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ON DIFFERENTIAL SUBSTITUTIONS

FOR EVOLUTION SYSTEMS

S.Ya. STARTSEV

Abstract. For the most known differential substitutions relating scalar evolution equa-
tions, the sets of the equations admitting them consist of not finitely many equations but
they form families parametrized by an arbitrary function. Some differential substitutions
for evolution systems also have a similar property. In the present paper we obtain neces-
sary and sufficient conditions for a differential substitution to be admitted by a family of
evolution systems depending on an arbitrary function. We also give explicit formulae for
finding the corresponding family of evolution systems in the case when these conditions are
satisfied.

As an example, the family of systems admitting a multi-component Cole-Hopf substi-
tution is constructed. We demonstrate that this family contains all linear systems, whose
right hand sides contain no terms independent of the derivatives. As a result, we obtain a
set of C-integrable systems of arbitrary high order. Another example considered in the pa-
per is a multi-component analogue of the substitution 𝑣 = 𝑢𝑥 + exp(𝑢). We show that this
multi-component substitution is also admitted by a family of evolution systems depending
on an arbitrary function.
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1. Introduction

While studying partial differential equations, an important role is played by differential sub-
stitutions. In particular, they allow one both to relate the known integrable equations and to
find new equations. The most known substitutions of form

𝑣 = 𝑃 (𝑥, 𝑢, 𝑢𝑥) (1)

transform the solutions to the evolution equation

𝑢𝑡 = 𝑓(𝑥, 𝑢, 𝑢1, . . . , 𝑢𝑘), 𝑢𝑖 :=
𝜕𝑖𝑢

𝜕𝑥𝑖
, (2)

into the solutions to equations of similar form and these substitutions possess the following
property: there exist non-zero operators

𝑆 =
𝑚∑︁
𝑖=0

𝛼𝑖(𝑥, 𝑢, 𝑢1, . . . , 𝑢ℓ)𝐷
𝑖
𝑥, 𝐻 =

𝑚+1∑︁
𝑖=0

𝜁𝑖(𝑥, 𝑣, 𝑣1, . . . , 𝑣𝑟)𝐷
𝑖
𝑥, (3)

such that the equation 𝑢𝑡 = 𝑆(𝜂(𝑥, 𝑃,𝐷𝑥(𝑃 ), . . . , 𝐷𝜅
𝑥(𝑃 )) is transformed to the equation 𝑣𝑡 =

𝐻(𝜂(𝑥, 𝑣, 𝑣1, . . . 𝑣𝜅)) by substitution (1) for each function 𝜂 depending on finitely many variables.
Here 𝑣𝑗 := 𝜕𝑗𝑣/𝜕𝑥𝑗, while 𝐷𝑥 stands for the total derivative w.r.t. 𝑥.
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The most known example of a differential substitution is the Miura transformation 𝑣 =
𝑢𝑥 − 𝑢2. As it was shown, see, for instance, [1], [2],

𝑆 = 𝐷2
𝑥 + 2𝑢𝐷𝑥 + 2𝑢𝑥, 𝐻 = 𝐷3

𝑥 + 4𝑣𝐷𝑥 + 2𝑣𝑥.

This is why in what follows, for the brevity, the substitutions with the above properties are
called Miura type substitutions.

It was shown in [3] that equation (2) admits the differential substitution 𝑣 = 𝑃 (𝑥, 𝑢, 𝑢𝑥) if and
only if (2) is a symmetry of the hyperbolic equation 𝑢𝑥𝑦 = −𝑢𝑦𝑃𝑢/𝑃𝑢𝑥 . If (1) is a Miura type
substitution, according [4], the corresponding hyperbolic equation is Darboux integrable. The
latter fact allows one to employ the Laplace method of cascade integration both for checking
whether (1) is the Miura type transformation and for constructing the corresponding operators
𝑆 and 𝐻, see, for instance, [5] or the introduction in work [6].

For systems, that is, in the case 𝑢, 𝑓 , 𝑣 and 𝑃 are 𝑛-dimensional vectors, the differential
substitutions are also of interest and they were considered, for instance, in [3], [7]–[11]. However,
as it was shown in [12], the Laplace method of cascade integration is, generally speaking, not
applicable for the systems. This is why for the system we need some other way of checking
whether (1) is a Miura type substitution and of constructing the corresponding operators 𝑆
and 𝐻. Such way is proposed in the present work and we show how this works at the examples.

2. Necessary and sufficient conditions for Miura type substitutions

Hereinafter we assume that (2) is a system and (1) is a multi-component substitution of the
corresponding dimension. In other words, 𝑢 and 𝑓 in (2) and 𝑣 and 𝑃 in (1) are 𝑛-dimensional
vectors. Because of this we recall the following standard notations. Given a scalar function 𝑔
and a vector 𝑧 = (𝑧1, 𝑧2, . . . , 𝑧𝑛)⊤, by 𝑔𝑧 = 𝜕𝑔/𝜕𝑧 we denote the row (𝜕𝑔/𝜕𝑧1 , 𝜕𝑔/𝜕𝑧2, . . . ,
𝜕𝑔/𝜕𝑧𝑛). If 𝑔 is a vector function (𝑔1, 𝑔2, . . . , 𝑔𝑛)⊤, by 𝑔𝑧 we denote the matrix with the rows
𝑔1𝑧 , . . . , 𝑔

𝑛
𝑧 . In what follows we assume that the matrix 𝑃𝑢𝑥 is non-degenerate. It should be noted

that not all substitutions (1) for the systems of evolution equations obey this condition, but in
the present paper we consider only such substitutions.

Definition 1. We say that system (2) admits differentiable substitution (1) into the system

𝑣𝑡 = 𝑓(𝑥, 𝑣, 𝑣1, . . . , 𝑣𝑘) if 𝑃𝑢𝑥 ̸= 0 and the relation holds:1

𝑃𝑢𝑥𝐷𝑥(𝑓) + 𝑃𝑢𝑓 = 𝑓(𝑥, 𝑃,𝐷𝑥(𝑃 ), . . . , 𝐷𝑘
𝑥(𝑃 )). (4)

We call (1) a Miura type substitution if there exist differential operators of form (3) such that
𝛼𝑖, 𝜁𝑖 are 𝑛-dimensional vectors, 𝛼𝑚 ̸= 0 and for each scalar function 𝜂 depending on finitely
many variables the system 𝑢𝑡 = 𝑆(𝜂(𝑥, 𝑃,𝐷𝑥(𝑃 ), . . . )) admits substitution (1) into the system
𝑣𝑡 = 𝐻(𝜂(𝑥, 𝑣, 𝑣1, . . . )). In this case the operators 𝑆 and 𝐻 are respectively called initial and
target substitution operators.

For further arguing, it is convenient to resolve relation (1) w.r.t. 𝑢𝑥 and to obtain the
expression 𝑢𝑥 = 𝑎(𝑥, 𝑢, 𝑣). Employing the latter identity, we can express each function of 𝑥, 𝑢
and the derivatives of 𝑢 on 𝑥 in terms of the variables 𝑥, 𝑢, 𝑣, 𝑣𝑖. For each scalar function 𝑔 of
these variables, the operator 𝐷𝑥 is defined by the formula

𝐷𝑥(𝑔) =
𝜕𝑔

𝜕𝑥
+

𝜕𝑔

𝜕𝑢
𝑎 +

𝜕𝑔

𝜕𝑣
𝑣1 +

+∞∑︁
𝑖=1

𝜕𝑔

𝜕𝑣𝑖
𝑣𝑖+1.

On vectors and matrices, the operator 𝐷𝑥 acts componentwise. For a shorter writing of formu-
lae, in what follows we assume that the zero power of the operator 𝐷𝑥, as well as the zero power

1This relation means that 𝑣 = 𝑃 (𝑥, 𝑢, 𝑢𝑥) is a solution to the system 𝑣𝑡 = 𝑓 for each solution of system (2).
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of any other operator, is equal to the identity mapping. The symbol ∘ denotes the composition
of operators.

Theorem 1. If the matrix 𝑃𝑢𝑥 is non-degenerate, then (1) is a Miura type substitution with
an initial operator of order 𝑚 if and only if there exist 𝑛-dimensional vectors 𝛽𝑖(𝑥, 𝑣, 𝑣1, . . . , 𝑣𝑝),
𝑖 = 0,𝑚 + 1, such that 𝛽𝑚+1 ̸= 0 and the relation

𝑚+1∑︁
𝑖=0

(−1)𝑖(𝐷𝑥 − 𝑎𝑢)𝑖(𝑎𝑣)𝛽𝑖 = 0 (5)

holds, where 𝑃 (𝑥, 𝑢, 𝑎(𝑥, 𝑢, 𝑣)) ≡ 𝑣.
If (5) is satisfied, then the operators

𝑆 =
𝑚∑︁
𝑖=0

(−1)𝑖(𝐷𝑥 − 𝑎𝑢)𝑖(𝑎𝑣)
𝑚−𝑖∑︁
𝑗=0

𝐷𝑗
𝑥 ∘ 𝛽𝑖+𝑗+1, 𝐻 =

𝑚+1∑︁
𝑖=0

𝐷𝑥 ∘ 𝛽𝑖 (6)

are respectively the initial operator (written in terms of the variables 𝑥, 𝑢, 𝑣, 𝑣𝑖) and the target
operator of substitution (1).

Proof. Differentiating relation 𝑃 (𝑥, 𝑢, 𝑎(𝑥, 𝑢, 𝑣)) ≡ 𝑣 w.r.t. 𝑣 and 𝑢, we obtain 𝑃𝑢𝑥 = (𝑎𝑣)
−1

and 𝑃𝑢 = −(𝑎𝑣)
−1𝑎𝑢. This is why, after excluding the derivatives of 𝑢 w.r.t. 𝑥 by means of the

expression 𝑢𝑥 = 𝑎(𝑥, 𝑢, 𝑣) and its differential consequences, relation (4) becomes

(𝐷𝑥 − 𝑎𝑢)
(︀
𝑓(𝑥, 𝑢, 𝑎,𝐷𝑥(𝑎), . . . , 𝐷𝑘−1

𝑥 (𝑎))
)︀

= 𝑎𝑣𝑓(𝑥, 𝑣, 𝑣1, . . . , 𝑣𝑘).

In the case of Miura type substitution, the latter identity is equivalent to the relation

(𝐷𝑥 − 𝑎𝑢) ∘ 𝑆 = 𝑎𝑣𝐻

for the initial and target operators (3). Comparing the coefficients at the like powers of 𝐷𝑥 in
the right hand and left hand sides of this relations, we obtain the chain of the identities

𝛼𝑚 = 𝑎𝑣𝜁𝑚+1, (𝐷𝑥 − 𝑎𝑢)(𝛼𝑖) + 𝛼𝑖−1 = 𝑎𝑣𝜁𝑖, 1 6 𝑖 6 𝑚, (𝐷𝑥 − 𝑎𝑢)(𝛼0) = 𝑎𝑣𝜁0.

Expressing 𝛼𝑖 in terms of 𝜁𝑗, 𝑗 > 𝑖, by means of the first two equations in this chain and
substituting then the obtained expression for 𝛼0 into third equation, we arrive at the relation

𝑚+1∑︁
𝑖=0

(−1)𝑖(𝐷𝑥 − 𝑎𝑢)𝑖(𝑎𝑣𝜁𝑖) = 0. (7)

Identity of form (5) can be obtained easily from (7) by multiple using of the formula

(𝐷𝑥 − 𝑎𝑢)(𝑎𝑣𝜁) = (𝐷𝑥 − 𝑎𝑢)(𝑎𝑣)𝜁 + 𝑎𝑣𝐷𝑥(𝜁).

Vice versa, if (5) holds, by straightforward check we confirm that the identity (𝐷𝑥−𝑎𝑢)∘𝑆 =
𝑎𝑣𝐻 holds for operators (6).

It should be noted that condition (5) and all its consequences obtained by differentiating
w.r.t. 𝑢 is a purely algebraic linear system of equations for finding 𝛽𝑖 and, generally speaking,
it is overdetermined. This is why it is rather easy to analyse this condition. Let us demonstrate
this by examples.
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3. Examples of multi-component Miura type substitutions

For further discussions, it is convenient to introduce the following notations. For each vector
𝑧 = (𝑧1, 𝑧2, . . . , 𝑧𝑛)⊤, by ⟨𝑧⟩ we denote the sum of its coordinates, while by [𝑧] we denote the
diagonal matrix with the diagonal formed by the coordinates of the vector 𝑧:

⟨𝑧⟩ :=
𝑛∑︁

𝑖=1

𝑧𝑖, [𝑧] := diag{𝑧1, 𝑧2, . . . , 𝑧𝑛}.

3.1. Cole-Hopf transformation. A multi-component Cole-Hopf substitution 𝑣 = ⟨𝑢⟩−1𝑢𝑥

was considered, for instance, in works [3], [7]. Let us check whether this is a Miura type
substitution.

In order to do this, we write out relation (5) for this substitution with 𝑚 = 0. In this case
𝑎 = ⟨𝑢⟩𝑣, 𝑎𝑣 = ⟨𝑢⟩𝐸, 𝑎𝑢 = [𝑣]𝐶, where 𝐸 is the identity matrix and all entries of the matrix 𝐶
are equal to 1. It is also easy to see that 𝐷𝑥 (⟨𝑢⟩) = ⟨𝑢⟩⟨𝑣⟩. In view of this, in the case of the
Cole-Hopf substitution, relation (5) is of the form:

⟨𝑢⟩𝛽0 = (⟨𝑢⟩⟨𝑣⟩𝐸 − ⟨𝑢⟩[𝑣]𝐶)𝛽1. (8)

It is easy to see that for each vector 𝛽 ∈ ker𝐶, i.e., such that ⟨𝛽⟩ = 0, the vectors 𝛽1 = 𝛽 and
𝛽0 = ⟨𝑣⟩𝛽 satisfy this equation. One more solution of (8) is 𝛽0 = 0, 𝛽1 = 𝑣.

Thus, the Cole-Hopf substitution is a Miura type substitution and it has 𝑛 different initial
and target operators (6). They can be considered as two operators with the matrix coefficients
S = ⟨𝑢⟩𝐵 and H = 𝐷𝑥 ∘ 𝐵 + ⟨𝑣⟩�̃�, where the first column of the matrices 𝐵 and �̃� are
respectively the vector 𝑣 and a zero vector, while other columns of the both matrices coincide
and form a basis in ker𝐶. To be definite, as a basis in ker𝐶 we choose the vectors 𝑒𝑖, whose
first coordinate is −1, the 𝑖th coordinate is equal to 1, and the other coordinates are zero.
Under such choice we have

𝐵 =

⎛⎜⎜⎜⎜⎜⎝
𝑣1 −1 −1 . . . −1
𝑣2 1 0 . . . 0
𝑣3 0 1 . . . 0
...

...
...

. . .
...

𝑣𝑛 0 0 . . . 1

⎞⎟⎟⎟⎟⎟⎠ .

For each 𝑛-component vector function �⃗�, the transformation 𝑣 = ⟨𝑢⟩−1𝑢𝑥 transforms the system

𝑢𝑡 = S(�⃗�(𝑥, ⟨𝑢⟩−1𝑢𝑥, 𝐷𝑥(⟨𝑢⟩−1𝑢𝑥), . . . )) (9)

into the system 𝑣𝑡 = H(�⃗�(𝑥, 𝑣, 𝑣1, . . . )).
It was shown in work [7] that each system 𝑢𝑡 = Λ𝑢𝑥𝑥, where Λ is a constant matrix, admits

the substitution 𝑣 = ⟨𝑢⟩−1𝑢𝑥. We are going to generalize this observation by demonstrating
that each linear system (2) with 𝑓𝑢 = 0 can be represented as (9).

By induction in 𝑖, it is easy to check that ⟨𝑢⟩−1𝑢𝑖 = (𝐷𝑥 + ⟨𝑃 ⟩)𝑖−1(𝑃 ), where 𝑖 > 0 and
𝑃 = ⟨𝑢⟩−1𝑢𝑥. Indeed, for 𝑖 = 1 this identity coincides with the formula 𝑃 = ⟨𝑢⟩−1𝑢𝑥. If it
holds for some 𝑖, this implies that

𝑢𝑖+1

⟨𝑢⟩
= 𝐷𝑥

(︂
𝑢𝑖

⟨𝑢⟩

)︂
−𝐷𝑥

(︂
1

⟨𝑢⟩

)︂
𝑢𝑖 =

(︂
𝐷𝑥 +

⟨𝑢𝑥⟩
⟨𝑢⟩

)︂(︂
𝑢𝑖

⟨𝑢⟩

)︂
= (𝐷𝑥 + ⟨𝑃 ⟩)𝑖(𝑃 ).

In view of this identity we have

𝐴𝑢𝑖 = ⟨𝑢⟩𝐵𝐵−1𝐴(𝐷𝑥 + ⟨𝑃 ⟩)𝑖−1(𝑃 ) = S(𝐵−1𝐴(𝐷𝑥 + ⟨𝑃 ⟩)𝑖−1(𝑃 ))
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for each 𝑖 > 0 and each matrix 𝐴. If this matrix can be expressed in terms of 𝑥, 𝑃 and
the total derivatives of 𝑃 w.r.t. 𝑥, the system 𝑢𝑡 = 𝐴𝑢𝑖 can be represented as (9) with
�⃗� = 𝐵−1𝐴(𝐷𝑥 + ⟨𝑃 ⟩)𝑖−1(𝑃 ) and therefore, the Cole-Hopf substitution maps it to the system

𝑣𝑡 = H(�⃗�) = 𝐷𝑥

(︀
𝐴(𝐷𝑥 + ⟨𝑣⟩)𝑖−1(𝑣)

)︀
+ ⟨𝑣⟩�̃�𝐵−1𝐴(𝐷𝑥 + ⟨𝑣⟩)𝑖−1(𝑣). (10)

By straightforward check one can confirm that

𝐵−1 =
1

⟨𝑣⟩

⎛⎜⎜⎜⎜⎜⎝
1 1 1 . . . 1

−𝑣2 ⟨𝑣⟩ − 𝑣2 −𝑣2 . . . −𝑣2

−𝑣3 −𝑣3 ⟨𝑣⟩ − 𝑣3 . . . −𝑣3

...
...

...
. . .

...
−𝑣𝑛 −𝑣𝑛 −𝑣𝑛 . . . ⟨𝑣⟩ − 𝑣𝑛

⎞⎟⎟⎟⎟⎟⎠ .

It follows from (�̃� + 𝐵 − �̃�)𝐵−1 = 𝐸 that �̃�𝐵−1 = 𝐸 + (�̃� − 𝐵)𝐵−1. The first column of
the matrix �̃� − 𝐵 is equal to −𝑣, while the other entries of this matrix are zero. This is why
�̃�𝐵−1 = 𝐸 − ⟨𝑣⟩−1[𝑣]𝐶. Substituting the latter expression into (10), we obtain

𝑣𝑡 = (𝐷𝑥 + ⟨𝑣⟩)
(︀
𝐴(𝐷𝑥 + ⟨𝑣⟩)𝑖−1(𝑣)

)︀
− ⟨𝐴(𝐷𝑥 + ⟨𝑣⟩)𝑖−1(𝑣)⟩𝑣.

In particular, this implies that each system of form

𝑣𝑡 =
𝑘∑︁

𝑖=1

(︀
(𝐷𝑥 + ⟨𝑣⟩)

(︀
𝐴𝑖(𝑡, 𝑥)(𝐷𝑥 + ⟨𝑣⟩)𝑖−1(𝑣)

)︀
− ⟨𝐴𝑖(𝑡, 𝑥)(𝐷𝑥 + ⟨𝑣⟩)𝑖−1(𝑣)⟩𝑣

)︀
,

where 𝐴𝑖 are matrices of size 𝑛× 𝑛, is C-integrable since it is obtained from the linear system
𝑢𝑡 =

∑︀𝑘
𝑖=1𝐴𝑖(𝑡, 𝑥)𝑢𝑖 by the Cole-Hopf substitution. Here we have added the dependence on

𝑡 into �⃗�, since nothing prevents us from considering substitutions (1) for systems (2) with an
explicit dependence on 𝑡 in the right hand side. The only difference caused by adding 𝑡 in
definition 1 is that 𝑓 in (4) can also depends on 𝑡. And the dependence on 𝑡 in �⃗� makes no
influence on the defining relation (𝑃𝑢𝑥𝐷𝑥 − 𝑃𝑢) ∘ S = H.

3.2. Exponential substitution. . One of the scalar Miura substitutions is the substitution
𝑣 = 𝑢𝑥 + exp(𝑢), see, for instance, [1, 4]. Let us try to construct its multi-component analogue.
In order to do this, we denote by eu the vector (exp(𝑢1), exp(𝑢2), . . . , exp(𝑢𝑛))⊤ and let us check
whether 𝑣 = 𝑢𝑥 − 𝐴eu, where 𝐴 is a constant 𝑛× 𝑛 matrix, is a Miura type substitution.

As 𝑚 = 0, condition (5) for this substitution is of the form 𝛽0 +𝐴[eu]𝛽1 = 0. Differentiating
this identity in 𝑢𝑖, we obtain that the product of 𝑖th coordinate of the vector 𝛽1 and of 𝑖th
column of the matrix 𝐴 is zero. This is why the substitution 𝑣 = 𝑢𝑥−𝐴eu with a non-degenerate
matrix 𝐴, that is, in the general case, does not admit an initial zero order operator.

In the case 𝑚 = 1 identity (5) is written as

𝛽0 + 𝐴[eu]𝛽1 = 𝐴[eu]([𝑣 + 𝐴eu] − 𝐴[eu])𝛽2. (11)

We denote by ♯𝑖𝑗 the vector, whose coordinates from the 𝑖th up to the 𝑗th are equal to 1, while

other coordinates are zero. It is easy to see that 𝛽2 = ♯1𝑛, 𝛽1 = 𝑣 and 𝛽0 = 0 is a solution to (11).
The corresponding initial and target operators are 𝑆 = ♯1𝑛𝐷𝑥 +𝑢𝑥, 𝐻 = ♯1𝑛𝐷

2
𝑥 +𝑣𝐷𝑥 +𝑣𝑥. Thus,

𝑣 = 𝑢𝑥−𝐴eu is a Miura type substitution for each constants matrix 𝐴. For a special matrix 𝐴
this substitution can admit additional initial and target operators. Apart of the matrix 𝐴 with
one or more zero columns discussed in the previous paragraph, additional initial and target
operators can also arise under the condition det(𝐴) ̸= 0.

For instance, if the matrix 𝐴 is block diagonal with 𝑖th block located in the rows and columns
from 𝑝𝑖th to 𝑞𝑖th, then 𝛽2 = ♯𝑝𝑖𝑞𝑖 , 𝛽1 = [𝑣]♯𝑝𝑖𝑞𝑖 and 𝛽0 = 0 are also solutions of (11). In particular,
if the matrix 𝐴 is diagonal, that is, the size of all blocks is 1, the corresponding set of initial and
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target operators can be written as S = 𝐸𝐷𝑥 + [𝑢𝑥], H = 𝐸𝐷2
𝑥 + [𝑣]𝐷𝑥 + [𝑣𝑥]. We can not also

exclude that additional initial and target operators can be found while analysing relation (5)
with 𝑚 > 1.
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