑘0+3

|𝑙𝑆𝐿𝑘,𝑛(𝑥)|.

As 𝑘0 = 1, 2, 3, there is no first term in this representation. As 𝑘0 = 𝑛 − 2, 𝑛 − 1, 𝑛, the third
sum is absent. At most five terms in the second sum are estimated by means of Lemma 2.
Then, employing (11), (13) Lagrange formula of finite increments, we estimate the Lebesgue
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function as follows:

𝐿𝑆𝐿
𝑛 (𝑥) 6

|𝑈𝑛(𝑥)|
𝑛

(︂𝑘0−3∑︁
𝑘=1

1

|𝑥− 𝑥𝑘,𝑛|
+

𝑛∑︁
𝑘=𝑘0+3

1

|𝑥− 𝑥𝑘,𝑛|

)︂
+ 5𝐶4

+

𝑘0−3∑︁
𝑘=1

⃒⃒⃒⃒
|𝑈𝑛(𝑥)|

|𝑈 ′
𝑛(𝑥𝑘,𝑛)||𝑥− 𝑥𝑘,𝑛|

− |𝑈𝑛(𝑥)|
𝑛|𝑥− 𝑥𝑘,𝑛|

⃒⃒⃒⃒
+

𝑛∑︁
𝑘=𝑘0+3

⃒⃒⃒⃒
|𝑈𝑛(𝑥)|

|𝑈 ′
𝑛(𝑥𝑘,𝑛)||𝑥− 𝑥𝑘,𝑛|

− |𝑈𝑛(𝑥)|
𝑛|𝑥− 𝑥𝑘,𝑛|

⃒⃒⃒⃒

6
|𝑈𝑛(𝑥)|
𝑛

(︂𝑘0−3∑︁
𝑘=1

1

|𝑥− 𝑥𝑘,𝑛|
+

𝑛∑︁
𝑘=𝑘0+3

1

|𝑥− 𝑥𝑘,𝑛|

)︂
+ 5𝐶4 +

𝑛∑︁
𝑘=1

⃒⃒⃒⃒
𝑈𝑛(𝑥)

𝑥− 𝑥𝑘,𝑛

⃒⃒⃒⃒⃒⃒⃒⃒
𝑛− (𝑛+𝑂(𝑛−1))

𝑛(𝑛+𝑂(𝑛−1))

⃒⃒⃒⃒

=
|𝑈𝑛(𝑥)|
𝑛

(︂𝑘0−3∑︁
𝑘=1

1

|𝑥− 𝑥𝑘,𝑛|
+

𝑛∑︁
𝑘=𝑘0+3

1

|𝑥− 𝑥𝑘,𝑛|

)︂
+ 5𝐶4 +𝑂(𝑛−1).

By asymptotic formula (14) for the zeroes of the eigenfunction 𝑈𝑛 we find an index 𝑛0 depending
only on the parameters of the Sturm-Liouville problem such that starting from this index, the
inequality holds

min
16𝑘6𝑛−1

|𝑥𝑘+1,𝑛 − 𝑥𝑘,𝑛| >
𝜋

2𝑛
. (26)

Therefore, the relation

|𝑥− 𝑥𝑘0±2,𝑛| > min
16𝑘6𝑛−1

|𝑥𝑘+1,𝑛 − 𝑥𝑘,𝑛| >
𝜋

2𝑛
(27)

is true. By (26) and (27), the Lebesgue function of Lagrange-Sturm-Liouville interpolation
process (1) can be estimated as

𝐿𝑆𝐿
𝑛 (𝑥) 6

|𝑈𝑛(𝑥)|
𝑛

(︂𝑘0−3∑︁
𝑘=1

1

𝑥𝑘+1,𝑛 − 𝑥𝑘,𝑛

𝑥𝑘+1,𝑛∫︁
𝑥𝑘,𝑛

𝑑𝑡

𝑥− 𝑡
+

𝑛∑︁
𝑘=𝑘0+3

1

𝑥𝑘,𝑛 − 𝑥𝑘−1,𝑛

𝑥𝑘,𝑛∫︁
𝑥𝑘−1,𝑛

𝑑𝑡

𝑡− 𝑥

)︂
+ 𝐶3,0

6
2|𝑈𝑛(𝑥)|

𝜋

(︂
2 ln𝑛− 2 ln

𝜋

2
+ ln |𝑥(𝑥− 𝜋)|

)︂
+ 𝐶3,0

(28)

uniformly on the entire segment [0, 𝜋]. The identity max
(︁

ln |𝑥(𝜋−𝑥)|, 𝑥 ∈ (0, 𝜋)
)︁

= 2 ln 𝜋
2

and

asymptotic formula (10) imply (8) and (9) in the case 𝑛 > 𝑛0. To make estimates (8) and (9)
true for all 𝑛 = 2, 3, 4, . . . , we let, for instance,

𝐶3 = max(𝐶3,0, 𝐿
𝑆𝐿
2 , 𝐿𝑆𝐿

3 , 𝐿𝑆𝐿
4 , . . . , 𝐿𝑆𝐿

𝑛0−1, ), 𝐶2 = 𝐶1M + 𝐶3/ ln 2,

where the constant M is determined in relation (16).

For each 0 6 𝑎 < 𝑏 6 𝜋, 0 < 𝜀 < (𝑏− 𝑎)/2 we denote

𝑄𝑛(𝑓, [𝑎, 𝑏], 𝜀) := max
𝑝16𝑝6𝑝2

⃒⃒⃒⃒ 𝑚2∑︁
𝑚=𝑚1

′𝑓(𝑥2𝑚+1,𝑛) − 𝑓(𝑥2𝑚,𝑛)

𝑝− 2𝑚

⃒⃒⃒⃒
. (29)

Proposition 2. For a function 𝑓 ∈ 𝐶[0, 𝜋], relation

lim
𝜆→∞

𝑄𝑛(𝑓, [𝑎, 𝑏], 𝜀) = 0 (30)

implies (7).

Proof. We introduce the notation

𝜓𝑘,𝑛 = 𝑓(𝑥𝑘+1,𝑛) − 𝑓(𝑥𝑘,𝑛), 1 6 𝑘 6 𝑛− 1, 𝑛 ∈ N. (31)
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Taking into consideration that 𝑓 ∈ 𝐶[0, 𝜋] and (14), we confirm that there exists a constant 𝐶5

such that the estimate

|𝜓𝑘,𝑛| 6 𝐶5𝜔1

(︁
𝑓,
𝜋

𝑛

)︁
for all 1 6 𝑘 6 𝑛− 1 𝑛 ∈ N. (32)

holds.
We note that (31), (11) and (13) imply the uniform on the entire segment [0, 𝜋] estimate⃒⃒⃒⃒

⃒
𝑘2∑︁

𝑘=𝑘1

(︀
𝑓(𝑥𝑘+1,𝑛) − 𝑓(𝑥𝑘,𝑛)

)︀
𝑙𝑆𝐿𝑘,𝑛(𝑥) −

𝑘2∑︁
𝑘=𝑘1

𝜓𝑘,𝑛
(−1)𝑘𝑈𝑛(𝑥)

𝑛(𝑥− 𝑥𝑘,𝑛)

⃒⃒⃒⃒
⃒

6
𝑘2∑︁

𝑘=𝑘1

|𝜓𝑘,𝑛|
⃒⃒⃒⃒

𝑈𝑛(𝑥)

(𝑥− 𝑥𝑘,𝑛)

⃒⃒⃒⃒ ⃒⃒⃒⃒
(−1)𝑘𝑛− 𝑈 ′

𝑛(𝑥𝑘,𝑛)

𝑛𝑈 ′
𝑛(𝑥𝑘,𝑛)

⃒⃒⃒⃒
= 𝜔

(︁
𝑓,
𝜋

𝑛

)︁
𝑂(𝑛−1).

(33)

Arguing as in the proof of Theorem 2, multiplying |𝑈𝑛(𝑥)| by 𝐶5𝜔1

(︁
𝑓, 𝜋

𝑛

)︁
in (28) and removing

the terms with the indices 𝑘1 6 𝑘 6 𝑘2 from the sum in (28), by (31) and (32) we see that
there exists a constant 𝐶6 and an index 𝑛0 ∈ N independent of the function 𝑓 ∈ 𝐶[0, 𝜋],
0 6 𝑎 < 𝑏 6 𝜋 and 0 < 𝜀 < (𝑏− 𝑎)/2 such that for arbitrary 𝑥 ∈ [𝑎 + 𝜀, 𝑏− 𝜀] and 𝑛 > 𝑛0 the
inequality⃒⃒⃒⃒
⃒⃒12 ∑︁

𝑘∈[1,𝑛−1]∖[𝑘1,𝑘2]

𝜓𝑘,𝑛𝑙
𝑆𝐿
𝑘,𝑛(𝑥)

⃒⃒⃒⃒
⃒⃒ 6 𝐶6𝜔1

(︁
𝑓,
𝜋

𝑛

)︁ ∑︁
𝑘∈[1,𝑛−1]∖[𝑘1,𝑘2]

⃒⃒
𝑙𝑆𝐿𝑘,𝑛(𝑥)

⃒⃒
6 𝐶6𝜔1

(︁
𝑓,
𝜋

𝑛

)︁
ln

2𝜋

𝜀
(34)

holds.
In the case of Cauchy problem (18) we let 𝜆 = 𝜆𝑛, where 𝜆𝑛 is an eigenvalue of Sturm-Liouville

problem (2), we obtain the identity 𝑈𝑛(𝑥) ≡ 𝑦(𝑥, 𝜆𝑛). Therefore, the values of operators (1)
and (22) coincide identically as 𝜆 = 𝜆𝑛. By (34), Proposition 1 in the case of Cauchy problem
(18), 𝜆 = 𝜆𝑛 and (33) we get the relation

lim
𝑛→∞

(︁
𝑓(𝑥) − 𝐿𝑆𝐿

𝑛 (𝑓, 𝑥) − 1

2

𝑛−1∑︁
𝑘=0

(︀
𝑓(𝑥𝑘+1,𝑛) − 𝑓(𝑥𝑘,𝑛)

)︀
𝑙𝑆𝐿𝑘,𝑛(𝑥)

)︁
= lim

𝑛→∞

(︃
𝑓(𝑥) − 𝐿𝑆𝐿

𝑛 (𝑓, 𝑥) − 1

2

𝑘2∑︁
𝑘=𝑘1

𝜓𝑘,𝑛
(−1)𝑘𝑈𝑛(𝑥)

𝑛(𝑥− 𝑥𝑘,𝑛)

)︃
= 0.

(35)

We fix arbitrary 𝑥 ∈ [𝑎+ 𝜀, 𝑏− 𝜀]. We choose an index 𝑝 = 𝑝(𝑥, 𝜆) such that 𝑥 ∈ [𝑥𝑝,𝑛, 𝑥𝑝+1,𝑛).
Then 𝑥 = 𝑥𝑝,𝑛 + 𝛼(𝑥𝑝+1,𝑛 − 𝑥𝑝,𝑛), where 𝛼 = 𝛼(𝑥, 𝜆) ∈ [0, 1),

𝑥− 𝑥𝑘,𝑛 =
𝑝− 𝑘 + 𝛼 + 𝛽𝑘,𝑛

𝑛
𝜋.

By (14), the estimate 𝛽𝑘,𝑛 = 𝛽𝑘,𝑛(𝑥) = 𝑂(𝑛−1) holds uniformly in all 1 6 𝑘 6 𝑛 and 𝑥 ∈ [0, 𝜋].
By (32) and (14), for all 𝑥 ∈ [𝑎+𝜀, 𝑏−𝜀] and sufficiently large 𝑛 such that for all 1 6 𝑘 6 𝑛−1

the inequality |𝛽𝑘,𝑛| < 1 holds, the estimate⃒⃒⃒ ∑︁
𝑘:𝑘16𝑘6𝑘2
|𝑝−𝑘|>3

(−1)𝑘𝜓𝑘,𝑛

𝑝− 𝑘 + 𝛼 + 𝛽𝑘,𝑛
−

∑︁
𝑘:𝑘16𝑘6𝑘2
|𝑝−𝑘|>3

(−1)𝑘𝜓𝑘,𝑛

𝑝− 𝑘

⃒⃒⃒

6 𝐶5𝜔
(︁
𝑓,
𝜋

𝑛

)︁ ∑︁
𝑘:𝑘16𝑘6𝑘2
|𝑝−𝑘|>3

𝛼

|𝑝− 𝑘|(|𝑝− 𝑘| − 2)
6 3𝐶5𝜔

(︁
𝑓,
𝜋

𝑛

)︁ (36)

holds true.
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Taking into consideration notation (31), we rewrite the sum in (35) as follows:

1

2

𝑘2∑︁
𝑘=𝑘1

(︀
𝑓(𝑥𝑘+1,𝑛) − 𝑓(𝑥𝑘,𝑛)

)︀
𝑙𝑆𝐿𝑘,𝑛(𝑥) =

1

2

∑︁
𝑘:𝑘16𝑘6𝑘2
|𝑝−𝑘|>3

𝜓𝑘,𝑛𝑙
𝑆𝐿
𝑘,𝑛(𝑥) +

1

2

∑︁
𝑘:𝑘16𝑘6𝑘2
|𝑝−𝑘|<3

𝜓𝑘,𝑛𝑙
𝑆𝐿
𝑘,𝑛(𝑥). (37)

Now by the triangle inequality, (31), (36) and (35), we obtain the estimate⃒⃒⃒1
2

𝑘2∑︁
𝑘=𝑘1

(︀
𝑓(𝑥𝑘+1,𝑛) − 𝑓(𝑥𝑘,𝑛)

)︀
𝑙𝑆𝐿𝑘,𝑛(𝑥) − 𝑈𝑛(𝑥)

2𝜋

𝑘2∑︁
𝑘=𝑘1

′ (−1)𝑘𝜓𝑘,𝑛

𝑝− 𝑘

⃒⃒⃒
6

1

2𝜋

⃒⃒⃒ ∑︁
𝑘:|𝑝−𝑘|>3

(−1)𝑘𝜓𝑘,𝑛

𝑝− 𝑘 + 𝛼
−

∑︁
𝑘:|𝑝−𝑘|>3

(−1)𝑘𝜓𝑘,𝑛

𝑝− 𝑘

⃒⃒⃒
+

1

2𝜋

∑︁
𝑘:|𝑝−𝑘|<3

⃒⃒⃒
𝜓𝑘,𝑛𝑙

𝑆𝐿
𝑘,𝑛(𝑥)

⃒⃒⃒
+

1

2𝜋

∑︁
𝑘:|𝑝−𝑘|<3

′ |𝜓𝑘,𝑛|
|𝑝− 𝑘|

= 𝑜(1).

(38)

uniform in 𝑥 ∈ [𝑎+ 𝜀, 𝑏− 𝜀].
By (38) and (35) we obtain the relation

lim
𝑛→∞

(︃
𝑓(𝑥) − 𝐿𝑆𝐿

𝑛 (𝑓, 𝑥) − 𝑈𝑛(𝑥)

2𝜋

𝑘2∑︁
𝑘=𝑘1

′ (−1)𝑘𝜓𝑘,𝑛

𝑝− 𝑘

)︃
= 0 (39)

uniform in 𝑥 ∈ [𝑎 + 𝜀, 𝑏 − 𝜀]. We estimate the last term in (39) by means of (16), (10), (32)
and the triangle inequality⃒⃒⃒𝑈𝑛(𝑥)

2𝜋

𝑘2∑︁
𝑘=𝑘1

′ (−1)𝑘𝜓𝑘,𝑛

𝑝− 𝑘

⃒⃒⃒
6 2
⃒⃒⃒M
2𝜋

𝑚2∑︁
𝑚=𝑚1

′ 𝜓2𝑚,𝑛

𝑝− 2𝑚

⃒⃒⃒
+
⃒⃒⃒M
2𝜋

𝑘2∑︁
𝑘=𝑘1

′ 𝜓𝑘,𝑛

𝑝− 𝑘

⃒⃒⃒
+𝑂

(︂
𝜔1

(︁
𝑓,
𝜋

𝑛

)︁)︂
. (40)

Since the function 𝑓 is continuous on the segment [0, 𝜋], we can find a sequence of natural
numbers {𝑙𝑛}∞𝑛=1 such that

𝑙𝑛 = 𝑜(𝑛), lim
𝑛→∞

𝑙𝑛 = ∞, lim
𝜆→∞

𝜔1

(︁
𝑓,
𝜋

𝑛

)︁ 𝑙𝑛∑︁
𝑘=1

1

𝑘
= 0. (41)

We estimate the second sum in (40):⃒⃒⃒ 1

2𝜋

𝑘2∑︁
𝑘=𝑘1

′ 𝜓𝑘,𝑛

𝑝− 𝑘

⃒⃒⃒
6
⃒⃒⃒ 1

2𝜋

∑︁
𝑘:|𝑝−𝑘|6𝑙𝑛

′ 𝜓𝑘,𝑛

𝑝− 𝑘

⃒⃒⃒
+
⃒⃒⃒ 1

2𝜋

∑︁
𝑘:|𝑝−𝑘|>𝑙𝑛

′ 𝜓𝑘,𝑛

𝑝− 𝑘

⃒⃒⃒
. (42)

It follows from inequality (32) that⃒⃒⃒ 1

2𝜋

∑︁
𝑘:|𝑝−𝑘|6𝑙𝑛

′ 𝜓𝑘,𝑛

𝑝− 𝑘

⃒⃒⃒
6

1

2𝜋

∑︁
𝑘:|𝑝−𝑘|6𝑙𝑛

′ ⃒⃒⃒ 𝜓𝑘,𝑛

𝑝− 𝑘

⃒⃒⃒
6
𝐶5

𝜋
𝜔1

(︁
𝑓,
𝜋

𝑛

)︁ 𝑙𝑛∑︁
𝑘=1

1

𝑘
. (43)

After the Abel transform, in the case 𝑘 ∈ [𝑘1, 𝑘2], |𝑝 − 𝑘| > 𝑙𝑛, the second sum in (42) can be
estimated as ⃒⃒⃒ 1

2𝜋

∑︁
𝑘:|𝑝−𝑘|>𝑙𝑛

′ 𝜓𝑘,𝑛

𝑝− 𝑘

⃒⃒⃒
6

4‖𝑓‖𝐶[𝑎,𝑏]

𝑙𝑛 + 1
+ 4‖𝑓‖𝐶[𝑎,𝑏]

∞∑︁
𝑘=𝑙𝑛

1

𝑘(𝑘 + 1)
.

Therefore, by (41), (42) and (43) we obtain the relation⃒⃒⃒M
2𝜋

𝑘2∑︁
𝑘=𝑘1

′ 𝜓𝑘,𝑛

𝑝− 𝑘

⃒⃒⃒
= 𝑜(1) (44)

uniformly in 𝑥 ∈ [𝑎+ 𝜀, 𝑏− 𝜀].
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By (39), (40), (44) and the triangle inequality we get the estimate⃒⃒⃒
𝑓(𝑥) − 𝐿𝑆𝐿

𝑛 (𝑓, 𝑥)
⃒⃒⃒
6
⃒⃒⃒
𝑓(𝑥) − 𝐿𝑆𝐿

𝑛 (𝑓, 𝑥) − 𝑈𝑛(𝑥)

2𝜋

𝑘2∑︁
𝑘=𝑘1

′ (−1)𝑘𝜓𝑘,𝑛

𝑝− 𝑘

⃒⃒⃒
+
⃒⃒⃒M
𝜋

𝑚2∑︁
𝑚=𝑚1

′ 𝜓2𝑚,𝑛

𝑝− 2𝑚

⃒⃒⃒

+
⃒⃒⃒M
2𝜋

𝑘2∑︁
𝑘=𝑘1

′ 𝜓𝑘,𝑛

𝑝− 𝑘

⃒⃒⃒
+ 𝑜(1) 6

M
𝜋
𝑄𝑛(𝑓, [𝑎, 𝑏], 𝜀) + 𝑜(1).

Therefore, condition (30) yields uniform convergence (7). The proof is complete.

For arbitrary 0 6 𝑎 < 𝑏 6 𝜋, 0 < 𝜀 < (𝑏− 𝑎)/2 we denote

𝑄*
𝑛(𝑓, [𝑎, 𝑏], 𝜀) := max

𝑝16𝑝6𝑝2

𝑚2∑︁
𝑚=𝑚1

′
⃒⃒⃒⃒
𝑓(𝑥2𝑚+1,𝑛) − 𝑓(𝑥2𝑚,𝑛)

𝑝− 2𝑚

⃒⃒⃒⃒
. (45)

Corollary 1. If 𝑓 ∈ 𝐶[0, 𝜋], then the relation

lim
𝑛→∞

𝑄*
𝑛(𝑓, [𝑎, 𝑏], 𝜀) = 0 (46)

implies (7).

Proof. Condition (46) ensures condition (30), and in its turn, by Proposition 2, this implies
(7).

Remark 5. Proposition 2 and Corollary 1 are analogues of known Privalov test of uni-
form convergence of trigonometric interpolation polynomials and classical Lagrange interpola-
tion polynomials over the matrix of Chebyshev interpolation nodes [30].

4. Sufficient condition of uniform convergence of
Lagrange-Sturm-Liouville processes inside (0, 𝜋)

Now we can proceed to proving the above formulated Theorem 1.

Proof of Theorem 1. Assume that the functions 𝑣 and 𝜔 satisfy condition (6) and 𝑓 ∈
𝐶(𝜔𝑙[𝑎, 𝑏]) ∩ 𝑉 −(𝑣). Let us show that relation (46) holds. By the uniform continuity of the
function 𝑓 on the segment [0, 𝜋], for each positive 𝜖 there exist natural numbers 𝜈 and 𝑛1 such
that for all 𝑛 > 𝑛1 (𝑛 ∈ N) two inequalities hold:

𝜔

(︂
𝜋

𝑛

)︂ 𝜈∑︁
𝑘=1

1

𝑘
<
𝜖

6
(47)

and
24‖𝑓‖𝐶[𝑎,𝑏] < 𝜖𝜈. (48)

Let 𝑛 > 𝑛1. We find an index 𝑝0 depending on 𝑛, 𝑎, 𝑏, 𝜀 and 𝑓 , at which the maximum is
attained in relation (45):

𝑄*
𝑛(𝑓, [𝑎, 𝑏], 𝜀) =

𝑚2∑︁
𝑚=𝑚1

′
⃒⃒⃒⃒
𝑓(𝑥2𝑚+1,𝑛) − 𝑓(𝑥2𝑚,𝑛)

𝑝0 − 2𝑚

⃒⃒⃒⃒
.

We denote

𝑄**
𝑛 (𝑓, [𝑎, 𝑏], 𝜀) :=

𝑘2∑︁
𝑘=𝑘1

′
⃒⃒⃒⃒
𝑓(𝑥𝑘+1,𝑛) − 𝑓(𝑥𝑘,𝑛)

𝑝0 − 𝑘

⃒⃒⃒⃒
.

Since 𝑄**
𝑛 (𝑓, [𝑎, 𝑏], 𝜀) is obtained from 𝑄*

𝑛(𝑓, [𝑎, 𝑏], 𝜀) by additing non-negative terms, the in-
equality

𝑄*
𝑛(𝑓, [𝑎, 𝑏], 𝜀) 6 𝑄**

𝑛 (𝑓, [𝑎, 𝑏], 𝜀) (49)
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is true. We partition 𝑄**
𝑛 (𝑓, [𝑎, 𝑏], 𝜀) into two terms

𝑄**
𝑛 (𝑓, [𝑎, 𝑏], 𝜀) =

𝑘2∑︁
𝑘=𝑘1

′𝑓(𝑥𝑘+1,𝑛) − 𝑓(𝑥𝑘,𝑛)

|𝑝0 − 𝑘|
−2

𝑘2∑︁
𝑘=𝑘1

′′𝑓(𝑥𝑘+1,𝑛) − 𝑓(𝑥𝑘,𝑛)

|𝑝0 − 𝑘|
= 𝑆1(𝑝0)+𝑆2(𝑝0), (50)

where two primes denotes the absence of non-negative terms in the usm and the term with the
index 𝑘 = 𝑝0.

We begin with estimating the first sum. In order to do this, we represent it as

𝑆1(𝑝0) =
∑︁

𝑘:𝑘∈[𝑘1,𝑘2],
0<|𝑝0−𝑘|<𝜈

𝑓(𝑥𝑘+1,𝑛) − 𝑓(𝑥𝑘,𝑛)

|𝑝0 − 𝑘|
+

∑︁
𝑘:𝑘∈[𝑘1,𝑘2],
|𝑝0−𝑘|>𝜈
|𝑝0−𝑘|>0

𝑓(𝑥𝑘+1,𝑛) − 𝑓(𝑥𝑘,𝑛)

|𝑝0 − 𝑘|

=𝑆1,1(𝑝0) + 𝑆1,2(𝑝0).

(51)

In the case {𝑘 : 𝑘 ∈ [𝑘1, 𝑘2], |𝑝0 − 𝑘| > 𝜈, |𝑝0 − 𝑘| > 0} = ∅ we second term is supposed to be
zero.

Inequality (47) implies the relation

|𝑆1,1(𝑝0)| 6 2𝜔

(︂
𝜋

𝑛

)︂ 𝜈∑︁
𝑘=1

1

𝑘
<
𝜖

3
(52)

for all 𝑛 > 𝑛1. Let us estimate 𝑆1,2(𝑝0). If 𝑝0 satisfies relation 𝑘1 6 𝑝0 − 𝜈 < 𝑝0 < 𝑝0 + 𝜈 6 𝑘2,
the inequalities 𝑝0 − 𝑘1 > 𝜈 and 𝑘2 − 𝑝0 > 𝜈 hold. We employ (48) and the Abel transform to
obtain the estimate

|𝑆1,2(𝑝0)| 6
⃒⃒⃒⃒𝑝0−𝜈∑︁
𝑘=𝑘1

𝑓(𝑥𝑘+1,𝑛) − 𝑓(𝑥𝑘,𝑛)

𝑝0 − 𝑘

⃒⃒⃒⃒
+

⃒⃒⃒⃒ 𝑘2∑︁
𝑘=𝑝0+𝜈

𝑓(𝑥𝑘+1,𝑛) − 𝑓(𝑥𝑘,𝑛)

𝑘 − 𝑝0

⃒⃒⃒⃒

6

⃒⃒⃒⃒𝑝0−𝜈−1∑︁
𝑘=𝑘1

𝑓(𝑥𝑘+1,𝑛) − 𝑓(𝑥𝑘1,𝑛)

(𝑝0 − 𝑘)(𝑝0 − 𝑘 − 1)

⃒⃒⃒⃒
+

⃒⃒⃒⃒
𝑓(𝑥𝑝0−𝜈+1,𝑛) − 𝑓(𝑥𝑘1,𝑛)

𝑝0 − 𝑘1

⃒⃒⃒⃒

+

⃒⃒⃒⃒ 𝑘2−1∑︁
𝑘=𝑝0+𝜈

𝑓(𝑥𝑘+1,𝑛) − 𝑓(𝑥𝑝0+𝜈,𝑛)

(𝑘 − 𝑝0)(𝑘 + 1 − 𝑝0)

⃒⃒⃒⃒
+

⃒⃒⃒⃒
𝑓(𝑥𝑘2,𝑛) − 𝑓(𝑥𝑝0+𝜈,𝑛)

𝑘2 − 𝑝0

⃒⃒⃒⃒

64‖𝑓‖𝐶[𝑎,𝑏]

∞∑︁
𝑖=𝜈

1

𝑖(𝑖+ 1)
+

4‖𝑓‖𝐶[𝑎,𝑏]

𝜈
6

8‖𝑓‖𝐶[𝑎,𝑏]

𝜈
<
𝜖

3
.

(53)

In the same way we prove (53) in the situation when the index 𝑝0 satisfies one of the relations
𝑝0 − 𝜈 < 𝑘1 6 𝑝0 < 𝑝0 + 𝜈 6 𝑘2 or 𝑘1 6 𝑝0 − 𝜈 < 𝑝1 6 𝑘2 < 𝑝0 + 𝜈. There remains the only
possible case 𝑝0 − 𝜈 < 𝑘1 6 𝑝1 6 𝑘2 < 𝑝0 + 𝜈. Here |𝑆1,2(𝑝0)| = 0.

By (51), (52) and (53), for all 𝑛 > 𝑛1 we have the estimate

|𝑆1(𝑝0)| 6
2𝜖

3
. (54)

We proceed to studying the properties of the sum 𝑆2(𝑝0). We take arbitrary integer 𝑚 such
1 6 𝑚 6 𝑘2 − 𝑘1 − 2 and represent 𝑆2(𝑝0) as

0 6 𝑆2(𝑝0) = − 2
∑︁

𝑘:𝑘∈[𝑘1,𝑘2]
|𝑝0−𝑘|6𝑚

′′𝑓(𝑥𝑘+1,𝑛) − 𝑓(𝑥𝑘,𝑛)

|𝑝0 − 𝑘|
− 2

∑︁
𝑘:𝑘∈[𝑘1,𝑘2]
|𝑝0−𝑘|>𝑚

′′𝑓(𝑥𝑘+1,𝑛) − 𝑓(𝑥𝑘,𝑛)

|𝑝0 − 𝑘|

=𝑆2,1(𝑝0) + 𝑆2,2(𝑝0).

(55)
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We choose sufficiently large number 𝑛2 > 𝑛1 depending only on the parameters of the Sturm-
Liouville problem such that starting from this index, by (14), the inequalities hold:

max
16𝑘6𝑛

|𝑥𝑘+1,𝑛 − 𝑥𝑘,𝑛| 6
3𝜋

2𝑛
.

Since 𝑓 ∈ 𝐶(𝜔𝑙[𝑎, 𝑏]), according definition (5), starting from 𝑛2 we have the relation

𝑓(𝑥𝑘+1,𝑛) − 𝑓(𝑥𝑘,𝑛) > −10𝐾𝑓𝜔
(︁𝜋
𝑛

)︁
. (56)

This is why,

0 6 𝑆2,1(𝑝0) = −2
∑︁

𝑘:𝑘∈[𝑘1,𝑘2],
|𝑝0−𝑘|6𝑚

′′𝑓(𝑥𝑘+1,𝑛) − 𝑓(𝑥𝑘,𝑛)

|𝑝0 − 𝑘|
6 10𝐾𝑓𝜔

(︁𝜋
𝑛

)︁ 𝑚∑︁
𝑘=1

1

𝑘
. (57)

Let us estimate the sum 𝑆2,2(𝑝0).

0 6𝑆2,2(𝑝0) = −2
∑︁

𝑘:𝑘∈[𝑘1,𝑘2]
|𝑝0−𝑘|>𝑚

′′𝑓(𝑥𝑘+1,𝑛) − 𝑓(𝑥𝑘,𝑛)

|𝑝0 − 𝑘|

62

𝑝0−𝑚−1∑︁
𝑘=𝑘1

−(𝑓(𝑥𝑘+1,𝑛) − 𝑓(𝑥𝑘,𝑛))−
𝑝0 − 𝑘

+ 2

𝑘2∑︁
𝑘=𝑝0+𝑚+1

−(𝑓(𝑥𝑘+1,𝑛) − 𝑓(𝑥𝑘,𝑛))−
𝑘 − 𝑝0

.

(58)

If 𝑝0 −𝑚 6 𝑘1 or 𝑝0 + 𝑚 > 𝑘2, then in (58) the first or second term disappears, respectively.
In the case 𝑝0 −𝑚 < 𝑘1 < 𝑘2 < 𝑝0 + 𝑚, there is no sum 𝑆2,2(𝑝0) in (55). Taking into account
that 𝑓 ∈ 𝑉 (𝑣), by means of the Abel transform (56) we estimate (58):

0 6𝑆2,2(𝑝0) 6 2

(︃𝑝0−𝑚−1∑︀
𝑘=𝑘1

−(𝑓(𝑥𝑘+1,𝑛) − 𝑓(𝑥𝑘,𝑛))−

𝑝0 − 𝑘1
+

𝑝0−𝑚−1∑︁
𝑘=𝑘1+1

𝑝0−𝑚−1∑︀
𝑗=𝑘

−(𝑓(𝑥𝑗+1,𝑛) − 𝑓(𝑥𝑗,𝑛))−

(𝑝0 − 𝑘)(𝑝0 − 𝑘 + 1)

+

𝑘2∑︀
𝑘=𝑝0+𝑚+1

−(𝑓(𝑥𝑘+1,𝑛) − 𝑓(𝑥𝑘,𝑛))−

𝑘2 − 𝑝0
+

𝑘2−1∑︁
𝑘=𝑝0+𝑚+1

𝑘∑︀
𝑗=𝑝0+𝑚+1

−(𝑓(𝑥𝑗+1,𝑛) − 𝑓(𝑥𝑗,𝑛))−

(𝑝0 − 𝑘)(𝑝0 − 𝑘 − 1)

)︃

62

(︃(︀
(𝑝0 − 𝑘1) −𝑚− 1

)︀
2, 5𝐾𝑓𝜔

(︀
𝜋
𝑛

)︀
𝑝0 − 𝑘1

+𝑀𝑓

𝑝0−𝑚−1∑︁
𝑘=𝑘1+1

𝑣(𝑝0 −𝑚− 𝑘)

(𝑝0 − 𝑘)(𝑝0 − 𝑘 + 1)

+

(︀
(𝑘2 − 𝑝0) −𝑚− 1

)︀
2, 5𝐾𝑓𝜔

(︁
𝜋
𝑛

)︁
𝑘2 − 𝑝0

+𝑀𝑓

𝑘2−1∑︁
𝑘=𝑝0+𝑚+1

𝑣(𝑘 − 𝑝0 −𝑚)

(𝑝0 − 𝑘)(𝑝0 − 𝑘 − 1)

)︃

62𝑀𝑓

(︃
𝑝0−𝑘1−1∑︁
𝑘=𝑚+1

𝑣(𝑘 −𝑚)

𝑘(𝑘 + 1)
+

𝑘2−𝑝0−1∑︁
𝑘=𝑚+1

𝑣(𝑘 −𝑚)

𝑘(𝑘 + 1)

)︃
+ 10𝐾𝑓𝜔

(︁𝜋
𝑛

)︁
64𝑀𝑓

𝑘2−𝑘1−1∑︁
𝑘=𝑚+1

𝑣(𝑘)

𝑘2
+ 10𝐾𝑓𝜔

(︁𝜋
𝑛

)︁
.

Hence, by (55), (57) and (58) we have

0 6 𝑆2(𝑝0) 6 10𝐾𝑓𝜔
(︁𝜋
𝑛

)︁ 𝑚∑︁
𝑘=1

1

𝑘
+ 4𝑀𝑓

𝑘2−𝑘1−1∑︁
𝑘=𝑚+1

𝑣(𝑘)

𝑘2
+ 10𝐾𝑓𝜔

(︁𝜋
𝑛

)︁
.
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Thanks to the non-negativity of both terms, condition (6) is equivalent to

lim
𝑛→∞

min
16𝑚6𝑘2−𝑘1−1

max
{︁
𝜔
(︁𝜋
𝑛

)︁ 𝑚∑︁
𝑘=1

1

𝑘
,

𝑘2−𝑘1−1∑︁
𝑘=𝑚+1

𝑣(𝑘)

𝑘2

}︁
= 0.

This is why there exists a number 𝑛3 ∈ N, 𝑛3 > 𝑛2, such that for an arbitrary 𝑛 > 𝑛3 there
exists 𝑚 obeying 1 6 𝑚 6 𝑘2 − 𝑘1 − 1, for which the inequality holds

0 6 𝑆2(𝑝0) 6
𝜖

3
. (59)

By (49), (50), (51), (54) and (59) we obtain that for an arbitrary 𝜖 > 0 there exists an index
𝑛3 ∈ N such that for each 𝑛 > 𝑛3 there exists 𝑚 obeying 1 6 𝑚 6 𝑘2 − 𝑘1 − 2, for which the
inequalities

𝑄*
𝑛(𝑓, [𝑎, 𝑏], 𝜀) 6 𝑄**

𝑛 (𝑓, [𝑎, 𝑏], 𝜀) < 𝜖

are true. Now, in the case𝑓 ∈ 𝐶(𝜔𝑙[𝑎, 𝑏] ∩ 𝑉 −(𝑣), Theorem 1 follows Proposition 1.
To prove Theorem 1 in the case 𝑓 ∈ 𝐶(𝜔𝑟[𝑎, 𝑏]) ∩ 𝑉 +(𝑣), it is sufficient to observe that if

𝑓 ∈ 𝐶(𝜔𝑟[𝑎, 𝑏]) ∩ 𝑉 +(𝑣), then −𝑓 ∈ 𝐶(𝜔𝑙[𝑎, 𝑏]) ∩ 𝑉 −(𝑣) and the operator 𝐿𝑆𝐿
𝑛 (𝑓, ·) is linear.

The proof is complete.

Remark 6. In the case 𝑓 ∈ 𝐶(𝜔𝑙[𝑎, 𝑏]) ∩ 𝑉 (𝑣) or 𝑓 ∈ 𝐶(𝜔𝑟[𝑎, 𝑏]) ∩ 𝑉 (𝑣) (𝑣 is the majo-
rant of the classical variation modulus 𝑣(𝑛, 𝑓)) there was established in [30] that condition (6)
for the uniform convergence of trigonometric interpolation polynomials and algebraic Lagrange
interpolation in the case of matrix of Chebyshev interpolation nodes.

In paper [31], the uniform convergence was established for the classical trigonometric Fourier
series of 2𝜋-periodic functions 𝑓 ∈ 𝐶(𝜔[𝑎, 𝑏])∩𝑉 (𝑣), where the functions 𝜔 and 𝑣 are the classic
continuity modulus and and the variation modulus of the function 𝑓 .

Remark 7. It follows from Theorem 1 that if 𝑓1 ∈ 𝐶(𝜔𝑟
1[𝑎, 𝑏])∩𝑉 +(𝑣1) and 𝑓2 ∈ 𝐶(𝜔𝑙

2[𝑎, 𝑏])∩
𝑉 −(𝑣2) and the pairs of functions (𝑣𝑖, 𝜔𝑖), 𝑖 = 1, 2, satisfy relation (6), then, despite the linear
combination 𝑓 = 𝛼𝑓1 + 𝛽𝑓2 can be out of each of these classes, the Lagrange-Sturm-Liouville
interpolation process approximates the function 𝑓 , see (7).

Remark 8. Each of the Dini-Lipschitz class of functions ( lim
𝑛→∞

𝜔(𝑓, 1/𝑛) ln𝑛 = 0, see [1]))

and the Krylov class (continuous functions of bounded variation) are proper subset of the func-
tional class defined by relation (6).

Remark 9. If 𝑓 ∈ 𝐶[0, 𝜋], the two-sided estimates hold:

𝑣+(𝑛, 𝑓) 6 𝑣(𝑛, 𝑓) 6 2
(︀
𝑣+(𝑛, 𝑓) + ‖𝑓‖𝐶[0,𝜋]

)︀
,

−𝑣−(𝑛, 𝑓) 6 𝑣(𝑛, 𝑓) 6 2
(︀
−𝑣−(𝑛, 𝑓) + ‖𝑓‖𝐶[0,𝜋]

)︀
.

Corollary 2. It follows from Theorem 1 that each of the conditions lim
𝑛→∞

𝜔𝑙(𝑓, 1/𝑛) ln𝑛 = 0

or lim
𝑛→∞

𝜔𝑟(𝑓, 1/𝑛) ln𝑛 = 0 implies condition (7).

Corollary 3. If a non-decreasing concave function of a natural variable 𝑣 is such that
∞∑︁
𝑘=1

𝑣(𝑘)

𝑘2
<∞, (60)

then for each function 𝑓 ∈ 𝐶[0, 𝜋] ∩ 𝑉 ±(𝑣) relation (7) holds.

Proof. Indeed, the continuity of the function 𝑓 implies the existence of a sequence of
natural numbers {𝑚𝑛}∞𝑛=1 satisfying simultaneously two conditions lim

𝑛→∞
𝑚𝑛 = ∞ and

lim
𝑛→∞

𝜔(𝑓, 𝜋/𝑛) ln𝑚𝑛 = 0. Therefore, the convergence of series (60) ensures condition (6) for



UNIFORM CONVERGENCE OF LAGRANGE-STRUM-LIOUVILLE PROCESSES . . . 107

each function 𝑓 belonging to one of the classes 𝐶[0, 𝜋] ∩ 𝑉 +(𝑣) or 𝐶[0, 𝜋] ∩ 𝑉 −(𝑣). The proof
is complete.
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