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DIRICHLET BOUNDARY VALUE PROBLEM IN

HALF-STRIP FOR FRACTIONAL DIFFERENTIAL

EQUATION WITH BESSEL OPERATOR AND

RIEMANN-LIOUVILLE PARTIAL DERIVATIVE

F.G. KHUSHTOVA

Abstract. In the work we study the Dirichlet boundary value problem in a half-strip for a

fractional differential equations with the Bessel operator and the Riemann-Liouville partial

derivatives. We formulate the unique solvability theoresm for the considered problem.

We find the representations for the solutions in terms of the integral transform with the

Wright function in the kernel. The proof of the existence theorem is made on the base

of the mentioned integral transform and the modified Bessel function of first kind. The

uniqueness of the solutions is shown in the class of the functions satisfying an analogue

of Tikhonov equation. In the case, when the considered equations is the fractional order

diffusion equation, we show that the obtained solutions coincides with the known solution

to the Dirichlet problem for the corresponding equation. We also consider the case when

the initial function is power in the spatial variable. In this case the solution to the problem

is written out in terms of the Fox 𝐻-function.

Keywords: Bessel operator, Riemann–Liouville partial derivative, fractional diffusion,

Wright function, integral transform with the function of Wright in the kernel, modified

Bessel function of the first kind, Fox 𝐻-function, Tikhonov condition.
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1. Introduction

Let 𝐷 𝛾
𝑎𝑦 be an integration-differentiation operator in the Riemann-Liouville sense of a frac-

tional order 𝛾 with the origin at a point 𝑎 and with the end at a point 𝑦; this operator is defined
as [11], [12], [15]:

𝐷 𝛾
𝑎𝑦 𝑔(𝑦) =

sign(𝑦 − 𝑎)

Γ(− 𝛾)

𝑦∫︁
𝑎

𝑔(𝑡)

|𝑦 − 𝑡|𝛾+1
𝑑𝑡, 𝛾 < 0; 𝐷 𝛾

𝑎𝑦 𝑔(𝑦) = 𝑔(𝑦), 𝛾 = 0;

𝐷 𝛾
𝑎𝑦 𝑔(𝑦) = sign𝑛(𝑦 − 𝑎)

𝑑𝑛

𝑑𝑦𝑛
𝐷 𝛾−𝑛

𝑎𝑦 𝑔(𝑦), 𝑛− 1 < 𝛾 6 𝑛, 𝑛 ∈ N.

Here Γ(𝑠) is the Euler gamma function.
In the domain Ω = {(𝑥, 𝑦) : 0 < 𝑥 < ∞, 0 < 𝑦 < 𝑇} we consider the equation

L𝑢(𝑥, 𝑦) ≡ 𝐵𝑥 𝑢(𝑥, 𝑦) −𝐷 𝛼
0𝑦 𝑢(𝑥, 𝑦) = 0, (1)

where 𝐵𝑥 = 𝑥−𝑏 𝜕
𝜕𝑥

(︀
𝑥 𝑏 𝜕

𝜕𝑥

)︀
is the Bessel operator, 𝑏 = const, 𝛼 = const.
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Equation of form (1), namely,

𝐷
2

𝑑𝑤
0𝑡 𝑃 (𝑟, 𝑡) =

1

𝑟 𝑑𝑠−1

𝜕

𝜕𝑟

(︂
𝑟 𝑑𝑠−1𝜕𝑃 (𝑟, 𝑡)

𝜕𝑟

)︂
,

where 𝑑𝑤 and 𝑑𝑠 characterize the fractal dimension of a media, 𝑃 (𝑟, 𝑡) is the density of the
spatial particles distribution at time 𝑡, was proposed in work by R. Metzler, W.G. Glöckle,
T.F. Nonnenmacher [28] for describing transfer processes in media of a fractal dimension.

As 𝛼 = 1, equation (1) becomes the equation

𝑢𝑥𝑥(𝑥, 𝑦) +
𝑏

𝑥
𝑢𝑥(𝑥, 𝑦) − 𝑢𝑦(𝑥, 𝑦) = 0,

which is called a 𝐵-parabolic equation by I.A. Kipriyanov [5]. As 𝑏 > −1, the latter equation
was studied in work [23]; as |𝑏| < 1, 𝑥 > 0, it was considered in work [17].

A lot of works were devoted to studying equation (1) as 𝑏 = 0, 0 < 𝛼 < 2, and to studying
its generalizations. Let us mention some of them.

In work [4], the method of integral transforms was applied for studying the Cauchy problem
for the equation

𝐷 𝛼
0𝑡 𝑢(𝑥, 𝑡) = 𝜆2 ∆𝑥𝑢(𝑥, 𝑡), 𝑥 ∈ R𝑚, 𝑡 > 0, (2)

where

∆𝑥 =
𝑚∑︁
𝑗=1

𝜕2/𝜕𝑥2
𝑗 , 𝑛− 1 < 𝛼 < 𝑛, 𝑛 ∈ N.

As 0 < 𝛼 6 1 and 1 < 𝛼 < 2, the solutions were written in terms of the Fox 𝐻-function. The
solution to the Cauchy problem for equation (2) as 𝜆 = 1, 0 < 𝛼 6 1 was written in work [1]
in terms of the Wright function. The Cauchy problem for equation (2) in the case, when the
Riemann-Laplace operator is replaced by Caputo operator, was studied in work [3].

For equation (2) with 𝑚 = 1, the Dirichlet boundary value problem in the first quadrant was
studied in work [2].

In work [16], there was constructed a fundamental solution and studied the Cauchy problem
for a multi-dimensional diffusion-wave equation with the Dzhrbashyan-Nersesyan operator.

Works [6], [7], [26] were devoted to studying the Cauchy problem for a fractional order diffu-
sion equation with the Caputo derivative and elliptic operator with the coefficients depending
on spatial variables.

The interest to equation (1) is also motivated by its applications in studying problems in
physics, astronomy and other applied sciences [18], [29], [30].

2. Formulation of problem

Let 0 < 𝛼 6 1. A regular solution of equation (1) in the domain Ω is a function 𝑢 = 𝑢(𝑥, 𝑦)
satisfying equation (1) in the domain Ω such that 𝑦 1−𝛼𝑢 ∈ 𝐶(Ω̄), 𝑢𝑥, 𝑢𝑥𝑥, 𝐷

𝛼
0𝑦𝑢 ∈ 𝐶(Ω), where

Ω̄ is the closure of the domain Ω.

Problem 1. Find a regular in the domain Ω solution to equation (1) satisfying the boundary
conditions

lim
𝑦→0

𝐷 𝛼−1
0𝑦 𝑢(𝑥, 𝑦) = 𝜙(𝑥), 0 < 𝑥 < ∞, (3)

𝑢(0, 𝑦) = 0, 0 < 𝑦 < 𝑇, (4)

where 𝜙(𝑥) is a given function.

Problem 1 with 𝜙(𝑥) ≡ 0, 𝑢(0, 𝑦) = 𝜏(𝑦), 𝑦 1−𝛼𝜏(𝑦) ∈ 𝐶[0, 𝑇 ] was studied in work [20]. The
solution was written in terms of the Fox 𝐻-function [14].
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3. Auxiliary statements

Here we provide some statements from the theory of integral transforms and the theory of
special functions, which will be used in further exposition of the work.

In work [15], A.V. Pskhu introduced an integral transform for a function 𝑣(𝑦) defined on the
positive semi-axis:

𝐴𝛼, 𝜇 𝑣(𝑦) = 𝑦 𝜇−1

∞∫︁
0

𝑣(𝑡)𝜑
(︀
−𝛼, 𝜇;− 𝑡 𝑦−𝛼

)︀
𝑑𝑡, 0 < 𝛼 < 1, (5)

where 𝜑 (𝜌, 𝜇; 𝑧) is the Wright function defined by the series [24]

𝜑 (𝜌, 𝜇; 𝑧) =
∞∑︁
𝑛=0

𝑧 𝑛

𝑛! Γ( 𝜌 𝑛 + 𝜇 )
, 𝜌 > −1.

In the case 𝜇 = 0, we denote 𝐴𝛼, 0 𝑣(𝑥, 𝑦) = 𝐴𝛼 𝑣(𝑥, 𝑦). If the transform 𝐴𝛼,𝜇 is applied to a
function of several variables and if there is a need, by the subscript we denote the variable,
w.r.t. which the transformation is made. For instance, 𝐴𝛼,𝜇

𝑦 𝑣(𝑥, 𝑦).
Integral (5) converges if the function 𝑣(𝑦) is integrable on each finite segment in the positive

semi-axis and the estimates

|𝑣(𝑦)| < 𝑐 𝑦 𝜆, 𝑦 → 0,

hold true, where 𝜆 > −1 if 𝜇 ̸= 0 and 𝜆 > −2 if 𝜇 = 0, and

|𝑣(𝑦)| < 𝑐 exp
(︀
𝑘 𝑦 𝜀

)︀
, 𝑦 → ∞,

where 𝜀 < 1/(1 − 𝛼), 𝑐 and 𝑘 are positive constants.
We provide some properties of the transform 𝐴𝛼, 𝜇 [15].
1∘. Assume that 𝑣(𝑦) is continuous at the point 𝑦 = 0 and is differentiable as 𝑦 > 0. Then

𝐷 𝛼
0𝑦 𝐴

𝛼, 𝜇 𝑣(𝑦) = 𝐴𝛼, 𝜇 𝑣′(𝑦) +
𝑦 𝜇−1

Γ(𝜇)
𝑣(0).

In particular, the formula

𝐷 𝛼
0𝑦 𝐴

𝛼 𝑣(𝑦) = 𝐴𝛼 𝑣′(𝑦). (6)

holds.
2∘. Let 0 6 𝜇 6 𝛼 and lim

𝑦→0
𝐷

−𝜇/𝛼
0𝑦 𝑣(𝑦) = 𝑣0 < ∞. Then

lim
𝑦→0

𝐷 𝛼−1
0𝑦 𝐴𝛼, 𝜇 𝑣(𝑦) = 𝑣0. (7)

3∘. If 𝑢(𝑦) 6 𝑣(𝑦) and 𝜇 > 0, then

𝐴𝛼, 𝜇 𝑢(𝑦) 6 𝐴𝛼, 𝜇 𝑣(𝑦). (8)

Transformation (5) for a power function and the Wright function are calculated by the
formulae [15]

𝐴𝛼, 𝜇 𝑦 𝛿−1 = 𝑦 𝛼𝛿+𝜇−1 Γ(𝛿)

Γ(𝛼𝛿 + 𝜇)
, 𝛿 > 0, 𝜇 ̸= 0; 𝛿 > −1, 𝛿 ̸= 0, 𝜇 = 0, (9)

𝐴𝛼, 𝜇 𝑦 𝛿−1𝜑 (𝜌, 𝛿;− 𝑐 𝑦 𝜌) = 𝑦 𝛼𝛿+𝜇−1 𝜑 (𝛼𝜌, 𝛼𝛿 + 𝜇;− 𝑐 𝑦 𝛼𝜌), 𝛿 > 𝜌. (10)

In work [22], the formula

𝐴𝛼, 𝜇 𝑦 𝛿−1 𝑒− 𝑐2

4𝑦 = 𝑦 𝛼 𝛿+𝜇−1𝐻 2, 0
1, 2

[︂
𝑐 2

4 𝑦 𝛼

⃒⃒⃒⃒ (︀
𝛼 𝛿 + 𝜇, 𝛼

)︀(︀
0, 1

)︀
,
(︀
𝛿, 1

)︀ ]︂
(11)
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was proved. Here 𝑐 is a constant, 𝛿 ̸= 0,±1,±2, . . . , 𝐻 𝑚,𝑛
𝑝, 𝑞 (𝑧) is the Fox 𝐻-function [14], [25],

[27].
For the 𝐻-function in (11) we provide one more asymptotic estimate as 𝑧 → ∞ [25], [27]

𝐻 2, 0
1, 2

[︂
𝑧

⃒⃒⃒⃒ (︀
𝜇 + 𝛼 𝛿, 𝛼

)︀(︀
0, 1

)︀
,
(︀
𝛿, 1

)︀ ]︂
= 𝑂

(︁
𝑧

𝛿(1−𝛼)−𝜇
2−𝛼 exp

[︁
− (2 − 𝛼)𝛼

𝛼
2−𝛼 𝑧

1
2−𝛼

]︁)︁
. (12)

4. Main results

We denote

𝐺(𝑥, 𝜉, 𝑦) = 𝐴𝛼
𝑦 𝑔(𝑥, 𝜉, 𝑦), (13)

where

𝑔(𝑥, 𝜉, 𝑦) =
𝑥𝛽𝜉 𝛽

2𝑦
𝑒−

𝑥2+𝜉2

4𝑦 𝐼𝛽

(︂
𝑥𝜉

2𝑦

)︂
, 𝛽 =

1 − 𝑏

2
, (14)

𝐼𝜈(𝑧) is the modified Bessel function of first kind of order 𝜈 defined by the series [8], [9]

𝐼𝜈(𝑧) =
∞∑︁
𝑛=0

1

𝑛! Γ( 𝜈 + 𝑛 + 1)

(︂
𝑧

2

)︂𝜈+2𝑛

.

Let us estimate the function 𝐺(𝑥, 𝜉, 𝑦). By means of the formulae for the function 𝐼𝜈(𝑧) [8],
[9]

𝑑

𝑑𝑧
[𝑧 𝜈𝐼𝜈(𝑧)] = 𝑧 𝜈𝐼𝜈−1(𝑧), (15)

𝑑

𝑑𝑧

[︀
𝑧−𝜈𝐼𝜈(𝑧)

]︀
= 𝑧−𝜈𝐼𝜈+1(𝑧), (16)

𝑧 𝐼 ′𝜈(𝑧) + 𝜈 𝐼𝜈(𝑧) = 𝑧 𝐼𝜈−1(𝑧), (17)

by its asymptotic behavior for small positive values 𝑧 [9]

𝐼𝜈(𝑧) ≈
1

Γ(𝜈 + 1)

(︂
𝑧

2

)︂𝜈

and by (14) for 𝑥𝜉 6 2𝑦, we obtain the estimates⃒⃒⃒⃒
𝜕 𝑛

𝜕𝑥𝑛
𝑔(𝑥, 𝜉, 𝑦)

⃒⃒⃒⃒
6 const · 𝑥 2𝛽−𝑛 𝜉 2𝛽 𝑦−𝛽−1, 𝛽 ̸= 1

2
,⃒⃒⃒⃒

𝜕 2𝑛

𝜕𝑥 2𝑛
𝑔(𝑥, 𝜉, 𝑦)

⃒⃒⃒⃒
6 const · 𝑥 𝜉 𝑦−𝑛−3/2, 𝛽 =

1

2
,⃒⃒⃒⃒

𝜕 2𝑛+1

𝜕𝑥 2𝑛+1
𝑔(𝑥, 𝜉, 𝑦)

⃒⃒⃒⃒
6 const · 𝜉 𝑦−𝑛−3/2, 𝛽 =

1

2
,⃒⃒⃒⃒

𝜕

𝜕𝑦
𝑔(𝑥, 𝜉, 𝑦)

⃒⃒⃒⃒
6 const · 𝑥 2𝛽 𝜉 2𝛽 𝑦−𝛽−2,

where 𝑛 = 0, 1, 2, . . . Applying the transform 𝐴𝛼 w.r.t. the variable 𝑦 by means of formula (9)
to the latter estimates, by properties (6) and (8) we arrive at the estimates⃒⃒⃒⃒

𝜕 𝑛

𝜕𝑥𝑛
𝐺(𝑥, 𝜉, 𝑦)

⃒⃒⃒⃒
6 const · 𝑥 2𝛽−𝑛 𝜉 2𝛽 𝑦−𝛼𝛽−1, 𝛽 ̸= 1

2
, (18)⃒⃒⃒⃒

𝜕 2𝑛

𝜕𝑥 2𝑛
𝐺(𝑥, 𝜉, 𝑦)

⃒⃒⃒⃒
6 const · 𝑥 𝜉 𝑦−𝛼 (2𝑛+1)/2−1, 𝛽 =

1

2
,⃒⃒⃒⃒

𝜕 2𝑛+1

𝜕𝑥 2𝑛+1
𝐺(𝑥, 𝜉, 𝑦)

⃒⃒⃒⃒
6 const · 𝜉 𝑦−𝛼 (2𝑛+1)/2−1, 𝛽 =

1

2
,
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𝐷 𝛼

0𝑦 𝐺(𝑥, 𝜉, 𝑦)
⃒⃒
6 const · 𝑥 2𝛽 𝜉 2𝛽 𝑦−𝛼𝛽−𝛼−1.

Employing formulae (15)–(17) and the asymptotic formula [8]

𝐼𝜈(𝑧) =
𝑒 𝑧

√
2𝜋𝑧

[︀
1 + 𝑂

(︀
𝑧−1

)︀ ]︀
, | arg 𝑧| < 𝜋

2
,

which is true for large values of 𝑧, by (14) with 𝑥𝜉 > 2𝑦 we obtain the estimates⃒⃒⃒⃒
𝜕 𝑛

𝜕𝑥𝑛
𝑔(𝑥, 𝜉, 𝑦)

⃒⃒⃒⃒
6 const · 𝑥𝛽+𝑛− 1

2 𝜉 𝛽− 1
2 𝑦−𝑛− 1

2 exp

[︂
− (𝑥− 𝜉)2

4𝑦

]︂
, (19)⃒⃒⃒⃒

𝜕

𝜕𝑦
𝑔(𝑥, 𝜉, 𝑦)

⃒⃒⃒⃒
6 const · 𝑥𝛽+ 3

2 𝜉 𝛽− 1
2 𝑦−

5
2 exp

[︂
− (𝑥− 𝜉)2

4𝑦

]︂
,

where 𝑛 = 0, 1, 2, . . . Applying the transformation 𝐴𝛼 w.r.t. the variable 𝑦 by means of formula
(11) to the latter estimates and employing then formula (12), by properties (6) and (8) we get
the estimates ⃒⃒⃒⃒

𝜕 𝑛

𝜕𝑥𝑛
𝐺(𝑥, 𝜉, 𝑦)

⃒⃒⃒⃒
6 const · 𝑃𝑛(𝑥, 𝜉, 𝑦) exp

[︁
−𝛼0 |𝑥− 𝜉|

2
2−𝛼 𝑦− 𝛼

2−𝛼

]︁
, (20)⃒⃒

𝐷 𝛼
0𝑦 𝐺(𝑥, 𝜉, 𝑦)

⃒⃒
6 const · 𝑃2(𝑥, 𝜉, 𝑦) exp

[︁
−𝛼0 |𝑥− 𝜉|

2
2−𝛼 𝑦− 𝛼

2−𝛼

]︁
,

where 𝛼0 = (2 − 𝛼) 2− 2
2−𝛼 𝛼

𝛼
2−𝛼 and

𝑃𝑛(𝑥, 𝜉, 𝑦) = 𝑥𝛽+ 2𝑛−1
2 𝜉 𝛽− 1

2 |𝑥− 𝜉|−
(2𝑛−1)(1−𝛼)

2−𝛼 𝑦−𝛼(2𝑛−1)
2(2−𝛼)

−1, 𝑛 = 0, 1, 2, . . .

The following theorems hold.

Theorem 1. Let |𝑏| < 1, 𝜙(𝑥) ∈ 𝐶[0,∞), 𝜙(0) = 0 and the condition

lim
𝑥→∞

𝜙(𝑥) exp
(︀
− 𝜌 𝑥

2
2−𝛼

)︀
= 0, 𝜌 < (2 − 𝛼) 2− 2

2−𝛼

(︁𝛼
𝑇

)︁ 𝛼
2−𝛼

holds. Then the function

𝑢(𝑥, 𝑦) =

∞∫︁
0

𝜉 1−2𝛽 𝐺(𝑥, 𝜉, 𝑦)𝜙(𝜉) 𝑑𝜉 (21)

solves Problem 1.

Theorem 2. There exists at most one regular solution to Problem 1 in the class of the
functions satisfying the condition

lim
𝑥→∞

𝑦 1−𝛼 𝑢(𝑥, 𝑦) exp
(︀
− 𝑘 𝑥

2
2−𝛼

)︀
= 0 (22)

for some positive 𝑘 and the convergence in (22) is uniform on the set {𝑦 ∈ (0;𝑇 )}.

5. Proof of Theorem 1

Estimates (18) and (20) for 𝑛 = 0 imply the existence of the integral in (21). Let us prove
that the function 𝑢(𝑥, 𝑦) defined by identity (21) satisfies equation (1). The possibility of
swapping the differentiation and integration while differentiating w.r.t. 𝑥 and calculating the
fractional derivative w.r.t. 𝑦 of order 𝛼 follows from the above obtained estimates for the
function 𝐺(𝑥, 𝜉, 𝑦).

We differentiate identity (21) w.r.t. 𝑥 employing formula (15) for 𝜈 = 𝛽. As a result we get

𝜕

𝜕𝑥
𝑢(𝑥, 𝑦) =

∞∫︁
0

𝜉 1−2𝛽 𝜕

𝜕𝑥
𝐺(𝑥, 𝜉, 𝑦)𝜙(𝜉) 𝑑𝜉, (23)
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where

𝜕

𝜕𝑥
𝐺(𝑥, 𝜉, 𝑦) = 𝐴𝛼

𝑦

𝜕

𝜕𝑥
𝑔(𝑥, 𝜉, 𝑦),

𝜕

𝜕𝑥
𝑔(𝑥, 𝜉, 𝑦) =

{︂
𝑥𝛽𝜉 𝛽+1

(2𝑦)2
𝐼𝛽−1

(︂
𝑥𝜉

2𝑦

)︂
− 𝑥𝛽+1𝜉 𝛽

(2𝑦)2
𝐼𝛽

(︂
𝑥𝜉

2𝑦

)︂}︂
𝑒−

𝑥2+𝜉2

4𝑦 .

We multiply both sides of (23) by 𝑥 1−2𝛽 and we differentiate the obtained identity w.r.t. 𝑥
employing formula (16) with 𝜈 = 𝛽− 1. Then we use formula (17) with 𝜈 = 𝛽 and multiply the
obtained identity by 𝑥 2𝛽−1. Finally we get

𝐵𝑥 𝑢(𝑥, 𝑦) =

∞∫︁
0

𝜉 1−2𝛽 𝐵𝑥𝐺(𝑥, 𝜉, 𝑦)𝜙(𝜉) 𝑑𝜉, (24)

where

𝐵𝑥 𝐺(𝑥, 𝜉, 𝑦) = 𝐴𝛼
𝑦 𝐵𝑥 𝑔(𝑥, 𝜉, 𝑦), (25)

𝐵𝑥 𝑔(𝑥, 𝜉, 𝑦) =

(︂
𝑥𝛽+2𝜉 𝛽

(2𝑦)3
𝐼𝛽

(︂
𝑥𝜉

2𝑦

)︂
+

𝑥𝛽𝜉 𝛽+2

(2𝑦)3
𝐼𝛽

(︂
𝑥𝜉

2𝑦

)︂
− 2𝑥𝛽𝜉 𝛽

(2𝑦)2
𝐼𝛽

(︂
𝑥𝜉

2𝑦

)︂
− 2𝑥𝛽+1𝜉 𝛽+1

(2𝑦)3
𝐼 ′𝛽

(︂
𝑥𝜉

2𝑦

)︂)︂
𝑒−

𝑥2+𝜉2

4𝑦 .

Formula (6) yields

𝐷 𝛼
0𝑦 𝑢(𝑥, 𝑦) =

∞∫︁
0

𝜉 1−2𝛽 𝐷 𝛼
0𝑦 𝐺(𝑥, 𝜉, 𝑦)𝜙(𝜉) 𝑑𝜉, (26)

where

𝐷 𝛼
0𝑦 𝐺(𝑥, 𝜉, 𝑦) = 𝐴𝛼

𝑦

𝜕

𝜕𝑦
𝑔(𝑥, 𝜉, 𝑦), (27)

𝜕

𝜕𝑦
𝑔(𝑥, 𝜉, 𝑦) =

(︂
𝑥𝛽+2𝜉 𝛽

(2𝑦)3
𝐼𝛽

(︂
𝑥𝜉

2𝑦

)︂
+

𝑥𝛽𝜉 𝛽+2

(2𝑦)3
𝐼𝛽

(︂
𝑥𝜉

2𝑦

)︂
− 2𝑥𝛽𝜉 𝛽

(2𝑦)2
𝐼𝛽

(︂
𝑥𝜉

2𝑦

)︂
− 2𝑥𝛽+1𝜉 𝛽+1

(2𝑦)3
𝐼 ′𝛽

(︂
𝑥𝜉

2𝑦

)︂)︂
𝑒−

𝑥2+𝜉2

4𝑦 .

Substituting (24) and (26) into equation (1), we see that it is satisfied.
Let us check condition (3). It follows from formula (7) that

lim
𝑦→0

𝐷 𝛼−1
0𝑦 𝑢(𝑥, 𝑦) = lim

𝑦→0

∞∫︁
0

𝜉 1−2𝛽 𝑔(𝑥, 𝜉, 𝑦)𝜙(𝜉) 𝑑𝜉

= lim
𝑦→0

⎡⎣ ∞∫︁
0

𝜉 1−2𝛽 𝑔(𝑥, 𝜉, 𝑦) [𝜙(𝜉) − 𝜙(𝑥)] 𝑑𝜉 + 𝜙(𝑥)

∞∫︁
0

𝜉 1−2𝛽 𝑔(𝑥, 𝜉, 𝑦) 𝑑𝜉

⎤⎦
= lim

𝑦→0
[ 𝐽1(𝑥, 𝑦) + 𝐽2(𝑥, 𝑦) ] .

Partition the integration segment into parts, we represent 𝐽1(𝑥, 𝑦) as the sum of three terms

𝐽1(𝑥, 𝑦) =

𝑥−𝜀∫︁
0

𝜉 1−2𝛽 𝑔(𝑥, 𝜉, 𝑦) [𝜙(𝜉) − 𝜙(𝑥) ] 𝑑𝜉
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+

𝑥+𝜀∫︁
𝑥−𝜀

𝜉 1−2𝛽 𝑔(𝑥, 𝜉, 𝑦) [𝜙(𝜉) − 𝜙(𝑥) ] 𝑑𝜉 +

∞∫︁
𝑥+𝜀

𝜉 1−2𝛽 𝑔(𝑥, 𝜉, 𝑦) [𝜙(𝜉) − 𝜙(𝑥) ] 𝑑𝜉

=𝐽11(𝑥, 𝑦) + 𝐽12(𝑥, 𝑦) + 𝐽13(𝑥, 𝑦),

where 𝜀 is an arbitrary small positive number.
According (19), the formula (14) with 𝑦 → 0 implies the estimate

| 𝑔(𝑥, 𝜉, 𝑦) | 6 const · 𝑥𝛽− 1
2 𝜉 𝛽− 1

2 𝑦−
1
2 𝑒− (𝑥−𝜉)2

4𝑦 . (28)

This yields that

lim
𝑦→0

𝐽11(𝑥, 𝑦) = lim
𝑦→0

𝐽13(𝑥, 𝑦) = 0.

We denote 𝜔(𝜀) = sup |𝜙(𝑥) − 𝜙(𝜉)|, where 𝜉 ∈ [𝑥 − 𝜀, 𝑥 + 𝜀]. We have 𝜔(𝜀) → 0 as 𝜀 → 0,
since the function 𝜙(𝑥) is continuous. Then by (28) we can write

|𝐽12(𝑥, 𝑦)| 6 𝜔(𝜀)
𝑥𝛽− 1

2

√
𝑦

𝑥+𝜀∫︁
𝑥−𝜀

𝜉
1
2
−𝛽 𝑒− (𝑥−𝜉)2

4𝑦 𝑑𝜉.

Making the change 𝜉 = 𝑥 + 2
√
𝑦 𝑡 in the latter integral, we obtain

|𝐽12(𝑥, 𝑦)| 6 𝜔(𝜀)𝑥𝛽− 1
2

𝜀
2
√
𝑦∫︁

− 𝜀
2
√
𝑦

(𝑥 + 2
√
𝑦 𝑡)

1
2
−𝛽 𝑒−𝑡2 𝑑𝑡. (29)

Applying the generalized theorem on mean value [19] to the integral in the right hand side of
(29) and employing the estimate

𝜀
2
√
𝑦∫︁

− 𝜀
2
√
𝑦

𝑒−𝑡2 𝑑𝑡 <

∞∫︁
−∞

𝑒−𝑡2 𝑑𝑡 =
√
𝜋,

we find:

lim
𝑦→0

𝐽12(𝑥, 𝑦) = const · 𝜔(𝜀).

By the continuity of the function 𝜙(𝑥) and the arbitrary choice of 𝜀 this implies

lim
𝑦→0

𝐽12(𝑥, 𝑦) = 0.

Let us calculate the integral 𝐽2(𝑥, 𝑦). In order to do this, we employ the formula [13]
∞∫︁
0

𝜉 𝛿−1𝑒− 𝑝 𝜉 2

𝐼𝛽 (𝑐 𝜉) 𝑑𝜉 =
𝑐𝛽𝑝− 𝛿+𝛽

2 Γ
(︀
𝛿+𝛽
2

)︀
2 1+𝛽 Γ( 1 + 𝛽)

1𝐹 1

(︂
𝛿 + 𝛽

2
; 1 + 𝛽;

𝑐 2

4𝑝

)︂
, (30)

where Re 𝑝, Re (𝛿 + 𝛽) > 0, | arg 𝑐| < 𝜋, 1𝐹 1 (𝑎; 𝑏; 𝑧) is the degenerate hypergeometric function.
Letting here 𝛿 = 2 − 𝛽, 𝑝 = 1/(4𝑦), 𝑐 = 𝑥/(2𝑦), we obtain

𝐽2(𝑥, 𝑦) =
𝑥 2𝛽 𝑦−𝛽 𝑒−

𝑥2

4𝑦 𝜙(𝑥)

2 2𝛽 Γ(1 + 𝛽)
1𝐹 1

(︂
1; 1 + 𝛽;

𝑥2

4𝑦

)︂
.

Then the asymptotic formula [9]

1𝐹1 (𝑎; 𝑏; 𝑧) =
Γ(𝑏)

Γ(𝑎)
𝑒 𝑧 𝑧−(𝑏−𝑎)

[︀
1 + 𝑂(|𝑧|−1)

]︀
, 𝑧 → ∞, | arg 𝑧| < 𝜋

2
, 𝑎, 𝑏 ̸= 0,−1,−2, . . . ,
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implies

lim
𝑦→0

𝐽2(𝑥, 𝑦) = 𝜙(𝑥).

Thus,

lim
𝑦→0

𝐷 𝛼−1
0𝑦 𝑢(𝑥, 𝑦) = 𝜙(𝑥).

Homogeneous condition (4) is implied by estimate (18) with 𝑛 = 0 and condition 𝛽 > 0. The
proof of Theorem 1 is complete.

We observe that the solution to the inhomogeneous equation

L𝑢(𝑥, 𝑦) = 𝑓(𝑥, 𝑦)

subject to the conditions

lim
𝑦→0

𝐷 𝛼−1
0𝑦 𝑢(𝑥, 𝑦) = 0, 0 < 𝑥 < ∞, 𝑢(0, 𝑦) = 𝜏(𝑦), 0 < 𝑦 < 𝑇,

can be written in terms of function (13) as

𝑢(𝑥, 𝑦) =

𝑦∫︁
0

𝜉 1−2𝛽 𝐺 𝜉(𝑥, 𝜉, 𝑦 − 𝜂)
⃒⃒
𝜉=0

𝜏(𝜂) 𝑑𝜂 −
𝑦∫︁

0

∞∫︁
0

𝜉 1−2𝛽 𝐺(𝑥, 𝜉, 𝑦 − 𝜂) 𝑓(𝜉, 𝜂) 𝑑𝜉 𝑑𝜂,

where the functions 𝜏(𝑦) and 𝑓(𝑥, 𝑦) are such that 𝑦1−𝛼𝜏(𝑦) ∈ 𝐶[0, 𝑇 ], 𝑦1−𝛼𝑓(𝑥, 𝑦) ∈ (Ω̄), the
function 𝑓(𝑥, 𝑦) satisfies the Hölder condition w.r.t. the variable 𝑥 and the conditions

lim
𝑦→0

𝐷 𝛼−1
0𝑦 𝜏(𝑦) = 0, lim

𝑥→∞
𝑦 1−𝛼𝑓(𝑥, 𝑦) exp

(︁
−𝜌 𝑥

2
2−𝛼

)︁
= 0, 𝜌 < (2 − 𝛼) 2− 2

2−𝛼

(︁𝛼
𝑇

)︁ 𝛼
2−𝛼

holds.

6. Representation of solutions in particular cases

By (21), we are going to obtain the representation for the solution to Problem 1 for the
diffusion equation with the Riemann-Liouville operator. By (13) and (14) for 𝛽 = 1

2
(𝑏 = 0)

and by the known representation [9]

𝐼 1
2
(𝑧) =

𝑒 𝑧 − 𝑒−𝑧

√
2𝜋𝑧

we have

𝐺(𝑥, 𝜉, 𝑦) = 𝐴𝛼
𝑦 𝑔(𝑥, 𝜉, 𝑦), 𝑔(𝑥, 𝜉, 𝑦) =

1

2
√
𝜋𝑦

[︂
𝑒−

(𝑥−𝜉)2

4𝑦 − 𝑒−
(𝑥+𝜉)2

4𝑦

]︂
.

Employing then another known identity [15]

√
𝜋 𝜑

(︂
−1

2
,
1

2
;− 𝑧

)︂
= 𝑒−

𝑧2

4 ,

the function 𝑔(𝑥, 𝜉, 𝑦) can be written as

𝑔(𝑥, 𝜉, 𝑦) =
1

2
√
𝑦

[︂
𝜑

(︂
−1

2
,
1

2
;− |𝑥− 𝜉|

√
𝑦

)︂
− 𝜑

(︂
−1

2
,
1

2
;− 𝑥 + 𝜉

√
𝑦

)︂]︂
.

Applying the transformation 𝐴𝛼 w.r.t. the variable 𝑦 by means of formula (10) to the latter
identity, we obtain

𝑢(𝑥, 𝑦) =

∞∫︁
0

𝐺(𝑥, 𝜉, 𝑦)𝜙(𝜉) 𝑑𝜉, (31)
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where

𝐺(𝑥, 𝜉, 𝑦) =
𝑦 𝜎−1

2

[︂
𝜑

(︂
−𝜎, 𝜎;− |𝑥− 𝜉|

𝑦 𝜎

)︂
− 𝜑

(︂
−𝜎, 𝜎;− 𝑥 + 𝜉

𝑦 𝜎

)︂]︂
, 𝜎 =

𝛼

2
.

Function (31) coincides with the solution to the boundary value problem for the fractional
diffusion equation provided in [2].

In the case 𝜙(𝑥) is a power function of the coordinate 𝑥, that is 𝜙(𝑥) = 𝑥 𝜈 with 𝜈 > 0, by
(21) we get

𝑢(𝑥, 𝑦) =

∞∫︁
0

𝜉1+𝜈−2𝛽𝐺(𝑥, 𝜉, 𝑦) 𝑑𝜉.

Substituting the function 𝐺(𝑥, 𝜉, 𝑦) from (13) into the latter integral and swapping the integra-
tion order, we obtain

𝑢(𝑥, 𝑦) = 𝐴𝛼
𝑦 𝐽3(𝑥, 𝑦),

where

𝐽3(𝑥, 𝑦) =
𝑥𝛽

2𝑦
𝑒−𝑥2

4𝑦

∞∫︁
0

𝜉1+𝜈−𝛽𝑒− 𝜉2

4𝑦 𝐼𝛽

(︂
𝑥𝜉

2𝑦

)︂
𝑑𝜉.

We calculate the integral in the latter identity by formula (30). As 𝛿 = 2 + 𝜈 − 𝛽, 𝑝 = 1/(4𝑦)
and 𝑐 = 𝑥/(2𝑦), by this formula we find

𝐽3(𝑥, 𝑦) =
Γ(1 + 𝜈

2
)

Γ(1 + 𝛽)
𝑥2𝛽 (4𝑦)

𝜈
2
−𝛽 𝑒−𝑥2

4𝑦
1𝐹 1

(︂
1 +

𝜈

2
; 1 + 𝛽;

𝑥2

4𝑦

)︂
.

We substitute the found value 𝐽3(𝑥, 𝑦) into integral (5) as 𝜇 = 0 and make the change 𝑡 = 𝑦 𝛼𝜏.
As a result we have

𝑢(𝑥, 𝑦) =
2𝜈 Γ(1 + 𝜈

2
)

Γ(1 + 𝛽)
𝑦 𝛼 𝜈

2
+𝛼−1

∞∫︁
0

𝒦1

(︁𝑎
𝜏

)︁
𝒦2 (𝜏)

𝑑𝜏

𝜏
, 𝑎 =

𝑥 2

4𝑦𝛼
, (32)

where

𝒦1(𝜏) = 𝜏 𝛽𝑒−𝜏
1𝐹 1

(︁
1 +

𝜈

2
; 1 + 𝛽; 𝜏

)︁
, 𝒦2(𝜏) = 𝜏 1+ 𝜈

2 𝜑 (−𝛼, 0;− 𝜏) .

We calculate the integral in (32) by the method exposed in [10]. From row 12.2(1) of the basic
table in Section 10 in [10] we find the Mellin transform of the function 𝑒−𝜏

1𝐹 1

(︀
1 + 𝜈

2
; 1 + 𝛽; 𝜏

)︀
:

Γ(1 + 𝛽)

Γ(𝛽 − 𝜈
2
)

Γ(𝑠)Γ(𝛽 − 𝜈
2
− 𝑠)

Γ(1 + 𝛽 − 𝑠)
, 0 < Re 𝑠 < 𝛽 − 𝜈

2
, 𝜈 < 2𝛽.

Then by Property 1.4 in Section 10 [10], the image of the function 𝒦1(𝜏) is

𝒦*
1(𝑠) =

Γ(1 + 𝛽)

Γ(𝛽 − 𝜈
2
)

Γ(𝛽 + 𝑠)Γ(−𝜈
2
− 𝑠)

Γ(1 − 𝑠)
, − 𝛽 < Re 𝑠 < −𝜈

2
, 𝜈 < 2𝛽.

The Mellin transform of the function 𝜑(−𝛼, 0;−𝜏) can be found by formula (9). Letting 𝜇 = 0,
𝛿 = 𝑠 and employing definition (5), in which we make the change 𝑡 = 𝑦 𝛼𝜏 , we get

∞∫︁
0

𝜏 𝑠−1 𝜑 (−𝛼, 0;− 𝜏) 𝑑𝜏 =
Γ(𝑠)

Γ(𝛼 𝑠)
, Re 𝑠 > 0.
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Then by Property 1.4 in Section 10 in [10], we find the image of the second function 𝒦2(𝜏) if
in the right hand side, we replace 𝑠 by 1 + 𝜈

2
+ 𝑠, that is,

𝒦*
2(𝑠) =

Γ(1 + 𝜈
2

+ 𝑠)

Γ(𝛼 + 𝛼 𝜈
2

+ 𝛼 𝑠)
, Re 𝑠 > −1 − 𝜈

2
.

Multiplying the images 𝒦*
𝑖 (𝑠), 𝑖 = 1, 2, we get

𝒦*(𝑠) =
Γ(1 + 𝛽)

Γ(𝛽 − 𝜈
2
)

Γ(1 + 𝜈
2

+ 𝑠)Γ(𝛽 + 𝑠)Γ(−𝜈
2
− 𝑠)

Γ(𝛼 + 𝛼 𝜈
2

+ 𝛼 𝑠)Γ(1 − 𝑠)
,

where − min { 𝛽, 1 + 𝜈
2
} < Re 𝑠 < −𝜈

2
, 𝜈 < 2𝛽.

Calculating the pre-image of the function 𝒦*(𝑠), we obtain the needed integral in (32):

Γ(1 + 𝛽)

Γ(𝛽 − 𝜈
2
)

1

2𝜋𝑖

∫︁
𝐿𝑖∞

Γ(1 + 𝜈
2

+ 𝑠)Γ(𝛽 + 𝑠)Γ(−𝜈
2
− 𝑠)

Γ(𝛼 + 𝛼 𝜈
2

+ 𝛼 𝑠)Γ(1 − 𝑠)

(︂
𝑥 2

4 𝑦 𝛼

)︂−𝑠

𝑑𝑠

=
Γ(1 + 𝛽)

Γ(𝛽 − 𝜈
2
)
𝐻 2, 1

2, 3

[︂
𝑥2

4𝑦𝛼

⃒⃒⃒⃒ (︀
1 + 𝜈

2
, 1

)︀
,
(︀
𝛼 + 𝛼 𝜈

2
, 𝛼

)︀(︀
1 + 𝜈

2
, 1

)︀
,
(︀
𝛽, 1

)︀
,
(︀

0, 1
)︀ ]︂

,

where

𝐿𝑖∞ = (𝜔 − 𝑖∞, 𝜔 + 𝑖∞), − min { 𝛽, 1 +
𝜈

2
} < 𝜔 < −𝜈

2
, 𝜈 < 2𝛽.

We transform the right hand side of the obtained identity by means of the formula [14], [25]

𝑧ℎ𝐻 𝑚,𝑛
𝑝, 𝑞

[︂
𝑧

⃒⃒⃒⃒
[ 𝑎𝑝, 𝐴𝑝 ]
[ 𝑏𝑞, 𝐵𝑞 ]

]︂
= 𝐻 𝑚,𝑛

𝑝, 𝑞

[︂
𝑧

⃒⃒⃒⃒
[ 𝑎𝑝 + ℎ𝐴𝑝, 𝐴𝑝 ]
[ 𝑏𝑞 + ℎ𝐵𝑞, 𝐵𝑞 ]

]︂
,

letting ℎ = −𝜈
2

and we substitute the obtained expression into (32). As a result, we denote
𝜆 = Γ(1 + 𝜈

2
)/Γ(𝛽 − 𝜈

2
) and arrive at the function

𝑢(𝑥, 𝑦) = 𝜆𝑥 𝜈𝑦 𝛼−1𝐻 2, 1
2, 3

[︂
𝑥2

4𝑦𝛼

⃒⃒⃒⃒ (︀
1, 1

)︀
,
(︀
𝛼, 𝛼

)︀(︀
1, 1

)︀
,
(︀
𝛽 − 𝜈

2
, 1

)︀
,
(︀
− 𝜈

2
, 1

)︀ ]︂
, (33)

which is a solution to Problem 1 in the case 𝜙(𝑥) = 𝑥 𝜈 , 0 < 𝜈 < 2𝛽.
As 𝛼 = 1, by means of the formula

𝐻 𝑚,𝑛
𝑝, 𝑞

[︂
𝑧

⃒⃒⃒⃒ (︀
𝑎1, 𝐴1

)︀
, . . . ,

(︀
𝑎𝑝−1, 𝐴𝑝−1

)︀
,
(︀
𝑏1, 𝐵1

)︀(︀
𝑏1, 𝐵1

)︀
, . . . ,

(︀
𝑏𝑞, 𝐵𝑞

)︀ ]︂
= 𝐻 𝑚−1, 𝑛

𝑝−1, 𝑞−1

[︂
𝑧

⃒⃒⃒⃒ (︀
𝑎1, 𝐴1

)︀
, . . . ,

(︀
𝑎𝑝−1, 𝐴𝑝−1

)︀(︀
𝑏2, 𝐵2

)︀
, . . . ,

(︀
𝑏𝑞, 𝐵𝑞

)︀ ]︂
,

representation (33) can be written as

𝑢(𝑥, 𝑦) = 𝜆𝑥 𝜈𝐻 1, 1
1, 2

[︂
𝑥2

4𝑦𝛼

⃒⃒⃒⃒ (︀
1, 1

)︀(︀
𝛽 − 𝜈

2
, 1

)︀
,
(︀
− 𝜈

2
, 1

)︀ ]︂
.

7. Proof of Theorem 2

Let ℎ𝑟(𝜉) be a twice continuously differentiable function possessing the following properties:

ℎ𝑟(𝜉) =

{︃
1, 0 6 𝜉 6 𝑟,

0, 𝜉 > 𝑟 + 1,
(34)

0 6 ℎ𝑟(𝜉) 6 1, |ℎ′
𝑟(𝜉)| + |ℎ′′

𝑟(𝜉)| 6 𝐻, where 𝐻 is a constant independent of 𝑟.
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It follows from (25) and (27) that the function 𝐺(𝑥, 𝜉, 𝑦) as the function of the variables 𝑥
and 𝑦 satisfies the equation L𝐺(𝑥, 𝜉, 𝑦) = 0, and the function 𝐺(𝑥, 𝜉, 𝑦 − 𝜂) as the function of
the variables 𝜉 and 𝜂, 0 < 𝜂 < 𝑦, satisfies the adjoint equation

L*𝐺(𝑥, 𝜉, 𝑦 − 𝜂) ≡ 𝐵𝜉 𝐺(𝑥, 𝜉, 𝑦 − 𝜂) −𝐷 𝛼
𝑦𝜂 𝐺(𝑥, 𝜉, 𝑦 − 𝜂) = 0. (35)

We consider the function

𝑣(𝑥, 𝜉, 𝑦 − 𝜂) = ℎ𝑟(𝜉)𝐺(𝑥, 𝜉, 𝑦 − 𝜂).

Taking into consideration (35), we obtain

L*𝑣(𝑥, 𝜉, 𝑦 − 𝜂) = 2ℎ′
𝑟(𝜉)𝐺𝜉(𝑥, 𝜉, 𝑦 − 𝜂) +

𝑏

𝜉
ℎ′
𝑟(𝜉)𝐺(𝑥, 𝜉, 𝑦 − 𝜂) + ℎ′′

𝑟(𝜉)𝐺(𝑥, 𝜉, 𝑦 − 𝜂). (36)

We prove first that if 𝜙(𝑥) ≡ 0, then 𝑢(𝑥, 𝑦) ≡ 0 as 0 < 𝑦 < 𝛿 for sufficiently small 𝛿.
According theorem on general representation of solution to equation (1) [21], a regular in the
domain Ω𝑟 = {(𝑥, 𝑦) : 0 < 𝑥 < 𝑟, 0 < 𝑦 < 𝛿} solution to homogeneous problem can be
represented as

𝑢(𝑥, 𝑦) =

𝑟+1∫︁
0

𝑦∫︁
0

𝜉 1−2𝛽 𝑢(𝜉, 𝜂)L*𝑣(𝑥, 𝜉, 𝑦 − 𝜂) 𝑑𝜂 𝑑𝜉.

It follows from (34) and (36) that L*𝑣(𝑥, 𝜉, 𝑦 − 𝜂) = 0 if 0 6 𝜉 6 𝑟, which implies

𝑢(𝑥, 𝑦) =

𝑟+1∫︁
𝑟

𝑦∫︁
0

𝜉 1−2𝛽 𝑢(𝜉, 𝜂)L*𝑣(𝑥, 𝜉, 𝑦 − 𝜂) 𝑑𝜂 𝑑𝜉.

By the properties of the function ℎ𝑟(𝜉), estimates (20), and by (36) we obtain

|L*𝑣(𝑥, 𝜉, 𝑦 − 𝜂) | 6 const · 𝑃1(𝑥, 𝜉, 𝑦 − 𝜂) exp
[︁
−𝛼0 |𝑥− 𝜉|

2
2−𝛼 (𝑦 − 𝜂)− 𝛼

2−𝛼

]︁
.

In view of this estimate and condition (22), we find

|𝑢(𝑥, 𝑦)| 6 const

𝑟+1∫︁
𝑟

𝑦∫︁
0

𝑃 (𝑥, 𝜉, 𝑦, 𝜂) exp
[︁
−𝛼0|𝑥− 𝜉|

2
2−𝛼 (𝑦 − 𝜂)−

𝛼
2−𝛼 + 𝑘 𝜉

2
2−𝛼

]︁
𝑑𝜂 𝑑𝜉,

where 𝑃 (𝑥, 𝜉, 𝑦, 𝜂) = 𝜉 1−2𝛽 𝜂 𝛼−1 𝑃1(𝑥, 𝜉, 𝑦 − 𝜂). As 𝛿 < (𝛼0/𝑘)(2−𝛼)/𝛼 and 𝑟 → ∞, the right
hand side in the latter inequality tends to zero. This means that 𝑢(𝑥, 𝑦) ≡ 0 in the domain

Ω1 = {(𝑥, 𝑦) : 0 < 𝑥 < ∞, 0 < 𝑦 < 𝛿}.

Let us prove that 𝑢(𝑥, 𝑦) ≡ 0 for each 𝑦 > 0. Let 𝑡 = 𝑦 − 𝛿, 𝛿 6 𝑦 < 2𝛿. We consider the
function 𝑤(𝑥, 𝑡) = 𝑢(𝑥, 𝛿 + 𝑡). Since 𝑢(𝑥, 𝑦) ≡ 0 as 0 < 𝑦 < 𝛿, then

𝐷 𝛼
0𝑦 𝑢(𝑥, 𝑦) = 𝐷 𝛼

𝛿𝑦 𝑢(𝑥, 𝑦) = 𝐷 𝛼
0𝑡𝑤(𝑥, 𝑡).

This implies that the function 𝑤(𝑥, 𝑡) satisfies the equation

𝐵𝑥𝑤(𝑥, 𝑡) −𝐷 𝛼
0𝑡 𝑤(𝑥, 𝑡) = 0, 0 < 𝑥 < ∞, 0 < 𝑡 < 𝛿,

conditions (22) and

lim
𝑡→0

𝐷 𝛼−1
0𝑡 𝑤(𝑥, 𝑡) = 0, 0 < 𝑥 < ∞, 𝑤(0, 𝑡) = 0, 0 < 𝑡 < 𝛿.

Then in accordance with the said above, 𝑤(𝑥, 𝑡) ≡ 0 in the domain

Ω2 = {(𝑥, 𝑡) : 0 < 𝑥 < ∞, 0 < 𝑡 < 𝛿},
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that is, 𝑢(𝑥, 𝑦) ≡ 0 in

Ω2 = {(𝑥, 𝑦) : 0 < 𝑥 < ∞, 𝛿 < 𝑦 < 2𝛿}.

Exactly in the same way one can prove that 𝑢(𝑥, 𝑦) ≡ 0 in the strips (𝑛 − 1) 𝛿 6 𝑦 < 𝑛 𝛿,
𝑛 = 3, 4, . . . The proof of Theorem 2 is complete.
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