doi:10.13108/2017-9-4-127

UDC 517.53

QUASI-ELLIPTIC FUNCTIONS

A.YA. KHRYSTIYANYN, DZ.V. LUKIVSKA

Abstract. We study certain generalizations of elliptic functions, namely quasi-elliptic functions.

Let $p = e^{i\alpha}$, $q = e^{i\beta}$, $\alpha, \beta \in \mathbb{R}$. A meromorphic in \mathbb{C} function g is called quasi-elliptic if there exist $\omega_1, \omega_2 \in \mathbb{C}^*$, Im $\frac{\omega_2}{\omega_1} > 0$, such that $g(u + \omega_1) = pg(u)$, $g(u + \omega_2) = qg(u)$ for each $u \in \mathbb{C}$. In the case $\alpha = \beta = 0 \mod 2\pi$ this is a classical theory of elliptic functions. A class of quasi-elliptic functions is denoted by \mathcal{QE} . We show that the class \mathcal{QE} is nontrivial. For this class of functions we construct analogues $\wp_{\alpha\beta}$, $\zeta_{\alpha\beta}$ of \wp and ζ Weierstrass functions. Moreover, these analogues are in fact the generalizations of the classical \wp and ζ functions in such a way that the latter can be found among the former by letting $\alpha = 0$ and $\beta = 0$. We also study an analogue of the Weierstrass σ function and establish connections between this function and $\wp_{\alpha\beta}$ as well as $\zeta_{\alpha\beta}$.

Let $q, p \in \mathbb{C}^*$, |q| < 1. A meromorphic in \mathbb{C}^* function f is said to be p-loxodromic of multiplicator q if for each $z \in \mathbb{C}^*$ f(qz) = pf(z). We obtain telations between quasi-elliptic and p-loxodromic functions.

Keywords: quasi-elliptic function, the Weierstrass \wp -function, the Weierstrass ζ -function, the Weierstrass σ -function, *p*-loxodromic function.

Mathematics subject classification: 30D30

1. INTRODUCTION

Denote $\mathbb{C}^* = \mathbb{C} \setminus \{0\}$. A meromorphic in \mathbb{C} function g is called *elliptic* [1] if there exist $\omega_1, \omega_2 \in \mathbb{C}^*$ such that $\operatorname{Im} \frac{\omega_2}{\omega_1} > 0$ and for each $u \in \mathbb{C}$

$$g(u + \omega_1) = g(u), \qquad g(u + \omega_2) = g(u).$$

The theory of elliptic functions was developed by K. Jacobi, N. Abel, A. Legendre, K. Weierstrass. The following definition was introduced by A. Kondratyuk.

Definition 1. [2] A meromorphic in \mathbb{C} function f is said to be modulo-elliptic if there exist $\omega_1, \omega_2 \in \mathbb{C}^*$ such that $\operatorname{Im} \frac{\omega_2}{\omega_1} > 0$ and for each $u \in \mathbb{C}$

$$|f(u + \omega_1)| = |f(u)|, \qquad |f(u + \omega_2)| = |f(u)|.$$

Consider the first of these identities

$$|f(u+\omega_1)| = |f(u)|, \qquad u \in \mathbb{C}.$$
(1)

If $f(u) \neq 0$ and $f(u) \neq \infty$, we can divide (1) by |f(u)| to obtain

$$\left|\frac{f(u+\omega_1)}{f(u)}\right| = 1.$$
(2)

A.YA. KHRYSTIYANYN, DZ.V. LUKIVSKA, QUASI-ELLIPTIC FUNCTIONS.

[©]Khrystiyanyn A.Ya., Lukivska Dz.V. 2017.

Submitted September 27, 2016.

The function $g(u) = \frac{f(u+\omega_1)}{f(u)}$ is meromorphic in C. It follows from (2) that the function g is holomorphic and bounded in C except for a set of the zeros and poles of f. Since g is bounded, these points are removable, and relation (2) implies

$$\forall u \in \mathbb{C} : |g(u)| = 1.$$

By the Liouville theorem g is constant and the latter identity implies the existence of $\alpha \in \mathbb{R}$ such that $g(u) = e^{i\alpha}$. This means that

$$\forall u \in \mathbb{C}: \qquad f(u + \omega_1) = e^{i\alpha} f(u)$$

In the same way as above, we conclude that there exists $\beta \in \mathbb{R}$ such that

$$\forall u \in \mathbb{C}: \quad f(u+\omega_2) = e^{i\beta}f(u).$$

We consider separately the following cases:

- (i) $\alpha = \beta = 0 \mod 2\pi$;
- (ii) $\alpha = 0 \mod 2\pi, \beta \neq 0 \mod 2\pi \text{ (or } \alpha \neq 0 \mod 2\pi, \beta = 0 \mod 2\pi);$
- (iii) $\alpha \neq 0 \mod 2\pi, \beta \neq 0 \mod 2\pi$.

In the first case we obtain the classical theory of elliptic functions including the famous Weierstrass \wp -function

$$\wp(u) = \frac{1}{u^2} + \sum_{\omega \neq 0} \left(\frac{1}{(u-\omega)^2} - \frac{1}{\omega^2} \right), \qquad \omega = m\omega_1 + n\omega_2, \quad m, n \in \mathbb{Z}.$$
 (3)

The Weierstrass \wp -function is elliptic [1] with periods ω_1 , ω_2 . The representations for classical Weierstrass ζ and σ functions are well-known [1], [3]:

$$\zeta(u) = \frac{1}{u} + \sum_{\omega \neq 0} \left(\frac{1}{u - \omega} + \frac{1}{\omega} + \frac{u}{\omega^2} \right), \qquad \omega = m\omega_1 + n\omega_2, \quad m, n \in \mathbb{Z}.$$
 (4)

$$\sigma(u) = u \prod_{\omega \neq 0} \left(1 - \frac{u}{\omega} \right) e^{\frac{u}{\omega} + \frac{u^2}{2\omega^2}}, \qquad \omega = m\omega_1 + n\omega_2, \quad m, n \in \mathbb{Z}.$$
 (5)

We also observe that the following identities

$$\wp(u) = -\zeta'(u), \qquad \zeta(u) = \frac{\sigma'(u)}{\sigma(u)}, \qquad \wp(u) = -\left(\frac{\sigma'(u)}{\sigma(u)}\right)'.$$

hold true. We note that each elliptic function can be represented by using (3), (4), (5) (see [3]). In other words, these functions play an important role in representations of elliptic functions.

In the second case we obtain so-called *p*-elliptic functions.

Definition 2. [4] Let $p = e^{i\beta}$. A meromorphic in \mathbb{C} function g is called p-elliptic if there exist $\omega_1, \omega_2 \in \mathbb{C}^*$ such that $\operatorname{Im} \frac{\omega_2}{\omega_1} > 0$ and for each $u \in \mathbb{C}$

$$g(u + \omega_1) = g(u), \quad g(u + \omega_2) = pg(u)$$

This case was studied in [6].

The aim of this article is to consider the third case. This is a generalization of elliptic functions in some sense as the following definition says.

Definition 3. Let $p = e^{i\alpha}$, $q = e^{i\beta}$. A meromorphic in \mathbb{C} function g is called quasi-elliptic if there exist $\omega_1, \omega_2 \in \mathbb{C}^*$, $\operatorname{Im} \frac{\omega_2}{\omega_1} > 0$, such that for each $u \in \mathbb{C}$

$$g(u + \omega_1) = pg(u), \qquad g(u + \omega_2) = qg(u).$$

We denote the class of quasi-elliptic functions by $Q\mathcal{E}$. Let $\omega = m\omega_1 + n\omega_2$, $m, n \in \mathbb{Z}$. If $f \in Q\mathcal{E}$, Definition 3 implies

$$g(u+\omega) = p^m q^n g(u).$$

If p = 1 and q = 1 in Definition 3, we obtain classic elliptic function. If p = 1 or q = 1 in Definition 3, we obtain *p*-elliptic function.

Remark 1. There is one special case when Definition 3 still gives an elliptic function. Namely, if $p = e^{i\alpha}$, $q = e^{i\beta}$, where $\alpha, \beta \in 2\pi\mathbb{Q}$, then

 $f(u+l\omega_1) = f(u), \qquad f(u+l\omega_2) = f(u),$

where l is the least common denominator of $\frac{\alpha}{2\pi}$ and $\frac{\beta}{2\pi}$.

Indeed, if $\alpha = 2\pi \frac{a}{b}$, using Definition 3, we have

$$f(u+l\omega_1) = f(u+(l-1)\omega_1)e^{i2\pi\frac{a}{b}} = \dots = f(u)e^{i2\pi\frac{a}{b}} = f(u).$$

The same conclusion can be made for β .

Remark 2. The class $Q\mathcal{E}$ of quasi-elliptic functions is not trivial. For example, consider the function

$$f(u) = \sum_{\omega \neq 0} \frac{e^{im\alpha} e^{in\beta}}{(u-\omega)^3}, \qquad \omega = m\omega_1 + n\omega_2, \quad m, n \in \mathbb{Z}.$$
 (6)

Consider a compact subset K from \mathbb{C} . Since ([1], [3])

$$\sum_{\omega \neq 0} \frac{1}{|\omega|^3} < +\infty,\tag{7}$$

we obtain that the series in the right hand side of (6), or at least its remainder, is uniformly convergent on K. Therefore f is meromorphic in \mathbb{C} , and we have for each $u \in \mathbb{C}$

$$f(u+\omega_1) = e^{i\alpha} \sum_{m,n \in \mathbb{Z}} \frac{e^{i(m-1)\alpha} e^{in\beta}}{(u-(m-1)\omega_1 - n\omega_2)^3} = e^{i\alpha} f(u).$$

In the same way, for each $u \in \mathbb{C}$ we obtain $f(u + \omega_2) = e^{i\beta}f(u)$.

Our main aim is to construct a quasi-elliptic function $\wp_{\alpha\beta}$ being an analogue of $\wp(u)$ and also to construct corresponding analogues of ζ and σ functions.

2. Generalization of the Weierstrass p-function

Let $p = e^{i\alpha}$, $q = e^{i\beta}$. Consider the function

$$G_{\alpha\beta}(u) = \frac{1}{u^2} + \sum_{\omega \neq 0} \left(\frac{1}{(u-\omega)^2} - \frac{1}{\omega^2} \right) e^{i(m\alpha + n\beta)},\tag{8}$$

where $\omega_1, \omega_2 \in \mathbb{C}$, Im $\frac{\omega_2}{\omega_1} > 0$, $\omega = m\omega_1 + n\omega_2$, $m, n \in \mathbb{Z}$. Similarly, in view of (7), as in the case of the series from (6), we obtain that $G_{\alpha\beta}$ is meromorphic in \mathbb{C} .

It is obvious that, G_{00} coincides with the classical Weierstrass function \wp .

Consider the case $\alpha \neq 0 \mod 2\pi$ and $\beta \neq 0 \mod 2\pi$, that is, $p \neq 1$ and $q \neq 1$.

Theorem 1. A function of the form

$$\wp_{\alpha\beta}(u) = G_{\alpha\beta}(u) + C_{\alpha\beta},$$

where

$$C_{\alpha\beta} = \frac{G_{\alpha\beta}\left(\frac{\omega_1}{2}\right) - e^{i\alpha}G_{\alpha\beta}\left(-\frac{\omega_1}{2}\right)}{e^{i\alpha} - 1} = \frac{G_{\alpha\beta}\left(\frac{\omega_2}{2}\right) - e^{i\beta}G_{\alpha\beta}\left(-\frac{\omega_2}{2}\right)}{e^{i\beta} - 1}$$

belongs to $Q\mathcal{E}$ with $p = e^{i\alpha}$, $q = e^{i\beta}$.

Proof. Consider the function $G_{\alpha\beta}$. We shall show that there exists a unique constant $C_{\alpha\beta}$ such that $(G_{\alpha\beta}(u) + C_{\alpha\beta}) \in \mathcal{QE}$, that is

$$G_{\alpha\beta}(u+\omega_1) + C_{\alpha\beta} = e^{i\alpha}(G_{\alpha\beta} + C_{\alpha\beta}),$$

$$G_{\alpha\beta}(u+\omega_2) + C_{\alpha\beta} = e^{i\beta}(G_{\alpha\beta} + C_{\alpha\beta}).$$

These properties are called multi *p*-periodicity with the period ω_1 and multi *q*-periodicity with the period ω_2 , respectively.

Let us consider the derivative of $G_{\alpha\beta}$:

$$G'_{\alpha\beta}(u) = -2\sum_{\omega} \frac{e^{i(m\alpha+n\beta)}}{(u-\omega)^3}$$

We have:

$$\begin{aligned} G'_{\alpha\beta}(u+\omega_1) &= -2\sum_{m,n\in\mathbb{Z}} \frac{e^{i(m\alpha+n\beta)}}{(u+\omega_1-m\omega_1-n\omega_2)^3} = -2\sum_{m,n\in\mathbb{Z}} \frac{e^{i(m\alpha+n\beta)}}{(u-(m-1)\omega_1-n\omega_2)^3} \\ &= -2e^{i\alpha}\sum_{m,n\in\mathbb{Z}} \frac{e^{i((m-1)\alpha+n\beta)}}{(u-(m-1)\omega_1-n\omega_2)^3} = e^{i\alpha}G'_{\alpha\beta}(u). \end{aligned}$$

Hence, we obtain

$$G'_{\alpha\beta}(u+\omega_1) - e^{i\alpha}G'_{\alpha\beta}(u) = 0.$$
(9)

We note that for each $C \in \mathbb{C}$, the function $(G_{\alpha\beta} + C)$ satisfies (9). Let

$$C = C_{\alpha\beta} = \frac{G_{\alpha\beta}\left(\frac{\omega_1}{2}\right) - e^{i\alpha}G_{\alpha\beta}\left(-\frac{\omega_1}{2}\right)}{e^{i\alpha} - 1}.$$
(10)

Then relation (9) implies

$$G_{\alpha\beta}(u+\omega_1) + C_{\alpha\beta} - e^{i\alpha} (G_{\alpha\beta} + C_{\alpha\beta}) = A,$$

where A is a constant. If we let $u = -\frac{\omega_1}{2}$, it is easy to obtain that

$$G_{\alpha\beta}\left(\frac{\omega_1}{2}\right) - e^{i\alpha}G_{\alpha\beta}\left(-\frac{\omega_1}{2}\right) + (1 - e^{i\alpha})C_{\alpha\beta} = A.$$

Taking into consideration the choice of $C_{\alpha\beta}$ by formula (10), we get A = 0. Therefore, we have

$$G_{\alpha\beta}(u+\omega_1) + C_{\alpha\beta} = e^{i\alpha} \big(G_{\alpha\beta} + C_{\alpha\beta} \big), \tag{11}$$

that is, we have shown that the function $(G_{\alpha\beta} + C_{\alpha\beta})$ is multi *p*-periodic of period ω_1 .

It remains to prove the uniqueness of $C_{\alpha\beta}$. Suppose that there exists a constant C different from $C_{\alpha\beta}$ such that the function $(G_{\alpha\beta} + C)$ is multi *p*-periodic of period ω_1 , too. Then we get

$$G_{\alpha\beta}(u+\omega_1)+C=e^{i\alpha}\big(G_{\alpha\beta}(u)+C\big)$$

Deducting this identity from (11), we obtain

$$C - C_{\alpha\beta} = e^{i\alpha} (C - C_{\alpha\beta}).$$

Since $\alpha \neq 0 \mod 2\pi$, we get $C = C_{\alpha\beta}$.

In the same way, for the period ω_2 we have

$$G_{\alpha\beta}(u+\omega_2) + C_{\alpha\beta} = e^{i\beta} \big(G_{\alpha\beta}(u) + C_{\alpha\beta} \big) + B, \tag{12}$$

where B is some constant.

Let us find B. Using identities (11) and (12), we obtain

$$G_{\alpha\beta}(u+\omega_1+\omega_2) + C_{\alpha\beta} = e^{i\beta}(G_{\alpha\beta}(u+\omega_1) + C_{\alpha\beta}) + B$$
$$= e^{i\beta}(e^{i\alpha}(G_{\alpha\beta}(u) + C_{\alpha\beta})) + B$$
$$= e^{i(\alpha+\beta)}(G_{\alpha\beta}(u) + C_{\alpha\beta}) + B$$

and

$$G_{\alpha\beta}(u+\omega_1+\omega_2) + C_{\alpha\beta} = e^{i\alpha}(G_{\alpha\beta}(u+\omega_2) + C_{\alpha\beta})$$
$$= e^{i\alpha}(e^{i\beta}(G_{\alpha\beta}(u) + C_{\alpha\beta}) + B)$$
$$= e^{i(\alpha+\beta)}(G_{\alpha\beta}(u) + C_{\alpha\beta}) + Be^{i\alpha}$$

Comparing the right hand sides of these relations, we get $B = Be^{i\alpha}$. Since $\alpha \neq 0 \mod 2\pi$, the previous identity implies that B = 0. Therefore,

$$G_{\alpha\beta}(u+\omega_2) + C_{\alpha\beta} = e^{i\beta} \big(G_{\alpha\beta}(u) + C_{\alpha\beta} \big).$$

Hence, the function $G_{\alpha\beta}$ is multi *p*-periodic with the period ω_1 and is multi *q*-periodic with period ω_2 , respectively.

It is easy to see that $C_{\alpha\beta}$ can be also expressed as

$$C_{\alpha\beta} = \frac{G_{\alpha\beta}\left(\frac{\omega_2}{2}\right) - e^{i\beta}G_{\alpha\beta}\left(-\frac{\omega_2}{2}\right)}{e^{i\beta} - 1}.$$

Definition 4. A function of the form

$$\wp_{\alpha\beta}(u) = G_{\alpha\beta}(u) + C_{\alpha\beta} = \frac{1}{u^2} + \sum_{\omega \neq 0} \left(\frac{1}{(u-\omega)^2} - \frac{1}{\omega^2} \right) e^{i(m\alpha + n\beta)} + C_{\alpha\beta},$$

where

$$C_{\alpha\beta} = \frac{G_{\alpha\beta}\left(\frac{\omega_1}{2}\right) - e^{i\alpha}G_{\alpha\beta}\left(-\frac{\omega_1}{2}\right)}{e^{i\alpha} - 1} = \frac{G_{\alpha\beta}\left(\frac{\omega_2}{2}\right) - e^{i\beta}G_{\alpha\beta}\left(-\frac{\omega_2}{2}\right)}{e^{i\beta} - 1}$$

is called the generalized Weierstrass \wp -function.

Remark 3. For the sake of completeness, in the case p = q = 1, in other words, as $\alpha = \beta = 0 \mod 2\pi$, we effine $C_{00} = 0$. Then $\wp_{00} = \wp$.

3. Generalization of Weierstrass ζ and σ functions

Now we consider the function

$$\zeta_{\alpha\beta}(u) = \frac{1}{u} + \sum_{\omega \neq 0} \left(\frac{1}{u - \omega} + \frac{1}{\omega} + \frac{u}{\omega^2} \right) e^{i(m\alpha + n\beta)},$$

where $\omega_1, \omega_2 \in \mathbb{C}$, $\operatorname{Im} \frac{\omega_2}{\omega_1} > 0$, $\omega = m\omega_1 + n\omega_2$, $m^2 + n^2 \neq 0$, $m, n \in \mathbb{Z}$.

Differentiating $\zeta_{\alpha\beta}$, we obtain $G_{\alpha\beta}(u) = -\zeta'_{\alpha\beta}(u)$. Hence,

$$\wp_{\alpha\beta}(u) = -\zeta_{\alpha\beta}'(u) + C_{\alpha\beta}$$

We denote

$$\chi_{mn}(u) = \left(\frac{1}{u-\omega} + \frac{1}{\omega} + \frac{u}{\omega^2}\right), \qquad m^2 + n^2 \neq 0,$$

and

$$\chi_{00}(u) = \frac{1}{u}$$

Then $\zeta_{\alpha\beta}$ can be rewritten as

$$\zeta_{\alpha\beta}(u) = \sum_{m,n\in\mathbb{Z}} e^{i(m\alpha+n\beta)} \chi_{mn}(u).$$
(13)

We observe that ζ_{00} coincides with the classical Weierstrass ζ function.

By A^* we denote the plane \mathbb{C} with radial slits from ω to ∞ . Integrating χ_{mn} and χ_{00} along a path in A^* connecting the points 0 and u, we obtain

$$\int_{0}^{u} \chi_{mn}(t) dt = \log\left(1 - \frac{u}{\omega}\right) + \frac{u}{\omega} + \frac{u^{2}}{2\omega^{2}}, \quad m^{2} + n^{2} \neq 0$$
(14)

and

$$\int_{0}^{u} \chi_{00}(t) dt = \log u.$$
(15)

We consider entire functions

...

$$\sigma_{mn}(u) = \left(1 - \frac{u}{\omega}\right) e^{\frac{u}{\omega} + \frac{u^2}{2\omega^2}}, \qquad m^2 + n^2 \neq 0,$$

and we let

$$\sigma_{00}(u) = u$$

Employing these functions, we can rewrite (14) as

$$\int_{0}^{u} \chi_{mn}(t) dt = \log \sigma_{mn}(u), \qquad m, n \in \mathbb{Z}.$$

Differentiating this identity and using the definitions of χ_{00} and σ_{00} , we get

$$\forall m, n \in \mathbb{Z} : \quad \chi_{mn}(u) = \frac{\sigma'_{mn}(u)}{\sigma_{mn}(u)}.$$

Taking into consideration this representation for χ_{mn} , we rewrite (13) as

$$\zeta_{\alpha\beta}(u) = \sum_{m,n\in\mathbb{Z}} e^{i(m\alpha+n\beta)} \frac{\sigma'_{mn}(u)}{\sigma_{mn}(u)}.$$

Hence, $\wp_{\alpha\beta}$ can be rewritten as

$$\varphi_{\alpha\beta}(u) = C_{\alpha\beta} + \sum_{m,n\in\mathbb{Z}} e^{i(m\alpha+n\beta)} \frac{(\sigma'_{mn}(u))^2 - \sigma''_{mn}(u)\sigma_{mn}(u)}{\sigma^2_{mn}(u)}$$

We note that if we consider the product $\prod_{m,n\in\mathbb{Z}}\sigma_{mn}(u)$, then we obtain the Weierstrass σ -function.

132

4. Connection between *p*-loxodromic and quasi-elliptic functions

Let $q, p \in \mathbb{C}^*$, |q| < 1.

Definition 5. [5] A meromorphic in \mathbb{C}^* function f is said to be p-loxodromic with the multiplicator q if f(qz) = pf(z) for each $z \in \mathbb{C}^*$.

We denote by \mathcal{L}_{qp} the class of *p*-loxodromic functions with the multiplicator *q*.

The case p = 1 was studied earlier in the works of O. Rausenberger [7], G. Valiron [8] and Y. Hellegouarch [1]. In this case the function f is called loxodromic.

Let
$$a_1 = e^{2\pi i \frac{\omega_2}{\omega_1}}$$
, $a_2 = e^{2\pi i \frac{\omega_1}{\omega_2}}$ and $f_1 \in \mathcal{L}_{a_1q}$, $f_2 \in \mathcal{L}_{a_2p}$. Then
 $f_1(a_1z) = qf_1(z)$, $f_2(a_2z) = pf_2(z)$.

$$g(u) := f_1(e^{2\pi i \frac{u}{\omega_1}}) f_2(e^{2\pi i \frac{u}{\omega_2}}).$$

Then $g \in \mathcal{QE}$. Indeed,

$$g(u+\omega_1) = f_1\left(e^{2\pi i\frac{u}{\omega_1}}\right) f_2\left(e^{2\pi i\frac{u}{\omega_2}}e^{2\pi i\frac{\omega_1}{\omega_2}}\right)$$
$$= f_1\left(e^{2\pi i\frac{u}{\omega_1}}\right) f_2\left(a_2e^{2\pi i\frac{u}{\omega_2}}\right)$$
$$= pf_1(e^{2\pi i\frac{u}{\omega_1}}) f_2(e^{2\pi i\frac{u}{\omega_2}}) = pg(u),$$

and

$$g(u + \omega_2) = f_1 \left(e^{2\pi i \frac{u}{\omega_1}} e^{2\pi i \frac{\omega_2}{\omega_1}} \right) f_2 \left(e^{2\pi i \frac{u}{\omega_2}} \right)$$

= $f_1 \left(a_1 e^{2\pi i \frac{u}{\omega_1}} \right) f_2 \left(e^{2\pi i \frac{u}{\omega_2}} \right)$
= $q f_1 (e^{2\pi i \frac{u}{\omega_1}}) f_2 (e^{2\pi i \frac{u}{\omega_2}}) = q g(u).$

Vice versa, let $g \in \mathcal{QE}$, $p = 1, q \neq 1$, that is

$$g(u+\omega_1) = g(u), \quad g(u+\omega_2) = qg(u).$$

We denote

$$f(z) := g\left(\frac{\omega_1}{2i\pi}\log z\right). \tag{16}$$

The function f is well-defined since g admits the period ω_1 and therefore, the substitution of $\log z$ by $\log z + 2\pi i k$, $k \in \mathbb{Z}$ does not change the value of g in the right hand side of (16). In other words, here the composition of a multivalent mapping with a univalent one is a univalent function. Hence, if we let $a = e^{2\pi i \frac{\omega_2}{\omega_1}}$, $\operatorname{Im} \frac{\omega_2}{\omega_1} > 0$, we obtain

$$f(az) = g\left(\frac{\omega_1}{2i\pi}\log(az)\right) = g\left(\omega_2 + \frac{\omega_1}{2i\pi}\log z\right)$$
$$= qg\left(\frac{\omega_1}{2i\pi}\log z\right) = qf(z).$$

Thus, $f \in \mathcal{L}_{aq}$. The case $p \neq 1$, q = 1 is similar. We let

$$f(z) := g\left(\frac{\omega_2}{2i\pi}\log z\right)$$

and $a = e^{2\pi i \frac{\omega_1}{\omega_2}}$. Then $f \in \mathcal{L}_{ap}$. Indeed,

$$f(az) = g\left(\frac{\omega_2}{2i\pi}\log(az)\right) = g\left(\omega_1 + \frac{\omega_2}{2i\pi}\log z\right)$$
$$= pg\left(\frac{\omega_2}{2i\pi}\log z\right) = pf(z).$$

In the case $p \neq 1$, $q \neq 1$ the functions $g\left(\frac{\omega_k}{2i\pi}\log z\right)$ are multivalent, k = 1, 2.

REFERENCES

- 1. Y. Hellegouarch. Invitation to the Mathematics of Fermat-Wiles. Academic Press, San Diego (2002).
- V.S. Khoroshchak, A.A. Kondratyuk. Some steps to nonlinear analysis // in Book of Abstracts of "XVIII-th Conference on analytic functions and related topics". Chełm, Poland. 38–39 (2016).
- 3. A. Hurwitz, R. Courant. Function theory. Nauka, Moscow (1968). (in Russian).
- V.S. Khoroshchak, A.A. Kondratyuk. Generalization of the Weierstrass &-function // in Book of Abstracts of Ukrainian Scientific Conference "Modern problems of probability theory and mathematical analysis", Vorokhta, Ukraine, 93 (2016) (in Ukrainian).
- V.S. Khoroshchak, A.Ya. Khrystiyanyn, D.V. Lukivska. A class of Julia exceptional functions // Carpathian Math. Publ. 8:1, 172–180 (2016).
- A.A. Kondratyuk, V.S. Khoroshchak, D.V. Lukivska. *p-Elliptic functions* // Visnyk Lviv Univ. Ser. Mech. Math. 81, 121–129 (2016).
- 7. O. Rausenberger. Lehrbuch der Theorie der Periodischen Functionen Einer variabeln. // Druck und Ferlag von B.G.Teubner, Leipzig (1884).
- 8. G. Valiron. Cours d'Analyse mathématique: Théorie des fonctions. Masson, Paris. (1948).

Andriy Yaroslavovych Khrystiyanyn, Ivan Franko National University of Lviv, Universytetska str., 1, 79000, Lviv, Ukraine E-mail: khrystiyanyn@ukr.net

Dzvenyslava Volodymyrivna Lukivska, Ivan Franko National University of Lviv, Universytetska str., 1, 79000, Lviv, Ukraine E-mail: d.lukivska@gmail.com