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ON SPECTRAL GAPS OF A LAPLACIAN IN A STRIP

WITH A BOUNDED PERIODIC PERTURBATION

D.I. BORISOV

Abstract. In the work we consider the Laplacian subject to the Dirichlet condition in an
infinite planar strip perturbed by a periodic operator. The perturbation is introduced as
an arbitrary bounded periodic operator in 𝐿2 on the periodicity cell; then this operator is
extended periodically on the entire strip.

We study the band spectrum of such operator. The main obtained result is the absence
of the spectral gaps in the lower part of the spectrum for a sufficiently small potential. The
upper bound for the period ensuring such result is written explicitly as a certain number. It
also involves a certain characteristics of the perturbing operator, which can be nonrigorously
described as “the maximal oscillation of the perturbation”. We also explicitly write out
the length of the part of the spectrum, in which the absence of the gaps is guaranteed.
Such result can be regarded as a partial proof of the strong Bethe-Sommerfeld conjecture
on absence of internal gaps in the band spectra of periodic operators for sufficiently small
periods.
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1. Introduction

One of the classical conjecture in the theory of periodic differential operators is the Bethe-
Sommerfeld conjecture. It conjectures that at least for a wide class of multi-dimensional periodic
operators, their spectra can have only finitely many gaps. This conjecture was proved for a
series of operators in multi-dimensional spaces. For the Schrödinger operators with a periodic
potential this conjecture was proved for various dimensions and under various assumptions
for the potential in works [1]–[6]. For the magnetic Schrödinger operator this conjecture was
established in papers [7], [8]. In works [9]–[11], a polyharmonic operator was considered with
various perturbations. The most general perturbation has a pseudo-differential operator of a
lower order. Under certain conditions for the perturbation, the Bethe-Sommerfeld conjecture
was proved. We also note that the cited list of papers does not pretend to be complete; further
works can be found in the references of the cited papers.

The Bethe-Sommerfeld conjecture can be interpreted as the absence of gaps in an upper part
of the spectrum of the considered operator. In other words, to the right to (upper than) some
point the spectrum is a half-line and hence, it contains no gaps. An independent interest is the
issue on the absence of the gaps in a lower part of the spectrum. A similar result is provided
in Chapter 15 in book [6]. Here, the Laplacian was considered in a multidimensional space of
dimension at least three. This operator was perturbed by a self-adjoint operator symmetric
w.r.t. some rational lattice. It was proved in Theorem 15.2 that for a sufficiently small norm
of the perturbing operator, the spectrum of the considered operator contains no gaps. In
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particular, this means the absence of the gaps in a lower part of the spectrum, that is, to the
left to some point. In the case when the perturbation is a multiplication by a periodic potential,
in the dimension three, the condition of the rationality can be replaced by the condition of the
inclusion of cubic sublattice, see [6, Ch. IV, Sect. 16, Thm. 16.2].

In the present paper we consider the Laplacian in a strip perturbed by a bounded periodic
operator. Such choice of the domain distinguish our works from the above cited ones. We
consider the case when the period of the perturbing operator is small enough. The main
obtained result is the absence of the gaps in a lower part of the spectrum for a sufficiently small
period. An advantage of the obtained result is the fact that the upper bounds for the period
and the length of the range of the perturbing operator ensuring the absence of the gaps are
written explicitly in terms of particular numbers. We also find explicitly the length of the lower
part of the spectrum, in which the absence of the gaps is guaranteed. The main property of
this part is that its length grows in a power law as the period becomes smaller.

An interest to the case of a small period is partially motivated by a series of works on
homogenization of operators with fast oscillating coefficients and with various perturbations
from the theory of boundary homogenization in domains like strips and infinite cylinders [12]–
[18]. In all these works in the case of a pure periodic perturbations the perturbed operators
turns out to be periodic with a small period. In these works there was proved the norm resolvent
convergence of the perturbed operators to certain homogenized operators and this implies that
their spectra converge to the spectra of homogenized operators. At the same time, the general
convergence results does not imply the absence of the gaps but the only fact that if it exists,
each such gap escape to infinity as the small parameter is lessening. By the escaping we mean
the situation when the distance from the bottom of the essential spectrum to this gap grows as
the small parameter is lessening. The issue on the growth rate for such distance was considered
in [16]–[18]. Here there were constructed two-parameter asymptotics for the first band functions
and these asymptotics implied that the distance from the bottom of the spectrum to the first
gap is of order 𝑂(𝜀−2), where 𝜀 is the small parameter. In the present work a similar result is
significantly better, here the distance is at least 𝑂(𝜀−6), the lower bound for this distance is
written explicitly with not undetermined constants.

After this paper was submitted, the author learnt about one more work, PhD thesis [19], in
which the Bethe-Sommerfeld conjecture was proved for an operator with constant coefficients
in a strip with a bounded symmetric perturbation. More precisely, in a strip of width 𝜋𝑟, 𝑟 > 0,
the operator

− 𝑎2
𝜕2

𝜕𝑥2
1

− 𝜕2

𝜕𝑥2
2

+ ℬ (1.1)

was considered subject to the Dirichlet condition, where ℬ is a periodic bounded symmetric
operator in the space 𝐿2. The main result of [19] on spectral gaps states the following: under
the condition

𝑎𝑟 > 16,

there are finitely many gaps in the spectrum of the considered operator. The issue on the total
absence of internal spectral gaps was not discussed in [19]. We also stress that by the key
estimates, our method differs qualitatively from the approach in work [19], see the discussion
in Section 6.

2. Formulation of problem and main results

Let 𝑥 = (𝑥1, 𝑥2) be Cartesian coordinates in R2, Π := {𝑥 : 0 < 𝑥2 < 𝜋} be a horizontal strip
of width 𝜋, 𝜀 be a sufficiently small positive number. We denote �𝜀 := {𝑥 : |𝑥1| < 𝜀𝜋, 0 <
𝑥2 < 𝜋}, ℒ𝜀 is is a symmetric operator in 𝐿2(�𝜀) bounded for each considered value 𝜀. This
operator generates an operator in 𝐿2(Π) a follows. Since the restriction of a function in 𝐿2(Π)
on �𝜀 is an element in 𝐿2(�𝜀), in the sense of such restriction, the operator ℒ𝜀 can be applied
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to the functions in 𝐿2(Π). We extend the result of the action of the operator ℒ𝜀 by zero outside
�𝜀. After such extension, the operator ℒ𝜀 acts in 𝐿2(Π). Let 𝒮(𝑛) be a translation operator
in 𝐿2(Π) acting by the rule (𝒮(𝑛)𝑢)(𝑥) = 𝑢(𝑥1 − 2𝜀𝜋𝑛, 𝑥2). By 𝒱𝜀 we denote the following
operator in 𝐿2(Π):

𝒱𝜀 :=
∑︁
𝑛∈Z

𝒮(−𝑛)ℒ𝜀𝒮(𝑛).

The operator 𝒱𝜀 is symmetric, bounded and periodic. The latter property is understood in the
sense of the identity

𝒱𝜀𝒮(𝑝) = 𝒮(𝑝)𝒱𝜀 for all 𝑝 ∈ Z.
In the present work we consider the periodic operator in the strip Π

ℋ𝜀 := −∆ + 𝒱𝜀 (2.1)

subject to the Dirichlet condition. This operator is regarded as an unbounded one in 𝐿2(Π)

on the domain 𝑊̊ 2
2 (Π). Here 𝑊̊ 𝑗

2 (Ω) := 𝑊̊ 𝑗
2 (Ω, 𝜕Ω), and 𝑊̊ 𝑗

2 (Ω, 𝑆) is the space of functions in
𝑊 𝑗

2 (Ω) defined on some domain Ω and vanishing on a curve 𝑆.
Since the operator 𝒱𝜀 is symmetric and bounded, by Kato-Rellich theorem the operator ℋ𝜀

is self-adjoint.
The operator ℋ𝜀 has a band spectrum, which is introduced as the union of the images of the

band functions. The band functions 𝐸𝑘
ℒ𝜀

(𝜏), 𝑘 > 1, are the eigenvalues of the corresponding

operators on the periodicity cell �𝜀 depending on the rescaled quasi-momentum 𝜏 ∈
[︀
− 1

2
, 1
2

)︀
.

The eigenvalues are taken in the ascending order counting multiplicities. For the operator ℋ𝜀,
the corresponding operator on the cell is

ℋ𝜀(𝜏) :=

(︂
i
𝜕

𝜕𝑥1

+
𝜏

𝜀

)︂2

− 𝜕2

𝜕𝑥2
2

+ ℒ𝜀(𝜏), ℒ𝜀(𝜏)𝑢 := 𝑒
i𝜏
𝜀
𝑥1ℒ𝜀𝑒

− i𝜏
𝜀
·𝑢,

on �𝜀 subject to the Dirichlet condition on upper and lower boundaries of the cell �𝜀 and to
the periodic condition on the lateral sides 𝑙± of the cell �𝜀, 𝑙± := {𝑥 : 𝑥1 = ±𝜀𝜋, 𝑥2 ∈ (0, 𝜋)}.

The operator ℋ𝜀(𝜏) is considered as an operator in 𝐿2(�) on the domain 𝑊̊ 2
2,𝑝𝑒𝑟(�𝜀, 𝜕�𝜀∩𝜕Π),

which is the space of functions in 𝑊̊ 𝑗
2 (�𝜀, 𝜕�𝜀 ∩ 𝜕Π) obeying periodic boundary condition on

the lateral boundaries 𝑙±.
For the operator ℒ𝜀 we denote:

𝜔ℒ𝜀 := sup
𝑢∈𝐿2(�𝜀)

‖𝑢‖𝐿2(�𝜀)
=1

(ℒ𝜀𝑢, 𝑢)𝐿2(�𝜀) − inf
𝑢∈𝐿2(�𝜀)

‖𝑢‖𝐿2(�𝜀)
=1

(ℒ𝜀𝑢, 𝑢)𝐿2(�𝜀),

𝜆𝜀 := inf
𝑢∈𝐿2(�𝜀)

‖𝑢‖𝐿2(�𝜀)
=1

(ℒ𝜀𝑢, 𝑢)𝐿2(�𝜀).

By 𝜎(·) we denote the spectrum of an operator and [·] stands for the integer part of a number.
The main aim of the work is to prove the absence of the gaps in a certain part of the band

spectrum of the operator ℋ𝜀. The main result is formulated in the following theorem.

Theorem 2.1. Let 𝜀 6 𝜀0, 𝜀
2𝜔ℒ𝜀 6 𝑏0, where

5𝜀0 +
𝜋𝑏0
4
6 2𝐴0, 𝐴0 :=

3
√

2

128
− 5

√
7

896
. (2.2)

We denote

𝐾𝜀 :=
𝐴0 +

√︁
𝐴2

0 − 𝜋
4
𝑏0𝜀− 𝜀2

2𝜀
. (2.3)

Then the part of the spectrum (︂
−∞,

([𝐾2
𝜀 ] + 1)2

𝜀2
+ 𝜆𝜀

]︂
∩ 𝜎(ℋ𝜀) (2.4)
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of the operator ℋ𝜀 has no gaps.

Let us discuss the main result. We observe right now that by (2.2), the radicand in definition
(2.3) of quantity 𝐾𝜀 satisfies the estimate:

𝐴2
0 −

𝜋𝑏0𝜀

4
− 𝜀2 >

(︂
5𝜀0
2

+
𝜋𝑏0
8

)︂2

− 𝜋𝑏0𝜀0
4

− 𝜀20 =
21𝜀20

4
+

3𝜋𝑏0𝜀0
8

+
𝜋𝑏20
64
> 0,

and this is why the quantity 𝐾𝜀 is well-defined.
In fact, Theorem 2.1 states that for small periods, the operator ℋ𝜀 has no spectral gaps in

a lower part of the spectrum. Moreover, there is an estimate for the length of the part of the
spectrum without gaps, see (2.4). For small 𝜀, the quantity 𝐾𝜀 behaves as 𝑂(𝜀−1). This is why
by (2.4), the lower part of the spectrum free of the gaps is of the length at least 𝑂(𝜀−6). This
is an essentially stronger result in comparison with the results of works [17], [18] for the model
with frequent alternation of boundary conditions, where the absence of the gaps was stated for
a part of the spectrum of a length not exceeding 𝐶𝜀−2 with an unknown constant 𝐶. We also
note that the length of the discussed part of the spectrum grows as 𝜀 becomes smaller.

Explicit numerical constants in the statement of Theorem 2.1 are non-optimal and can be
improved. At the same time, this requires using additional bulky technical details, which
would complicate seriously the proof of Theorem 2.1 give below. This is why we have decided
on non-optimal constants.

It should be stressed that we chose the Dirichlet condition on the boundary of the strip Π
just for being definite. If on the boundaries of the strip we impose the Neumann condition
or a combination of Dirichlet and Neumann conditions on the upper and lower boundaries,
the technique of our work is applicable in this case, too and it leads us to a result like in
Theorem 2.1.

We also pay an attention to the fact that condition (2.2) is imposed to the maximal admissible
values of the period and the size of the range of the operator ℒ𝜀. In particular, it follows from
the definition of 𝑏0 that for each operator ℒ𝜀 bounded uniformly in 𝜀, by an appropriate choice
of a sufficiently small 𝜀0, we can always achieve condition (2.2) and as a result, the absence of
the gaps in the lower part of the spectrum.

In conclusion we compare our main result with that of thesis [19]. For simplicity we assume
that ℬ in (1.1) is the operator of multiplication by a bounded measurable real potential 𝑉 ,
which is 2𝜋-periodic in 𝑥1. By means of the change

𝑥1 ↦→
𝑥1

𝑎𝑟
, 𝑥2 ↦→

𝑥2

𝑟
,

the operator (1.1) is reduced to the operator

−∆ + 𝑟2𝑉 (𝑎𝑟𝑥1, 𝑥2)

in the strip Π. By denoting 𝜀 := 1
𝑎𝑟

, the latter operator becomes operator (2.1) with

ℒ𝜀 =
1

𝑎2𝜀2
𝑉
(︁𝑥1

𝜀
, 𝑥2

)︁
. (2.5)

For such operator the result of [19] stares only the finiteness of the number of the gaps in the
spectrum. At that, the case of total absence of the gaps or the location of the first gap were
not studied.

In order to apply our result, we first note that for operator (2.5), the quantity 𝜔ℒ𝜀 is of the
form:

𝜔ℒ𝜀 =
𝜔*

𝑎2𝜀2
, 𝜔* := sup

[0,2𝜋]×[0,𝜋]

𝑉 (𝑥) − inf
[0,2𝜋]×[0,𝜋]

𝑉 (𝑥)

and condition (2.2) is rewritten as

6𝜀0 +
𝜋𝜔*

4𝑎2
6 2𝐴0.
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By this inequality, it follows from Theorem 2.1 that for not very large oscillations of the potential
𝑉 , lower part of the spectrum (2.4) has no internal gaps. For the spectrum of the original
operator (1.1) this means that the part of its spectrum to the point ([𝐾2

𝜀 ] + 1)2𝜀−2 + 𝜆𝜀 is free
of internal gaps. We also note that the latter quantity is 𝑂(𝜀−6) as 𝜀 → +0.

3. Examples

In the present section we provide two main examples of the operator ℒ.

3.1. Potential. The first example is the operator of multiplication by the potential 𝑉𝜀(𝑥) =
𝑉
(︀
𝑥1

𝜀
, 𝑥2, 𝜀

)︀
. Here 𝑉 = 𝑉 (𝜉, 𝑥2, 𝜀) ∈ 𝐿∞(�1) is a bounded measurable real function for each

𝜀. The potential 𝑉𝜀 belongs to 𝐿∞(�𝜀). The corresponding operator 𝒱𝜀 is the multiplication
by the potential obtained by the 2𝜋𝜀-periodic continuation of 𝑉𝜀 w.r.t. 𝑥1 to the entire strip
Π. Such operator satisfies all needed conditions and the quantity 𝜔ℒ𝜀 becomes the oscillation
of the potential:

𝜔ℒ𝜀 = 𝜔𝑉 := ess sup
[0,2𝜋]×[0,𝜋]

𝑉 − ess inf
[0,2𝜋]×[0,𝜋]

𝑉.

Moreover, Theorem 2.1 works also for potentials 𝑉 singularly depending on the parameter. For
instance, let

𝑉 (𝜉, 𝑥2, 𝜀) = 𝜀−𝑎(𝜀)𝑊 (𝜉, 𝑥2),

where 𝑊 ∈ 𝐿∞(�1) is a bounded measurable function, 𝑎(𝜀) 6 𝑞 6 2. Then 𝜔𝑉 = 𝜀−𝑎𝜔𝑊 and
condition (2.2) becomes

5𝜀0 +
𝜋𝜀2−𝑞

0 𝜔𝑊

4
6 2𝐴0.

If 𝑞 < 2, the latter inequality is satisfied for each 𝜔𝑊 for sufficiently small 𝜀0. If 𝑞 = 2, the
needed inequality is true for not very large 𝜔𝑊 .

3.2. Integral operator. Our second example is an integral operator of form(︀
ℒ𝜀𝑢

)︀
(𝑥) =

∫︁
�𝜀×�𝜀

𝑃
(︁𝑥1

𝜀
, 𝑥2,

𝑦1
𝜀
, 𝑦2, 𝜀

)︁
𝑢(𝑦) 𝑑𝑦,

where the kernel 𝑃 (𝜉, 𝑥2, 𝜁, 𝑦2, 𝜀) is a function in 𝐿2(�2
1) for each 𝜀 obeying the condition

𝑃 (𝜁, 𝑦2, 𝜉, 𝑥2, 𝜀) = 𝑃 (𝜉, 𝑥2, 𝜁, 𝑦2, 𝜀).

Such operator satisfies all needed conditions, too. We do not suceed to calculate explicitly 𝜔ℒ𝜀 ,
but we can estimate it from above:

𝜔ℒ𝜀 6 2

⎛⎜⎝∫︁
�2

𝜀

⃒⃒⃒
𝐾
(︁𝑥1

𝜀
, 𝑥2,

𝑦1
𝜀
, 𝑦2, 𝜀

)︁⃒⃒⃒2
𝑑𝑥 𝑑𝑦

⎞⎟⎠
1
2

= 2𝜀‖𝑃 (·, 𝜀)‖𝐿2(�2
1)
. (3.1)

The kernel 𝐾 can also depend singularly on 𝜀:

𝑃 (𝑥, 𝑦, 𝜀) = 𝜀−𝑎(𝜀)𝑄(𝑥, 𝑦),

where 𝑎(𝜀) 6 𝑞 6 3. In this case it follows from estimate (3.1) that

𝜔ℒ𝜀 6 2𝜀3−𝑞‖𝑄‖𝐿2(�2
1)

and condition (2.2) casts into the form

5𝜀0 +
𝜋𝜀3−𝑞

0

2
‖𝑄‖𝐿2(�2

1)
6 2𝐴0.

We also observe that as an operator ℒ𝜀, we can take the sum of the potential and the integral
operator from the above examples.
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4. Counting functions

In the present section we introduce a series of auxiliary notions and we discuss preliminary
statements, which will be used later in the proof of Theorem 2.1.

For an arbitrary 𝐿 > 0, by 𝑁ℒ𝜀(𝐿, 𝜏) we denote the counting function of the operator ℋ𝜀(𝜏),
which is the number of the eigenvalues of this operator counting the multiplicities not exceeding
𝐿2

𝜀2
:

𝑁ℒ𝜀(𝐿, 𝜏) := max

{︂
𝑘 : 𝐸𝑘

ℒ𝜀
(𝜏) 6

𝐿2

𝜀2

}︂
. (4.1)

Since the band functions 𝐸𝑘
ℒ𝜀

(𝜏) are taken in the ascending order

𝐸1
ℒ𝜀

(𝜏) 6 𝐸2
ℒ𝜀

(𝜏) 6 · · · 6 𝐸𝑘
ℒ𝜀

(𝜏) 6 . . . ,

for a fixed 𝐿 the quantity sup
𝜏∈[− 1

2
, 1
2
)

𝑁ℒ𝜀(𝐿, 𝜏) is the number of band functions whose minima

do not exceed 𝐿2

𝜀2
, and the quantity inf

𝜏∈[− 1
2
, 1
2
)
𝑁ℒ𝜀(𝐿, 𝜏) is the number of band functions, whose

maxima do not exceed 𝐿2

𝜀2
. Hereafter, to simplify the notations, instead of sup

𝜏∈[− 1
2
, 1
2
)

and inf
𝜏∈[− 1

2
, 1
2
)

we shall write shortly sup
𝜏

and inf
𝜏

.

Assume that two neighbouring bands of the spectrum overlap, that is,[︀
min
𝜏

𝐸𝑘
ℒ𝜀

(𝜏),max
𝜏

𝐸𝑘
ℒ𝜀

(𝜏)
]︀
∩
[︀

min
𝜏

𝐸𝑘+1
ℒ𝜀

(𝜏),max
𝜏

𝐸𝑘+1
ℒ𝜀

(𝜏)
]︀
̸= ∅

or
max

𝜏
𝐸𝑘

ℒ𝜀
(𝜏) > min

𝜏
𝐸𝑘+1

ℒ𝜀
(𝜏).

It is equivalent to the fact that as

min
𝜏

𝐸𝑘
ℒ𝜀

(𝜏) 6
𝐿2

𝜀2
6 max

𝜏
𝐸𝑘

ℒ𝜀
(𝜏)

the inequality
sup
𝜏

𝑁ℒ𝜀(𝐿, 𝜏) − inf
𝜏
𝑁ℒ𝜀(𝐿, 𝜏) > 1 (4.2)

holds. Thus, a part of the band spectrum between the points 𝜆− and 𝜆+ does not possess

spectral gaps if for all 𝐿2

𝜀2
∈ [𝜆−, 𝜆+], inequality (4.2) holds.

It is a very complicated problem to check directly inequality (4.2). This is why our next
step is to estimate the left hand side of inequality (4.2) by a similar difference but for counting
functions of simpler operators.

In view of the possibility to shift the spectral parameter, without loss of generality we can
assume that

inf
𝑢∈𝐿2(�𝜀)

‖𝑢‖𝐿2(�𝜀)
=1

(ℒ𝜀𝑢, 𝑢)𝐿2(�𝜀) = 0.

Then
𝜔ℒ𝜀 = sup

𝑢∈𝐿2(�𝜀)
‖𝑢‖𝐿2(�𝜀)

=1

(ℒ𝜀𝑢, 𝑢)𝐿2(�𝜀) (4.3)

The quadratic form associated with the operator ℋ𝜀(𝜏) is

h𝜏ℒ𝜀
[𝑢] :=

⃦⃦⃦⃦(︂
i
𝜕

𝜕𝑥1

+ 𝜏

)︂
𝑢

⃦⃦⃦⃦2
𝐿2(�𝜀)

+

⃦⃦⃦⃦
𝜕𝑢

𝜕𝑥2

⃦⃦⃦⃦2
𝐿2(�𝜀)

+
(︀
ℒ𝜀𝑒

− i𝜏
𝜀
𝑥1𝑢, 𝑒−

i𝜏
𝜀
𝑥1𝑢
)︀
𝐿2(�𝜀)

on 𝑊̊ 1
2,𝑝𝑒𝑟(�𝜀, 𝜕�𝜀 ∩ 𝜕Π). Taking into consideration the estimate

0 6 (ℒ𝜀𝑢, 𝑢)𝐿2(�𝜀) 6 𝜔ℒ𝜀‖𝑢‖2𝐿2(�𝜀),
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by the minimax principle we immediately see that the band functions 𝐸𝐾
ℒ𝜀

satisfy the estimates:

𝐸𝑘
0 (𝜏) 6 𝐸𝑘

ℒ𝜀
(𝜏) 6 𝐸𝑘

𝜔ℒ𝜀
(𝜏). (4.4)

Therefore,

𝑁0(
√︀
𝐿2 − 𝜀2𝜔ℒ𝜀 , 𝜏) = 𝑁𝜔ℒ𝜀

(𝐿, 𝜏) 6 𝑁ℒ𝜀(𝐿, 𝜏) 6 𝑁0(𝐿, 𝜏).

Then
sup
𝜏

𝑁ℒ𝜀(𝐿, 𝜏) − inf
𝜏
𝑁ℒ𝜀(𝐿, 𝜏) > sup

𝜏
𝑁0(
√︀

𝐿2 − 𝜀2𝜔ℒ𝜀 , 𝜏) − inf
𝜏
𝑁0(𝐿, 𝜏),

and in order to check inequality (4.2), it is sufficient to prove that

sup
𝜏

𝑁0(
√︀

𝐿2 − 𝜀2𝜔ℒ𝜀 , 𝜏) − inf
𝜏
𝑁0(𝐿, 𝜏) > 1.

And since the function 𝑁0 is integer-valued, to check the latter inequality, it is sufficient to
confirm that

sup
𝜏

𝑁0(
√︀

𝐿2 − 𝜀2𝜔ℒ𝜀 , 𝜏) − inf
𝜏
𝑁0(𝐿, 𝜏) > 0. (4.5)

Exactly the latter inequality will be checked in the proof of Theorem 2.1.
Let us write out the explicit formula for the function 𝑁0. The eigenvalues of the operator

ℋ0(𝜏) and the associated eigenfunctions can be easily found by the separation of the variables:

Λ0
𝑛,𝑚(𝜏) =

(𝑛 + 𝜏)2

𝜀2
+ 𝑚2, Ψ0

𝑛,𝑚(𝑥) = 𝑒
i𝑛𝑥1
𝜀 sin𝑚𝑥2, 𝑛 ∈ Z, 𝑚 ∈ N. (4.6)

This is why the band functions 𝐸𝑘
0 (𝜏) are numbers Λ0

𝑛,𝑚(𝜏) taken in the ascending order counting
the multiplicities. Returning back to definition (4.1) of counting functions, we see that 𝑁0(𝐿, 𝜏)
is the number of integer points (𝑛,𝑚) in the plane satisfying the inequality (𝑛+𝜏)2+𝜀2𝑚2 6 𝐿2,
that is,

𝑁0(𝐿, 𝜏) = #
{︀

(𝑛,𝑚) : (𝑛 + 𝜏)2 + 𝜀2𝑚2 6 𝐿2, 𝑛 ∈ Z, 𝑚 ∈ N
}︀

=
∑︁

𝑛:|𝑛+𝜏 |6𝐿

[︃√︀
𝐿2 − (𝑛 + 𝜏)2

𝜀

]︃
=

[𝐿−𝜏 ]∑︁
𝑛=−[𝐿+𝜏 ]

[︃√︀
𝐿2 − (𝑛 + 𝜏)2

𝜀

]︃
.

(4.7)

5. Proof of main result

In the present section we prove Theorem 2.1. It is convenient to split the proof into several
stages.

5.1. Intersection of first two bands. We first observe that condition (2.2) implies imme-
diately the apriori estimates for 𝜀0 and 𝑏0:

𝜀0 6
2𝐴0

5
, 𝑏0 6

8𝐴0

𝜋
,

𝜋𝜀𝜔ℒ𝜀

4
6

2𝐴0

𝜀
. (5.1)

The main idea is to find the interval of values 𝐿 obeying inequality (4.5). The absence of the
gaps should be checked for positive 𝐿 obeying the estimate

𝐿2 > 𝜀2 inf 𝜎(ℋ𝜀).

At the same time, by the non-negativeness of the operator ℒ and identity (4.3) for 𝜔ℒ𝜀 , the
bottom of the essential spectrum of the operator ℋ𝜀 satisfies the estimate:

1 6 inf 𝜎(ℋ𝜀) 6 1 + 𝜔ℒ𝜀

and as
𝜀2 inf 𝜎(ℋ𝜀) 6 𝐿2 < 𝜀2𝜔ℒ𝜀 ,

inequality (4.5) loses the sense since in the first term the square root becomes pure imaginary.
This is why the absence of the gaps in the beginning of the spectrum will be proved on the
base of analysing the location of first bands in the spectrum.
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It follows from formula (4.6) and the estimate for 𝜀0 in (5.1) that the first two band functions
𝐸1

0(𝜏) and 𝐸2
0(𝜏) are even in 𝜏 functions of the form:

𝐸1
0(𝜏) =

𝜏 2

𝜀2
+ 1, 𝐸2

0(𝜏) = min

{︂
(1 − 𝜏)2

𝜀2
+ 1,

𝜏 2

𝜀2
+ 4

}︂
, 𝜏 ∈

[︀
0, 1

2

]︀
.

This implies that

max
𝜏

𝐸1
0(𝜏) =

1

4𝜀2
+ 1, min

𝜏
𝐸2

0(𝜏) = 4, max
𝜏

𝐸2
0(𝜏) =

(1 − 3𝜀2)2

4𝜀2
+ 4,

where the right hand side in the latter identity arises as the value of the functions 𝜏 ↦→ (1−𝜏)2

𝜀2
+1,

𝜏 ↦→ 𝜏2

𝜀2
+4 at the intersection point of the graphs. By estimate (4.4) and (5.1) this implies that

max
𝜏

𝐸1
ℒ𝜀
>

1

4𝜀2
+ 1, min

𝜏
𝐸2

ℒ𝜀
6 4 + 𝜔ℒ𝜀 , max

𝜏
𝐸2

ℒ𝜀
>

(1 − 3𝜀2)2

4𝜀2
+ 4.

Since by (5.1) and the positiveness 𝜔ℒ𝜀

1

4𝜀2
− 𝜔ℒ𝜀 >

1

𝜀2

(︂
1

4
− 𝑏0

)︂
> 3 ⇒ 4 + 𝜔ℒ𝜀 6

1

4𝜀2
+ 1,

the first two bands of the spectrum intersect and the interval[︂
inf 𝜎(ℋ𝜀),

(1 − 3𝜀2)2

4𝜀2
+ 4

]︂
contains no spectral gaps. Hence, it is sufficient to check inequality (4.5) for

𝐿2 >
(1 − 3𝜀2)2

4
+ 4𝜀2 =

1 + 10𝜀2 + 9𝜀4

4
>

1

4
.

In what follows the latter inequality for 𝐿 is assumed to hold.

5.2. Case 1
2
6 𝐿 < 1. Here we assume that

1

2
<

√
1 + 10𝜀2 + 9𝜀4

2
6 𝐿 < 1.

By (5.1), for such values of 𝐿 we have
√

3

4
<
√︀
𝐿2 − 𝜀2𝜔ℒ𝜀 < 1.

Therefore,

𝑁0(
√︀

𝐿2 − 𝜀2𝜔ℒ𝜀 , 0) =

[︃√︀
𝐿2 − 𝜀2𝜔ℒ𝜀

𝜀

]︃
,

𝑁0(𝐿, 1 − 𝐿) =

[︂√
2𝐿− 1

𝜀

]︂
, (5.2)

and under the additional condition

𝐿2 >
1

4
+ 𝜀2𝜔ℒ𝜀 (5.3)

we have

𝑁0

(︂√︀
𝐿2 − 𝜀2𝜔ℒ𝜀 ,

1

2

)︂
= 2

⎡⎣
√︁

𝐿2 − 𝜀2𝜔ℒ𝜀 − 1
4

𝜀

⎤⎦ . (5.4)
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Let number 𝐿* ∈
(︀
1
2
, 1
)︀

be such that

2

√︁
𝐿2
* − 𝜀2𝜔ℒ𝜀 − 1

4

𝜀
− 1 =

√︀
𝐿2
* − 𝜀2𝜔ℒ𝜀

𝜀
,

𝐿* =

√︃
(
√

3 + 4𝜀2 + 𝜀)2

9
+ 𝜀2𝜔ℒ𝜀 .

Then as
1

2
6 𝐿 6 𝐿*

by (5.1) we get

sup
𝜏

𝑁0(
√︀

𝐿2 − 𝜀2𝜔ℒ𝜀 , 𝜏) − inf
𝜏
𝑁0(𝐿, 𝜏) > 𝑁0(

√︀
𝐿2 − 𝜀2𝜔ℒ𝜀 , 0) −𝑁0(𝐿, 1 − 𝐿)

>

√︀
𝐿2 − 𝜀2𝜔ℒ𝜀 −

√
2𝐿− 1

𝜀
− 1

=
(𝐿− 1)2 − 𝜀2𝜔ℒ𝜀

𝜀(
√︀
𝐿2 − 𝜀2𝜔ℒ𝜀 +

√
2𝐿− 1)

− 1

>
(𝐿* − 1)2 − 𝜀2𝜔ℒ𝜀

𝜀0(
√︀
𝐿2
* − 𝜀2𝜔ℒ𝜀 +

√
2𝐿* − 1)

⃒⃒⃒⃒
⃒ 𝜀=2𝐴0

5

𝜀2𝜔ℒ𝜀
=

8𝐴0
𝜋

− 1 > 0.

As

𝐿* 6 𝐿 < 1,

condition (5.3) is satisfied and in view of (5.2), (5.4) we obtain

sup
𝜏

𝑁0(
√︀
𝐿2 − 𝜀2𝜔ℒ𝜀 , 𝜏) − inf

𝜏
𝑁0(𝐿, 𝜏)

> 𝑁0

(︂√︀
𝐿2 − 𝜀2𝜔ℒ𝜀 ,

1

2

)︂
−𝑁0(𝐿, 1 − 𝐿)

>

√︁
𝐿2 − 𝜀2𝜔ℒ𝜀 − 1

4
−
√

2𝐿− 1

𝜀

⃒⃒⃒⃒
⃒ 𝜀=2𝐴0

5

𝜀2𝜔ℒ𝜀
=

8𝐴0
𝜋

− 2 > 0.

(5.5)

5.3. General case: auxiliary estimates. Hereafter we assume that 𝐿 > 1. We denote
𝐾 := [𝐿], 𝛼 := {𝐿}, where {·} is the fractional part of a number. We begin with the obvious
relations

0 6 𝐿−
√︀

𝐿2 − 𝜀2𝜔ℒ𝜀 =
𝜀2𝜔ℒ𝜀

𝐿 +
√︀

𝐿2 − 𝜀2𝜔ℒ𝜀

6
𝜀2𝜔ℒ𝜀

𝐿
6

8𝐴0

𝜋
(5.6)

valid thanks to estimates (5.1) and 𝐿 > 1.
We denote

𝐹1(𝐿,𝑋,𝐵) :=
√
𝐿2 −𝐵 −𝑋2, 𝐹2(𝐿,𝑋,𝐴) :=

√︀
𝐿2 − (𝑋 + 𝐴)2,

𝐹0(𝐿,𝑋,𝐴,𝐵) := 2𝐹1(𝐿,𝑋,𝐵) − 𝐹2(𝐿,𝑋,𝐴) − 𝐹2(𝐿,𝑋,−𝐴).

By straightforward calculations we check that

𝐹0(𝐿,𝑋,𝐴,𝐵) = (𝐴2 −𝐵)

(︂
1

𝐹1(𝐿,𝑋,𝐵) + 𝐹2(𝐿,𝑋,𝐴)
+

1

𝐹1(𝐿,𝑋,𝐵) + 𝐹2(𝐿,𝑋,−𝐴)

)︂
+

8𝐴2𝑋2

𝐹1(𝐿,𝑋,𝐵) + 𝐹2(𝐿,𝑋,𝐴)

1

𝐹1(𝐿,𝑋,𝐵) + 𝐹2(𝐿,𝑋,−𝐴)

1

𝐹2(𝐿,𝑋,𝐴) + 𝐹2(𝐿,𝑋,−𝐴)
.
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This representation yields that for positive radicands, the function 𝐹0(𝐿,𝑋,𝐴,𝐵) is positive
for 𝐵 6 𝐴2, 𝐴 > 0 and increases monotonically as 𝑋 > 𝐴 > 0. Moreover, for such 𝑋 the
estimate holds:

𝐹0(𝐿,𝑋,𝐴, 0) >𝐴2

(︂
1

𝐹2(𝐿,𝑋,−𝐴)
+

𝑋2

𝐹 3
2 (𝐿,𝑋,−𝐴)

)︂
> 𝐴2 𝐿2 + 2𝐴(𝑋 − 𝐴)(︀

𝐿2 − (𝑋 − 𝐴)2
)︀ 3

2

. (5.7)

We observe one more obvious inequality for 𝐹0(𝐿,𝑋,𝐴,𝐵):

0 >

√
𝐿2−𝐵∫︁
0

(︀
𝐹0(𝐿,𝑋,𝐴,𝐵) − 𝐹0(𝐿,𝑋,𝐴, 0)

)︀
𝑑𝑥

= −

√
𝐿2−𝐵∫︁
0

𝐵 𝑑𝑥

𝐹1(𝐿,𝑋,𝐵) + 𝐹1(𝐿,𝑋, 0)
> −

√
𝐿2−𝐵∫︁
0

𝐵 𝑑𝑥

2𝐹1(𝐿,𝑋,𝐵)

= − 𝐵

2
arcsin

𝑋√
𝐿2 −𝐵

⃒⃒⃒⃒√𝐿2−𝐵

0

= −𝜋𝐵

4
.

(5.8)

5.4. General case: 𝛼 6 1
4
. In view of (4.7) we have

sup
𝜏

𝑁0(
√︀
𝐿2 − 𝜀2𝜔ℒ𝜀 , 𝜏) − inf

𝜏
𝑁0(𝐿, 𝜏) > 𝑁0

(︂√︀
𝐿2 − 𝜀2𝜔ℒ𝜀 ,

1

2

)︂
−𝑁0(𝐿, 𝛼)

=

[︁√
𝐿2−𝜀2𝜔ℒ𝜀−

1
2

]︁∑︁
𝑛=−

[︁√
𝐿2−𝜀2𝜔ℒ𝜀+

1
2

]︁
⎡⎣
√︁

𝐿2 − 𝜀2𝜔ℒ𝜀 −
(︀
𝑛 + 1

2

)︀2
𝜀

⎤⎦−
[𝐿−𝛼]∑︁

𝑛=−[𝐿+𝛼]

[︃√︀
𝐿2 − (𝑛 + 𝛼)2

𝜀

]︃

=

[︁√
𝐿2−𝜀2𝜔ℒ𝜀−

1
2

]︁∑︁
𝑛=0

2

⎡⎣
√︁

𝐿2 − 𝜀2𝜔ℒ𝜀 −
(︀
𝑛 + 1

2

)︀2
𝜀

⎤⎦−
𝐾−1∑︁
𝑛=−𝐾

[︃√︀
𝐿2 − (𝑛 + 𝛼)2

𝜀

]︃
.

(5.9)

By (5.6) this implies:

sup
𝜏

𝑁0(
√︀
𝐿2 − 𝜀2𝜔ℒ𝜀 , 𝜏) − inf

𝜏
𝑁0(𝐿, 𝜏) >

𝐾−1∑︁
𝑛=0

2

⎡⎣
√︁
𝐿2 − 𝜀2𝜔ℒ𝜀 −

(︀
𝑛 + 1

2

)︀2
𝜀

⎤⎦
−

𝐾−1∑︁
𝑛=0

(︃[︃√︀
𝐿2 − (𝑛 + 𝛼)2

𝜀

]︃
+

[︃√︀
𝐿2 − (𝑛 + 1 − 𝛼)2

𝜀

]︃)︃
>

𝑆1(𝐿)

𝜀
− 2𝐾,

(5.10)

where for brevity we have denoted:

𝑆1(𝐿) :=
𝐾−1∑︁
𝑛=0

𝑓1(𝑛, 𝐿), 𝑓1(𝑥, 𝐿) := 𝐹0

(︂
𝐿, 𝑥 +

1

2
,
1

2
− 𝛼, 𝜀2𝜔ℒ𝜀

)︂
.

The above described properties of the function 𝐹0 implies the monotonous increasing in 𝑥 > 0
of the function 𝑓1(𝑥, 𝐿) and the positivity of 𝑓1(0, 𝐿):

𝑆1(𝐿) > 𝑓1(0, 𝐿) +

𝐾−1∫︁
0

𝑓1(𝑥, 𝐿) 𝑑𝑥, 𝑓1(0, 𝐿) > 0. (5.11)

Although the integral in the left hand side of this inequality can be explicitly calculated, it is
more convenient to estimate it before integration.
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As 𝐾 = 1, the integral in (5.11) vanishes and by (5.1),

𝑓1(0, 1 + 𝛼) >

(︃
2

√︂
(1 + 𝛼)2 − 1

4
− 𝑏0 −

√
4𝛼−

√
1 + 2𝛼

)︃ ⃒⃒⃒⃒
𝛼= 1

4

> 2𝜀0. (5.12)

We proceed to the case 𝐾 > 2. By (5.8) we immediately obtain

𝐾−1∫︁
0

(︂
𝑓1(𝑥, 𝐿) − 𝐹0

(︂
𝐿, 𝑥 +

1

2
,
1

2
− 𝛼, 0

)︂)︂
𝑑𝑥

>

√
𝐿2−𝜀2𝜔ℒ𝜀∫︁
0

(︂
𝐹0

(︂
𝐿, 𝑥,

1

2
− 𝛼, 𝜀2𝜔ℒ𝜀

)︂
− 𝐹0

(︂
𝐿, 𝑥,

1

2
− 𝛼, 0

)︂)︂
𝑑𝑥 > −𝜋𝜀2𝜔ℒ𝜀

4
.

(5.13)

By (5.7) we have

𝐾−1∫︁
0

𝐹0

(︂
𝐿, 𝑥,

1

2
− 𝛼, 0

)︂
𝑑𝑥 >

𝐾−1∫︁
0

𝐿2 + (1 − 2𝛼)(𝑥 + 𝛼)

16
(︀
(𝐾 + 𝛼)2 − (𝑥 + 𝛼)2

)︀ 3
2

𝑑𝑥

=

𝐾−1+𝛼∫︁
𝛼

(𝐾 + 𝛼)2 + (1 − 2𝛼)𝑥

16
(︀
(𝐾 + 𝛼)2 − 𝑥2

)︀ 3
2

𝑑𝑥

=
𝑥 + (1 − 2𝛼)

16
√︀

(𝐾 + 𝑎)2 − 𝑥2

⃒⃒⃒⃒𝐾−1+𝛼

𝛼

=
𝐹3(𝛼)

16
,

(5.14)

𝐹3(𝛼) :=
𝐾 − 𝛼√︀

2(𝐾 + 𝛼) − 1
− 1 − 𝛼√

𝐾2 + 2𝛼𝐾
.

The function 𝑓*(𝛼) decreases monotonically in 𝛼 ∈
[︀
0, 1

4

]︀
since

𝐹 ′
3(𝛼) = − 1(︀

2(𝐾 + 𝑎) − 1
)︀ 1

2

− 𝐾 − 𝛼(︀
2(𝐾 + 𝛼) − 1

)︀ 3
2

+
1

(𝐾2 + 2𝛼𝐾)1/2
+

(1 − 𝛼)𝐾

(𝐾2 + 2𝛼𝐾)
3
2

6− 1(︀
2𝐾 − 1

2

)︀ 1
2

−
𝐾 − 1

4(︀
2𝐾 − 1

2

)︀ 3
2

+
1

𝐾
+

1

𝐾2

= − 3

2
3
2

(︀
𝐾 − 1

4

)︀ 1
2

+
1

𝐾
+

1

𝐾2
6 − 3√

14
+

3

4
< 0.

This is why by (5.14)

𝐾−1∫︁
0

𝐹0

(︂
𝐿, 𝑥,

1

2
− 𝛼, 0

)︂
𝑑𝑥 >

1

16
𝐹3

(︂
1

4

)︂
=

√︁
𝐾 − 1

4

16
√

2
− 3

64
√︁

𝐾2 + 1
2
𝐾

>

⎛⎝
√︁

𝐾 − 1
4

16
√

2
√
𝐾

− 3

64
√︁

𝐾2 + 1
2
𝐾
√
𝐾

⎞⎠ ⃒⃒⃒⃒⃒
𝐾=2

√
𝐾 >

13

500

√
𝐾.

(5.15)

This and (5.10), (5.12), (5.13), (5.14) finally imply

sup
𝜏

𝑁0(
√︀

𝐿2 − 𝜀2𝜔ℒ𝜀 , 𝜏) − inf
𝜏
𝑁0(𝐿, 𝜏) >

2𝜀0
𝜀

− 2 > 0
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as 𝐿 = 1 + 𝛼 and

sup
𝜏

𝑁0(
√︀

𝐿2 − 𝜀2𝜔ℒ𝜀 , 𝜏) − inf
𝜏
𝑁0(𝐿, 𝜏) >

13

500

√
𝐾

𝜀
− 𝜋𝜀𝜔ℒ𝜀

4
− 2𝐾 (5.16)

as 𝐿 = 𝐾 + 𝛼, 𝐾 > 2.
Other cases 1

4
< 𝛼 < 1

2
, 1

2
6 𝛼 < 3

4
, 3

4
6 𝛼 < 1 are considered in a similar way. This is why

we describe these cases rather briefly dwelling only on main formulae.

5.5. General case: 1
4
< 𝛼 < 1

2
. Similar to (5.9), (5.10) we have

sup
𝜏

𝑁0(
√︀

𝐿2 − 𝜀2𝜔ℒ𝜀 , 𝜏) − inf
𝜏
𝑁0(𝐿, 𝜏) > 𝑁0

(︁√︀
𝐿2 − 𝜀2𝜔ℒ𝜀 , 0

)︁
−𝑁0(𝐿, 𝛼)

=
𝐾∑︁

𝑛=1

2

[︃√︀
𝐿2 − 𝜀2𝜔ℒ𝜀 − 𝑛2

𝜀

]︃

−
𝐾∑︁

𝑛=1

(︃[︃√︀
𝐿2 − (𝑛 + 𝛼)2

𝜀

]︃
+

[︃√︀
𝐿2 − (𝑛− 𝛼)2

𝜀

]︃)︃

+

[︃√︀
𝐿2 − 𝜀2𝜔ℒ𝜀

𝜀

]︃
−
[︂√

𝐿2 − 𝛼2

𝜀

]︂
>

𝑆2(𝐿)

𝜀
− 2𝐾 − 1,

(5.17)

where

𝑆2(𝐿) :=
𝐾−1∑︁
𝑛=0

𝑓2(𝑛, 𝐿) + 𝐹1(𝐿, 0, 𝜀
2𝜔ℒ𝜀) − 𝐹2(𝐿, 0, 𝛼),

𝑓2(𝑥, 𝐿) := 𝐹0(𝐿, 𝑥 + 1, 𝛼, 𝜀2𝜔ℒ𝜀).

Similarly to (5.11) we obtain

𝑆2(𝐿) > 𝑓2(0, 𝐿) + 𝐹1(𝐿, 0, 𝜀
2𝜔ℒ𝜀) − 𝐹2(𝐿, 0, 𝛼) +

𝐾−1∫︁
0

𝑓2(𝑥, 𝐿) 𝑑𝑥,

𝑓2(0, 𝐿) + 𝐹1(𝐿, 0, 𝜀
2𝜔ℒ𝜀) − 𝐹2(𝐿, 0, 𝛼) > 0.

(5.18)

As 𝐾 = 1, the integral in the right hand side of the latter inequality vanishes and

𝑆2(1 + 𝛼) >

(︂
2

√︂
(1 + 𝛼)2 − 1

4
− 𝑏0 +

√︀
(1 + 𝛼)2 − 𝑏0 −

√
1 + 2𝛼−

√
4𝛼

)︂⃒⃒⃒⃒
𝛼= 1

4

> 3𝜀0.

(5.19)
As 𝐾 > 2, by (5.8) and completely similarly to (5.13),

𝐾−1∫︁
0

(︀
𝑓2(𝑥, 𝐿) − 𝐹0(𝐿, 𝑥 + 1, 𝛼, 0)

)︀
𝑑𝑥 > −𝜋𝜀2𝜔ℒ𝜀

4
. (5.20)
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Similarly to (5.14), (5.15) we obtain

𝐾−1∫︁
0

𝐹0(𝐿, 𝑥 + 1, 𝛼, 0) 𝑑𝑥 >

𝐾−𝛼∫︁
1−𝛼

(𝐾 + 𝛼)2 + 2𝛼𝑥

16
(︀
(𝐾 + 𝛼)2 − 𝑥2

)︀ 3
2

𝑑𝑥 =
𝑥 + 2𝛼

16
√︀

(𝐾 + 𝑎)2 − 𝑥2

⃒⃒⃒⃒𝐾−𝛼

1−𝛼

>
1

16

(︂
𝐾 + 𝛼

2
√
𝛼𝐾

− 1 + 𝛼√
𝐾2 + 2𝛼𝐾 + 2𝛼− 1

)︂ ⃒⃒⃒⃒
⃒
𝛼= 1

2

=
1

16

(︂
𝐾 + 1

2√
2𝐾

− 3

2
√
𝐾2 + 𝐾

)︂
>

9
√
𝐾

320
.

This and (5.17), (5.18), (5.19), (5.20) yield

sup
𝜏

𝑁0(
√︀

𝐿2 − 𝜀2𝜔ℒ𝜀 , 𝜏) − inf
𝜏
𝑁0(𝐿, 𝜏) >

3𝜀0
𝜀

− 3 > 0

as 𝐾 = 1 and

sup
𝜏

𝑁0(
√︀

𝐿2 − 𝜀2𝜔ℒ𝜀 , 𝜏) − inf
𝜏
𝑁0(𝐿, 𝜏) >

9
√
𝐾

320𝜀
− 2𝐾 − 𝜋𝜀𝜔ℒ𝜀

4
− 1 (5.21)

as 𝐾 > 2.

5.6. General case: 1
2
6 𝛼 < 3

4
. Here

sup
𝜏

𝑁0(
√︀

𝐿2 − 𝜀2𝜔ℒ𝜀 , 𝜏) − inf
𝜏
𝑁0(𝐿, 𝜏) > 𝑁0

(︁√︀
𝐿2 − 𝜀2𝜔ℒ𝜀 , 0

)︁
−𝑁0(𝐿, 1 − 𝛼)

=
𝐾∑︁

𝑛=1

2

[︃√︀
𝐿2 − 𝜀2𝜔ℒ𝜀 − 𝑛2

𝜀

]︃

−
𝐾∑︁

𝑛=1

(︃[︃√︀
𝐿2 − (𝑛 + 1 − 𝛼)2

𝜀

]︃
+

[︃√︀
𝐿2 − (𝑛− 1 + 𝛼)2

𝜀

]︃)︃

+

[︃√︀
𝐿2 − 𝜀2𝜔ℒ𝜀

𝜀

]︃
−

[︃√︀
𝐿2 − (1 − 𝛼)2

𝜀

]︃
>

𝑆3(𝐿)

𝜀
− 2𝐾 − 1,

(5.22)

where

𝑆3(𝐿) :=
𝐾−1∑︁
𝑛=0

𝑓3(𝑛, 𝐿) + 𝐹1(𝐿, 0, 𝜀
2𝜔ℒ𝜀) − 𝐹2(𝐿, 0, 1 − 𝛼),

𝑓3(𝑥, 𝐿) := 𝐹0(𝐿, 𝑥 + 1, 1 − 𝛼, 𝜀2𝜔ℒ𝜀)

As 𝐾 = 1, similarly to (5.19) we have

𝑆3(1 + 𝛼) >

(︂
2
√︀

(1 + 𝛼)2 − 1 − 𝑏0 +
√︀

(1 + 𝛼)2 − 𝑏0

−
√

1 + 2𝛼−
√

4𝛼−
√

6𝛼− 3

)︂⃒⃒⃒⃒
𝛼= 3

4

> 3𝜀0.

As 𝐾 > 2, similarly to (5.13), (5.14) we obtain

𝐾−1∫︁
0

(︀
𝑓3(𝑥, 𝐿) − 𝐹0(𝐿, 𝑥 + 1, 1 − 𝛼, 0)

)︀
𝑑𝑥 > −𝜋𝜀2𝜔ℒ𝜀

4
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and
𝐾−1∫︁
0

𝐹0(𝐿, 𝑥 + 1, 1 − 𝛼, 0) 𝑑𝑥 >
1

16

(︃
𝐾 + 1 − 𝛼√︀
2(𝐾 + 𝛼) − 1

− 2 − 𝛼√
𝐾2 + 2𝛼𝐾

)︃

>

√︁
𝐾 + 1

4

16
√

2
− 5

32
√

4𝐾2 + 6𝐾
>

√
2𝐴0

√
𝐾.

Therefore,

sup
𝜏

𝑁0(
√︀

𝐿2 − 𝜀2𝜔ℒ𝜀 , 𝜏) − inf
𝜏
𝑁0(𝐿, 𝜏) >

3𝜀0
𝜀

− 3 > 0

as 𝐾 = 1 and

sup
𝜏

𝑁0(
√︀

𝐿2 − 𝜀2𝜔ℒ𝜀 , 𝜏) − inf
𝜏
𝑁0(𝐿, 𝜏) >

2𝐴0

√
𝐾

𝜀
− 2𝐾 − 𝜋𝜀𝜔ℒ𝜀

4
− 1 (5.23)

as 𝐾 > 2.

5.7. General case: 3
4
< 𝛼 < 1. In this case the first estimate is similar to (5.9), (5.10):

sup
𝜏

𝑁0(
√︀
𝐿2 − 𝜀2𝜔ℒ𝜀 , 𝜏) − inf

𝜏
𝑁0(𝐿, 𝜏) > 𝑁0

(︂√︀
𝐿2 − 𝜀2𝜔ℒ𝜀 ,

1

2

)︂
−𝑁0(𝐿, 1 − 𝛼)

=
𝐾∑︁

𝑛=0

2

⎡⎣
√︁

𝐿2 − 𝜀2𝜔ℒ𝜀 −
(︀
𝑛 + 1

2

)︀2
𝜀

⎤⎦
−

𝐾∑︁
𝑛=0

(︃[︃√︀
𝐿2 − (𝑛 + 𝛼)2

𝜀

]︃
+

[︃√︀
𝐿2 − (𝑛 + 1 − 𝛼)2

𝜀

]︃)︃

>
𝑆4(𝐿)

𝜀
− 2𝐾 − 2,

(5.24)

where

𝑆4(𝐿) :=
𝐾∑︁

𝑛=0

𝑓4(𝑛, 𝐿), 𝑓4(𝑥, 𝐿) := 𝐹0

(︂
𝐿, 𝑥 +

1

2
, 𝛼− 1

2
, 𝜀2𝜔ℒ𝜀

)︂
.

Here the analogue of inequality (5.11) reads as

𝑆4(𝐿) > 𝑓4(0, 𝐿) +

𝐾∫︁
0

𝑓4(𝑥, 𝐿) 𝑑𝑥 (5.25)

and this is why there is no need to consider independently the case 𝐾 = 1. As in (5.13), we
estimate

𝐾∫︁
0

(︂
𝑓4(𝑥, 𝐿) − 𝐹0

(︂
𝐿, 𝑥 +

1

2
, 𝛼− 1

2
, 0

)︂)︂
𝑑𝑥 > −𝜋𝜀2𝜔ℒ𝜀

4

and similarly to (5.14) we integrate:

𝐾∫︁
0

𝐹0

(︂
𝐿, 𝑥 +

1

2
,
1

2
− 𝛼, 0

)︂
𝑑𝑥 >

𝐾+1−𝛼∫︁
1−𝛼

𝐿2 + (2𝛼− 1)𝑥

16
(︀
(𝐾 + 𝛼)2 − 𝑥

)︀ 3
2

𝑑𝑥 =
𝑥 + (2𝛼− 1)

16
√︀

(𝐾 + 𝑎)2 − 𝑥2

⃒⃒⃒⃒𝐾+1−𝛼

1−𝛼

>
1

16

(︂
𝐾 + 𝛼√

2𝛼− 1
√

2𝐾 + 1
− 𝛼√

𝐾2 + 2𝛼𝐾 + 2𝛼− 1

)︂ ⃒⃒⃒⃒
𝛼=1

>
11
√
𝐾

250
.
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Hence, by (5.24), (5.25),

sup
𝜏

𝑁0(
√︀

𝐿2 − 𝜀2𝜔ℒ𝜀 , 𝜏) − inf
𝜏
𝑁0(𝐿, 𝜏) >

√
𝐾

25𝜀
− 2𝐾 − 𝜋𝜀𝜔ℒ𝜀

4
− 2 (5.26)

for 𝐾 > 1. As 𝐾 = 1, the latter inequality obviously holds thanks to condition (2.2).

5.8. End of proof. We compare the right hand sides of inequalities (5.16), (5.21), (5.23),
(5.26) as 𝐾 > 2. Since by (5.1) (︂

11

250
− 2𝐴0

)︂ √
𝐾

𝜀
> 1,

the minimal of the compared right hand sides is that in inequality (5.23). This is why the right
hand sides of inequalities (5.16), (5.21), (5.23), (5.26) are positive as 𝐾 > 2 provided

2𝐴0

√
𝐾

𝜀
− 2𝐾 − 𝜋𝜀𝜔ℒ𝜀

4
− 1 > 0.

As 𝐾 = 2, this inequality holds thanks to condition (2.2). Solving then it w.r.t. 𝐾, we obtain

that it holds as
√
𝐾 6 𝐾𝜀. Thus, for such values 𝐾 inequality (4.5) holds and since the

spectrum is a closed set, this completes the proof of the theorem.

6. Some features of proof

In the present section we discuss certain features of the proof of main result given above.
At the first stage, in estimates (5.9), (5.17), (5.22), (5.24), the difference

sup
𝜏

𝑁0(
√︀
𝐿2 − 𝜀2𝜔ℒ𝜀 , 𝜏) − inf

𝜏
𝑁0(𝐿, 𝜏)

is estimated by the values of the function

𝑁0(
√︀

𝐿2 − 𝜀2𝜔ℒ𝜀 , 𝜏1) −𝑁0(𝐿, 𝜏2)

at certain points 𝜏1, 𝜏2. It is clear that the choice of these points is arbitrary. To get the best
result, the point 𝜏1 for the function 𝑁0(

√︀
𝐿2 − 𝜀2𝜔ℒ𝜀 , 𝜏) should be chosen so that the value of

this function at this point is as close the maximal one as possible. The choice of the point 𝜏2
for the function 𝑁0(𝐿, 𝜏) should be made in order to minimize its value. The issue on finding
exactly the maximum and the minimum point for the function 𝑁0 is very complicated. At
the same time, many preliminary numerical calculations suggested that the function 𝑁0(𝐿, 𝜏)
is quite close to the maximal value as 𝜏 = 0 or 𝜏 = 1

2
and the particular choice is subject to

the fractional part 𝛼 of the number 𝐿. If the fractional part satisfies either 𝛼 < 𝛼0 ≈ 1
10

or

𝛼 > 𝛼0 + 1
2
, we should choose 𝜏 = 1

2
, while as 𝛼0 < 𝛼 < 𝛼0 + 1

2
we should choose 𝜏 = 0.

The obtained values of the function 𝑁0(𝐿, 𝜏) differ a little from the maximal ones. In the work
we worsen this observation replacing 𝛼0 by 1

4
. Similar approximation for the minimum of the

function 𝑁0(𝐿, 𝜏) are again obtained under an appropriate choice of the number 𝜏2 subject to
the fractional part of the number 𝐿. Namely, here 𝜏2 should be equal to the distance from 𝛼
to the nearest integer: 𝜏2 = min{𝛼, 1 − 𝛼}. At such points the function 𝑁0(𝐿, 𝜏) differs a little
from the minimal values. In all previous works on Bethe-Sommerfeld conjecture we know, the
similar difference

sup
𝜏

𝑁0(
√︀
𝐿2 − 𝜀2𝜔ℒ𝜀 , 𝜏) − inf

𝜏
𝑁0(𝐿, 𝜏)

was estimated by some other methods allowing to avoid the issue on location of extrema of
the counting functions. This is why the proof provided in the present work suggest the way
for approximate finding the extremal points for the counting functions. At the same time, we
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stress that the proposed choice of the numbers 𝜏1, 𝜏2 does not necessary provides the exact
values of extrema for the function 𝑁0. In particular, as 𝐿 = 39.623, 𝜀 = 0.0035, we have

𝑁0(𝐿, 0) = 704646, 𝑁0(𝐿, 0.499088) = 704816, 𝑁0(𝐿, 0.5) = 704808,

and as 𝐿 = 39.635, 𝜀 = 0.0035 we have

𝑁0(𝐿, 0.365) = 704704, 𝑁0(𝐿, 0.3636) = 704701.

We also note that in (5.9), (5.17), (5.22), (5.24), we estimate the integer parts of various
quantities as follows: [𝑧] > 𝑧 − 1. Of course, this is too rough and the quantity −2𝐾 in
inequalities (5.9), (5.17), (5.22), (5.24) arises exactly due to this rough estimate. The attempts
to apply appropriate methods of the number theory from [20] did not lead us to more gentle
estimates, which could have changed essentially 𝐾𝜀.
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