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MINIMUM MODULUS OF LACUNARY POWER SERIES
AND h-MEASURE OF EXCEPTIONAL SETS

T.M. SALO, 0O.B. SKASKIV

Abstract. We consider some generalizations of Fenton theorem for the entire functions
represented by lacunary power series. Let f(2) = 3.4°0 fx2™, where (ng) is a strictly
increasing sequence of non-negative integers. We denote by

My(r) = max{[f(2)]: |z| = r},
my(r) = minf|f(2)|: |z[ =},
pg(r) = max{|fp|r"*: k > 0}
the maximum modulus, the minimum modulus and the maximum term of f, respectively.

Let h(r) be a positive continuous function increasing to infinity on [1,400) with a non-
decreasing derivative. For a measurable set E C [1,4+00) we introduce h — meas (E) =

i) B dhr) Ty this paper we establish conditions guaranteeing that the relations

T
My(r) = (1 +o(1))mys(r), Ms(r) = (1+o(1))ps(r)
are true as r — +o0o outside some exceptional set E such that h — meas (F) < +oo. For
some subclasses we obtain necessary and sufficient conditions. We also provide similar
results for entire Dirichlet series.
Keywords: lacunary power series, minimum modulus, maximum modulus, maximal term,
entire Dirichlet series, exceptional set, h-measure
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1. INTRODUCTION

Let L be the class of positive continuous functions increasing to infinity on [0;+00). By
L' we denote the subclass of L consisting of the differentiable functions with a non-decreasing
derivative, and L~ stands for the subclass of functions with a non-increasing derivative.

Let f be an entire function of the form

Fz) =) fuz"™, (1)

where (ny) is a strictly increasing sequence of nonnegative integers. Given r > 0, we denote by
My(r) = max{|f(2)|: || = r}, my(r) = min{|f ()]s |2 = r}, ug(r) = ma{[flr™: & > 0} the
maximum modulus, the minimum modulus and the maximum term of f, respectively.

P.C. Fenton [I] (see also [2]) proved the following statement.

Theorem 1 ([1]). If
+00 1

Y ——— <+, (2)
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then for every entire function f of the form there exists a set E C [1,400) of finite loga-
rithmic measure, i.e. log-meas F := fEdlogr < 400, such that the relations

Mi(r) = (L +o(1))my(r),  M;(r) = (L+o(1))py(r) (3)
hold as r — +oo (r ¢ E).

P. Erdés and A.J. Macintyre [2] proved that condition implies that holds as
r =r; = +oo for some sequence (7).
Denote by D(A) the class of entire (absolutely convergent in the complex plane) Dirichlet

series of the form
ERCS)

F(z) =) a,e™, (4)

where A = (\,,) is a fixed sequence such that 8:0 Ao < A T4Hoo (1 <nt+o0).
Let us introduce some notations. Given F' € D(A) and = € R, we denote by
w(z, F) = max{|a,|e"™ :n >0}
the maximal term of series , by
Mz, F) = sup{|F(z + iy)|: y € R}
we denote the maximum modulus of series , by
m(z, F) = inf{|F(x +iy)|: y € R}
we denote the minimum modulus of series , and
v(z, F) = max{n: |a,|e"™" = u(z, F)}
stands for the central index of series .
In [3] (see also [4]) we find the following theorem.
Theorem 2 ([3]). For every entire function F' € D(A) the relation
F(z +iy) = (1+ 0(1))a,(z gyl vam (5)

holds as x — +00 outside some set E of finite Lebesque measure (fE dx < 400) uniformly in
y € R, if and only if

—+00

1

_— . 6
2N < 400 (6)

Note, that in the paper [5] there were proved the analogues of other statements in the paper
by P.C. Fenton [I] for subclasses of functions F' € D(A) defined by various restrictions on the
growth rate of the maximal term pu(x, F').

The finiteness of Lebesgue measure of an exceptional set E in theorem A is the best possible
description. This is implied by the next statement.

Theorem 3 ([6]). For every sequence X = (\) (including those which satisfy (6)) and
for every continuously differentiable function h: [0,4+00) — (0,4+00) such that W(x) / +o0
(x — +00) there exist an entire Dirichlet series F' € D()\), a constant f > 0 and a measurable

set By C [0,+00) of infinite h-measure (h — meas (E}) = fEl dh(x) = +00) such that
VzeE): M, F)> 1+ B)u(zx, F), M(x,F)>(1+8)m(x, F). (7)

Recently, Ya.V. Mykytyuk remarked that in Theorem (3], it is sufficient to assume that a
positive non-decreasing function h is such that

h(z)
— — 400 as x — 4o00.
T
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It follows from Theorem |3 that the finiteness of logarithmic measure of an exceptional set £
in Fenton’s Theorem (1| is also the best possible description.
It is easy to see that the relation

F(z +iy) = (1 + 0(1))a,(z g™ T am
holds as * — 400 (x ¢ E) uniformly in y € R if and only if
M(z,F)~p(z,F) and M(z,F)~m(xz,F) (x— +oo, x ¢ E). (8)

In view of Theorem [3] the natural question arises: what conditions should an entire Dirichlet
series satisfy in order to relation @ be true as x — 400 outside some set Fs of finite h-measure,
ie.,

h — meas (Fs) < 4007

In this paper we provide the answer to this question as h € L*.

2. h—MEASURE WITH NON-DECREASING DENSITY

According to Theorem , in the case h € L™, condition @ must be fulfilled. Therefore, in
the subclass

DA, ®)={Fe D) : Inp(z,F) > 2P(z) (x > x0)}, D€L,
it should be strengthened. The following theorem indicates this.

Theorem 4. Let ® € L, h € Lt and ¢ be the inverse function for the function ®. If

b
(Vb > 0) M)+ ———— ) < 400, 9
Z )\k+1 Ak <§0( 2 Akg1 — )\k> (9)

then for all F € D(A, ®) identity (@ s true as x — 400 outside some set E of a finite
h-measure uniformly in y € R.

Before proving this theorem, we need additional notations and an auxiliary lemma.
Denote Ag = 0 and

n—1 00 1 1
Z AR Z (/\m - )\m—l * )\m—‘rl - /\m> '
7=0 m:]-‘rl

for n > 1. The next lemma is similar to Lemma 1 in [§].
Lemma 1. For alln > 0 and k > 1, the inequality

D omen=2e)  gmaln—kl (10)
677

is true, where a,, = e?", ¢ > 0, and

q Ap_1 — Ag

T = Tila) = que + m’ T e — N1

Proof. Since
In Qp — In Op_1 = Q(An - An—l) = _qxn(/\n - /\n—1>7
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for n > k + 1 we have

n

(67% -
lna—k + Tk(/\n — )\k) = —(q Z .Tj()\j — )\j—l) + Tk Z ()\] — )\j—l)

== > gz —m) (0 — A)
j=ht1

<= > gz — 7o) (A = Njoa)

j=k+1

Similarly, for n < k — 1 we obtain

2 On = M) =—In 25 O — A

(6753 Ay,
k k
=q Z Ti(Aj = Aj-1) = Tk Z (A = Aj-1)
j=n+1 Jj=n+1
k
== ) (T —ax) (O — A1)
j=n+1
k k
<= ) (=) N —Na)=—¢ Y, 1=—q(k—n),
j=n+1 j=n+1
and this completes the proof. O]

Proof of Theorem[f] We first note that condition @D implies the convergence of series @ We
consider the function

Since A,, > 0, we have f, € D(A) and v(z, f,) = 400 (v — +00).

Let J be the range of the central index v(x, f,). Denote by (Ry) the sequence of the jump
points of central index, numbered in such a way that v(z, f,) = k for all © € [Ry, Ri41) and
Ry < Rgy1. Then for all © € [Ry, Rg11) and n > 0 we have

a_nex)\n < %GI)\k.
Qp Qg

According to Lemmal (1| for = € [Ry, + 73, Rk11 + %) we obtain

A

€™ _ g An—A —gln—k

S S MM et (0> 0),
k k

Therefore,
vz, F) =k, plx, F)=ae™ (x&[Ry+ T Rpp1+ 7)) (11)
and
|F(z +iy) — ay(%F)e(:erz'y)/\y(m,Fw < Z pu(x, F)e~an—v@
n#v(z,F) (12)

—q
<2 p(z, F)

1—e¢
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for all x € [Ry + T, Rpy1 + ) and k& € J. Thus, inequality holds for all

de +oo
r ¢ Ei(q) ) U [Res1 + 7oy Rigr + Tog1)-
k=0
Since
2q
Tk — T =
o Akt1 = Ak

and by the Lagrange theorem
M Byi1 + 1) = M(Bir + 7)) = (Ter — 7)W (Bien + 7+ 0T — 7)),
where 0 € (0;1), for each ¢ > 0 we have

Rpq1+Trt1

h — meas (F1(q)) = Z/ dh(x)

k=0 Y Be+1+7%

+o0
= (M(Ris1 + 7i1) — h(Risr + 7)) (13)
k=0

“+o00

1 1
<2 S — (R + 75 + 2 —)
12 S (R £ 25

Here we have employed the condition h € L.
For F € D(A,®) and x > max{zo, 1} we have

r®(z) <Inp(z, F) =Inu(l, F) + //\V(x,f)dx SInp(L, F) 4+ (x — 1) A@—o0,r)-
1
This implies
z®(x) < 2Ay(z—0,F) (14)
for all x > x1 > xg, i.e.
r< (Au(mfo,F)) (x> x4).
Thus, according to , for k > ko we obtain

Riy1+ 7k <@ (M(igrtm—0.)) = ©(Ae).
Applying this inequality to inequality , by the condition h € LT we have
+oo

1 1
h — meas (E <2 o P (PA) + 25— ). o
(Ei(q)) Q§ o (so( b 205 —— )\k) (15)

Therefore, using (9) we conclude that h — meas (E1(g)) < +oo.
Let g = k. Since h — meas (E1(qx)) < 400, we have

h —meas (E1(qx) N [z, +0)) = o(1) (z — +00),
hence, it is possible to choose an increasing to +oo sequence (xy) such that

1
h — meas (E)(gr) N [z; +00)) < w2

+o00
for all k > 1. Denote Ey = |J (E1(gr) N [k 211)). Then
k=1
+oo +oo
h —meas (F;) = Zh —meas (B (q) N2k Tp1)) < Y — < +00,
k=1

k2
_ k=1
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On the other hand, by inequality (12)), for © € [xx; x411) \ E1 we get

. T+ e
|F (2 + i) — Qe pye @ PNen | < 2 T e_qkﬂ(:p, F),
and therefore, as * — +oo (x ¢ Ey), we obtain . The proof is complete. ]

We observe that if k(z) = z, then condition (9) becomes condition (6], and h-measure of the
set F is its Lebesgue measure.
Let ® € L. Consider the classes

Do(A,®) ={F € D(A): (3K > 0)[Inp(z, ®) > Ka®(z) (z > 20)]},
Dy(A, @) ={F € D(A): (3K, Ky > 0)[Inp(z,®) > K1j2P(Kex) (x > x0)]}.

Theorem 5. Let &g € L, h € Lt and ¢y be the inverse function for the function ®q. If

b
Vb > O bA\,) + —— | < 40, 16
Z AHH . (m )+ An) (16)

then for each function F € Do(A, ®y) relation (@ holds as * — 400 outside some set E of
finite h - measure uniformly in y € R.

Theorem 6. Let &, € L, h € Lt, and ¢, be the inverse function to the function ®. If

< 400, 17
)‘n—I—l - ( )

then for every function F' € Dy (A, (131) relation @ holds as x — +o0 outside some set E of
finite h-measure uniformly in y € R.

Proof of Theorems[J and[6. Theorems [f] and [6] are implied immediately by Theorem [4]
Indeed, if F € Dy(A,®p), then FF € DA, ®) as ®(z) = KPy(x). But in this case
¢(z) = po(z/K) and condition (9) follows condition (I6). Then it remains to apply Theo-
rem [l
In the same way, if F' € Dy (A, ), then F' € D(A, ®) as ¢(z) = K1P;(Kyz). But in this case
¢(z) = ¢1(z/K1)/K> and hence, condition (9 follows condition (17). It remains to employ
Theorem [] once again. O

Remark 1. It is easy to see that for each fized functions h € L™ and ® € L there exists a
sequence A such that conditions @D, and hold.

The next theorem shows that condition is necessary for relations , to hold for each
F € Di(A,®,) as © — +o0 outside a set of a finite h-measure. Here we assume that condition

@ is satisfied.

Theorem 7. Let &, € L, h € L™, and p; be the inverse function for the function ®,. For
each sequence A such that
o= W (bp (b)) b)\

(3b > 0) = +o0, (18)
)\nJrl -

there exist a function F € Dy(A,®y), a set E C [0,+00) and a constant [ > 0 such that
inequalities (1) hold for all x € E and h — meas (E) = +00.
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Proof. We denote s = 35 =1, 3¢, = > 11, (n > 3), where

— max{bwl(bh) Ny — : Al}

e = max {bp1 (BAss1) = bpr (bAR), (k>2),

S

and we also choose
ap=1, a,= exp{ — Z%k()\k — )\k_l)} (n>1).
k=1

We prove that the function F' defined by series (4]) with the above defined coefficients (a,) and
the exponents (\,,) belongs to the class Dy (A, ®q).
Since the condition
Z \ < 400

n+1l —

nn
implies n? = o(\,) (n — +00), we have ~ 0 (n — 400). By the construction,
Ina,—1 —Ina,

)\n - )\nfl

(n>1)

My —

and sz, T 400 (n — +00). Therefore Stolz theorem yields that —

(n — +00) and
by Valiron formula [9] the abscissa of the absolute convergence of series is equal to +o00,
ie., FF e D(A).
Moreover, it is known that in the case s, T 400 (n — +00) we have
Vo € [, s041) 0 p(x, F) = ape™,  v(z, F) =n. (19)

Since by the construction
n—2

1
”, < bgOl(b)\nfl) + Z m < 2[)(,01([))\”,1) (n > no),

for sufficiently large n for all x € [5,, »,,1) we have

2x

Inp(2z, F) =Inpu(x, F) + /)\l,(t)dt = Ty (z)

xT

x K1 T x
g ()2 0 (3)
v b '\ b \2p

Hence, for x > xy we have

and thus F' € Dy (A, @q).
We observe that

> 1 ( > 1)
”, — Xy =Tn1 =z TV nz :
+1 1 )\n - /\n—l
For x € [%n, Ao+ 5 _f\ ] we have

n n—1

33>\n71 Z'Anfl

ap—1€ ap-1€ -
L S = exp{(An — A1) (30 — )} = 7' = B, (20)

p(z, F) Ay €%An
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and, therefore, for x € £ = |J [%n, %, + ﬁ] , by choosing n = v(x, F') we get

n=1

a?’L— 1 ex)\nf 1

F(2) > ap_1€"" ' + a,e™ = p(z, F) (1 +

) > (14 B)ula, F).

anex)\n

Hence, inequalities are true.
Now we prove that h — meas (F) = +00. By the construction of (¢,) for all n > 1 we have

~, Z bg01<b/\n_1). (21)

Taking into consideration the Lagrange theorem, the condition h € L™ and inequality ,
we obtain

oo %n+m oo 1
h — meas (F) :Z dh(z) = (h(%n + W 1) h(%n)>
n=1 o n=1 n n-
+oo
W (bpr (bAn-1))
> > —
ZA —Anl 2D Dh ves vl
The proof is complete. O

The next criterion is implied immediately by Theorems [6] and [7]

Theorem 8. Let &, € L, h € L™ and ¢, be the inverse function for the function ®,. For
each entire function F € Di(A, ®1) relation (8) holds as x — +oo outside some set E of a
finite h-measure uniformly iny € R if and only if is true.

It is worth noting that if condition of Theorem [5| is not fulfilled, that is

by
(3, > 0) b)) 4+ —— ) = oo,
> Z )\n+1 (%( 1An) + P )\n) +00
then for b = max{b;; 2} we have

Ry 1 (bgo (b)) b)\

)\n+1 -

Therefore, condition holds and according Theorem there exist a function F' € Dy (A, o),
aset E C [0,400) and a constant [ > 0 such that inequalities hold for all x € E and
h —meas (F) = +oo.

Since for ®y(x) = 2%, o > 0, we have Dy(A, Pg) = D;(A, Py), from Theorem |5 and |7 we
obtain the following theorem.

Theorem 9. Let ®o(z) = z* (a > 0), h € L*. For each entire function F € Dy(A, Pp)
relation (@ holds as x — +00 outside some set E of a finite h-measure uniformly in y € R if
and only if

+o00 1

b
>0y — (b A 1/a+—) < 400,
( ) ;0 )\n-I-l - )\n ( ) /\n+1 - )\n

18 true.
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3. h-MEASURE WITH A NON-INCREASING DENSITY

We note that for each differentiable function A: Ry — R, with a bounded derivative
h'(z) < ¢ < 400 (x > 0) we have

[E dh(z) = /E W (2)dz < c /E da.

Hence, the finiteness of Lebesgue measure of a set E C R, implies h — meas(E) < +o0.
Therefore, according Theorem A, condition @ provides that the exceptional set E is of a finite
h-measure. However, we conjecture that for h € L™ in the subclass

Dy(A) = {F € D(A): (3ng)(Vn = ng)[|as| < exp{=Ap(A\)}}, €L,
condition @ can be weakened significantly. The following conjecture seems to be true.

Conjecture 1. Let p € L, he L™. If

S~ ()

< +00
n—=0 )\n+1 - /\n ’

then for all F' € D,(A) relation (@ is true as x — 400 outside some set E of finite h-measure
uniformly in y € R.

4. h—MEASURE AND LACUNARY POWER SERIES

The important corollaries for entire functions represented by a lacunary power series of the
form are implied by the proven theorems.

For an entire function f of the form (1)) we let F\(z) = f(e?), z € C.

We observe that as x = Inr, y = ¢,

F(z +iy) = F(lnr +ip) = f(re'¥)
and M(z, F) = Ms(r), m(z, F) = my(r), p(z, F) = pp(r), v(z, F) = ve(r). In addition, for

B, {r € R:Inr € E} and hy such that h}(z) = h'(e*) we have

h — log — meas(FE>) déf/ dh(r) :/ dh(e”) :/ dhi(x) = hy — meas(F).
B, T B € By

The next corollary is implied by Theorem B.
Corollary 1. For each sequence (ny) such that condition (@ holds and for each function

h € L* there exist an entire function f of the form , a constant > 0 and a set Ey of an
dhir) _ —i—oo) such that

(Vr € Ba): M) > (14 Bus(r),  My(r) > (1+ Bymy (). (22)
By Theorem [4] we obtain the following corollary.

infinite h-log-measure, i.e.(fE2

Corollary 2. Let ® € L, h € L" and ¢ be the inverse function for the function ®. If for an
entire function f of the form

Inpe(r) > Inrd(lnr) (r>ry) (23)
and
A | b
Vb > 0) : —h’(ex n —1——} < 400, 24
>0 32 ot (e {eton) + o) (24)
then the relation A ,
F(re?) = (14 0{1))a ™o (25)

holds as r — +o0 outside some set Ey of finite h-log-measure uniformly in ¢ € [0, 27].
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In fact, it follows from condition that F' € D(A, ®) with A = (n;) and it remains to
apply Theorem {] with the function h;.
Denote by £ the class of entire functions of positive lower order, i.e.
Ap:= lim Inln Ms(r)/Inr > 0.
r—+00

By Theorem 8| we obtain the following corollary.

Corollary 3. Let h € L*. In order the relations hold for each function f € &€ of the
form as r — +0o outside a set of a finite h-log-measure, it is necessary and sufficient to

have
+oo 1

(Vb>0): Y

k=0

! b
—nk—H — ’I’Lkh ((nk) ) < +00.
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