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REGULARIZED ASYMPTOTICS OF SOLUTIONS TO

INTEGRO-DIFFERENTIAL PARTIAL DIFFERENTIAL

EQUATIONS WITH RAPIDLY VARYING KERNELS

A.A. BOBODZHANOV, V.F. SAFONOV

Abstract. We generalize the Lomov’s regularization method for partial differential equa-
tions with integral operators, whose kernel contains a rapidly varying exponential factor.
We study the case when the upper limit of the integral operator coincides with the differ-
entiation variable. For such problems we develop an algorithm for constructing regularized
asymptotics. In contrast to the work by Imanaliev M.I., where for analogous problems
with slowly varying kernel only the passage to the limit studied as the small parameter
tended to zero, here we construct an asymptotic solution of any order (with respect to the
parameter). We note that the Lomov’s regularization method was used mainly for ordi-
nary singularly perturbed integro-differential equations (see detailed bibliography at the
end of the article). In one of the authors’ papers the case of a partial differential equation
with slowly varying kernel was considered. The development of this method for partial
differential equations with rapidly changing kernel was not made before. The type of the
upper limit of an integral operator in such equations generates two fundamentally different
situations. The most difficult situation is when the upper limit of the integration operator
does not coincide with the differentiation variable. As studies have shown, in this case,
the integral operator can have characteristic values, and for the construction of the asymp-
totics, more strict conditions on the initial data of the problem are required. It is clear
that these difficulties also arise in the study of an integro-differential system with a rapidly
changing kernels, therefore in this paper the case of the dependence of the upper limit of
an integral operator on the variable 𝑥 is deliberately avoided. In addition, it is assumed
that the same regularity is observed in a rapidly decreasing kernel exponent integral opera-
tor. Any deviations from these (seemingly insignificant) limitations greatly complicate the
problem from the point of view of constructing its asymptotic solution. We expect that in
our further works in this direction we will succeed to weak these restrictions.

Keywords: singularly perturbed, integro-differential equation, regularization of the inte-
gral.
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Introduction

In the present work we consider the integral-differential system

𝜀
𝜕𝑦 (𝑡, 𝑥, 𝜀)

𝜕𝑡
= 𝐴 (𝑡) 𝑦 (𝑡, 𝑥, 𝜀) +

∫︁ 𝑡

0

𝑒
1
𝜀
∫ 𝑡𝑠 𝜇(𝜃) 𝑑𝜃𝐾 (𝑡, 𝑥, 𝑠) 𝑦 (𝑠, 𝑥, 𝜀) 𝑑𝑠+ ℎ (𝑡, 𝑥) ,

𝑦 (0, 𝑥, 𝜀) = 𝑦0 (𝑥) ((𝑡, 𝑥) ∈ [0, 𝑇 ] × [0, 𝑋]) ,

(1)
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with a fast varying kernel. The pose the problem on constructing a regularized in the sense
of S.A. Lomov [1] asymptotic solution to problem (1). Earlier, there were mostly considered
systems of ordinary differential equations with slowly varying kernels (𝜇(𝑡) ≡ 0; see the detailed
references in [2], [3]. In work [4], for the case 𝜇(𝑡) ≡ 0, there was studied only the passage to
the limit as 𝜀 → +0 in an integral-differential partial differential system, while in work [5] a
regularized asymptotics of arbitrary order in 𝜀 was considered for this case.

Proceeding to constructing regularized asymptotic solutions for system (1) with a fast varying
kernel, we note that the dependence of the matrix 𝐴 on the variable 𝑥 makes no essential
influence. There arise only technical difficulties but the main lines of the procedure remain
unchanged. This is why from the very beginning we suppose that the matrix 𝐴 is independent
of 𝑥. Moreover, without loss of generality, we can assume that 𝑇 = 𝑋 = 1.

1. Regularization of problem (1)

We assume the following conditions:
1) the matrix 𝐴(𝑟) belongs to 𝐶∞ ([0, 1] ,C𝑛×𝑛) , the function ℎ (𝑡, 𝑥) belongs to

𝐶∞ ([0, 1] × [0, 1] ,C𝑛) , the function 𝜇(𝑡) belongs to 𝐶∞ ([0, 1] ,C1), the kernel 𝐾 (𝑡, 𝑥, 𝑠) be-
longs to the space 𝐶∞ ({0 6 𝑥 6 1, 0 6 𝑠 6 𝑡 6 1} ,C𝑛×𝑛) ;

2) the spectrum {𝜆𝑗 (𝑡)} of the matrix 𝐴 (𝑡) and the spectral value 𝜇 (𝑡) of the kernel of the
integral operator satisfy the conditions:

a) 𝜆𝑖 (𝑡) ̸= 𝜆𝑗 (𝑡), 𝑖 ̸= 𝑗, 𝜇 (𝑡) ̸= 𝜆𝑖 (𝑡), 𝑖, 𝑗 = 1, 𝑛, ∀𝑡 ∈ [0, 1];
b) Re𝜆𝑗 (𝑡) 6 0, 𝜆𝑗 (𝑡) ̸= 0, Re𝜇 (𝑡) < 0, 𝑗 = 1, 𝑛, ∀𝑡 ∈ [0, 1].

We denote 𝜇 (𝑡) ≡ 𝜆𝑛+1 (𝑡) and following [1], we introduce the regularized variables:

𝜏𝑗 =
1

𝜀

∫︁ 𝑡

0

𝜆𝑗 (𝑠) 𝑑𝑠 =
𝜓𝑗 (𝑡)

𝜀
, 𝑗 = 1, 𝑛+ 1. (2)

For the function 𝑦 (𝑡, 𝑥, 𝜏, 𝜀) we pose the following problem:

𝜀
𝜕𝑦

𝜕𝑡
+

𝑛+1∑︁
𝑗=1

𝜆𝑗 (𝑡)
𝜕𝑦

𝜕𝜏𝑗
− 𝐴 (𝑡) 𝑦 −

∫︁ 𝑡

0

𝑒
1
𝜀
∫ 𝑡𝑠 𝜇(𝜃) 𝑑𝜃𝐾 (𝑡, 𝑥, 𝑠) 𝑦

(︂
𝑠, 𝑥,

𝜓 (𝑠)

𝜀
, 𝜀

)︂
𝑑𝑠 = ℎ (𝑡, 𝑥) ,

𝑦 (𝑡, 𝑥, 𝜏, 𝜀) |𝑡=0,𝜏=0 = 𝑦0 (𝑥) , (𝜏 = (𝜏1, . . . , 𝜏𝑛+1) , 𝜓 = (𝜓1, . . . , 𝜓𝑛+1)) .

(3)

The relation of problem (3) with original problem (1) is as follows: if 𝑦 = 𝑦 (𝑡, 𝑥, 𝜏, 𝜀) is a

solution to problem (3), then its restriction 𝑦 (𝑡, 𝑥, 𝜀) ≡ 𝑦
(︁
𝑡, 𝑥, 𝜓(𝑡)

𝜀
, 𝜀
)︁

on regularizing functions

(2) is obviously an exact solution to original problem (1). However, problem (3) can not be
regarded as a completely regularized since the integral operator

𝐽𝑦 =

∫︁ 𝑡

0

𝑒
1
𝜀
∫ 𝑡𝑠 𝜆𝑛+1(𝜃) 𝑑𝜃𝐾 (𝑡, 𝑥, 𝑠) 𝑦

(︂
𝑠, 𝑥,

𝜓 (𝑠)

𝜀
, 𝜀

)︂
𝑑𝑠

has not been regularized. As it is known, in order to regularize this operator [1], one needs to
introduce the space 𝑀𝜀 asymptotically invariant w.r.t. the operator 𝐽 . This is done as follows.
We introduce the class 𝑈 of solutions to iteration problems (see below):

𝑈 =
{︁
𝑦 (𝑡, 𝑥, 𝜏) : 𝑦 =

𝑛+1∑︁
𝑗=1

𝑦𝑗 (𝑡, 𝑥) 𝑒𝜏𝑗 + 𝑦0 (𝑡, 𝑥) , 𝑦𝑗 (𝑡, 𝑥) ∈ 𝐶∞ ([0, 1] × [0, 1]) , 𝑗 = 0, 𝑛+ 1
}︁
,

and then we take the restriction of this class as 𝜏 = 𝜓 (𝑡) /𝜀. This is exactly the space 𝑀𝜀. To
justify this fact, we need to show that the image 𝐽𝑦 (𝑡, 𝑥, 𝜏) of the integral operator 𝐽 on an
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element of the space 𝑈 is represented as the power series

∞∑︁
𝑘=0

𝜀𝑘

(︃
𝑛+1∑︁
𝑗=1

𝑦
(𝑘)
𝑗 (𝑡, 𝑥) 𝑒

𝜓𝑗(𝑡)

𝜀 + 𝑦
(𝑘)
0 (𝑡, 𝑥)

)︃
converging asymptotically as 𝜀→ +0 uniformly in (𝑡, 𝑥) ∈ [0, 1]× [0, 1]. Let us study this issue.

On an arbitrary element 𝑦 (𝑡, 𝑥, 𝜏) of the space 𝑈 , the image of the integral operator 𝐽 is of
the form:

𝐽𝑦 (𝑡, 𝑥, 𝜏) ≡
𝑛+1∑︁
𝑗=1

∫︁ 𝑡

0

𝑒
1
𝜀
∫ 𝑡𝑠 𝜆𝑛+1(𝜃) 𝑑𝜃𝐾 (𝑡, 𝑥, 𝑠) 𝑦𝑗 (𝑠, 𝑥) 𝑒

𝜓𝑗(𝑠)

𝜀 𝑑𝑠

+

∫︁ 𝑡

0

𝑒
1
𝜀
∫ 𝑡𝑠 𝜆𝑛+1(𝜃) 𝑑𝜃𝐾 (𝑡, 𝑥, 𝑠) 𝑦0 (𝑠, 𝑥) 𝑑𝑠.

(4)

We integrate by parts in each term of this sum. As 𝑗 = 1, 𝑛, we have∫︁ 𝑡

0

𝑒
1
𝜀
∫ 𝑡𝑠 𝜆𝑛+1(𝜃) 𝑑𝜃𝐾 (𝑡, 𝑥, 𝑠) 𝑦𝑗 (𝑠, 𝑥) 𝑒

𝜓𝑗(𝑠)

𝜀 𝑑𝑠

=𝑒
1
𝜀
∫ 𝑡0 𝜆𝑛+1(𝜃) 𝑑𝜃

∫︁ 𝑡

0

𝐾 (𝑡, 𝑥, 𝑠) 𝑦𝑗 (𝑠, 𝑥) 𝑒
1
𝜀

∫︀ 𝑠
0 (𝜆𝑗(𝜃)−𝜆𝑛+1(𝜃))𝑑𝜃𝑑𝑠

=𝜀𝑒
1
𝜀

∫︀ 𝑡
0 𝜆𝑛+1(𝜃)𝑑𝜃

∫︁ 𝑡

0

𝐾 (𝑡, 𝑥, 𝑠) 𝑦𝑗 (𝑠, 𝑥)

𝜆𝑗 (𝑠) − 𝜆𝑛+1 (𝑠)
𝑑
(︁
𝑒

1
𝜀

∫︀ 𝑠
0 (𝜆𝑗(𝜃)−𝜆𝑛+1(𝜃))𝑑𝜃

)︁
=𝜀𝑒

1
𝜀

∫︀ 𝑡
0 𝜆𝑛+1(𝜃)𝑑𝜃

(︁𝐾 (𝑡, 𝑥, 𝑠) 𝑦𝑗 (𝑠, 𝑥)

𝜆𝑗 (𝑠) − 𝜆𝑛+1 (𝑠)
𝑒

1
𝜀

∫︀ 𝑠
0 (𝜆𝑗(𝜃)−𝜆𝑛+1(𝜃))𝑑𝜃|𝑡0

−
∫︁ 𝑡

0

(︂
𝜕

𝜕𝑠

𝐾 (𝑡, 𝑥, 𝑠) 𝑦𝑗 (𝑠, 𝑥)

𝜆𝑗 (𝑠) − 𝜆𝑛+1 (𝑠)

)︂
𝑒

1
𝜀

∫︀ 𝑠
0 (𝜆𝑗(𝜃)−𝜆𝑛+1(𝜃))𝑑𝜃𝑑𝑠

)︁
=𝜀

[︂
𝐾 (𝑡, 𝑥, 𝑡) 𝑦𝑗 (𝑡, 𝑥)

𝜆𝑗 (𝑡) − 𝜆𝑛+1 (𝑡)
𝑒

1
𝜀

∫︀ 𝑡
0 𝜆𝑗(𝜃)𝑑𝜃 − 𝐾 (𝑡, 𝑥, 0) 𝑦𝑗 (0, 𝑥)

𝜆𝑗 (0) − 𝜆𝑛+1 (0)
𝑒

1
𝜀

∫︀ 𝑡
0 𝜆𝑛+1(𝜃)𝑑𝜃

]︂
− 𝜀𝑒

1
𝜀

𝑡∫︀
0

𝜆𝑛+1(𝜃)𝑑𝜃
∫︁ 𝑡

0

(︂
𝜕

𝜕𝑠

𝐾 (𝑡, 𝑥, 𝑠) 𝑦𝑗 (𝑠, 𝑥)

𝜆𝑗 (𝑠) − 𝜆𝑛+1 (𝑠)

)︂
𝑒

1
𝜀

∫︀ 𝑠
0 (𝜆𝑗(𝜃)−𝜆𝑛+1(𝜃))𝑑𝜃𝑑𝑠.

We introduce the notation:

𝐼0𝑗 (𝐾 (𝑡, 𝑥, 𝑠) 𝑦𝑗 (𝑠, 𝑥)) ≡ 𝐾 (𝑡, 𝑥, 𝑠) 𝑦𝑗 (𝑠, 𝑥)

𝜆𝑗 (𝑠) − 𝜆𝑛+1 (𝑠)
, 𝑗 = 1, 𝑛.

Then the result of the above transformations can be written as∫︁ 𝑡

0

𝑒
1
𝜀
∫ 𝑡𝑠 𝜆𝑛+1(𝜃) 𝑑𝜃𝐾 (𝑡, 𝑥, 𝑠) 𝑦𝑗 (𝑠, 𝑥) 𝑒

𝜓𝑗(𝑠)

𝜀 𝑑𝑠

=𝜀
[︀
𝐼0𝑗 (𝐾 (𝑡, 𝑥, 𝑠) 𝑦𝑗 (𝑠, 𝑥))𝑠=𝑡 𝑒

𝜏𝑗 − 𝐼0𝑗 (𝐾 (𝑡, 𝑥, 𝑠) 𝑦𝑗 (𝑠, 𝑥))𝑠=0 𝑒
𝜏𝑛+1
]︀

− 𝜀𝑒
1
𝜀
∫ 𝑡0 𝜆𝑛+1(𝜃) 𝑑𝜃

∫︁ 𝑡

0

𝜕

𝜕𝑠

(︀
𝐼0𝑗 (𝐾 (𝑡, 𝑥, 𝑠) 𝑦𝑗 (𝑠, 𝑥))

)︀
𝑒

1
𝜀

∫︀ 𝑠
0 (𝜆𝑗(𝜃)−𝜆𝑛+1(𝜃))𝑑𝜃𝑑𝑠, 𝑗 = 1, 𝑛,

where 𝜏𝑗 =
𝜓𝑗(𝑡)

𝜀
, 𝑗 = 1, 𝑛. Proceeding with this process, we obtain the series∫︁ 𝑡

0

𝑒
1
𝜀
∫ 𝑡𝑠 𝜆𝑛+1(𝜃) 𝑑𝜃𝐾 (𝑡, 𝑥, 𝑠) 𝑦𝑗 (𝑠, 𝑥) 𝑒

𝜓𝑗(𝑠)

𝜀 𝑑𝑠

=
∞∑︁
𝑘=0

(−1)𝑘 𝜀𝑘+1
[︁ (︀
𝐼𝑘𝑗 (𝐾 (𝑡, 𝑥, 𝑠) 𝑦1 (𝑠, 𝑥))

)︀
𝑠=𝑡

· 𝑒𝜏𝑗 −
(︀
𝐼𝑘1 (𝐾 (𝑡, 𝑥, 𝑠) 𝑦1 (𝑠, 𝑥))

)︀
𝑠=0

𝑒𝜏𝑛+1

]︁
,

(5)
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where 𝜏𝑗 =
𝜓𝑗(𝑡)

𝜀
, 𝑗 = 1, 𝑛, and the operators 𝐼𝑘𝑗 are of the form:

𝐼0𝑗 (𝐾 (𝑡, 𝑥, 𝑠) 𝑦𝑗 (𝑠, 𝑥)) ≡ 𝐾 (𝑡, 𝑥, 𝑠) 𝑦𝑗 (𝑠, 𝑥)

𝜆𝑗 (𝑠) − 𝜆𝑛+1 (𝑠)
,

𝐼1𝑗 (𝐾 (𝑡, 𝑥, 𝑠) 𝑦𝑗 (𝑠, 𝑥)) =
1

𝜆𝑗 (𝑠) − 𝜆𝑛+1 (𝑠)

𝜕

𝜕𝑠
𝐼01 (𝐾 (𝑡, 𝑥, 𝑠) 𝑦𝑗 (𝑠, 𝑥)) ,

. . .

𝐼𝑚1 (𝐾 (𝑡, 𝑥, 𝑠) 𝑦𝑗 (𝑠, 𝑥)) =
1

𝜆𝑗 (𝑠) − 𝜆𝑛+1 (𝑠)
𝐼𝑚−1
1 (𝐾 (𝑡, 𝑥, 𝑠) 𝑦𝑗 (𝑠, 𝑥)) , 𝑚 > 1, 𝑗 = 1, 𝑛.

(6)

We transform the term for 𝑗 = 𝑛+ 1 in (4) as follows:∫︁ 𝑡

0

𝑒
1
𝜀
∫ 𝑡𝑠 𝜆𝑛+1(𝜃) 𝑑𝜃𝐾 (𝑡, 𝑥, 𝑠) 𝑦𝑛+1 (𝑠, 𝑥) 𝑒

𝜓𝑛+1(𝑠)

𝜀 𝑑𝑠

≡
∫︁ 𝑡

0

𝑒
1
𝜀
∫ 𝑡𝑠 𝜆𝑛+1(𝜃) 𝑑𝜃𝐾 (𝑡, 𝑥, 𝑠) 𝑦𝑛+1 (𝑠, 𝑥) 𝑒

1
𝜀
∫𝑠0 𝜆𝑛+1(𝜃) 𝑑𝜃𝑑𝑠

=𝑒
1
𝜀
∫ 𝑡0 𝜆𝑛+1(𝜃) 𝑑𝜃

∫︁ 𝑡

0

𝐾 (𝑡, 𝑥, 𝑠) 𝑦𝑛+1 (𝑠, 𝑥) 𝑑𝑠

≡
(︂∫︁ 𝑡

0

𝐾 (𝑡, 𝑥, 𝑠) 𝑦𝑛+1 (𝑠, 𝑥) 𝑑𝑠

)︂
𝑒𝜏𝑛+1 , 𝜏𝑛+1 =

𝜓𝑛+1 (𝑡)

𝜀
.

(7)

And finally, for the last term in (4) we have:∫︁ 𝑡

0

𝑒
1
𝜀
∫ 𝑡𝑠 𝜆𝑛+1(𝜃) 𝑑𝜃𝐾 (𝑡, 𝑥, 𝑠) 𝑦0 (𝑠, 𝑥) 𝑑𝑠 = 𝜀

∫︁ 𝑡

0

𝐾 (𝑡, 𝑥, 𝑠) 𝑦0 (𝑠, 𝑥)

−𝜆𝑛+1 (𝑠)
𝑑𝑠𝑒

1
𝜀
∫ 𝑡𝑠 𝜆𝑛+1(𝜃) 𝑑𝜃

=𝜀
𝐾 (𝑡, 𝑥, 𝑠) 𝑦0 (𝑠, 𝑥)

−𝜆𝑛+1 (𝑠)
𝑒

1
𝜀
∫ 𝑡𝑠 𝜆𝑛+1(𝜃) 𝑑𝜃|𝑠=𝑡𝑠=0 − 𝜀

∫︁ 𝑡

0

𝑒
1
𝜀
∫ 𝑡𝑠 𝜆𝑛+1(𝜃) 𝑑𝜃

(︂
𝜕

𝜕𝑠

𝐾 (𝑡, 𝑥, 𝑠) 𝑦0 (𝑠, 𝑥)

−𝜆𝑛+1 (𝑠)

)︂
𝑑𝑠

=𝜀

[︂
𝐾 (𝑡, 𝑥, 𝑡) 𝑦0 (𝑡, 𝑥)

−𝜆𝑛+1 (𝑡)
− 𝐾 (𝑡, 𝑥, 0) 𝑦0 (0, 𝑥)

−𝜆𝑛+1 (0)
𝑒𝜏𝑛+1

]︂
+ 𝜀

∫︁ 𝑡

0

𝑒
1
𝜀
∫ 𝑡𝑠 𝜆𝑛+1(𝜃) 𝑑𝜃

(︂
𝜕

𝜕𝑠

𝐾 (𝑡, 𝑥, 𝑠) 𝑦0 (𝑠, 𝑥)

𝜆𝑛+1 (𝑠)

)︂
𝑑𝑠

=
∞∑︁
𝑘=0

𝜀𝑘+1
[︀(︀
𝐼𝑘𝑛+1 (𝐾 (𝑡, 𝑥, 𝑠) 𝑦0 (𝑠, 𝑥))𝑠=0

)︀
𝑒𝜏𝑛+1 − 𝐼𝑘𝑛+1 (𝐾 (𝑡, 𝑥, 𝑠) 𝑦0 (𝑠, 𝑥))𝑠=𝑡

]︀
,

(8)

where we have introduced the operators

𝐼0𝑛+1 (𝐾 (𝑡, 𝑥, 𝑠) 𝑦0 (𝑠, 𝑥)) =
𝐾 (𝑡, 𝑥, 𝑠) 𝑦0 (𝑠, 𝑥)

𝜆𝑛+1 (𝑠)
,

𝐼𝑚𝑛+1 (𝐾 (𝑡, 𝑥, 𝑠) 𝑦0 (𝑠, 𝑥)) =
1

𝜆𝑛+1 (𝑠)

𝜕

𝜕𝑠
𝐼𝑚−1
𝑛+1 (𝐾 (𝑡, 𝑥, 𝑠) 𝑦0 (𝑠, 𝑥)) , 𝑚 > 1.

(9)

The asymptotic convergence of series (5) and (8) can be proved in the same way as a similar
statement in [2, Ch. 8]. Let 𝑦 (𝑥, 𝑡, 𝜏, 𝜀) be an arbitrary function continuous in (𝑡, 𝑥, 𝜏) ∈
[0, 1] × [0, 1]× ×{Re 𝜏𝑗 6 0, 𝑗 = 1, 𝑛+ 1} and possessing the asymptotic expansion

𝑦 (𝑡, 𝑥, 𝜏, 𝜀) =
∞∑︁
𝑘=0

𝜀𝑘𝑦𝑘 (𝑡, 𝑥, 𝜏) , 𝑦𝑘 (𝑡, 𝑥, 𝜏) ∈ 𝑈, (10)

converging as 𝜀 → +0 uniformly (𝑡, 𝑥, 𝜏) ∈ [0, 1] × [0, 1]×{Re 𝜏𝑗 6 0, 𝑗 = 1, 𝑛+ 1}. We
introduce the operators 𝑅𝑚 : 𝑈 → 𝑈 acting on each element 𝑦 (𝑡, 𝑥, 𝜏) in the space 𝑈 by the
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rule:

𝑅0𝑦 (𝑡, 𝑥, 𝜏) ≡ 𝑅0

(︃
𝑛+1∑︁
𝑗=1

𝑦𝑗 (𝑡, 𝑥) 𝑒𝜏𝑗 + 𝑦0 (𝑡, 𝑥)

)︃
= 𝑒𝜏𝑛+1

∫︁ 𝑡

0

𝐾 (𝑡, 𝑥, 𝑠) 𝑦𝑛+1 (𝑠, 𝑥) 𝑑𝑠,

𝑅𝑘+1𝑦 (𝑥, 𝑡, 𝜏) = (−1)𝑘
[︁ 𝑛∑︁
𝑗=1

(︀
𝐼𝑘𝑗 (𝐾 (𝑡, 𝑥, 𝑠) 𝑦𝑗 (𝑠, 𝑥))

)︀
𝑠=𝑡

· 𝑒𝜏𝑗

−
(︀
𝐼𝑘𝑗 (𝐾 (𝑡, 𝑥, 𝑠) 𝑦𝑗 (𝑠, 𝑥))

)︀
𝑠=0

𝑒𝜏𝑛+1

]︁
+
(︀
𝐼𝑘𝑛+1 (𝐾 (𝑡, 𝑥, 𝑠) 𝑦0 (𝑠, 𝑥))

)︀
𝑠=0

𝑒𝜏𝑛+1 −
(︀
𝐼𝑘𝑛+1 (𝐾 (𝑡, 𝑥, 𝑠) 𝑦0 (𝑠, 𝑥))

)︀
𝑠=𝑡

,

(11)

where the operators 𝐼𝑘𝑗 , 𝑘 > 0, are of form (6), while the operators 𝐼𝑘𝑛+1, 𝑘 > 0, are of the
form (9). The operators 𝑅𝑚 are called order operators in 𝜀, since being applied to a function
𝑦 (𝑡, 𝑥, 𝜏), they select the terms of order 𝜀𝑚. It is natural to define the extended operator for
the integral operator 𝐽 as follows.

Definition 1. A formal extenstion of the operator 𝐽 is the operator 𝐽 acting on each function
𝑦 (𝑡, 𝑥, 𝜏, 𝜀) of form (10) by the rule1

𝐽𝑦 ≡ 𝐽

(︃
∞∑︁
𝑘=0

𝜀𝑘𝑦𝑘 (𝑡, 𝑥, 𝜏)

)︃
,

∞∑︁
𝑟=0

𝜀𝑟

(︃
𝑟∑︁

𝑘=0

𝑅𝑟−𝑘𝑦𝑘 (𝑡, 𝑥, 𝜏)

)︃
. (12)

Now we can write a problem completely regularized with respect to original one (1):

L𝜀𝑦 (𝑡, 𝑥, 𝜏, 𝜀) ≡ 𝜀
𝜕𝑦

𝜕𝑡
+

𝑛+1∑︁
𝑗=1

𝜆𝑗 (𝑡)
𝜕𝑦

𝜕𝜏𝑗
− 𝐴 (𝑡) 𝑦 − 𝐽𝑦 = ℎ (𝑡, 𝑥) , 𝑦 (0, 𝑥, 0, 𝜀) = 𝑦0 (𝑥) , (12)

where 𝑦 (𝑡, 𝑥, 𝜏, 𝜀) is series (10).

2. Solvability of iteration problems

Substituting series (10) into (13) and equating the coefficients at the like powers of 𝜀, we
obtain the following iteration problems:

L 𝑦0 (𝑡, 𝑥, 𝜏) ≡
𝑛+1∑︁
𝑗=1

𝜆𝑗 (𝑡)
𝜕𝑦0
𝜕𝜏𝑗

− 𝐴 (𝑡) 𝑦0 −𝑅0𝑦0 = ℎ (𝑡, 𝑥) , 𝑦0 (0, 𝑥, 0) = 𝑦0 (𝑥) ; (140)

L 𝑦1 (𝑡, 𝑥, 𝜏) = −𝜕𝑦0
𝜕𝑡

+𝑅1𝑦0, 𝑦1 (0, 𝑥, 0) = 0; (141)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

L 𝑦𝑘 (𝑡, 𝑥, 𝜏) = −𝜕𝑦𝑘−1

𝜕𝑡
+𝑅1𝑦𝑘−1 + . . .+𝑅𝑘𝑦0, 𝑦𝑘 (0, 𝑥, 0) = 0, 𝑘 > 1. (14𝑘)

Each of iteration problems (14𝑘) is of the form

L 𝑦 (𝑡, 𝑥, 𝜏) ≡
𝑛+1∑︁
𝑗=1

𝜆𝑗 (𝑡)
𝜕𝑦

𝜕𝜏𝑗
+ 𝜇 (𝑡)

𝜕𝑦

𝜕𝜏2
− 𝐴 (𝑡) 𝑦 −𝑅0𝑦 = 𝐻 (𝑡, 𝑥, 𝜏) ,

𝑦 (0, 𝑥, 0) = 𝑦* (𝑥) ,

(15)

where

𝐻 (𝑡, 𝑥, 𝜏) =
𝑛+1∑︁
𝑗=1

𝐻𝑗 (𝑡, 𝑥) 𝑒𝜏𝑗 +𝐻0 (𝑡, 𝑥) ∈ 𝑈,

1The symbol , means “is equal by the definition”.
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𝑦* (𝑥) ∈ 𝐶∞ [0, 1] are known functions and 𝑅0𝑦 stands for the operator

𝑅0𝑦 (𝑥, 𝑡, 𝜏) ≡ 𝑅0

(︃
𝑛+1∑︁
𝑗=1

𝑦𝑗 (𝑡, 𝑥) 𝑒𝜏𝑗 + 𝑦0 (𝑡, 𝑥)

)︃
= 𝑒𝜏𝑛+1

∫︁ 𝑡

0

𝐾 (𝑡, 𝑥, 𝑠) 𝑦𝑛+1 (𝑠, 𝑥) 𝑑𝑠.

Let us try to solve problem (15). Substituting the element

𝑦 (𝑡, 𝑥, 𝜏) =
𝑛+1∑︁
𝑗=1

𝑦𝑗 (𝑡, 𝑥) 𝑒𝜏𝑗 + 𝑦0 (𝑡, 𝑥)

of the space 𝑈 into (15), we get

𝑛+1∑︁
𝑗=1

𝜆𝑗 (𝑡) 𝑦𝑗 (𝑡, 𝑥) 𝑒𝜏𝑗 −
𝑛+1∑︁
𝑗=1

𝐴 (𝑡) 𝑦𝑗 (𝑡, 𝑥) 𝑒𝜏𝑗

− 𝐴 (𝑡) 𝑦0 (𝑡, 𝑥) − 𝑒𝜏𝑛+1

∫︁ 𝑡

0

𝐾 (𝑡, 𝑥, 𝑠) 𝑦𝑛+1 (𝑠, 𝑥) 𝑑𝑠 =
𝑛+1∑︁
𝑗=1

𝐻𝑗 (𝑡, 𝑥) 𝑒𝜏𝑗 +𝐻0 (𝑡, 𝑥) .

Equalling here the free terms and the coefficients at the like exponents, we obtain the equations

− 𝐴 (𝑡) 𝑦0 (𝑡, 𝑥) = 𝐻0 (𝑡, 𝑥) ,

(𝜆𝑗 (𝑡) 𝐼 − 𝐴 (𝑡)) 𝑦𝑗 (𝑡, 𝑥) = 𝐻𝑗 (𝑡, 𝑥) , 𝑗 = 1, 𝑛,

(𝜆𝑛+1 (𝑡) 𝐼 − 𝐴 (𝑡)) 𝑦𝑛+1 (𝑡, 𝑥) −
∫︁ 𝑡

0

𝐾 (𝑡, 𝑥, 𝑠) 𝑦𝑛+1 (𝑠, 𝑥) 𝑑𝑠 = 𝐻𝑛+1 (𝑡, 𝑥) .

(13)

We denote by 𝜙𝑗 (𝑡) an eigenvector associated with the eigenvalue 𝜆𝑗 (𝑡) of the matrix 𝐴 (𝑡) ,
while 𝜒𝑗 (𝑡) denotes the eigenvector associated with the eigenvalue 𝜆̄𝑗 (𝑡) of the matrix 𝐴*(𝑡).
The systems of vectors {𝜙𝑗 (𝑡)} are {𝜒𝑘 (𝑡)} are chosen biorthogonal:

𝐴 (𝑡)𝜙𝑗 (𝑡) ≡ 𝜆𝑗 (𝑡)𝜙𝑗 (𝑡) , 𝐴* (𝑡)𝜒𝑘 (𝑡) ≡ 𝜆̄𝑘 (𝑡)𝜒𝑘 (𝑡) , (𝜙𝑗 (𝑡) , 𝜒𝑘 (𝑡)) = 𝛿𝑗𝑘,

where 𝛿𝑗𝑘 is the Kronecker delta and 𝑗, 𝑘 = 1, 𝑛.
We proceed to systems (16). The first equation in (16) has the unique solution 𝑦0 (𝑡, 𝑥) =

−𝐴−1 (𝑡)𝐻0 (𝑡, 𝑥) . The second system in (16) is solvable in the space 𝐶∞ ([0, 1] × [0, 1] ,C𝑛) for
a fixed 𝑗 ∈ {1, . . . , 𝑛} if and only if the conditions hold:

(𝐻𝑗 (𝑡, 𝑥) , 𝜒𝑗 (𝑡)) ≡ 0 for all (𝑥, 𝑡) ∈ [0, 1] × [0, 1] .

The last equation in (16) is the second kind Volterra equation with the smooth kernel
𝐺 (𝑡, 𝑥, 𝑠) = (𝜆𝑛+1 (𝑡) − 𝐴 (𝑡))−1𝐾 (𝑡, 𝑥, 𝑠). Here the variable 𝑥 is regarded as a parameter
and therefore, this equation has the unique solution in the space 𝐶∞ ([0, 1] × [0, 1]) . If for each
(𝑡, 𝑥) ∈ [0, 1] × [0, 1], we introduce the scalar product

⟨𝑦 (𝑡, 𝑥, 𝜏) , 𝑧 (𝑡, 𝑥, 𝜏)⟩ ≡ ⟨
𝑛+1∑︁
𝑗=1

𝑦𝑗 (𝑡, 𝑥) 𝑒𝜏𝑗 + 𝑦0 (𝑡, 𝑥) ,
𝑛+1∑︁
𝑗=1

𝑧𝑗 (𝑡, 𝑥) 𝑒𝜏𝑗 + 𝑧0 (𝑡, 𝑥)⟩

,
𝑛+1∑︁
𝑗=0

(𝑦𝑗 (𝑡, 𝑥) , 𝑧𝑗 (𝑡, 𝑥))

in the space 𝑈 , where ( , ) denotes the usual scalar product in the complex space C𝑛, then the
above arguing can be summarized as the following theorem.

Theorem 1. Assume that the right hand side of equation (15) is of form

𝐻 (𝑡, 𝑥, 𝜏) ≡
𝑛+1∑︁
𝑗=1

𝐻𝑗 (𝑡, 𝑥) 𝑒𝜏𝑗 +𝐻0 (𝑡, 𝑥) ∈ 𝑈
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and Conditions 1) and 2) are satisfied. Then equation (15) in space 𝑈 is solvable if and only if

⟨𝐻 (𝑡, 𝑥, 𝜏) , 𝜒𝑗 (𝑡) 𝑒𝜏𝑗⟩ ≡ 0 𝑗 = 1, 𝑛, (𝑡, 𝑥) ∈ [0, 1] × [0, 1] . (14)

Under condition (17), equation (15) has the following solution in the space 𝑈 :

𝑦 (𝑡, 𝑥, 𝜏) =
𝑛∑︁
𝑗=1

𝛼𝑗 (𝑡, 𝑥)𝜙𝑗 (𝑡) 𝑒𝜏𝑗 +
(︁∫︁ 𝑡

0

R (𝑡, 𝑥, 𝑠) (𝜆𝑛+1 (𝑠) 𝐼 − 𝐴 (𝑠))−1𝐻𝑛+1 (𝑠, 𝑥) 𝑑𝑠

+ (𝜆𝑛+1 (𝑡) 𝐼 − 𝐴 (𝑡))−1𝐻𝑛+1 (𝑡, 𝑥)
)︁
𝑒𝜏𝑛+1 − 𝐴−1 (𝑡)𝐻0 (𝑡, 𝑥) ,

(15)

where R (𝑡, 𝑥, 𝑠) is the resolvent of the kernel 𝐺 (𝑡, 𝑥, 𝑠) = (𝜆𝑛+1 (𝑡) − 𝐴 (𝑡))−1𝐾 (𝑡, 𝑥, 𝑠) and
𝛼𝑗 (𝑡, 𝑥) ∈ 𝐶∞ ([0, 1] × [0, 1] ,C1), 𝑗 = 1, 𝑛, are arbitrary functions.

We impose the initial condition 𝑦 (0, 𝑥, 0) = 𝑦* (𝑥) for solution (18). This implies:

𝑛∑︁
𝑗=1

𝛼𝑗 (0, 𝑥)𝜙𝑗 (0) − 𝐴−1 (0)𝐻0 (0, 𝑥) = 𝑦* (𝑥)

⇔ 𝛼𝑗 (0, 𝑥) =
(︀
𝑦* (𝑥) + 𝐴−1 (0)𝐻0 (0, 𝑥) , 𝜒𝑗 (0)

)︀
, 𝑗 = 1, 𝑛.

(16)

However, the functions 𝛼𝑗 (𝑡, 𝑥) are not found completely. We need an additional restriction
for a solution to problem (15). Such restriction comes from iteration problems (14𝑘). We see
that a natural additional restriction is the condition

⟨−𝜕𝑦
𝜕𝑡

+𝑅1𝑦 + 𝑃 (𝑡, 𝑥, 𝜏) , 𝜒𝑗 (𝑡) 𝑒𝜏𝑗⟩ ≡ 0 𝑗 = 1, 𝑛, (𝑡, 𝑥) ∈ [0, 1] × [0, 1] , (17)

where

𝑃 (𝑡, 𝑥, 𝜏) ≡
𝑛+1∑︁
𝑗=1

𝑃𝑗 (𝑡, 𝑥) 𝑒𝜏𝑗 + 𝑃0 (𝑡, 𝑥) ∈ 𝑈

is a known vector function. Let us show that under condition (20), problem (15) has the unique
solution in space 𝑈 .

Theorem 2. Assume that Conditions 1), 2) are satisfied and the right hand

𝐻 (𝑡, 𝑥, 𝜏) ≡
𝑛+1∑︁
𝑗=1

𝐻𝑗 (𝑡, 𝑥) 𝑒𝜏𝑗 +𝐻0 (𝑡, 𝑥) ∈ 𝑈

satisfies orthogonality condition (17). The problem (15) is uniquely solvable in space 𝑈 under
additional condition (20).

Proof. In order to employ condition (20), we calculate the expression

−𝜕𝑦
𝜕𝑡

+𝑅1𝑦.

Since

𝑅1𝑦 (𝑥, 𝑡, 𝜏) = −
[︁ 𝑛∑︁
𝑗=1

(︀
𝐼0𝑗 (𝐾 (𝑡, 𝑥, 𝑠) 𝑦𝑗 (𝑠, 𝑥))

)︀
𝑠=𝑡

· 𝑒𝜏𝑗 −
(︀
𝐼01 (𝐾 (𝑡, 𝑥, 𝑠) 𝑦𝑗 (𝑠, 𝑥))

)︀
𝑠=0

𝑒𝜏𝑛+1

]︁
−
[︀(︀
𝐼0𝑛+1 (𝐾 (𝑡, 𝑥, 𝑠) 𝑦0 (𝑠, 𝑥))𝑠=𝑡 − 𝐼0𝑛+1 (𝐾 (𝑡, 𝑥, 𝑠) 𝑦0 (𝑠, 𝑥))𝑠=0

)︀
𝑒𝜏𝑛+1

]︀
,

𝑦𝑗 (𝑠, 𝑥) = 𝛼𝑗 (𝑠, 𝑥)𝜙𝑗 (𝑠) , 𝑦0 (𝑠, 𝑥) = −𝐴−1 (𝑠)𝐻0 (𝑠, 𝑥) ,

𝐼0𝑗 (𝐾 (𝑡, 𝑥, 𝑠) 𝑦𝑗 (𝑠, 𝑥)) ≡ 𝐾 (𝑡, 𝑥, 𝑠) 𝑦𝑗 (𝑠, 𝑥)

𝜆𝑗 (𝑠) − 𝜆𝑛+1 (𝑠)
,
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then

−𝜕𝑦
𝜕𝑡

+𝑅1𝑦 + 𝑃 (𝑡, 𝑥, 𝜏) = −
𝑛∑︁
𝑗=1

𝜕 (𝛼𝑗 (𝑡, 𝑥)𝜙𝑗 (𝑡))

𝜕𝑡
𝑒𝜏𝑗

− 𝜕

𝜕𝑡

[︃∫︁ 𝑡

0

R (𝑡, 𝑥, 𝑠) (𝜆𝑛+1 (𝑠) 𝐼 − 𝐴 (𝑠))−1𝐻𝑛+1 (𝑠, 𝑥) 𝑑𝑠

+ (𝜆𝑛+1 (𝑡) 𝐼 − 𝐴 (𝑡))−1𝐻𝑛+1 (𝑡, 𝑥)

]︃
𝑒𝜏𝑛+1 +

𝜕

𝜕𝑡
𝐴−1 (𝑡)𝐻0 (𝑡, 𝑥)

−
𝑛∑︁
𝑗=1

[︁ (︀
𝐼0𝑗 (𝐾 (𝑡, 𝑥, 𝑠)𝛼𝑗 (𝑠, 𝑥)𝜙𝑗 (𝑠))

)︀
𝑠=𝑡

· 𝑒𝜏𝑗 −
(︀
𝐼0𝑗 (𝐾 (𝑡, 𝑥, 𝑠)𝛼𝑗 (𝑠, 𝑥)𝜙𝑗 (𝑠))

)︀
𝑠=0

𝑒𝜏𝑛+1

]︁
−
[︀(︀
𝐼0𝑛+1 (𝐾 (𝑡, 𝑥, 𝑠) 𝑦0 (𝑠, 𝑥))𝑠=𝑡 − 𝐼0𝑛+1 (𝐾 (𝑡, 𝑥, 𝑠) 𝑦0 (𝑠, 𝑥))𝑠=0

)︀
𝑒𝜏𝑛+1

]︀
+

𝑛+1∑︁
𝑗=1

𝑃𝑗 (𝑡, 𝑥) 𝑒𝜏𝑗 + 𝑃0 (𝑡, 𝑥) ,

and this is why condition (20) becomes

−𝜕 (𝛼𝑗 (𝑡, 𝑥))

𝜕𝑡
+

(︂
𝐾 (𝑡, 𝑥, 𝑡)𝜙𝑗 (𝑡)

𝜆𝑗 (𝑡) − 𝜆𝑛+1 (𝑡)
− 𝜙̇𝑗 (𝑡) , 𝜒𝑗 (𝑡)

)︂
𝛼𝑗 (𝑡, 𝑥)

+ (𝑃𝑗 (𝑡, 𝑥) , 𝜒𝑗 (𝑡)) ≡ 0, 𝑗 = 1, 𝑛.

In view of initial condition (19), this equation has the unique solution:

𝛼𝑗 (𝑡, 𝑥) = 𝑒𝑞𝑗(𝑡,𝑥)
[︂
𝛼𝑗 (0, 𝑥) +

∫︁ 𝑡

0

(𝑃𝑗 (𝑠, 𝑥) , 𝜒𝑗 (𝑠)) 𝑒−𝑞(𝑠,𝑥)𝑑𝑠

]︂
, (18)

where

𝑞𝑗 (𝑡, 𝑥) =

∫︁ 𝑡

0

(︂
𝐾 (𝑠, 𝑥, 𝑠)𝜙𝑗 (𝑠)

𝜆𝑗 (𝑠) − 𝜆𝑛+1 (𝑠)
− 𝜙̇𝑗 (𝑠) , 𝜒𝑗 (𝑠)

)︂
𝑑𝑠, 𝑗 = 1, 𝑛.

Hence, under the assumptions of the theorem, there exists the unique solution in space 𝑈
satisfying (14).

Applying Theorems 1 and 2 to iteration problems (14𝑘) , we construct series (10) with coef-
ficients in class 𝑈 . Let

𝑦𝜀𝑁 (𝑡, 𝑥) =
𝑁∑︁
𝑘=0

𝜀𝑘𝑦𝑘

(︂
𝑡, 𝑥,

𝜓 (𝑡)

𝜀

)︂
be the restriction of 𝑁th partial sum of this series as 𝜏 = 𝜓(𝑡)

𝜀
. Then as in [2, Ch. 8], we can

easily prove the following result.

Theorem 3. Assume that Conditions 1) and 2) are satisfied. Then as 𝜀 ∈ (0, 𝜀0] , where
𝜀0 > 0 is sufficiently small, problem (1) has the unique solution 𝑦 (𝑡, 𝑥, 𝜀) ∈ 𝐶1 ([0, 1] × [0, 1])
and the estimate holds:

‖𝑦 (𝑡, 𝑥, 𝜀) − 𝑦𝜀𝑁 (𝑡, 𝑥)‖𝐶([0,1]×[0,1]) 6 𝐶𝑁𝜀
𝑁+1, 𝑁 = 0, 1, 2, . . . ,

where the constant 𝐶𝑁 > 0 is independent of 𝜀 ∈ (0, 𝜀0] .
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3. Solution to first iteration problem. Study of initialization problem

Since the vector function 𝐻(𝑡, 𝑥, 𝜏) ≡ ℎ(𝑡, 𝑥) in system (140) is independent of 𝜏 , it satisfies
condition (17). Hence, system (140) has a solution in the space 𝑈 and it can be written as (see
(18))

𝑦0(𝑡, 𝑥, 𝜏) =
𝑛∑︁
𝑗=1

𝛼
(0)
𝑗 (𝑡, 𝑥)𝜙𝑗 (𝑡) 𝑒𝜏𝑗 − 𝐴−1 (𝑡)ℎ (𝑡, 𝑥) , (19)

where1 𝛼
(0)
𝑗 (𝑡, 𝑥) ∈ 𝐶∞([0, 1]×[0, 1] ,C1) are arbitrary functions. In order to find these functions,

we find first their values at the point 𝑡 = 0. Since 𝑦0(0, 𝑥, 0) = 𝑦0 (𝑥) , then

𝑛∑︁
𝑗=1

𝛼
(0)
𝑗 (0, 𝑥)𝜙𝑗 (0) − 𝐴−1 (0)ℎ (0, 𝑥) = 𝑦0 (𝑥)

⇔ 𝛼
(0)
𝑗 (0, 𝑥) =

(︀
𝐴−1 (0)ℎ (0, 𝑥) + 𝑦0 (𝑥) , 𝜒𝑗 (0)

)︀
, 𝑗 = 1, 𝑛.

(20)

To find completely the functions 𝛼
(0)
𝑗 (𝑡, 𝑥), we should proceed to next problem (141) and impose

orthogonality condition (17) for its right hand side. As a result, we obtain the equations

−
𝜕
(︁
𝛼
(0)
𝑗 (𝑡, 𝑥)

)︁
𝜕𝑡

+

(︂
𝐾 (𝑡, 𝑥, 𝑡)𝜙𝑗 (𝑡)

𝜆𝑗 (𝑡) − 𝜆𝑛+1 (𝑡)
− 𝜙̇𝑗 (𝑡) , 𝜒𝑗 (𝑡)

)︂
𝛼
(0)
𝑗 (𝑡, 𝑥) ≡ 0, 𝑗 = 1, 𝑛,

and by identity (23) we find that

𝛼
(0)
𝑗 (𝑡, 𝑥) = 𝑒𝑞𝑗(𝑡,𝑥)

(︀
𝐴−1 (0)ℎ (0, 𝑥) + 𝑦0 (𝑥) , 𝜒𝑗 (0)

)︀
, 𝑗 = 1, 𝑛, (24)

where

𝑞𝑗 (𝑡, 𝑥) ≡
∫︁ 𝑡

0

(︂
𝐾 (𝑠, 𝑥, 𝑠)𝜙𝑗 (𝑠)

𝜆𝑗 (𝑠) − 𝜆𝑛+1 (𝑠)
− 𝜙̇𝑗 (𝑠) , 𝜒𝑗 (𝑠)

)︂
𝑑𝑠, 𝑗 = 1, 𝑛.

Thus, we find uniquely solution (22) to first iteration problem (140).
We proceed to studying the initialization problem. Let Re𝜆𝑗 (𝑡) < 0, 𝑡 ∈ [0, 1], 𝑗 = 1, 𝑛.

Then by Theorem 3 we have

‖𝑦(𝑡, 𝑥, 𝜀) − 𝑦𝜀0(𝑡, 𝑥)‖𝐶([0,1]×[0,1]) 6 𝑐0𝜀⇔

⇔ ‖𝑦(𝑡, 𝜀) −

(︃
𝑛∑︁
𝑗=1

𝛼
(0)
𝑗 (𝑡, 𝑥)𝜙𝑗 (𝑡) 𝑒𝜏𝑗 − 𝐴−1 (𝑡)ℎ (𝑡, 𝑥)

)︃
‖𝐶([0,1]×[0,1]) 6 𝑐0𝜀.

Hence, by each 𝛿 ∈ (0, 1] we get

𝑐0𝜀 >‖𝑦(𝑡, 𝑥, 𝜀) −

(︃
𝑛∑︁
𝑗=1

𝛼
(0)
𝑗 (𝑡, 𝑥)𝜙𝑗 (𝑡) 𝑒

𝜓𝑗(𝑡)

𝜀 − 𝐴−1 (𝑡)ℎ (𝑡, 𝑥)

)︃
‖𝐶([𝛿,1]×[0,1])

>‖𝑦(𝑡, 𝑥, 𝜀) −
𝑛∑︁
𝑗=1

𝛼
(0)
𝑗 (𝑡, 𝑥)𝜙𝑗 (𝑡) 𝑒

𝜓𝑗(𝑡)

𝜀 + 𝐴−1 (𝑡)ℎ (𝑡, 𝑥) ‖𝐶([𝛿,1]×[0,1])

>‖𝑦(𝑡, 𝑥, 𝜀) + 𝐴−1 (𝑡)ℎ (𝑡, 𝑥) ‖𝐶([𝛿,1]×[0,1]) − ‖
𝑛∑︁
𝑗=1

𝛼
(0)
𝑗 (𝑡, 𝑥)𝜙𝑗 (𝑡) 𝑒

𝜓𝑗(𝑡)

𝜀 ‖𝐶([𝛿,1]×[0,1]),

1 In the expression 𝑦
(𝑘)
𝑗 the superscript (𝑘) indicate the iteration number; it should not be mixed

up with the 𝑘th derivative.
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and this implies that

‖𝑦(𝑡, 𝑥, 𝜀) + 𝐴−1 (𝑡)ℎ (𝑡, 𝑥) ‖𝐶([𝛿,1]×[0,1]) 6 𝑐0𝜀+ ‖
𝑛∑︁
𝑗=1

𝛼
(0)
𝑗 (𝑡, 𝑥)𝜙𝑗 (𝑡) 𝑒

𝜓𝑗(𝑡)

𝜀 ‖𝐶([𝛿,1]×[0,1])

6 𝑐0𝜀+

⃦⃦⃦⃦
⃦

𝑛∑︁
𝑗=1

𝛼
(0)
𝑗 (𝑡, 𝑥)𝜙𝑗 (𝑡)

⃦⃦⃦⃦
⃦
𝐶([𝛿,1]×[0,1])

𝑒−
κ𝛿
𝜀 ,

where κ = min
𝑖=1,𝑛,𝑡∈[0,1]

(−Re 𝜆𝑖 (𝑡)) > 0. Therefore,

(𝑡)ℎ (𝑡, 𝑥) ‖𝐶([𝛿,1]×[0,1]) → 0 (𝜀→ +0). (21)

We have obtained the following result.

Theorem 4. If Conditions 1) and 2) hold and Re𝜆𝑗 (𝑡) < 0, 𝑡 ∈ [0, 1], 𝑗 = 1, 𝑛, then passage
to the limit (25) holds, where 𝑦 = 𝑦(𝑡, 𝑥, 𝜀) is the exact solution to problem (1), and the function
¯̄𝑦 (𝑡, 𝑥) = −𝐴−1 (𝑡)ℎ (𝑡, 𝑥) solve the degenerate w.r.t. (1) equation

𝐴 (𝑡) ¯̄𝑦 (𝑡, 𝑥) + ℎ (𝑡, 𝑥) = 0.

However, in our case there can be pure imaginary eigenvalues 𝜆𝑗 (𝑡) . For instance, let

𝜆𝑗 (𝑡) = ±𝑖𝜔𝑗 (𝑡) , 𝜔𝑗 (𝑡) > 0, 𝑗 = 1,𝑚, Re𝜆𝑘 (𝑡) < 0, 𝑡 ∈ [0, 1] , 𝑘 = 2𝑚+ 1, 𝑛. (22)

In this case the passage to limit (25) in the metrics of the space 𝐶 ([0, 1] × [0, 1]) becomes
impossible. Because of this, the initialization problem arises: what the initial data in problem
(1) should be to ensure the uniform passage to the limit 𝑦 (𝑡, 𝑥, 𝜀) → ¯̄𝑦 (𝑡, 𝑥) as 𝜀→ +0 on the
set [0, 1]× [0, 1] including the boundary layer in 𝑡? The initial data in problem (1) obeying this
condition are called initialization class Σ. Since

𝑦 (𝑡, 𝑥, 𝜀) =
𝑚∑︁
𝑗=1

𝛼
(0)
𝑗 (𝑡, 𝑥)𝜙𝑗 (𝑡) 𝑒

−𝑖
𝜀

∫︀ 𝑡
0 𝜔𝑗(𝜃)𝑑𝜃 +

𝑚∑︁
𝑗=1

𝛽
(0)
𝑗 (𝑡, 𝑥)𝜙𝑚+𝑗 (𝑡) 𝑒

+𝑖
𝜀

∫︀ 𝑡
0 𝜔𝑗(𝜃)𝑑𝜃

+
𝑛∑︁

𝑘=2𝑚+1

𝛼
(0)
𝑘 (𝑡, 𝑥)𝜙𝑘 (𝑡) 𝑒

1
𝜀

∫︀ 𝑡
0 𝜆𝑘(𝜃)𝑑𝜃 − 𝐴−1 (𝑡)ℎ (𝑡, 𝑥) +𝑂(𝜀),

then the first 2𝑚 terms fast oscillate and prevent the existence of the passage to the limit

𝑦 (𝑡, 𝑥, 𝜀) → 𝑦
(0)
0 (𝑡, 𝑥) on the set [0, 1] × [0, 1]. This is why we need to remove them, that is, we

need to let

𝛼
(0)
𝑗 (𝑡, 𝑥) ≡ 0, 𝛽

(0)
𝑗 (𝑡, 𝑥) ≡ 0, (𝑡, 𝑥) ∈ [0, 1] × [0, 1] , 𝑗 = 1,𝑚.

It follows from formula (25) that this holds if and only if(︀
𝑦0 (𝑥) + 𝐴−1 (0)ℎ (0, 𝑥) , 𝜒𝑗 (0)

)︀
= 0, 𝑗 = 1, 2𝑚, 𝑥 ∈ [0, 1] . (*)

We have proved the following result.

Theorem 5. Assume that problem (1) satisfies Conditions 1), 2) and (26). Then the passage
to the limit

‖𝑦(𝑡, 𝑥, 𝜀) + 𝐴−1 (𝑡)ℎ (𝑡, 𝑥) ‖𝐶([𝛿,1]×[0,1]) → 0, 𝜀→ +0,

holds if and only if condition (*) holds.

However, condition (*) does not describe the initialization class since the exponents

exp
{︁

1
𝜀

∫︀ 𝑡
0
𝜆𝑘 (𝜃) 𝑑𝜃

}︁
, 𝑘 = 2𝑚+ 1, 𝑛 do not tend to zero uniformly in the vicinity of the point

𝑡 = 0 and this is why they should be removed in the description of the class Σ. Finally, we
obtain the following result.
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Theorem 6. Assume that problem (1) satisfies Conditions 1), 2) and (26). Then the passage
to the limit

‖𝑦(𝑡, 𝑥, 𝜀) + 𝐴−1 (𝑡)ℎ (𝑡, 𝑥) ‖𝐶([0,1]×[0,1]) → 0, 𝜀→ +0,

holds if and only if the condition(︀
𝑦0 (𝑥) + 𝐴−1 (0)ℎ (0, 𝑥) , 𝜒𝑗 (0)

)︀
= 0, 𝑗 = 1, 𝑛,

holds.

Thus, the initialization class is independent of the kernel and is described as follows:

Σ =
{︀(︀
𝑦0, ℎ,𝐾,𝐴

)︀
:
(︀
𝑦0 (𝑥) + 𝐴−1 (0)ℎ (0, 𝑥) , 𝜒𝑗 (0)

)︀
= 0, 𝑗 = 1, 𝑛,

}︀
.
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