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SOME PROPERTIES OF JOST FUNCTIONS

FOR SCHRÖDINGER EQUATION

WITH DISTRIBUTION POTENTIAL

R.CH. KULAEV, A.B. SHABAT

Abstract. The work is devoted to the substantial extension of the space of the potentials
in the inverse scattering problem for the linear Schrödinger equation on the real axis. We
consider the Schrödinger operator with a potential in the space of generalized functions.
This extension includes not only the potential like delta function, but also exotic cases like
Cantor functions. In this way we establish the conditions on existence and uniqueness of
Jost solutions. We study their analytic properties. We provide some estimates for the Jost
solutions and their derivatives. We show that the Schrödinger equation with the distribution
potential can be uniformly approximated by the equations with smooth potentials.
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This paper is devoted to extending the class of the potentials in the inverse scattering problem
for the linear Schrödinger equation on the real axis

𝜓𝑥𝑥 =
(︀
𝑞(𝑥) + 𝑘2

)︀
𝜓, 𝑥 ∈ R. (1)

While studying the inverse scattering problem, a fundamental role is played by the analytic
properties of a special fundamental system of solutions to the Schrödginer equation with an
exponentially growing asymptotic at infinity (Jost solutions). In classical scattering theory
equation (1) is considered under the condition that the potential 𝑞(𝑥) is a summable function
satisfying the condition

∞∫︁
−∞

(1 + |𝑥|)|𝑞(𝑥)|𝑑𝑥 <∞.

The conditions for the function 𝑞 arises naturally from the existence and uniqueness of the Jost
solution as well as from the possibility of their analytic continuation for the complex values of
the parameter 𝑘 [1]–[3].

In the present work we study the mathematical properties of Schrödinger equation (1) with
the potentials being generalized derivatives of the functions of bounded variation. An interest
to the equations with generalized coefficients increases constantly these days (see, for instance,
[4]–[10] and the references therein). Study of Schrödinger equation (1) with the potentials being
generalized derivatives of the functions of bounded variation extends the class of problem, which
can be analyzed, but a pure mathematical feature of this object is to be taken into consideration.
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In what follows we study what conditions the function 𝑞 should satisfy to ensure not only the
existence and uniqueness of Jost solution, but also the possibility of their analytic continuation
from the imaginary axis in the complex plane 𝑘. These issues are studied in Section 1 of the
present paper. We also prove the continuity of the Jost solutions on the entire real axis and
we establish basic estimates. In the second section we study more gentle properties of the Jost
solutions, we show that their solutions belong to 𝑊 1,1

loc and we prove the estimates for their
derivatives. In the third section we show that the Schrödinger operator with a potential being
a generalized derivative of a function of a bounded variation can be regarded as the uniform
limit of the operators with smooth potentials. As it follows from the results of works [4], [5],
in this case all solutions of the differential equation belong to 𝑊 1,1

loc .
1. Jost solutions. Let 𝑄 be a real function defined on the entire real axis R and

𝑉𝑄(𝑥) = sup
𝑚∑︁
𝑖=1

|𝑄(𝑥𝑖+1) −𝑄(𝑥𝑖)|,

where the supremum is taken over all 𝑚 ∈ N and all {𝑥𝑖}𝑚𝑖=1 such that

−∞ < 𝑥1 < 𝑥2 < . . . < 𝑥𝑚 6 𝑥 <∞.

We define the total variation of the function 𝑄 as the limit 𝑉𝑄 = lim
𝑥→∞

𝑉𝑄(𝑥). By 𝐵𝑉 we denote

the space of all real function having a bounded variation on R, while ℳ stands for the set of
all functions, each being a generalized derivative of some function in 𝐵𝑉 .

We consider Schrödinger equation (1), in which the potential 𝑞 is an element of ℳ and
𝑞 = 𝑄′, 𝑄 ∈ 𝐵𝑉 . First of all we are interested in existence of the Jost solution for the
considered equation. As we have mentioned above, the Jost solution form a fundamental system
of solutions depending on the parameter 𝑘 with exponential asymptotics on the negative and
positive infinities. The standard method employed the theory of ordinary differential equations
for proving the unique solvability of equations subject to initial condition consists in passing to
an equivalent integral equation. In this case the method of successive approximations allows one
to obtain the existence conditions for the equation with the initial data. Since equation (1) has
many solutions with a prescribed asymptotics at infinity, the passage to the limit as 𝑥0 → ∞ in
the Cauchy problem with the initial data at a finite point 𝑥0 ∈ R does not solve the issue. This
is why in order to construct the fundamental system of solutions, one has to use separately the
conditions as 𝑥 → ∞ and as 𝑥 → −∞. Moreover, there is also the problem on the analytic
continuation of the fundamental system of solutions as functions of the complex parameter 𝑘.
Exactly the analyticity condition distinguishes the Jost solutions.

Let 𝐾+ = {𝑘 ∈ C, Re 𝑘 > 0}. By 𝜓±(𝑥, 𝑘), 𝑥 ∈ R, 𝑘 ∈ 𝐾+, we denote the functions
introduced by the relations

𝜓+(𝑥, 𝑘) = 𝜑+(𝑥, 𝑘)𝑒𝑘𝑥, 𝜑+(𝑥, 𝑘) = 1 +

𝑥∫︁
−∞

𝑅(𝑥− 𝑦, 𝑘)𝜑+(𝑦, 𝑘)𝑑𝑄(𝑦),

𝜓−(𝑥, 𝑘) = 𝜑−(𝑥, 𝑘)𝑒−𝑘𝑥, 𝜑−(𝑥, 𝑘) = 1 +

∞∫︁
𝑥

𝑅(𝑦 − 𝑥, 𝑘)𝜑−(𝑦, 𝑘)𝑑𝑄(𝑦),

(2)

in which

𝑅(𝑦, 𝑘) =
1 − 𝑒−2𝑘𝑦

2𝑘
𝜃(𝑦), (3)
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and 𝜃(𝑦) is the Heaviside function. At that, the integrals in (2) are treated in the Riemann-
Stieltjes sense and kernel (3) satisfies the estimate

|𝑅(𝑦, 𝑘)| 6
0∫︁

−𝑦

|𝑒2𝑘𝑠|𝑑𝑠 6 𝑦, 𝑦 > 0, Re 𝑘 > 0 (4)

in 𝐾+.
The functions 𝜓± introduced by means of relations (2) are called Jost solutions to Schrödinger

equation. These special solutions satisfy the conditions 𝜓+(𝑥, 𝑘) ∼ 𝑒𝑘𝑥 as 𝑥 → −∞ and
𝜓−(𝑥, 𝑘) ∼ 𝑒−𝑘𝑥 as 𝑥→ ∞.

Theorem 1. For each 𝑘 ∈ 𝐾+, the Jost solutions 𝜓±(𝑥, 𝑘) of Schrödinger equation (1) are
determined uniquely by relations (2) provided the condition holds:

∞∫︁
−∞

(1 + |𝑥|)𝑑𝑉𝑄(𝑥) <∞. (5)

For each fixed 𝑘 ∈ 𝐾+, the solutions 𝜑±(𝑥, 𝑘) to integral equations (2) are continuous on the
entire real axis, and for each fixed 𝑥 ∈ R they are continuous functions of the parameter 𝑘
in 𝐾+. Moreover, 𝜑±(𝑥, 𝑘) are analytic in the half-plane Re 𝑘 > 0 and satisfies the following
estimates:

(i)

|𝜑+(𝑥, 𝑘) − 1| 6 exp

⎧⎨⎩
𝑥∫︁

−∞

𝑉𝑄(𝑦)𝑑𝑦

⎫⎬⎭
𝑥∫︁

−∞

𝑉𝑄(𝑦)𝑑𝑦,

|𝜑−(𝑥, 𝑘) − 1| 6 exp

⎧⎨⎩
∞∫︁
𝑥

(𝑉𝑄 − 𝑉𝑄(𝑦)) 𝑑𝑦

⎫⎬⎭
∞∫︁
𝑥

(𝑉𝑄 − 𝑉𝑄(𝑦)) 𝑑𝑦, 𝑘 ∈ 𝐾+;

(ii)

|𝜑+(𝑥, 𝑘) − 1| 6 𝐶+(1 + max{𝑥, 0})

𝑥∫︁
−∞

(1 + |𝑥|)𝑑𝑉𝑄(𝑥),

|𝜑−(𝑥, 𝑘) − 1| 6 𝐶−(1 + max{−𝑥, 0})

∞∫︁
𝑥

(1 + |𝑥|)𝑑𝑉𝑄(𝑥),

where the constants 𝐶± are independent of 𝑘 ∈ 𝐾+;
(iii)

|𝜑+(𝑥, 𝑘) − 1| 6 𝑉𝑄(𝑥)

|𝑘|
exp

{︂
𝑉𝑄(𝑥)

|𝑘|

}︂
6
𝑉𝑄
|𝑘|

exp

{︂
𝑉𝑄
|𝑘|

}︂
,

|𝜑−(𝑥, 𝑘) − 1| 6 𝑉𝑄 − 𝑉𝑄(𝑥)

|𝑘|
exp

{︂
𝑉𝑄 − 𝑉𝑄(𝑥)

|𝑘|

}︂
6
𝑉𝑄
|𝑘|

exp

{︂
𝑉𝑄
|𝑘|

}︂
,

where 𝑘 ∈ 𝐾+ ∖ {0}.

Proof. We employ the method of successive approximations to find the conditions under which
there exist the Jost solutions to problem (2). In view of the analogy, we make the calculations
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only for the first equation. Let us show that as 𝑘 ∈ 𝐾+, the solution 𝜑+(𝑥, 𝑘) of the associated
integral equation exists and can be found as

𝜑+(𝑥, 𝑘) = 1 +
∞∑︁
𝑛=1

𝑓𝑛(𝑥, 𝑘), 𝑓𝑛+1(𝑥, 𝑘) =

𝑥∫︁
−∞

𝑅(𝑥− 𝑦, 𝑘)𝑓𝑛(𝑦, 𝑘)𝑑𝑄(𝑦), 𝑓0(𝑥, 𝑘) = 1. (6)

In order to prove the convergence of series (6), we employ inequality (4):

|𝑓1(𝑥, 𝑘)| 6
𝑥∫︁

−∞

|𝑅(𝑥− 𝑦, 𝑘)|𝑑𝑉𝑄(𝑦) 6

𝑥∫︁
−∞

(𝑥− 𝑦)𝑑𝑉𝑄(𝑦) = (𝑥− 𝑦)𝑉𝑄(𝑦)
⃒⃒𝑥
−∞ +

𝑥∫︁
−∞

𝑉𝑄(𝑦)𝑑𝑦.

Letting

lim
𝑥→−∞

|𝑥|𝑉𝑄(𝑥) = 0, (7)

we obtain the estimate for |𝑓1(𝑥, 𝑘)|

|𝑓1(𝑥, 𝑘)| 6
𝑥∫︁

−∞

(𝑥− 𝑦)𝑑𝑉𝑄(𝑦) =

𝑥∫︁
−∞

𝑉𝑄(𝑦)𝑑𝑦 = 𝑀(𝑥).

Let us show that the terms of series (6) admit the estimate

|𝑓𝑛(𝑥, 𝑘)| 6 𝑀𝑛(𝑥)

𝑛!
. (8)

By induction we get

|𝑓𝑛+1(𝑥, 𝑘)| 6
𝑥∫︁

−∞

|𝑅(𝑥− 𝑦, 𝑘)||𝑓𝑛(𝑦, 𝑘)|𝑑𝑉𝑄(𝑦) =
1

𝑛!

𝑥∫︁
−∞

(𝑥− 𝑦)𝑀𝑛(𝑦)𝑑𝑉𝑄(𝑦).

Integrating by parts, we finally obtain

|𝑓𝑛+1(𝑥, 𝑘)| 6 1

𝑛!

𝑥∫︁
−∞

𝑉𝑄(𝑦)𝑀𝑛(𝑦)𝑑𝑦 − 1

(𝑛− 1)!

𝑥∫︁
−∞

𝑉 2
𝑄(𝑦)(𝑥− 𝑦)𝑀𝑛−1(𝑦) 𝑑𝑦

6
1

𝑛!

𝑥∫︁
−∞

𝑉𝑄(𝑦)𝑀𝑛(𝑦)𝑑𝑦 =
𝑀𝑛+1(𝑥)

(𝑛+ 1)!
.

It follows from estimate (8) that series of perturbation theory (6) is majorized by the series

𝑒𝑀(𝑥) = 1 +
∞∑︁
𝑛=1

𝑀𝑛(𝑥)

𝑛!
.

This is why we can state that provided the condition

0∫︁
−∞

|𝑥|𝑑𝑉𝑄(𝑥) <∞ (9)

holds, series (6) converges uniformly on each segment (−∞, 𝑏], 𝑏 < ∞. Indeed, inequality (5)
ensures that (7) holds and 𝑀(𝑏) <∞. This implies that the function 𝜑+(𝑥, 𝑘) is continuous as
Re 𝑘 > 0, is analytic as Re 𝑘 > 0 and satisfies the corresponding inequality in (i).
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In the same way we can obtain that under the condition

∞∫︁
0

𝑥 𝑑𝑉𝑄(𝑥) <∞ (10)

the function 𝜑−(𝑥, 𝑘) is continuous as Re 𝑘 > 0 and is analytic as Re 𝑘 > 0 and satisfies the
corresponding inequality in (i).

Combining conditions (9) and (10) into one condition, we obtain the sufficient condition for
solvability of integral equations (2)

∞∫︁
−∞

|𝑥|𝑑𝑉𝑄(𝑥) 6

∞∫︁
−∞

(1 + |𝑥|)𝑑𝑉𝑄(𝑥) <∞.

We proceed to proving inequality (ii) for 𝜑+(𝑥, 𝑘). Employing (4), we get

|𝜑+(𝑥, 𝑘)| 61 +

𝑥∫︁
−∞

(𝑥− 𝑦)|𝜑+(𝑦, 𝑘)|𝑑𝑉𝑄(𝑦)

61 +

0∫︁
−∞

|𝑦||𝜑+(𝑦, 𝑘)|𝑑𝑉𝑄(𝑦) +

𝑥∫︁
−∞

𝑥|𝜑+(𝑦, 𝑘)|𝑑𝑉𝑄(𝑦).

(11)

Since |𝜑+(𝑦, 𝑘)| 6 𝑒𝑀(0) as 𝑦 6 0, it follows from (5) that

|𝜑+(𝑥, 𝑘)| 6 𝐶 +

𝑥∫︁
−∞

𝑥|𝜑+(𝑦, 𝑘)|𝑑𝑉𝑄(𝑦), 1 < 𝐶 <∞, (12)

and the constant 𝐶 is independent of 𝑘 ∈ 𝐾+. We divide both sides of the integral inequality

by 𝐶(1 + |𝑥|) and introduce the notation 𝜒(𝑥, 𝑘) = 𝜑+(𝑥,𝑘)
𝐶(1+|𝑥|) to obtain the inequality

|𝜒(𝑥, 𝑘)| 6 1 +

𝑥∫︁
−∞

(1 + |𝑦|)|𝜒(𝑦, 𝑘)|𝑑𝑉𝑄(𝑦),

which in view of (5) can be solved by the iteration method:

|𝜒0(𝑥, 𝑘)| = 1,

|𝜒1(𝑥, 𝑘)| 6
𝑥∫︁

−∞

(1 + |𝑦|)𝑑𝑉𝑄(𝑦) = (1 + 𝑥)𝑉𝑄(𝑥) −
𝑥∫︁

−∞

𝑉𝑄(𝑦) 𝑑|𝑦| = 𝑀1(𝑥),

𝑑𝑀1(𝑥) = (1 + 𝑥)𝑑𝑉𝑄(𝑥) + 𝑉𝑄(𝑥) 𝑑𝑥− 𝑉𝑄(𝑥) 𝑑𝑥 = (1 + 𝑥)𝑑𝑉𝑄(𝑥),

|𝜒𝑛+1(𝑥, 𝑘)| 6
𝑥∫︁

−∞

(1 + |𝑦|)𝑀
𝑛
1 (𝑦)

𝑛!
𝑑𝑉𝑄(𝑦) =

1

𝑛!

𝑥∫︁
−∞

𝑀𝑛
1 (𝑦)𝑑𝑀1(𝑦) =

𝑀𝑛+1
1 (𝑥)

(𝑛+ 1)!
.
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Therefore, |𝜑+(𝑥, 𝑘)| 6 𝐶1(1 + |𝑥|)𝑒𝑀1(𝑥). Hence, by (11) and (i) for 𝑥 > 0 we get

|𝜑+(𝑥, 𝑘) − 1| 6
0∫︁

−∞

|𝑦||𝜑+(𝑦, 𝑘)|𝑑𝑉𝑄(𝑦) + 𝑥

𝑥∫︁
−∞

|𝜑+(𝑦, 𝑘)|𝑑𝑉𝑄(𝑦)

6 𝐶2(1 + 𝑥)

𝑥∫︁
−∞

(1 + |𝑦|)𝑑𝑉𝑄(𝑦).

(13)

In view of (i) for negative 𝑥 we get

|𝜑+(𝑥, 𝑘) − 1| 6 𝑒𝑀(0)

𝑥∫︁
−∞

(1 + |𝑦|)𝑑𝑉𝑄(𝑦).

Comparing the latter inequality with (13), we get estimate (ii) for 𝜑+.
The proof of (iii) follows the same lines with the only difference that instead of estimate (4)

one should employ the obvious inequality |𝑅(𝑦, 𝑘)| 6 1
|𝑘| , 𝑘 ∈ 𝐾+ ∖ {0}. Indeed, by the latter

estimate we get the integral inequality

|𝜑+(𝑥, 𝑘) − 1| 6 𝑉𝑄(𝑥)

|𝑘|
+

1

|𝑘|

𝑥∫︁
−∞

|𝜑+(𝑦, 𝑘) − 1|𝑑𝑉𝑄(𝑦),

which can be solved easily by the iteration method:

|𝑔0(𝑥, 𝑘)| 6 𝑉𝑄(𝑥)

|𝑘|
, |𝑔1(𝑥, 𝑘)| 6 1

|𝑘|

𝑥∫︁
−∞

𝑉𝑄(𝑥)

|𝑘|
𝑑𝑉𝑄(𝑦) =

𝑉 2
𝑄(𝑥)

2|𝑘|2
,

|𝑔𝑛(𝑥, 𝑘)| 6 1

𝑛!|𝑘|

𝑥∫︁
−∞

𝑉 𝑛
𝑄 (𝑥)

|𝑘|𝑛
𝑑𝑉𝑄(𝑦) =

𝑉 𝑛+1
𝑄 (𝑥)

(𝑛+ 1)!|𝑘|𝑛+1
.

It remains to prove that for each fixed 𝑘 ∈ 𝐾+ the function 𝜑+(𝑥, 𝑘) is continuous on the
entire real axis. Taking into consideration the uniform convergence of series (6) on the half-axis
(−∞, 𝑎) for each 𝑎 ∈ R, it is sufficient to prove the continuity of the iterations 𝑓𝑛(𝑥, 𝑘) w.r.t.
𝑥. Integrating by parts, we get:1

𝑓0(𝑥, 𝑘) = 1,

𝑓𝑛+1(𝑥, 𝑘) =

𝑥∫︁
−∞

𝑒−2𝑘(𝑥−𝑦)𝑓𝑛(𝑦, 𝑘)𝑄(𝑦)𝑑𝑦 −
𝑥∫︁

−∞

1 − 𝑒−2𝑘(𝑥−𝑦)

2𝑘
𝑓 ′
𝑛(𝑦, 𝑘)𝑄(𝑦)𝑑𝑦,

𝑓 ′
𝑛+1(𝑥, 𝑘) = 𝑓𝑛(𝑥, 𝑘)𝑄(𝑥) − 2𝑘

𝑥∫︁
−∞

𝑒−2𝑘(𝑥−𝑦)𝑓𝑛(𝑦, 𝑘)𝑄(𝑦)𝑑𝑦

−
𝑥∫︁

−∞

𝑒−2𝑘(𝑥−𝑦)𝑓 ′
𝑛(𝑦, 𝑘)𝑄(𝑦)𝑑𝑦.

(14)

1Hereinafter to denote the derivative of the function 𝑓(𝑥, 𝑘) w.r.t. the variable 𝑥 we employ one of the

following notations: 𝑓 ′, 𝑓𝑥 or 𝜕𝑓
𝜕𝑥 . In each case the choice of the notations is determined by the presence of a

subscript or a superscript in the notation for the function.
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Condition (5) implies that
𝑎∫︀

−∞
𝑉𝑄(𝑥) 𝑑𝑥 <∞ for each 𝑎 ∈ R. And since the inequality |𝑄(𝑥)| <

𝑉𝑄(𝑥) holds everywhere on R, condition (5) ensures that 𝑄 ∈ 𝐿1(−∞, 𝑎) for each 𝑎 ∈ R. Now
the continuity of the function 𝑓𝑛(𝑥, 𝑘) in the variable 𝑥 is obvious.

The arguing for the function 𝜑−(𝑥, 𝑘) is similar. The proof is complete.

Corollary 1. If the potential 𝑞 is compactly supported, the Jost solutions are analytic in the
entire complex plane 𝑘.

Corollary 2. As |𝑘| → ∞, Re 𝑘 > 0, the following limits hold true:

𝜑+(𝑥, 𝑘) = 1 +

𝑥∫︁
−∞

𝑅(𝑥− 𝑦, 𝑘) 𝑑𝑄(𝑦) + 𝑜

(︂
1

𝑘

)︂
,

𝜑−(𝑥, 𝑘) = 1 +

∞∫︁
𝑥

𝑅(𝑦 − 𝑥, 𝑘) 𝑑𝑄(𝑦) + 𝑜

(︂
1

𝑘

)︂
,

(15)

Proof. It follows from (2) and statement (iii) that

𝜑±(𝑥, 𝑘) = 1 +𝑂

(︂
1

𝑘

)︂
as |𝑘| → ∞, Re 𝑘 > 0.

Substituting these relations into (2), we obtain (15).

Remark 1. Replacing the parameter 𝑘 ↦→ −𝑘, we arrive at one more pair of the functions
𝜙∓ satisfying the conditions 𝜙+(𝑥, 𝑘) ∼ 𝑒𝑘𝑥 as 𝑥 → ∞ and 𝜙−(𝑥, 𝑘) ∼ 𝑒−𝑘𝑥 as 𝑥 → −∞. It
is obvious that 𝜙∓(𝑥, 𝑘) = 𝜓±(𝑥,−𝑘). Moreover, for each 𝑥 ∈ R the solutions 𝜙∓(𝑥, 𝑘) are
continuous in 𝑘 as Re 𝑘 6 0 and analytic in 𝑘 as Re 𝑘 < 0.

2. Further properties of the Jost solutions. Proven Theorem 1 allows us to obtain the
properties of the solutions 𝜑±(𝑥, 𝑘) to integral equations (2) as well as the properties of the
Jost solutions to Schrödinger equation (1).

In the space 𝐵𝑉 we choose a subspace of the functions satisfying condition (5) and we
introduce the notation 𝐵𝑉1 for this subspace. We shall assume that the real potential 𝑞 of
the equation (1) is a generalized derivative of some function 𝑄 ∈ 𝐵𝑉1. Since 𝑞 = 𝑄′ in the
generalized sense, the function 𝑄 is recovered by the potential 𝑞 up to an additive constant.
This is why we have a certain freedom in choosing this constant. While studying the properties
of the Jost solution 𝜓+, it will be convenient for us to assume that 𝑄(𝑥) → 0 as 𝑥 → −∞.1

In particular, if the potential 𝑞 is compactly supported and supp 𝑞 ⊂ [𝑎, 𝑏], we let 𝑄(𝑥) = 0
as 𝑥 6 𝑎. In the same way, while studying the properties of the other solution 𝜓− we assume
𝑄(𝑥) → 0 as 𝑥→ ∞.

We consider integral equations (2) and let us show that their solutions 𝜑± belong to 𝑊 1,1
loc

and moreover, 𝜑±
𝑥 ∈ 𝐵𝑉loc. Since the arguing is similar, we consider only the solution 𝜑+. It is

obvious that it is sufficient to prove that 𝜑+ ∈ 𝑊 1,1(𝑎, 𝑏), 𝜑+
𝑥 ∈ 𝐵𝑉 (𝑎, 𝑏) for an arbitrary finite

interval (𝑎, 𝑏) ⊂ R. According (6),

𝜑+(𝑥, 𝑘) =
∞∑︁
𝑛=0

𝑓𝑛(𝑥, 𝑘),

where the functions 𝑓𝑛 satisfies identities (14). It follows from Theorem 1 that as 𝑘 ∈ 𝐾+, the
series converges at each point 𝑥 ∈ R. We denote by 𝜑𝑛 the 𝑛th particular sum of series (6).

1In this case the potential 𝑞 is a finite Borel measure on R.
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For for a fixed 𝑘 ∈ 𝐾+ we obtain

𝜑0(𝑥, 𝑘) = 1, 𝜑1(𝑥, 𝑘) = 1 +

𝑥∫︁
−∞

𝑒−2𝑘(𝑥−𝑦)𝑄(𝑦)𝑑𝑦,

𝜑′
1(𝑥, 𝑘) = 𝑄(𝑥) − 2𝑘

𝑥∫︁
−∞

𝑒−2𝑘(𝑥−𝑦)𝑄(𝑦)𝑑𝑦 =

𝑥∫︁
−∞

𝑒−2𝑘(𝑥−𝑦)𝑑𝑄(𝑦).

By 𝐵𝑉 (𝑎, 𝑏) ⊂ 𝐿1(𝑎, 𝑏) this implies the belongings 𝜑1(𝑥, 𝑘) ∈ 𝑊 1,1(𝑎, 𝑏), 𝜑′
1(𝑥, 𝑘) ∈ 𝐵𝑉 (𝑎, 𝑏).

Since 𝑄 ∈ 𝐵𝑉 , at each point 𝑥 ∈ R the function 𝑄 has one-sided limits 𝑄(𝑥± 0). At that, the
set of discontinuity points of the function 𝑄 is at most countable. This is why at the continuity
points of 𝑄, the function 𝜑1 possesses the derivative 𝜑′

1 w.r.t. 𝑥. If at some point 𝑥0 ∈ R the
function 𝑄 has a jump △𝑄(𝑥0) = 𝑄(𝑥0 + 0) −𝑄(𝑥0 − 0), then the derivative 𝜑′

1 has the same
by size jump. Therefore, we can extend the function 𝜑′

1(𝑥, 𝑘) −𝑄(𝑥) by the continuity on the
entire segment [𝑎, 𝑏] and assume that 𝜑′

1(𝑥, 𝑘) −𝑄(𝑥) ∈ 𝐴𝐶[𝑎, 𝑏].
By (14), for 𝑛 > 1 we have

𝜑𝑛+1(𝑥, 𝑘) = 1 +

𝑥∫︁
−∞

𝑒−2𝑘(𝑥−𝑦)𝜑𝑛(𝑦, 𝑘)𝑄(𝑦)𝑑𝑦 −
𝑥∫︁

−∞

1 − 𝑒−2𝑘(𝑥−𝑦)

2𝑘
𝜑′
𝑛(𝑦, 𝑘)𝑄(𝑦)𝑑𝑦,

𝜑′
𝑛+1(𝑥, 𝑘) = 𝜑𝑛(𝑥, 𝑘)𝑄(𝑥) − 2𝑘

𝑥∫︁
−∞

𝑒−2𝑘(𝑥−𝑦)𝜑𝑛(𝑦, 𝑘)𝑄(𝑦)𝑑𝑦

−
𝑥∫︁

−∞

𝑒−2𝑘(𝑥−𝑦)𝜑′
𝑛(𝑦, 𝑘)𝑄(𝑦)𝑑𝑦.

(16)

Arguing by induction, we get

𝜑𝑛(𝑥, 𝑘) ∈ 𝑊 1,1(𝑎, 𝑏), 𝜑′
𝑛(𝑥, 𝑘) ∈ 𝐵𝑉 (𝑎, 𝑏), 𝜑′

𝑛(𝑥, 𝑘) −𝑄(𝑥)𝜑𝑛−1(𝑥, 𝑘) ∈ 𝐴𝐶[𝑎, 𝑏] (17)

for all 𝑛 ∈ N. Moreover, the left hand sides in (16) can be rewritten as

𝜑𝑛+1(𝑥, 𝑘) =1 +

𝑥∫︁
−∞

𝑒−2𝑘(𝑥−𝑦)𝜑𝑛(𝑦, 𝑘)𝑄(𝑦)𝑑𝑦

−
𝑥∫︁

−∞

𝑅(𝑥− 𝑦, 𝑘)

⎛⎝ 𝑦∫︁
−∞

𝑒−2𝑘(𝑦−𝑠)𝜑𝑛−1(𝑠, 𝑘)𝑑𝑄(𝑠)

⎞⎠𝑄(𝑦)𝑑𝑦,

(18)

𝜑′
𝑛+1(𝑥, 𝑘) =

𝑥∫︁
−∞

𝑒−2𝑘(𝑥−𝑦)𝜑𝑛(𝑦, 𝑘)𝑑𝑄(𝑦).

In view of (5), (8), this implies easily the estimate

⃒⃒
𝜑′
𝑛+1(𝑥, 𝑘)

⃒⃒
6

𝑥∫︁
−∞

⃒⃒
𝑒−2𝑘(𝑥−𝑦)

⃒⃒
|𝜑𝑛(𝑦, 𝑘)| 𝑑𝑉𝑄(𝑦) 6 𝑉𝑄

𝑛∑︁
𝑚=0

(︂
𝑥∫︀

−∞
𝑉𝑄(𝑦)𝑑𝑦

)︂𝑚

𝑚!
. (19)

Therefore, the sequence 𝜑′
𝑛 −𝑄𝜑𝑛−1 converges uniformly on [𝑎, 𝑏]. Due to the uniform on [𝑎, 𝑏]

convergence
𝜑𝑛 ⇒ 𝜑+, 𝜑′

𝑛 −𝑄𝜑𝑛−1 ⇒ 𝜑+
𝑥 −𝑄𝜑+ (20)
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and relations (17) we obtain

𝜑+(𝑥, 𝑘) ∈ 𝑊 1,1(𝑎, 𝑏), 𝜑+
𝑥 (𝑥, 𝑘) ∈ 𝐵𝑉 (𝑎, 𝑏), 𝜑+

𝑥 (𝑥, 𝑘) −𝑄(𝑥)𝜑+(𝑥, 𝑘) ∈ 𝐴𝐶[𝑎, 𝑏].

Thus, we have proved the following theorem.

Theorem 2. For each fixed 𝑘 ∈ 𝐾+, the belonging 𝜑± ∈ 𝑊 1,1
loc holds. Moreover, 𝜑±

𝑥 ∈ 𝐵𝑉loc
and the difference 𝜑±

𝑥 −𝑄𝜑± is absolutely continuous on finite segments in R.

It follows from Theorem 2 and (18), (19) that

𝜑+
𝑥 (𝑥, 𝑘) =

𝑥∫︁
−∞

𝑒−2𝑘(𝑥−𝑦)𝜑+(𝑦, 𝑘)𝑑𝑄(𝑦), 𝜑−
𝑥 (𝑥, 𝑘) = −

∞∫︁
𝑥

𝑒−2𝑘(𝑦−𝑥)𝜑−(𝑦, 𝑘)𝑑𝑄(𝑦),

and the estimates ⃒⃒
𝜑+
𝑥 (𝑥, 𝑘)

⃒⃒
6

𝑥∫︁
−∞

⃒⃒
𝑒−2𝑘(𝑥−𝑦)

⃒⃒ ⃒⃒
𝜑+(𝑦, 𝑘)

⃒⃒
𝑑𝑉𝑄(𝑦),

⃒⃒
𝜑−
𝑥 (𝑥, 𝑘)

⃒⃒
6

∞∫︁
𝑥

⃒⃒
𝑒−2𝑘(𝑥−𝑦)

⃒⃒ ⃒⃒
𝜑−(𝑦, 𝑘)

⃒⃒
𝑑𝑉𝑄(𝑦).

(21)

hold true.
Substituting estimate (ii) of Theorem 1 into formulae (21), we obtain the following state-

ments.

Lemma 1. For each 𝑘 ∈ 𝐾+, the derivatives 𝜑±
𝑥 (𝑥, 𝑘) are uniformly bounded

⃒⃒
𝜑+
𝑥 (𝑥, 𝑘)

⃒⃒
6 𝐶

𝑥∫︁
−∞

(1 + |𝑦|)𝑑𝑉𝑄(𝑦) 6 𝐶

∞∫︁
−∞

(1 + |𝑦|)𝑑𝑉𝑄(𝑦),

⃒⃒
𝜑−
𝑥 (𝑥, 𝑘)

⃒⃒
6 𝐶

∞∫︁
𝑥

(1 + |𝑦|)𝑑𝑉𝑄(𝑦) 6 𝐶

∞∫︁
−∞

(1 + |𝑦|)𝑑𝑉𝑄(𝑦).

Lemma 2. As |𝑘| → ∞, Re 𝑘 > 0, the limiting relations 𝜑±
𝑥 (𝑥, 𝑘) → 0 hold.

In the same way, by (21) and (12) we get the next statement.

Lemma 3. For each 𝑘 ∈ 𝐾+, the derivatives 𝜑±
𝑥 (𝑥, 𝑘) satisfy the estimates⃒⃒

𝜑+
𝑥 (𝑥, 𝑘)

⃒⃒
6 𝐶1𝑉𝑄(𝑥), 𝑥 6 0,⃒⃒

𝜑−
𝑥 (𝑥, 𝑘)

⃒⃒
6 𝐶2𝑉𝑄(𝑥), 𝑥 > 0,

where the constants 𝐶1, 𝐶2 are independent of 𝑘.

Lemma 4. If Re 𝑘 > 0, then 𝜑+
𝑥 (𝑥, 𝑘) → 0 as 𝑥→ ∞ and 𝜑−

𝑥 (𝑥, 𝑘) → 0 as 𝑥→ −∞.

Proof. By (21) we have

⃒⃒
𝜑+
𝑥 (𝑥, 𝑘)

⃒⃒
6

⃒⃒
𝑒−2𝑘𝑥

⃒⃒ 𝑥∫︁
−∞

⃒⃒
𝑒2𝑘𝑦

⃒⃒ ⃒⃒
𝜑+(𝑦, 𝑘)

⃒⃒
𝑑𝑉𝑄(𝑦).

In view of (5) and estimate (iii) of Theorem 1, the right hand side of the inequality tends to
zero as 𝑥→ ∞ only if Re 𝑘 > 0.

The properties of the functions 𝜑± and of their derivatives allow us to specify Theorem 2.
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Lemma 5. If −∞ < 𝑎 < ∞, then for each 𝑘 ∈ 𝐾+ ∖ {0} we have 𝜑+ − 1 ∈ 𝑊 1,1(−∞, 𝑎)
and 𝜑− − 1 ∈ 𝑊 1,1(𝑎,∞).

Indeed, the belonging 𝜑+ ∈ 𝐿1(−∞, 𝑎) follows estimate (iii) of Theorem 1 and (5), while the
belonging 𝜑+

𝑥 ∈ 𝐿1(−∞, 𝑎) is implied by Lemma 3 and again by condition (5).
We note that as 𝑘 = 0, Lemma 5 is not true as the next example shows.

Example 1. We consider equation (1) with the potential 𝑞(𝑥) = 𝑥−
8
3 as 𝑥 > 1. It is easy to

confirm that condition (5) is satisfied. Moreover, for 𝑥 > 1 we have

𝜓−(𝑥, 0) = 𝜑−(𝑥, 0) =
𝑥

2
3

3

[︃
ch

(︁
3𝑥−

1
3

)︁
− 𝑥

1
3

3
sh

(︁
3𝑥−

1
3

)︁]︃
.

Employing Taylor formula, we get the asymptotic identity

𝜑−(𝑥, 0) = 1 +
9

10
𝑥−

2
3 + 𝑜

(︁
𝑥−

2
3

)︁
as 𝑥→ ∞,

which implies obviously that 𝜑− − 1 ̸∈ 𝐿1(𝑎,∞) for each 𝑎 ∈ R.

3. Approximation by smooth potentials. In this section we show that in the inverse
scattering problem, the Schrödinger equation with the potential 𝑞 ∈ ℳ, 𝑞 = 𝑄′, 𝑞 ∈ 𝐵𝑉1 can
be uniformly approximated by the equations with smooth potentials. We note that a similar
result for an equation on a finite interval was obtained in work [5] (see also [4]).

We still assume that 𝑞 = 𝑄′ in the generalized sense and 𝑄 ∈ 𝐵𝑉1. Let 𝜂𝜀(𝑥) be the standard
averaging kernel. For a function 𝑄 ∈ 𝐵𝑉1 we define the mean function 𝑄𝜀 = 𝜂𝜀 *𝑄 on R. Then
for each partition −∞ < 𝑥0 < 𝑥1 < . . . < 𝑥𝑛 6 𝑥 <∞ we have

𝑛∑︁
𝑖=1

|𝑄𝜀(𝑥𝑖) −𝑄𝜀(𝑥𝑖−1)| 6
∞∫︁

−∞

𝜂𝜀(𝑦)
𝑛∑︁

𝑖=1

|𝑄(𝑥𝑖 − 𝑦) −𝑄(𝑥𝑖−1 − 𝑦)| 𝑑𝑦

6

𝜀∫︁
−𝜀

𝜂𝜀(𝑦)𝑉𝑄(𝑥− 𝑦) 𝑑𝑦 6 𝑉𝑄(𝑥+ 𝜀).

Therefore, 𝑉𝑄𝜀(𝑥) 6 𝑉𝑄(𝑥+ 𝜀) 6 𝑉𝑄 and

0∫︁
−∞

|𝑥| 𝑑𝑉𝑄𝜀(𝑥) =

0∫︁
−∞

𝑉𝑄𝜀(𝑥) 𝑑𝑥− 𝑥𝑉𝑄𝜀(𝑥)
⃒⃒⃒0
−∞
6

0∫︁
−∞

𝑉𝑄𝜀(𝑥) 𝑑𝑥 6

0∫︁
−∞

𝑉𝑄(𝑥+ 𝜀) 𝑑𝑥 <∞.

In the same one can show that
∞∫︁
0

|𝑥| 𝑑𝑉𝑄𝜀(𝑥) <∞.

The obtained inequalities imply in particular that 𝑄𝜀 ∈ 𝐵𝑉1.

Remark 2. It is easy to see that for each 𝑥, 𝑦 ∈ R, 𝑥 > 𝑦, the inequality

|𝑄𝜀(𝑥) −𝑄𝜀(𝑦)| 6 𝑉𝑄𝜀(𝑥) 6 𝑉𝑄(𝑥+ 𝜀)

holds true. As 𝑦 → −∞, we obtain

|𝑄𝜀(𝑥)| 6 𝑉𝑄𝜀(𝑥) 6 𝑉𝑄(𝑥+ 𝜀), 𝑥 ∈ R. (22)



SOME PROPERTIES OF JOST FUNCTIONS FOR SCHRÖDINGER EQUATION. . . 69

Therefore, 𝑄𝜀 ∈ 𝐿1(−∞, 𝑏) for each 𝑏 ∈ R. Moreover, Lebesgue theorem implies that

𝑥∫︁
−∞

|𝑄𝜀(𝑦) −𝑄(𝑦)| 𝑑𝑦 → 0

for each 𝑥 ∈ R.

By 𝜑+
𝜀 we denote the solution to the integral equation

𝜑+
𝜀 (𝑥, 𝑘) = 1 +

𝑥∫︁
−∞

𝑅(𝑥− 𝑦, 𝑘)𝜑+
𝜀 (𝑥, 𝑘)𝑑𝑄𝜀(𝑦).

Since 𝑄𝜀 ∈ 𝐵𝑉1, the solution 𝜑+
𝜀 exists for each 𝑘 ∈ 𝐾+. By 𝜓+

𝜀 = 𝑒𝑘𝑥𝜑+
𝜀 we denote the Jost

solution to the Schrödginer equation equation with the smooth potential 𝑞𝜀 = 𝑄′
𝜀.

Lemma 6. For each 𝑘 ∈ 𝐾+, as 𝜀→ 0, the limits hold true:
(1) 𝜓+

𝜀 (𝑥, 𝑘) → 𝜓+(𝑥, 𝑘) for each 𝑥 ∈ R;
(2) 𝜕

𝜕𝑥
𝜓+
𝜀 (𝑥, 𝑘) → 𝜕

𝜕𝑥
𝜓+(𝑥, 𝑘) almost everywhere in R.

Proof. Since the function 𝑄 is continuous almost everywhere in R and the Jost solutions are
continuous on the entire axis R, it is sufficient to prove the statement of the lemma at the
continuity points of the function 𝑄.

Let 𝑥 ∈ R and 𝑘 ∈ 𝐾+ be arbitrary and fixed and the function 𝑄 is continuous at the point
𝑥. Then by Theorem 1 and (20), for each 𝜀 ∈ [0, 1] the identities

𝜑+
𝜀 (𝑥, 𝑘) = lim

𝑛→∞
𝜑𝜀,𝑛(𝑥, 𝑘),

𝜕

𝜕𝑥
𝜑+
𝜀 (𝑥, 𝑘) = lim

𝑛→∞
𝜑′
𝜀,𝑛(𝑥, 𝑘), (23)

hold, where (see (14)) 𝜑𝜀,0(𝑥, 𝑘) = 1,

𝜑𝜀,𝑛+1(𝑥, 𝑘) =

𝑥∫︁
−∞

𝑒−2𝑘(𝑥−𝑦)𝜑𝜀,𝑛(𝑦, 𝑘)𝑄𝜀(𝑦)𝑑𝑦 −
𝑥∫︁

−∞

𝑅(𝑥− 𝑦, 𝑘)𝜑′
𝜀,𝑛(𝑦, 𝑘)𝑄𝜀(𝑦)𝑑𝑦,

𝜑′
𝜀,𝑛+1(𝑥, 𝑘) = 𝜑𝜀,𝑛(𝑥, 𝑘)𝑄𝜀(𝑥) − 2𝑘

𝑥∫︁
−∞

𝑒−2𝑘(𝑥−𝑦)𝜑𝜀,𝑛(𝑦, 𝑘)𝑄𝜀(𝑦)𝑑𝑦

−
𝑥∫︁

−∞

𝑒−2𝑘(𝑥−𝑦)𝜑′
𝜀,𝑛(𝑦, 𝑘)𝑄𝜀(𝑦)𝑑𝑦.

(24)

Here we assume that the value 𝜀 = 0 is associated with the function 𝜑+ = 𝜑+
0 . It follows

from inequalities (8), (19), (22) that both limits in (23) are uniform in 𝜀 ∈ [0, 1]. Hence, it is
obvious that to prove the lemma, it is sufficient to show that as 𝜀→ 0, for each 𝑛 the relations

𝜑
(𝑗)
𝜀,𝑛(𝑥, 𝑘) → 𝜑

(𝑗)
𝑛 (𝑥, 𝑘), 𝑗 = 0, 1, hold true.

As 𝑛 = 0, the limiting relations are obvious. Arguing by induction, we assume that

𝜑
(𝑗)
𝜀,𝑛(𝑥, 𝑘) → 𝜑

(𝑗)
𝑛 (𝑥, 𝑘) for all 𝑛 6 𝑁 and let us show that 𝜑

(𝑗)
𝜀,𝑁+1(𝑥, 𝑘) → 𝜑

(𝑗)
𝑁+1(𝑥, 𝑘) as 𝜀 → 0.

But these relations are implied by inequalities (8), (22) ensuring the possibility to pass to the
limit in the integral in expressions (24). Indeed, by (8), (19) and (22), as 𝑦 ∈ (−∞, 𝑥], we get
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the estimates⃒⃒
𝑒−2𝑘(𝑥−𝑦)𝜑𝜀,𝑛(𝑦, 𝑘)𝑄𝜀(𝑦)

⃒⃒
6 𝑒𝑀𝜀(𝑦) |𝑄𝜀(𝑦)| 6 𝐶𝑒𝑀(𝑦) |𝑄(𝑦)| ∈ 𝐿1(−∞, 𝑥),

⃒⃒
𝜑′
𝜀,𝑛(𝑦, 𝑘)

⃒⃒
6 𝑒𝑀𝜀(𝑦)𝑉𝑄𝜀(𝑦) 6 𝑒𝑀(𝑦+𝜀)𝑉𝑄(𝑦 + 𝜀), 𝑀𝜀(𝑦) =

𝑦∫︁
−∞

𝑉𝑄𝜀(𝑠)𝑑𝑠,⃒⃒
𝑅(𝑥− 𝑦, 𝑘)𝜑′

𝜀,𝑛(𝑦, 𝑘)𝑄𝜀(𝑦)
⃒⃒
6 (𝑥− 𝑦)𝑒𝑀𝜀(𝑦)𝑉𝑄𝜀(𝑦)|𝑄𝜀(𝑦)| 6 (𝑥− 𝑦)𝑒𝑀(𝑦+𝜀)𝑉𝑄(𝑦 + 𝜀)|𝑄(𝑦)|.

And since
𝑥∫︁

−∞

(𝑥− 𝑦)𝑒𝑀(𝑦)𝑉𝑄(𝑦)|𝑄(𝑦)|𝑑𝑦 6
𝑥∫︁

−∞

(𝑥− 𝑦)𝑉 2
𝑄(𝑦)𝑑𝑦 6 𝑥

𝑥∫︁
−∞

𝑉 2
𝑄(𝑦)𝑑𝑦 −

𝑥∫︁
−∞

𝑉 2
𝑄(𝑦)𝑦𝑑𝑦,

by lim
𝑦→−∞

𝑦𝑉𝑄(𝑦) = 0, the right hand of the inequality does not exceed

𝑥

𝑥∫︁
−∞

𝑉 2
𝑄(𝑦)𝑑𝑦 +

𝑥∫︁
−∞

𝑦2𝑉𝑄(𝑦)𝑑𝑉𝑄(𝑦) <∞.

This allows us to apply the Lebesgue theorem on majorized convergence in (24) as 𝑛 = 𝑁 . The
proof is complete.

Theorem 3. Let 𝑘 ∈ 𝐾+. Then for each 𝑏 ∈ R, the uniform limiting relation 𝜓+
𝜀 ⇒ 𝜓+

holds on the half-line (−∞, 𝑏] as 𝜀→ 0, while on the half-line [𝑏,∞) we have 𝜓−
𝜀 ⇒ 𝜓−.

Proof. Let 𝑏 ∈ R and 𝑘 ∈ 𝐾+ be fixed. By Theorem 1 and inequality (22), for an arbitrary
𝜏 > 0 there exists 𝑎 ∈ (−∞, 0) independent of 𝜀 such that⃒⃒

𝜓+
𝜀 (𝑥, 𝑘) − 𝜓+(𝑥, 𝑘)

⃒⃒
6

⃒⃒
𝜑+
𝜀 (𝑥, 𝑘) − 𝜑+(𝑥, 𝑘)

⃒⃒
<
𝜏

3
, 𝑥 ∈ (−∞, 𝑎]. (25)

If 𝑎 > 𝑏, the theorem is proved.
Let 𝑎 < 𝑏. We denote by 𝜓*

𝜀 the solution to differential equation (1) with the smooth potential
𝑞𝜀 subject to the initial conditions

𝜓*
𝜀(𝑎, 𝑘) = 𝜓+(𝑎, 𝑘),

𝜕

𝜕𝑥
𝜓*
𝜀(𝑎, 𝑘) =

𝜕

𝜕𝑥
𝜓+(𝑎+ 0, 𝑘).

Then for each 𝑥 ∈ [𝑎, 𝑏] we have⃒⃒
𝜓+
𝜀 (𝑥, 𝑘) − 𝜓+(𝑥, 𝑘)

⃒⃒
6

⃒⃒
𝜓+
𝜀 (𝑥, 𝑘) − 𝜓*

𝜀(𝑥, 𝑘)
⃒⃒

+
⃒⃒
𝜓*
𝜀(𝑥, 𝑘) − 𝜓+(𝑥, 𝑘)

⃒⃒
.

Let us show that for sufficiently small 𝜀 both absolute values in the right hand side are less
than 𝜏

3
for all 𝑥 ∈ [𝑎, 𝑏]. The functions 𝜓+

𝜀 and 𝜓*
𝜀 are solutions to the same differential equation

with the smooth potential 𝑞𝜀. By Lemma 5, as 𝜀→ 0 we have

𝜓+
𝜀 (𝑎, 𝑘) → 𝜓+(𝑎, 𝑘),

𝜕

𝜕𝑥
𝜓+
𝜀 (𝑎, 𝑘) → 𝜕

𝜕𝑥
𝜓+(𝑎+ 0, 𝑘).

Hence, thanks to the continuous dependence on the initial data for the solutions to the
Schrödginer equation with a smooth potential (see, for instance, [11, Ch. 2, Sect. 4]), for
sufficiently small 𝜀, the inequality ⃒⃒

𝜓+
𝜀 (𝑥, 𝑘) − 𝜓*

𝜀(𝑥, 𝑘)
⃒⃒
<
𝜏

3

holds for all 𝑥 ∈ [𝑎, 𝑏]. Concerning the difference |𝜓*
𝜀(𝑥, 𝑘) − 𝜑+(𝑥, 𝑘)|, by result of work [5]

mentioned in the beginning of this section, this difference tends to zero as 𝜀 → 0 uniformly in
[𝑎, 𝑏].
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Therefore, for sufficiently small 𝜀, the inequality⃒⃒
𝜓+
𝜀 (𝑥, 𝑘) − 𝜓+(𝑥, 𝑘)

⃒⃒
< 𝜏, 𝑥 ∈ (−∞, 𝑏],

holds true. This completes the proof for the solution 𝜓+. The arguing for 𝜓− is similar.
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