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“QUANTIZATIONS” OF ISOMONODROMIC

HAMILTON SYSTEM 𝐻
7
2+1

V.A. PAVLENKO, B.I. SULEIMANOV

Abstract. We consider two compatible linear evolution equations with times 𝑠1
and 𝑠2 depending on two spatial variables. These evolution equations are the ana-
logues of the non-stationary Schrödinger equations determined by the two Hamiltonians

𝐻
7
2
+1

𝑠𝑘 (𝑠1, 𝑠2, 𝑞1, 𝑞2, 𝑝1, 𝑝2) (𝑘 = 1, 2) of the Hamilton system 𝐻
7
2
+1 formed by a pair of

compatible Hamiltonian systems of equations admitting the application of isomonodromic
deformations method. These analogues arise from canonical non-stationary Schrödinger

equations determined by the Hamiltonians 𝐻
7
2
+1

𝑠𝑘 . They arise by the formal replacement of
the Planck constant by the imaginary unit. We construct explicit solutions of these ana-
logues of Schrödinger equations in terms of the solutions of the corresponding linear systems
of ordinary differential equations in the isomonodromic deformations method, whose com-

patibility condition is the Hamiltonian system 𝐻
7
2
+1. The key role in the construction

of these explicit solutions is played by the change, which was used earlier in constructing
the solutions of non-stationary Schrödinger equation determined by the Hamiltonians of
isomonodromic Hamiltonian Garnier system with two degrees of freedom as well as of two
isomonodromic degenerations of the latter. We discuss the applicability of this change for
constructing the solutions to analogues of non-stationary Schrödinger equations determined
by the Hamiltonians of the entire hierarchy of isomonodromic Hamiltonian systems with
two degrees of freedom being the degenerations of this Garnier system. We mention also

a relation of solutions to Hamilton systems 𝐻
7
2
+1 with some problems of modern nonlin-

ear mathematical physics. In particular, we show that the solutions of these Hamiltonian
systems are determined explicitly by the simultaneous solutions to the Korteweg-de Vries
equation 𝑢𝑡 + 𝑢𝑥𝑥𝑥 + 𝑢𝑢𝑥 = 0 and a non-autonomous fifth order ordinary differential equa-
tions, which are used in universal description of the influence of a small dispersion on the
transformation of weak hydrodynamical discontinuities into the strong ones.

Keywords: Hamilton systems, quantization, Shrödinger equation, Painlevé equations,
isomonodromic deformations method.
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1. Introduction

In wave quantum mechanics, the classical Hamilton systems of ordinary differential equations
(ODEs) with 𝑛 degrees of freedom

(𝜆𝑖)
′
𝜏 = 𝐻 ′

𝜇𝑖
, (𝜇𝑖)

′
𝜏 = −𝐻 ′

𝜆𝑖
(𝑖 = 1, . . . , 𝑛), (1)
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defined by the Hamiltonians 𝐻(𝜏, 𝜆1, . . . , 𝜆𝑛, 𝜇1, . . . , 𝜇𝑛) correspond to the evolution
Schrödinger equation

𝜀Ψ′
𝜏 = 𝐻(𝜏, 𝜁1, . . . , 𝜁𝑛,−𝜀

𝜕

𝜕𝜁1
, . . . ,−𝜀

𝜕

𝜕𝜁𝑛
)Ψ, (2)

where the dependence on the Planck constant is taken into consideration by means of the
parameter 𝜀 = 𝑖~.

Around 30 years ago, the second author of this paper found out that equations of form (2)
with 𝑛 = 1 and 𝜀 = 1 arise in the context of the theory of Painlevé equation. It turned out
[39], [40], [42] that such evolution equations are related with the representations of each of
sixth canonical Painlevé ODEs 𝜆′′

𝑡𝑡 = 𝑓𝑗(𝑡, 𝜆, 𝜆
′
𝑡) (𝑗 = 1, . . . , 6) both via the coordinate of the

Hamilton system with one degree of freedom of form (1) and via the compatibility condition of
linear differential equations in the isomonodromic deformations method (IDM):

𝑉 ′′
𝜁𝜁 = 𝑃 (𝜁, 𝜏, 𝜆, 𝜆′

𝜏 )𝑉, 𝑉 ′
𝜏 = 𝐵(𝜁, 𝜏, 𝜆, 𝜆′

𝜏 )𝑉 ′
𝜁 −

𝐵𝜁(𝜁, 𝜏, 𝜆, 𝜆
′
𝜏 )

2
𝑉 (3)

written out in the classical work by R. Garnier [6].
It was shown in [39], [40] that by explicit changes of form Ψ = 𝑉 exp(𝑆(𝜏, 𝜁)) the simultaneous

solutions 𝑉 of equations (3) are transformed to solutions of the evolution equations

𝜀
𝜕Ψ

𝜕𝜏
= 𝐻(𝜏, 𝜁, 𝜀

𝜕

𝜕𝜁
)Ψ (𝜀 = 1). (4)

The right hand sides of equations (4) are independent of 𝜆(𝜏) and 𝜇(𝜏). For a particular
choice of order of acting of the differentiation in the variable 𝜁 and the multiplication by this
variable, these right hand sides are defined by the Hamiltonians 𝐻 = 𝐻𝑗(𝜏, 𝜆, 𝜇) (𝑗 = 1, 6) of
Hamilton systems (1). By excluding the momenta 𝜇(𝜏) we get a second order ODE for the
coordinate 𝜆(𝜏) coinciding with the corresponding Painlevé equation. Another choice of order
admits a symbolic writing of six linear evolution equations in form of (2) [42]. Following the
terminology of paper [41], in what follows we call evolution equations (2) with constants 𝜀 ̸= 𝑖~
“quantizations” of corresponding Hamilton systems.

During the last decade, there were written quite a lot of works on relations of the equations
of IDM for Painlevé type ODEs with evolution linear equations of quantum mechanics and,
starting from work [36], of quantum field theory [1]–[3], [7], [8], [14]–[17], [19]–[24], [26], [27],
[32], [35]–[38], [41], [43]–[45].

In particular, in works [38], [42], in terms of the corresponding solutions to the linear equa-
tions in IDM there were constructed the solutions to “quantizations” (2) for three compatibly
isomonodromic Hamilton pair of systesm of ODEs with two degrees of freedom. At that, in [38]
there was considered the so-called Garnier system heading an entire hierarchy of isomonodromic
Hamilton systems with two degrees of freedom; these systems can be obtained from the Garnier
system by the procedure of successive degeneration [11], [13]. In [42] there were constructed
“quantizations” (2) of the pairs of Hamilton systems of ODEs being two lowest representatives
in this hierarchy. In Remark 2 in [38] there was formulated a conjecture that by means of this
procedure, constructions [38] can be extended to the entire hierarchy of the degenerations of
the Garnier system. This conjecture is likely true. But in order to realize such extension, the
procedure of successive degeneration described in [11], [13] should be also generalized for quan-
tum operators corresponding not only to classical coordinates but also to classical momenta.
As opposite to the known procedure of successive degeneration of the hierarchy of six classical
Painlevé equations, for a part of successive degenerations given in [11], [13], the combinations
of coordinates and momenta are employed. It is not so easy to make such generalization since
the Hamiltonians in the hierarchy of Hamilton systems considered in [11], [13], are quadratic
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only w.r.t. the momenta but not w.r.t. the coordinates. Because of this reason, at present, the
issue on constructing solutions to “quantizations” (2) via the solutions of the corresponding
linear equations of IDM for all systems in the hierarchy of the degenerations of the Garnier
system with two degrees of freedom is still open.

This paper is devoted to solving this issue for one of the system in this hierarchy, for so-called
system 𝐻

7
2
+1 [12]. This system is represented by a pair of compatible isomonodromic Hamilton

systems (1) with the Hamiltonians

𝐻
7
2
+1

𝑠1 (𝑠1, 𝑠2, 𝑞1, 𝑞2, 𝑝1, 𝑝2) = − 6𝑠1𝑝
2
1 + 4𝑞2𝑝1𝑝2 + 2(𝑞1 + 𝑠1)𝑞2𝑝

2
2 + 4𝛾𝑝1

+ 4𝛾(𝑞1 + 𝑠1)𝑝2 +
3

2
𝑠1𝑞

3
1 +

1

2
𝑞21𝑞2 − 2𝑠1𝑞1𝑞2

− 1

2
𝑞22 −

3

2
𝑠1(3𝑠

2
1 − 2𝑠2)𝑞1 −

1

2
(5𝑠21 − 2𝑠2)𝑞2,

(5)

𝐻
7
2
+1

𝑠2 (𝑠1, 𝑠2, 𝑞1, 𝑞2, 𝑝1, 𝑝2) =2𝑝21 − 2𝑞2𝑝
2
2 − 4𝛾𝑝2 −

1

2
𝑞31

+ (𝑞1 + 𝑠1)𝑞2 +
(3𝑠21 − 2𝑠2)𝑞1

2
,

(6)

where 𝛾 is a constant and the times are respectively 𝜏 = 𝑠1, 𝜏 = 𝑠2.
Before proceeding to the main part of the paper, we observe that in the initial list of isomon-

odromic Hamilton degenerations of the Garnier system with two degree of freedom provided in
paper [13], the pair of systems defined by Hamiltonians (5), (6) was not written out. This gap in
the list in [13] was covered by H. Kawamuko [12]. Meanwhile, similar to classical Painlevé equa-

tions, the Hamilton system 𝐻
7
2
+1 has relations with various issues in nonlinear mathematical

physics:
1) In Section 2 of the present work we show that the solutions to the pair of Hamilton

systems defined by Hamiltonians (5), (6), can be expressed via the simultaneous solutions to
the Korteweg-de Vires equation (KdV)

𝑢𝑡 + 𝑢𝑥𝑥𝑥 + 𝑢𝑢𝑥 = 0 (7)

and the stationary part of its symmetry

5𝛽

16

(︂
𝑢𝑥𝑥𝑥𝑥 +

5𝑢𝑢𝑥𝑥

3
+

5(𝑢𝑥)2

6
+

5𝑢3

18

)︂′

𝑥

+ 2𝑢 + 𝑥𝑢𝑥 − 3𝑡(𝑢𝑥𝑥𝑥 + 𝑢𝑢𝑥) = 0, (8)

𝛽 is an arbitrary constant. In the general situation, by means of these solutions, the influence
of a small dispersion on the transformation of weak hydrodynamical discontinuities into the
strong one is described [28]–[30].

2) D.P. Novikov attracted the attention of the authors to the fact that the same Hamilton
system determines the solutions to a non-autonomous Hénon-Heilis Hamilton system with the
Hamiltonian

𝐻𝐻𝐻 =
1

2
(𝑝21 + 𝑝22) + 𝑞31 +

1

2
𝑞1𝑞

2
2 −

(𝛼 + 1/2)2

2𝑞22
− 1

2
𝜏𝑞1, (9)

where 𝛼 is a constant. This system was introduced in work [9]. In terms of the solutions to
this Hamilton system, the solutions to the fourth order ODE

𝑤𝜏𝜏𝜏𝜏 − 10(𝑤2𝑤𝜏𝜏 + 𝑤𝑤2
𝜏 ) + 6𝑤5 − 𝜏𝑤 − 𝛼 = 0 (10)

can be represented. After [9], such solutions were considered from various points of view in
many papers, see, for instance, [4], [5], [31]. Special solutions to ODEs (10) with 𝛼 = 0
were studied earlier in a widely cited work by V. Periwal and D. Shevitz [18] devoted to some
integrable models in the string theory.
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2. Special isomonodormic solution to KdV equation and Hamilton system
𝐻

7
2
+1

2.1. KdV equation (7) is the compatibility condition for the systems of linear ODEs in the
problem of inverse scattering method (PISM)

𝑉𝑥 = 𝐿(𝜆, 𝑡, 𝑥)𝑉, 𝑉𝑡 = 𝑄(𝜆, 𝑡, 𝑥)𝑉, (11)

where

𝐿(𝜆, 𝑡, 𝑥) =

(︂
−𝑖𝜆 𝑢

6

−1 𝑖𝜆

)︂
,

𝑄(𝜆, 𝑡, 𝑥) = (−4𝑖𝜆3 +
𝑖𝜆𝑢

3
− 𝑢𝑥

6
)

(︂
1 0
0 −1

)︂
+ 4𝜆2

(︂
0 𝑢

6

−1 0

)︂
+

𝑖𝜆𝑢𝑥

3

(︂
0 1
0 0

)︂
+

(︂
0 −𝑢𝑥𝑥

6
− 𝑢2

18
𝑢
3

0

)︂
.

Its solutions compatible with ODE (8) are isomonodromical [33]: it turns out that for such
solutions to KdV equation there exist fundamental solutions to linear systems (11) satisfying
one more system of linear ODEs

𝑉𝜆 = 𝜆4𝐴(𝜆, 𝑡, 𝑥)𝑉, (12)

where 𝐴(𝜆, 𝑡, 𝑥) is a polynomial in 𝜆−1 matrix:

𝐴(𝜆, 𝑡, 𝑥) = 𝐴0(𝑡, 𝑥) +
𝐴1(𝑡, 𝑥)

𝜆
+

𝐴2(𝑡, 𝑥)

𝜆2
+

𝐴3(𝑡, 𝑥)

𝜆3
+

𝐴4(𝑡, 𝑥)

𝜆4
+

𝐴5(𝑡, 𝑥)

𝜆5
, (13)

where 𝛽 is a constant, with the coefficients

𝐴0(𝑡, 𝑥) = −5𝑖𝛽

(︂
1 0
0 −1

)︂
, 𝐴1(𝑡, 𝑥) = 5𝛽

(︂
0 𝑢

6

−1 0

)︂
,

𝐴2(𝑡, 𝑥) = 𝑖

(︂
5𝛽𝑢
12

− 12𝑡 5𝛽𝑢𝑥

12

0 −5𝛽𝑢
12

+ 12𝑡

)︂
, 𝐴3(𝑡, 𝑥) =

(︂
−5𝛽𝑢𝑥

24
−5𝛽𝑢𝑥𝑥

24
− 5𝛽𝑢2

72
+ 2𝑡𝑢

5𝛽𝑢
12

− 12𝑡 5𝛽𝑢𝑥

24

)︂
,

𝐴4(𝑡, 𝑥) = 𝑖

(︃
−5𝛽𝑢𝑥𝑥

48
− 5𝛽𝑢2

96
+ 𝑡𝑢− 𝑥 −5𝛽𝑢𝑥𝑥𝑥

48
− 5𝛽𝑢𝑢𝑥

48
+ 𝑡𝑢𝑥

0 5𝛽𝑢𝑥𝑥

48
+ 5𝛽𝑢2

96
− 𝑡𝑢 + 𝑥

)︃
,

𝐴5(𝑡, 𝑥) =

(︃
5𝛽𝑢𝑥𝑥𝑥

96
+ 5𝛽𝑢𝑢𝑥

96
− 𝑡𝑢𝑥

2
+ 1

2
5𝛽𝑢𝑥𝑥𝑥𝑥

96
+ 5𝛽𝑢2

𝑥

96
+ 5𝛽𝑢𝑢𝑥𝑥

72
+ 5𝛽𝑢3

576
+ 𝑥𝑢

6
− 𝑡𝑢2

6
− 𝑡𝑢𝑥𝑥

2

−5𝛽𝑢𝑥𝑥

48
− 5𝛽𝑢2

96
+ 𝑡𝑢− 𝑥 −5𝛽𝑢𝑥𝑥𝑥

96
− 5𝛽𝑢𝑢𝑥

96
+ 𝑡𝑢𝑥

2
− 1

2

)︃
.

The compatibility condition of the first system in pair (11) with system (12) is exactly ODE
(8). At that, the identity det𝐴5 = −(𝜃0)2 = 𝑐𝑜𝑛𝑠𝑡 holds. This identity is a fourth order ODE
satisfied by all simultaneous solutions 𝑢(𝑡, 𝑥) of KdV equation (7) and ODE (8).

Remark 1. We found the precise form of system of linear equations (12) by means of the
Fourier integral

𝐽 =

∫︁ ∞

−∞
𝜆 exp((𝑥𝜆− 𝑡𝜆3 + 𝛽𝜆5/16))𝑑𝜆. (14)

As it was mentioned in [28], this integral satisfies linear parts of KdV equation (7) and ODE
(8). The coefficients of this system were defined in view of the condition that the pair of equa-
tions PISM (11) corresponding to simultaneous solutions of (7) and ODE (8) should possesses
a fundamental solution 𝑉 (𝜆, 𝑡, 𝑥) with the only essential singular point 𝜆 = ∞ having the
asymptotics

𝑉 (𝜆, 𝑡, 𝑥) ≈ exp

{︂
−𝑖(𝜆𝑥 + 4𝑡𝜆3 + 𝛽𝜆5 + 𝑐𝑜𝑛𝑠𝑡 ln𝜆)

(︂
1 0
0 −1

)︂}︂
as 𝜆 → ∞ in some sector of the complex 𝜆-plane. The leading term in this asymptotics is
similar to the integrand in (14). Thus, the similarities between this Fourier integral and a
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simultaneous solution of the pair of equations (7), (8) are extended to the corresponding IDM
equations according the general theory of such isomonodromic analogues of Fourier integrals of
special form and the practice of applying them, see [34], [46] and the references in the latter
work.

By means of the transformation

𝑉 (𝜆, 𝑡, 𝑥) = 𝑇 (𝜆, 𝑡, 𝑥)Φ(𝜁, 𝑡, 𝑥) =

(︂
𝑖𝜆 −1
1 0

)︂
Φ(𝜁, 𝑡, 𝑥), 𝜁 = −𝜆2

the simultaneous solutions to systems (11), (12) are transformed to solutions of three slightly
more nestled systems of linear ODEs⎧⎪⎨⎪⎩

Φ𝑥 = 𝐿1(𝜁, 𝑡, 𝑥)Φ,

Φ𝑡 = 𝑄1(𝜁, 𝑡, 𝑥)Φ,

Φ𝜁 = 𝐵(𝜁, 𝑡, 𝑥)Φ

(15)

with matrix coefficients

𝐿1(𝜁, 𝑡, 𝑥) = 𝑇−1𝐿𝑇 =

(︂
0 1

𝜁 − 𝑢
6

0

)︂
,

𝑄1(𝜁, 𝑡, 𝑥) = 𝑇−1𝑄𝑇 =

(︂
𝑢𝑥

6
−4𝜁 − 𝑢

3
𝑢𝑥𝑥

6
+ 𝑢2

18
+ 𝑢

3
𝜁 − 4𝜁2 −𝑢𝑥

6

)︂
,

𝐵(𝜁, 𝑡, 𝑥) = − 1

2𝜆
(𝜆4𝑇−1𝐴𝑇 − 𝑇−1𝑇 ′

𝜆) =

(︂
𝐵11(𝜁, 𝑡, 𝑥) 𝐵12(𝜁, 𝑡, 𝑥)
𝐵21(𝜁, 𝑡, 𝑥) 𝐵22(𝜁, 𝑡, 𝑥)

)︂
,

where

𝐵11(𝜁, 𝑡, 𝑥) = −𝐵22(𝜁, 𝑡, 𝑥) = −5𝛽𝑢𝑥

48
− 5𝛽𝑢𝑥𝑥𝑥

192𝜁
− 5𝛽𝑢𝑢𝑥

192𝜁
+

𝑡𝑢𝑥

4𝜁
− 1

4𝜁
,

𝐵12(𝜁, 𝑡, 𝑥) =
5𝛽𝜁

2
+

5𝛽𝑢

24
− 6𝑡 +

5𝛽𝑢𝑥𝑥

96𝜁
+

5𝛽𝑢2

192𝜁
− 𝑡𝑢

2𝜁
+

𝑥

2𝜁
,

𝐵21(𝜁, 𝑡, 𝑥) =
5𝛽𝜁2

2
− 5𝛽𝑢𝜁

24
− 6𝑡𝜁 − 5𝛽𝑢2

576
− 5𝛽𝑢𝑥𝑥

96
+

𝑡𝑢

2
+

𝑥

2

− 5𝛽𝑢𝑥𝑥𝑥𝑥

192𝜁
− 5𝛽𝑢2

𝑥

192𝜁
− 5𝛽𝑢𝑢𝑥𝑥

144𝜁
− 5𝛽𝑢3

1152𝜁
− 𝑥𝑢

12𝜁
+

𝑡𝑢2

12𝜁
+

𝑡𝑢𝑥𝑥

4𝜁
.

In what follows, for convenience and without loss of generality we assume that 𝛽 = 0.4.
2.2. The Hamilton system 𝐻

7
2
+1 defined by the pair of Hamiltonians (5), (6) is two compat-

ible systems of ODEs⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝜕𝑞1
𝜕𝑠1

= 4𝑝2𝑞2 − 12𝑠1𝑝1 + 4𝛾,

𝜕𝑞2
𝜕𝑠1

= 4𝑝1𝑞2 + 4(𝑞1 + 𝑠1)(𝑝2𝑞2 + 𝛾),

𝜕𝑝1
𝜕𝑠1

= −4𝛾𝑝2 − 2𝑝22𝑞2 −
9

2
𝑠1(𝑞

2
1 − 𝑠21) − 𝑞1𝑞2 + 2𝑠1𝑞2 − 3𝑠1𝑠2,

𝜕𝑝2
𝜕𝑠1

= −4𝑝1𝑝2 − 2(𝑞1 + 𝑠1)𝑝
2
2 −

1

2
(𝑞21 − 5𝑠21 + 2𝑠2) + 2𝑠1𝑞1 + 𝑞2,

(16)
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𝜕𝑞1
𝜕𝑠2

= 4𝑝1,

𝜕𝑞2
𝜕𝑠2

= −4𝑝2𝑞2 − 4𝛾,

𝜕𝑝1
𝜕𝑠2

𝑞1 =
3

2
𝑞21 − 𝑞2 + 𝑠2 −

3𝑠21
2

,

𝜕𝑝2
𝜕𝑠2

= −𝑞1 − 𝑠1 + 2𝑝22.

(17)

By the changes

𝜇1 =
5
√

4𝑝1, 𝜆1 =
1
5
√

4
𝑞1, 𝜇2 =

1
5
√

16
𝑞2, 𝜆2 = − 5

√
16𝑝2;

𝑡1 =
5
√

2

(︂
𝑠2 −

3𝑠21
2

)︂
, 𝑡2 = − 5

√
8𝑠1; 𝜃0 = 2𝛾

(18)

these two Hamilton systems of ODEs are reduced to compatible Hamilton systems⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝜕𝜆1

𝜕𝑡1
=

𝜕𝐾1

𝜕𝜇1

= 2𝜇1,

𝜕𝜆2

𝜕𝑡1
=

𝜕𝐾1

𝜕𝜇2

= 2𝜆1 − 𝜆2
2 − 𝑡2,

𝜕𝜇1

𝜕𝑡1
= −𝜕𝐾1

𝜕𝜆1

= −2𝜇2 + 3𝜆2
1 + 𝑡1,

𝜕𝜇2

𝜕𝑡1
= −𝜕𝐾1

𝜕𝜆2

= 2𝜇2𝜆2 − 𝜃0,

(19)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝜕𝜆1

𝜕𝑡2
=

𝜕𝐾2

𝜕𝜇1

= 2𝜇2𝜆2 − 𝜃0,

𝜕𝜆2

𝜕𝑡2
=

𝜕𝐾2

𝜕𝜇2

= 2𝜇2 + 2𝜇1𝜆2 − 𝑡2𝜆
2
2 − 𝑡22 − 𝜆1𝜆

2
2 − 𝜆2

1 + 𝜆1𝑡2 − 𝑡1,

𝜕𝜇1

𝜕𝑡2
= −𝜕𝐾2

𝜕𝜆1

= 𝜇2(𝜆
2
2 + 2𝜆1 − 𝑡2) − 𝜃0𝜆2,

𝜕𝜇2

𝜕𝑡2
= −𝜕𝐾2

𝜕𝜆2

= −2𝜇1𝜇2 + 2𝜇2𝜆2(𝜆1 + 𝑡2) − 𝜃0(𝜆1 + 𝑡2)

(20)

with the Hamiltonians

𝐾1 = 𝜇2
1 + (2𝜆1 − 𝜆2

2 − 𝑡2)𝜇2 − 𝜆3
1 − 𝑡1𝜆1 + 𝜃0𝜆2,

𝐾2 = 𝜇2
2 + 2𝜆2𝜇1𝜇2 − 𝜃0𝜇1 − 𝜇2(𝜆

2
1 + (𝜆1 + 𝑡2)𝜆

2
2 − 𝑡2𝜆1 + 𝑡1 + 𝑡22) + 𝜃0𝑡2𝜆2 + 𝜃0𝜆1𝜆2,

times 𝜏 = 𝑡1, 𝜏 = 𝑡2, coordinates 𝜆1, 𝜆2 and momenta 𝜇1, 𝜇2.
2.3. In recent work by H. Kawakami, Hamilton systems (19), (20) was represented as the

compatibility condition of the following three systems of linear IDM equations⎧⎪⎪⎨⎪⎪⎩
𝜕𝑌1

𝜕𝑡1
= (𝜁 + 2𝜆1 − 𝑡2)𝑌2,

𝜕𝑌2

𝜕𝑡1
= 𝑌1,

(21)

⎧⎪⎪⎨⎪⎪⎩
𝜕𝑌1

𝜕𝑡2
= 𝜇1𝑌1 + (−𝜁2 + 𝜁(2𝑡2 − 𝜆1) + 2𝜇2 − 𝜆2

1 + 𝑡2𝜆1 − 𝑡1 − 𝑡22)𝑌2,

𝜕𝑌2

𝜕𝑡2
= (−𝜁 + 𝜆1 + 𝑡2)𝑌1 − 𝜇1𝑌2,

(22)
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𝜕𝑌1

𝜕𝜁
=

(︂
𝜇2𝜆2

𝜁
− 𝜇1

)︂
𝑌1

+

(︂
𝜁2 + 𝜁(𝜆1 − 2𝑡2) + 𝜆2

1 + 𝑡1 + 𝑡22 − 𝜇2 − 𝑡2𝜆1 +
𝜃0𝜆2 − 𝜇2𝜆

2
2

𝜁

)︂
𝑌2,

𝜕𝑌2

𝜕𝜁
=

(︂
𝜁 − 𝜆1 − 𝑡2 +

𝜇2

𝜁

)︂
𝑌1 +

(︂
𝜇1 +

𝜃0 − 𝜇2𝜆2

𝜁

)︂
𝑌2.

(23)

The condition of compatibility of systems (21), (22) is the the following relations:

(𝜇1)𝑡1 = 3𝜆2
1 − 2𝜇2 + 𝑡1, (𝜆1)𝑡1 = 2𝜇1, (𝜇2)𝑡1 = (𝜆1)𝑡2 .

They imply that the coordinate 𝜆1 satisfies the evolution equation

(𝜆1)𝑡2 = −1

4
(𝜆1)𝑡1𝑡1𝑡1 + 3𝜆1(𝜆1)𝑡1 +

1

2
,

which by the changes

𝜆1 = − 𝑢

12
+

𝑡2
2
, 𝑥 = 𝑡1 +

3

4
𝑡22, 4𝑡 = 𝑡2 (24)

is transformed to a solution to KdV equation (7). Hence, the pair of system of equations (21),
(22) is in fact an 𝐿−𝐴 pair for KdV equation (7). This pair is equivalent to the traditionally
used in PISM 𝐿−𝐴 pair represented by first two systems of equations in (15). These two pairs
are reduced one to the other by a very simple transform. The third system of equations in (15)
being a system of linear ODEs with the independent variable 𝜁 is also very similar to system
(23) of linear equations of IDM for the pair of Hamilton systems (19), (20). In view of these
remarks it is rather easy to conclude as follows.

As 𝛽 = 0.4, the changes (18), (24) and

𝜆2 =
𝑢𝑥𝑥𝑥

96
+ 𝑢𝑢𝑥

96
− 𝑡𝑢𝑥

4
+ 1

4
+ 𝜃0

2
𝑢𝑥𝑥

48
+ 𝑢2

96
− 𝑡𝑢

2
+ 𝑥

2

=
𝑢𝑥𝑥𝑥𝑥

96
+ 𝑢2

𝑥

96
+ 𝑢𝑢𝑥𝑥

72
+ 𝑢3

576
+ 𝑥𝑢

12
− 𝑡𝑢2

12
− 𝑡𝑢𝑥𝑥

4
𝑢𝑥𝑥𝑥

96
+ 𝑢𝑢𝑥

96
− 𝑡𝑢𝑥

4
+ 1

4
− 𝜃0

2

,

𝜇1 = −𝑢𝑥

24
, 𝜇2 =

𝑢𝑥𝑥

48
+

𝑢2

96
− 𝑡𝑢

2
+

𝑥

2
, 𝑌1 = 𝑒

𝜃0

2
ln 𝜁Φ2, 𝑌2 = 𝑒

𝜃0

2
ln 𝜁Φ1

make the equivalence between systems of linear equations of IDM (11), (12) and three systems
of equations (21)–(23) and allow us to express the general solutions of compatible systems
defined by Hamiltonians (5), (6) in terms of the simultaneous solutions 𝑢(𝑡, 𝑥) of KdV equation
(7) and ODE (8).

3. Solutions to “quantizations” of system 𝐻
7
2
+1

3.1. The 2 × 2 matrix

𝑀 = Φ−1(𝜂, 𝑡, 𝑥)Φ(𝜁, 𝑡, 𝑥) (25)

constructed by the fundamental simultaneous solution Φ of linear systems of ODEs (15) satisfies
two scalar spatially two-dimensional evolution equations. The first of them is

(𝜂 − 𝜁)𝑀𝑥 =
𝜁 + 𝜂

𝜁 − 𝜂
(𝑀𝜂 + 𝑀𝜁) + 𝜂𝑀𝜂𝜂 − 𝜁𝑀𝜁𝜁 + 𝑔1(𝑡, 𝑥, 𝜂, 𝜁)𝑀 (26)

with the time 𝑥 and the other is

(𝜁 − 𝜂)𝑀𝑡 =
4(6𝑡(𝜁 + 𝜂) − 𝜁2 − 𝜂2)

(𝜁 − 𝜂)
(𝑀𝜂 + 𝑀𝜁) + 4𝜂(6𝑡− 𝜁)𝑀𝜂𝜂

+ 4𝜁(𝜂 − 6𝑡)𝑀𝜁𝜁 + 𝑔2(𝑡, 𝑥, 𝜂, 𝜁)𝑀

(27)
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with the time 𝑡. The coefficients 𝑔1(𝑡, 𝑥, 𝜂, 𝜁), 𝑔2(𝑡, 𝑥, 𝜂, 𝜁) of these equations are defined by
formulae

𝑔1(𝑡, 𝑥, 𝜂, 𝜁) = 𝑟1(𝑡, 𝑥, 𝜂, 𝜁) + 𝑟2(𝑡, 𝑥, 𝜂, 𝜁),

𝑔2(𝑡, 𝑥, 𝜂, 𝜁) = 24𝑡(𝑟1(𝑡, 𝑥, 𝜂, 𝜁) + 𝑟2(𝑡, 𝑥, 𝜂, 𝜁)) + 4(𝑟3(𝑡, 𝑥, 𝜂, 𝜁) + 𝑟4(𝑡, 𝑥, 𝜂, 𝜁)),

where (𝐴𝑛)𝑖𝑗 are the elements of the entries (𝐴𝑛) of matrix (13), and

𝑟1(𝑡, 𝑥, 𝜂, 𝜁) = 𝜁4 − 𝜂4 − 12𝑡(𝜁3 − 𝜂3) + (𝑥 + 36𝑡2)(𝜁2 − 𝜂2) − 6𝑥𝑡(𝜁 − 𝜂) − 1

4

𝜁 − 𝜂

𝜁𝜂
(𝜃0)2,

𝑟2(𝑡, 𝑥, 𝜂, 𝜁) =

(︂
𝑢2
𝑥

576
+

𝑢

12
(𝐴5)21 −

1

2
(𝐴5)12 +

(︂
𝑢2

72
+ 2𝑥

)︂(︁ 𝑢

24
− 3𝑡

)︁
+ 6𝑥𝑡

)︂
(𝜁 − 𝜂),

𝑟3(𝑡, 𝑥, 𝜂, 𝜁) = 𝜁𝜂(𝜂3 − 𝜁3) − 12𝑡𝜁𝜂(𝜂2 − 𝜁2) +

(︂
(𝑥 + 36𝑡2)𝜁𝜂 − 𝑥2

4

)︂
(𝜂 − 𝜁) +

1

4

𝜁2 − 𝜂2

𝜁𝜂
(𝜃0)2,

𝑟4(𝑡, 𝑥, 𝜂, 𝜁) =

(︂
𝑢𝑥

24
(𝐴5)11 +

(︁
3𝑡− 𝑢

24

)︁
(𝐴5)12 +

(︂
𝑢2

576
+

𝑢𝑥𝑥

96
− 𝑢𝑡

4
− 𝑥

4

)︂
(𝐴5)21 −

𝑥2

4

)︂
(𝜁 − 𝜂).

The change

𝑀 = (𝜁 − 𝜂) exp (𝑆(𝑡, 𝑥))𝑊

defined by the function 𝑆(𝑡, 𝑥) satisfying two compatible relations

𝑆𝑥(𝑡, 𝑥) = 𝑓1(𝑡, 𝑥) = −𝑟2(𝑡, 𝑥, 𝜂, 𝜁)

𝜁 − 𝜂
, 𝑆𝑡 = 𝑓2(𝑡, 𝑥) =

24𝑡𝑟2(𝑡, 𝑥, 𝜂, 𝜁) + 4𝑟4(𝑡, 𝑥, 𝜂, 𝜁)

𝜁 − 𝜂
,

12𝑓1(𝑡, 𝑥)′𝑡 = 12𝑓2(𝑡, 𝑥)′𝑥 = 𝑢𝑥𝑥 +
𝑢2

2
,

transforms each simultaneous solution of equations (26), (27) to a simultaneous solution of the
pair of linear evolution equations

(𝜁 − 𝜂)𝑊𝑥 = 𝜁𝑊𝜁𝜁 − 𝜂𝑊𝜂𝜂 + 𝑊𝜁 −𝑊𝜂

−
[︂
𝜁4 − 𝜂4 − 12𝑡(𝜁3 − 𝜂3) + (𝑥 + 36𝑡2)(𝜁2 − 𝜂2) − 6𝑥𝑡(𝜁 − 𝜂) − 1

4

𝜁 − 𝜂

𝜁𝜂
(𝜃0)2

]︂
𝑊,

(𝜁 − 𝜂)𝑊𝑡 = 4𝜂(6𝑡− 𝜁)𝑊𝜂𝜂 + 4𝜁(𝜂 − 6𝑡)𝑊𝜁𝜁 + 24𝑡(𝑊𝜂 −𝑊𝜁) − 4(𝜁 − 𝜂)(𝑊𝜂 + 𝑊𝜁)

+

[︂
24𝑡

(︂
𝜁4 − 𝜂4 − 12𝑡(𝜁3 − 𝜂3) + (𝑥 + 36𝑡2)(𝜁2 − 𝜂2) − 6𝑥𝑡(𝜁 − 𝜂) − 1

4

𝜁 − 𝜂

𝜁𝜂
(𝜃0)2

)︂
+ 4

(︂
𝜁𝜂(𝜂3 − 𝜁3) − 12𝑡𝜁𝜂(𝜂2 − 𝜁2) + ((𝑥 + 36𝑡2)𝜁𝜂 − 𝑥2

4
)(𝜂 − 𝜁)) +

1

4

𝜁2 − 𝜂2

𝜁𝜂
(𝜃0)2

)︂]︂
𝑊,

which contain no dependence on 𝑢(𝑡, 𝑥) in its coefficients. In these two evolution equations we
pass to the independent variables

𝑠1 =
5
√

4(−2𝑡), 𝑠2 =
𝑥
5
√

2
, 𝜉 =

5
√

4(𝜁 + 𝜂 − 4𝑡), 𝜌 =
5
√

16𝜁𝜂,

and make the change

𝑊 = exp (𝑡𝑥2 − 16𝑡3𝑥− 384

5
𝑡5)(𝜁𝜂)

𝜃0

2 Ψ.

This reduces the equations to the pair of evolution equations:

Ψ𝑠1 = − 6𝑠1Ψ𝜉𝜉 + 2𝜌(𝜉 + 𝑠1)Ψ𝜌𝜌 + 4𝜌Ψ𝜉𝜌 + 2(𝜉 + 𝑠1)(1 + 𝜃0)Ψ𝜌 + 2(1 + 𝜃0)Ψ𝜉

+

[︂
3

2
𝑠1𝜉

3 +
1

2
𝜌𝜉2 − 1

2
𝜌2 − 2𝑠1𝜉𝜌−

3

2
𝑠1(3𝑠

2
1 − 2𝑠2)𝜉 −

1

2
(5𝑠21 − 2𝑠2)𝜌

]︂
Ψ,

(28)
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Ψ𝑠2 = 2Ψ𝜉𝜉 − 2𝜌Ψ𝜌𝜌 − 2(1 + 𝜃0)Ψ𝜌 +

[︂
−1

2
𝜉3 + 𝜌𝜉 +

1

2
(3𝑠21 − 2𝑠2)𝜉 + 𝑠1𝜌

]︂
Ψ (29)

with the polynomial coefficients. By the operator relations

𝜕

𝜕𝜉
𝜉 − 𝜉

𝜕

𝜕𝜉
= 1,

𝜕

𝜕𝜌
𝜌− 𝜌

𝜕

𝜕𝜌
= 1 (30)

the latter pair of the equations can be written as “quantizations” (𝜀 = 1)

𝜀
𝜕Ψ

𝜕𝑠𝑖
= 𝐻

7
2
+1

𝑠𝑖

(︂
𝑠1, 𝑠2, 𝜉, 𝜌,−𝜀

𝜕

𝜕𝜉
,−𝜀

𝜕

𝜕𝜌

)︂
Ψ (𝑖 = 1, 2) (31)

determined by Hamiltonians (5), (6) of the Hamilton system 𝐻
7
2
+1.

Remark 2. Thanks to relations (30), equations (28), (29) can be written as (𝜀 = 1)

𝜀
𝜕Ψ

𝜕𝑠𝑖
= 𝐻

7
2
+1

𝑠𝑖

(︂
𝑠1, 𝑠2, 𝜉, 𝜌, 𝜀

𝜕

𝜕𝜉
, 𝜀

𝜕

𝜕𝜌

)︂
Ψ (𝑖 = 1, 2).

Thus, the constructions of Sections 2 and 3 give the solutions to such “quantizations” (31).
These solutions are written explicitly in terms of solutions to compatible equations IDM (21)–
(23). At that, the coefficients of these equations IDM are also explicitly expressed via the set
of simultaneous solutions to classical Hamilton systesm of ODEs with Hamiltonians (5), (6).

4. Conclusion

While constructing in the paper solutions to “quantizations” of the Hamilton isomonodromic
system 𝐻

7
2
+1, an essential role is played by change (25). Such change also played a key role in

constructing solutions to “quantizations” of the Garnier system with two degrees of freedom in
paper [38] and in constructing solutions to “quantizations” of two lowest representatives in the
hierarchy of degenerations of this system in paper [42]. The results of these two papers and of
the present paper suggest a conjecture that this change should help in constructing solutions to
“quantizations” of the entire hierarchy. For some other purposes this change employed earlier
by D.P. Novikov in [36], see also formula (2.3.36) in [25].
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