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PAVLOV-KOREVAAR-DIXON INTERPOLATION PROBLEM

WITH MAJORANT IN CONVERGENCE CLASS

R.A. GAISIN

Dedicated to the centenary of corresponding member of AS USSR Alexey Fedorovich Leontiev

Abstract. We study an interpolation problem in the class of entire functions of exponen-
tial type determined by some majorant in a convergence class (non-quasianalytic majorant).
In a smaller class, when the majorant possessed a concavity property, similar problem was
studied by B. Berndtsson with the nodes at some subsequence of natural numbers. He
obtained a solvability criterion for this interpolation problem. At that, he applied first
the Hörmander method for solving a 𝜕-problem. In works by A.I. Pavlov, J. Korevaar
and M. Dixon, interpolation sequences in the Berndtsson sense were applied successfully
in a series of problems in the complex analysis. At that, there was found a relation with
approximative properties of the system of powers {𝑧𝑝𝑛} and with the well known Polya and
Macintyre problems.

In this paper we establish the criterion of the interpolation property in a more general
sense for an arbitrary sequence of real numbers. In the proof of the main theorem we
employ a modification of the Berndtsson method.
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1. Introduction

Let 𝐿 be a class of all continuous on R+ functions 𝑙 = 𝑙(𝑥) such that 0 < 𝑙(𝑥) ↑ ∞ as 𝑥→ ∞,

𝑊 =

⎧⎨⎩𝑤 ∈ 𝐿 :

∞∫︁
1

𝑤(𝑥)

𝑥2
𝑑𝑥 <∞

⎫⎬⎭ , Ω =

{︂
𝜔 ∈ 𝑊 :

𝜔(𝑥)

𝑥
↓ as 𝑥→ ∞

}︂
.

The set 𝑊 is called the convergence class, while the functions 𝑤 in 𝑊 are (non-quasi-analytic)
weights.

Definition 1 ([1]). Let {𝑝𝑛} be an increasing sequence of natural numbers. The sequence
{𝑝𝑛} is called interpolating in Pavlov-Korevaar-Dixon sense if the exists a function 𝜔 ∈ Ω
depending only on the sequence {𝑝𝑛} such that for each sequence {𝑏𝑛} of complex numbers
|𝑏𝑛| 6 1 there exists an entire function 𝑓 possessing the properties:

1) 𝑓(𝑝𝑛) = 𝑏𝑛 (𝑛 > 1), 2) 𝑀𝑓 (𝑟) = max
|𝑧|6𝑟

|𝑓(𝑧)| 6 𝑒𝜔(𝑟).

Let Λ = {𝜆𝑛} be an arbitrary sequence of real numbers, 0 < 𝜆𝑛 ↑ ∞. The sequence Λ is
called interpolating if there exists a function 𝑤 ∈ 𝑊 depending only on this sequence such that
for each sequence {𝑏𝑛} of complex numbers |𝑏𝑛| 6 1 there exists an entire function 𝑓 possessing
properties 1) and 2) but with the function 𝑤.

R.A. Gaisin, Pavlov-Korevaar-Dixon interpolation problem with majorant in convergence
class.
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The necessary and sufficient conditions for the interpolation property for a sequence {𝑝𝑛}
(𝑝𝑛 ∈ N) in the class Ω were obtained in work [1]. The aim of the present paper is to prove a
criterion of the interpolation property for a sequence Λ = {𝜆𝑛} in the class of functions 𝑊 .

2. Auxiliary statements

Let
𝑛(𝑡) =

∑︁
𝜆𝑛6𝑡

1

be the counting function of a sequence Λ and

𝑁(𝑡) =

𝑡∫︁
0

𝑛(𝑥)

𝑥
𝑑𝑥.

Without loss of generality we assume that 𝜆1 = 1. This slightly simplifies the further calcula-
tions.

The following lemma holds true.

Lemma 1. Let 𝜏𝑛 = min
𝑘 ̸=𝑛
𝑘>1

|𝜆𝑛 − 𝜆𝑘|, ℎ𝑛 = min(𝜏𝑛, 1),

𝐾𝑛 =

{︂
𝜉 :

ℎ𝑛
4

6 |𝜉 − 𝜆𝑛| 6
ℎ𝑛
2

}︂
(𝑛 > 1).

Then the estimates

1) sup
𝑘 ̸=𝑛

⃒⃒⃒⃒
ln

⃒⃒⃒⃒
𝜆𝑘 − 𝑧

𝜆𝑘 − 𝜆𝑛

⃒⃒⃒⃒⃒⃒⃒⃒
6 ln 2; 2) sup

𝑘

⃒⃒⃒⃒
ln

⃒⃒⃒⃒
𝜆𝑘 + 𝑧

𝜆𝑘 + 𝜆𝑛

⃒⃒⃒⃒⃒⃒⃒⃒
6 ln

4

3

hold true in the annuli 𝐾𝑛.

Proof. Let 𝑧 ∈ 𝐾𝑛. We have ⃒⃒⃒⃒
𝜆𝑘 − 𝑧

𝜆𝑘 − 𝜆𝑛

⃒⃒⃒⃒
=

⃒⃒⃒⃒
1 +

𝜆𝑛 − 𝑧

𝜆𝑘 − 𝜆𝑛

⃒⃒⃒⃒
(𝑘 ̸= 𝑛).

Since |𝜆𝑛 − 𝑧| 6 ℎ𝑛
2

for 𝑧 ∈ 𝐾𝑛, |𝜆𝑘 − 𝜆𝑛| > ℎ𝑛 (𝑘 ̸= 𝑛), then

1

2
6

⃒⃒⃒⃒
𝜆𝑘 − 𝑧

𝜆𝑘 − 𝜆𝑛

⃒⃒⃒⃒
6

3

2
.

Therefore,

− ln 2 6 ln

⃒⃒⃒⃒
𝜆𝑘 − 𝑧

𝜆𝑘 − 𝜆𝑛

⃒⃒⃒⃒
6 ln

3

2

and

sup
𝑘 ̸=𝑛

⃒⃒⃒⃒
ln

⃒⃒⃒⃒
𝜆𝑘 − 𝑧

𝜆𝑘 − 𝜆𝑛

⃒⃒⃒⃒⃒⃒⃒⃒
6 ln 2.

In the same way we are going to check 2). We have⃒⃒⃒⃒
𝜆𝑘 + 𝑧

𝜆𝑘 + 𝜆𝑛

⃒⃒⃒⃒
=

⃒⃒⃒⃒
1 +

𝑧 − 𝜆𝑛
𝜆𝑘 + 𝜆𝑛

⃒⃒⃒⃒
.

Since ⃒⃒⃒⃒
𝑧 − 𝜆𝑛
𝜆𝑘 + 𝜆𝑛

⃒⃒⃒⃒
6

ℎ𝑛
2(𝜆𝑘 + 𝜆𝑛)

6
1

4
,

then
3

4
6

⃒⃒⃒⃒
𝜆𝑘 + 𝑧

𝜆𝑘 + 𝜆𝑛

⃒⃒⃒⃒
6

5

4
.
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Hence,

sup
𝑘

⃒⃒⃒⃒
ln

⃒⃒⃒⃒
𝜆𝑘 + 𝑧

𝜆𝑘 + 𝜆𝑛

⃒⃒⃒⃒⃒⃒⃒⃒
6 ln

4

3
.

The proof is complete.

The next lemma holds.

Lemma 2. For each 𝑧 in 𝐾𝑛 (𝑛 > 1) we have⃒⃒⃒⃒
ln

⃒⃒⃒⃒
1 − 𝑧2

𝜆2𝑛

⃒⃒⃒⃒⃒⃒⃒⃒
6 ln 10 + | lnℎ𝑛| + ln𝜆𝑛.

Proof. We have

ln

⃒⃒⃒⃒
1 − 𝑧2

𝜆2𝑛

⃒⃒⃒⃒
= ln

⃒⃒⃒⃒
1 +

𝑧

𝜆𝑛

⃒⃒⃒⃒
+ ln

⃒⃒⃒⃒
𝜆𝑛 − 𝑧

𝜆𝑛

⃒⃒⃒⃒
.

Since Re 𝑧 > 0 for each 𝑧 ∈ 𝐾𝑛 (𝑛 > 1) and 𝜆1 = 1, then

0 < ln

⃒⃒⃒⃒
1 +

𝑧

𝜆𝑛

⃒⃒⃒⃒
6 ln

(︃
1 +

𝜆𝑛 + ℎ𝑛
2

𝜆𝑛

)︃
6 ln

5

2
.

Then

ln
ℎ𝑛
4𝜆𝑛

6 ln

⃒⃒⃒⃒
𝜆𝑛 − 𝑧

𝜆𝑛

⃒⃒⃒⃒
6 ln

ℎ𝑛
2𝜆𝑛

< 0.

Therefore, ⃒⃒⃒⃒
ln

⃒⃒⃒⃒
𝜆𝑛 − 𝑧

𝜆𝑛

⃒⃒⃒⃒⃒⃒⃒⃒
6

⃒⃒⃒⃒
ln

ℎ𝑛
4𝜆𝑛

⃒⃒⃒⃒
6 | lnℎ𝑛| + ln 4𝜆𝑛 (𝑛 > 1).

Thus, ⃒⃒⃒⃒
ln

⃒⃒⃒⃒
1 − 𝑧2

𝜆2𝑛

⃒⃒⃒⃒⃒⃒⃒⃒
6 ln 10 + | lnℎ𝑛| + ln𝜆𝑛

for each 𝑧 ∈ 𝐾𝑛 (𝑛 > 1). This proves the desired estimate.

Assume that the sequence Λ has a finite upper density

lim
𝑛→∞

𝑛

𝜆𝑛
= 𝜏 <∞.

Then

𝑞(𝑧) =
∞∏︁
𝑛=1

(︂
1 − 𝑧2

𝜆2𝑛

)︂
is an entire function of exponential type.

Let us estimate the function ln |𝑞(𝑧)| in the annuli 𝐾𝑛. For each fixed 𝑛 > 1 we obtain

ln |𝑞(𝑧)| = ln

⃒⃒⃒⃒
1 − 𝑧2

𝜆2𝑛

⃒⃒⃒⃒
+

∑︁
|𝜆𝑘−𝜆𝑛|6𝜆𝑛

ln

⃒⃒⃒⃒
1 − 𝑧

𝜆𝑘

⃒⃒⃒⃒
+

∑︁
|𝜆𝑘−𝜆𝑛|6𝜆𝑛

ln

⃒⃒⃒⃒
1 +

𝑧

𝜆𝑘

⃒⃒⃒⃒

+
∑︁

|𝜆𝑘−𝜆𝑛|>𝜆𝑛

ln

⃒⃒⃒⃒
1 − 𝑧2

𝜆2𝑘

⃒⃒⃒⃒
= ln

⃒⃒⃒⃒
1 − 𝑧2

𝜆2𝑛

⃒⃒⃒⃒
+ Σ1 + Σ2 + Σ3;

(1)

in the sums Σ𝑖 (𝑖 = 1, 2, 3) we assume that 𝜆𝑘 ̸= 𝜆𝑛.
Let us estimate the sum Σ1. For 𝜆𝑘 ̸= 𝜆𝑛 we have

ln

⃒⃒⃒⃒
1 − 𝑧

𝜆𝑘

⃒⃒⃒⃒
= ln

⃒⃒⃒⃒
𝜆𝑘 − 𝑧

𝜆𝑘

⃒⃒⃒⃒
= ln

1

𝜆𝑘
+ ln |𝜆𝑘 − 𝑧| = ln

1

𝜆𝑘
+ ln

⃒⃒⃒⃒
𝜆𝑘 − 𝑧

𝜆𝑘 − 𝜆𝑛

⃒⃒⃒⃒
+ ln |𝜆𝑘 − 𝜆𝑛|. (2)
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Then ∑︁
|𝜆𝑘−𝜆𝑛|6𝜆𝑛

ln
1

𝜆𝑘
=

2𝜆𝑛∫︁
0

ln
1

𝑡
𝑑𝑛1(𝑡) (𝑘 ̸= 𝑛), (3)

where 𝑛1(𝑡) is the counting function of the sequence Λ1 = Λ ∖ {𝜆𝑛}. Integrating by parts, by
(3) we obtain ∑︁

|𝜆𝑘−𝜆𝑛|6𝜆𝑛

ln
1

𝜆𝑘
= 𝑁1(2𝜆𝑛) − 𝑛1(2𝜆𝑛) ln 2𝜆𝑛, (4)

where

𝑁1(𝑡) =

𝑡∫︁
0

𝑛1(𝑥)

𝑥
𝑑𝑥.

Let us calculate the sum
∑︀

|𝜆𝑘−𝜆𝑛|6𝜆𝑛
ln |𝜆𝑘 − 𝜆𝑛| (𝑘 ̸= 𝑛). In order to do it, we observe that

∑︁
|𝜆𝑘−𝜆𝑛|6𝜆𝑛

ln |𝜆𝑘 − 𝜆𝑛| =

𝜆𝑛∫︁
0

ln 𝑡 𝑑𝜈(𝜆𝑛; 𝑡) (𝑘 ̸= 𝑛), (5)

where 𝜈(𝜆𝑛; 𝑡) is the amount of the points 𝜆𝑘 ̸= 𝜆𝑛 in the segment {ℎ : |ℎ−𝜆𝑛| 6 𝑡}. Integrating
by parts in Stieltjes integral (5), we write the latter identity as

∑︁
|𝜆𝑘−𝜆𝑛|6𝜆𝑛

ln |𝜆𝑘 − 𝜆𝑛| = 𝜈(𝜆𝑛; 𝜆𝑛) ln𝜆𝑛 −
𝜆𝑛∫︁
0

𝜈(𝜆𝑛; 𝑡)

𝑡
𝑑𝑡. (6)

Taking into consideration relations (2), (4), (6), we obtain that

Σ1 = 𝑁1(2𝜆𝑛) − 𝑛1(2𝜆𝑛) ln 2 −
𝜆𝑛∫︁
0

𝜈(𝜆𝑛; 𝑡)

𝑡
𝑑𝑡+𝑀−

𝑛 , (7)

where

𝑀−
𝑛 =

∑︁
|𝜆𝑘−𝜆𝑛|6𝜆𝑛

ln

⃒⃒⃒⃒
𝜆𝑘 − 𝑧

𝜆𝑘 − 𝜆𝑛

⃒⃒⃒⃒
(𝑘 ̸= 𝑛).

We proceed to estimating Σ2. Since

ln

⃒⃒⃒⃒
1 +

𝑧

𝜆𝑘

⃒⃒⃒⃒
= ln

(︂
1 +

𝜆𝑛
𝜆𝑘

)︂
+ ln

⃒⃒⃒⃒
𝜆𝑘 + 𝑧

𝜆𝑘 + 𝜆𝑛

⃒⃒⃒⃒
,

then

Σ2 =
∑︁

|𝜆𝑘−𝜆𝑛|6𝜆𝑛

ln

(︂
1 +

𝜆𝑛
𝜆𝑘

)︂
+𝑀+

𝑛 , (8)

where

𝑀+
𝑛 =

∑︁
|𝜆𝑘−𝜆𝑛|6𝜆𝑛

ln

⃒⃒⃒⃒
𝜆𝑘 + 𝑧

𝜆𝑘 + 𝜆𝑛

⃒⃒⃒⃒
.

But

0 <
∑︁

|𝜆𝑘−𝜆𝑛|6𝜆𝑛

ln

(︂
1 +

𝜆𝑛
𝜆𝑘

)︂
=

2𝜆𝑛∫︁
0

ln

(︂
1 +

𝜆𝑛
𝑡

)︂
𝑑𝑛1(𝑡)

=𝑛1(2𝜆𝑛) ln
3

2
+ 𝜆𝑛

2𝜆𝑛∫︁
0

𝑛1(𝑡)

𝑡(𝑡+ 𝜆𝑛)
𝑑𝑡 6 𝑛1(2𝜆𝑛) ln

3

2
+𝑁1(2𝜆𝑛).

(9)
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Therefore, by (8), (9) we obtain that

|Σ2| 6 𝑛1(2𝜆𝑛) ln
3

2
+𝑁1(2𝜆𝑛) + |𝑀+

𝑛 |.

Then, in view of Lemma 1, we get

|Σ2| 6 𝑛1(2𝜆𝑛) ln
3

2
+𝑁1(2𝜆𝑛) + 𝑛1(2𝜆𝑛) ln

4

3
,

that is,
|Σ2| 6 𝑛1(2𝜆𝑛) ln 2 +𝑁1(2𝜆𝑛). (10)

It remains to estimate Σ3. Since as 𝑧 ∈ 𝐾𝑛, in this sum we have

|𝑧|
𝑡

6
𝜆𝑛 + ℎ𝑛

2

2𝜆𝑛
=

1

2
+

ℎ𝑛
4𝜆𝑛

6
3

4
,

then 1 − 𝑟2

𝑡2
> 0, and

Σ3 =

∞∫︁
2𝜆𝑛

ln

⃒⃒⃒⃒
1 − 𝑧2

𝑡2

⃒⃒⃒⃒
𝑑𝑛(𝑡) >

∞∫︁
2𝜆𝑛

ln

(︂
1 − 𝑟2

𝑡2

)︂
𝑑𝑛(𝑡),

where 𝑟 = |𝑧|, 𝑛(𝑡) =
∑︀
𝜆𝑘6𝑡

1. This implies that

Σ3 > −𝑛(2𝜆𝑛) ln

(︂
1 − 𝑟2

4𝜆2𝑛

)︂
− 2𝑟2

∞∫︁
2𝜆𝑛

𝑛(𝑡)

𝑡(𝑡2 − 𝑟2)
𝑑𝑡.

The expression is positive and neglecting it, we have

Σ3 > −2𝑟2
∞∫︁

2𝜆𝑛

𝑛(𝑡)

𝑡(𝑡2 − 𝑟2)
𝑑𝑡.

On the other hand,

Σ3 6

∞∫︁
2𝜆𝑛

ln

(︂
1 +

𝑟2

𝑡2

)︂
𝑑𝑛(𝑡).

Since the substitution is negative, in the same way we obtain

Σ3 6 2𝑟2
∞∫︁

2𝜆𝑛

𝑛(𝑡)

𝑡(𝑡2 + 𝑟2)
𝑑𝑡.

This is why, finally,

|Σ3| 6 2𝑟2
∞∫︁

2𝜆𝑛

𝑛(𝑡)

𝑡(𝑡2 − 𝑟2)
𝑑𝑡. (11)

Since

𝑟 6 𝜆𝑛 +
1

2
6 2𝜆𝑛,

then
2𝑟2

𝑡2 − 𝑟2
6 4

2𝜆2𝑛
𝑡2 + 𝜆2𝑛

𝑡2 + 𝜆2𝑛
𝑡2 − 𝑟2

.

Since

𝑟 6 𝜆𝑛 +
1

2
6
𝑡+ 1

2
,
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then

𝑡2 − 𝑟2 > 𝑡(𝑡− 𝑟) >
𝑡(𝑡− 1)

2
.

Therefore, taking into consideration the inequality 𝜆𝑛 6 𝑡
2
, we obtain

𝑡2 + 𝜆2𝑛
𝑡2 − 𝑟2

6
5

2

𝑡

𝑡− 1
6

5

2

2𝜆𝑛
2𝜆𝑛 − 1

6 5.

Thus, by (11) we finally obtain

|Σ3| 6 40𝜆2𝑛

∞∫︁
2𝜆𝑛

𝑛(𝑡)

𝑡(𝑡2 + 𝜆2𝑛)
𝑑𝑡 6 20 ln𝑀𝑞(𝜆𝑛), (12)

where 𝑀𝑞(𝑟) = max
|𝑧|=𝑟

|𝑞(𝑧)|.

In view of (1), (7) we write

ln |𝑞(𝑧)| = ln

⃒⃒⃒⃒
1 − 𝑧2

𝜆2𝑛

⃒⃒⃒⃒
−

𝜆𝑛∫︁
0

𝜈(𝜆𝑛; 𝑡)

𝑡
𝑑𝑡+𝑁1(2𝜆𝑛) − 𝑛1(2𝜆𝑛) ln 2 +𝑀−

𝑛 + Σ2 + Σ3, 𝑧 ∈ 𝐾𝑛.

Therefore, for 𝑧 ∈ 𝐾𝑛,⃒⃒⃒⃒
⃒⃒ln 1

|𝑞(𝑧)|
−

𝜆𝑛∫︁
0

𝜈(𝜆𝑛; 𝑡)

𝑡
𝑑𝑡

⃒⃒⃒⃒
⃒⃒ 6 ⃒⃒⃒⃒ln ⃒⃒⃒⃒1 − 𝑧2

𝜆2𝑛

⃒⃒⃒⃒⃒⃒⃒⃒
+𝑁1(2𝜆𝑛) + 𝑛1(2𝜆𝑛) ln 2 + |𝑀−

𝑛 | + |Σ2| + |Σ3|.

Hence, by Lemmata 1, 2 and estimates (10), (12) we finally get that⃒⃒⃒⃒
⃒⃒ln 1

|𝑞(𝑧)|
−

𝜆𝑛∫︁
0

𝜈(𝜆𝑛; 𝑡)

𝑡
𝑑𝑡

⃒⃒⃒⃒
⃒⃒ 6 ln 10 + | lnℎ𝑛| + ln𝜆𝑛 + 2𝑁1(2𝜆𝑛) + 𝑛1(2𝜆𝑛) ln 8 + 20 ln𝑀𝑞(𝜆𝑛).

We summarize the above obtained facts as the following theorem.

Theorem 1. Assume that a sequence Λ = {𝜆𝑛} (1 = 𝜆1 < 𝜆𝑛 ↑ ∞) has a finite upper
density, ℎ𝑛 = min(min

𝑘 ̸=𝑛
|𝜆𝑘 − 𝜆𝑛|, 1),

𝑞(𝑧) =
∞∏︁
𝑘=1

(︂
1 − 𝑧2

𝜆2𝑘

)︂
.

Then in the annuli

𝐾𝑛 =

{︂
𝜉 :

ℎ𝑛
4

6 |𝜉 − 𝜆𝑛| 6
ℎ𝑛
2

}︂
the estimate ⃒⃒⃒⃒

⃒⃒ln 1

|𝑞(𝑧)|
−

𝜆𝑛∫︁
0

𝜈(𝜆𝑛; 𝑡)

𝑡
𝑑𝑡

⃒⃒⃒⃒
⃒⃒ 6 𝑚(𝜆𝑛)

holds, where 𝜈(𝜆𝑛; 𝑡) is the amount of the points 𝜆𝑘 ̸= 𝜆𝑛 in the segment {ℎ : |ℎ−𝜆𝑛| 6 𝑡} and

𝑚(𝜆𝑛) = ln 10 + ln𝜆𝑛 + | lnℎ𝑛| + 𝑛(2𝜆𝑛) ln 8 + 2𝑁(2𝜆𝑛) + 20 ln𝑀𝑞(𝜆𝑛).

Corollary 1. If
∞∑︀
𝑛=1

1
𝜆𝑛
<∞ and

| lnℎ𝑛| 6 𝑤1(𝜆𝑛) (𝑛 > 1)
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for some function 𝑤1 ∈ 𝑊 , then⃒⃒⃒⃒
⃒⃒ln 1

|𝑞(𝑧)|
−

𝑟∫︁
0

𝜈(𝑧; 𝑡)

𝑡
𝑑𝑡

⃒⃒⃒⃒
⃒⃒ 6 𝑤2(𝑟)

for 𝑧 ∈ 𝐾𝑛, where 𝑤2 is some function in 𝑊 .

We have employed the well-known fact that the convergence of the series
∞∑︀
𝑛=1

1
𝜆𝑛

is equivalent

to the convergence of the integrals [2], [3]:
∞∫︁
1

𝑛(𝑟)

𝑟2
𝑑𝑟,

∞∫︁
1

𝑁(𝑟)

𝑟2
𝑑𝑟,

∞∫︁
1

ln𝑀𝑞(𝑟)

𝑟2
𝑑𝑟.

Let us make a remark. Since

− ln
∏︁

𝜆𝑛
2 6𝜆𝑘62𝜆𝑛,

𝑘 ̸=𝑛

⃒⃒⃒⃒
1 − 𝜆𝑛

𝜆𝑘

⃒⃒⃒⃒
= −

∑︁
|𝜆𝑘−𝜆𝑛|6𝜆𝑛

ln

⃒⃒⃒⃒
1 − 𝜆𝑛

𝜆𝑘

⃒⃒⃒⃒
+
∑︁
𝜆𝑘6

𝜆𝑛
2

⃒⃒⃒⃒
1 − 𝜆𝑛

𝜆𝑘

⃒⃒⃒⃒
= −Σ1(𝜆𝑛) + 𝐴,

then for Σ1(𝜆𝑛) and 𝐴 the relations hold:

0 6 𝐴 =
∑︁
𝜆𝑘6

𝜆𝑛
2

ln

(︂
𝜆𝑛
𝜆𝑘

− 1

)︂
6
∑︁
𝜆𝑘6

𝜆𝑛
2

ln

(︂
1 +

𝜆2𝑛
𝜆2𝑘

)︂
6 ln𝑀𝑞(𝜆𝑛),

Σ1(𝜆𝑛) = −
𝜆𝑛∫︁
0

𝜈(𝜆𝑛; 𝑡)

𝑡
𝑑𝑡+𝑁1(2𝜆𝑛) − 𝑛1(2𝜆𝑛) ln 2.

Hence, the following lemma holds.

Lemma 3. The estimate⃒⃒⃒⃒
⃒⃒⃒⃒− ln

∏︁
𝑘 ̸=𝑛

𝜆𝑛
2 6𝜆𝑘62𝜆𝑛

⃒⃒⃒⃒
1 − 𝜆𝑛

𝜆𝑘

⃒⃒⃒⃒
−

𝜆𝑛∫︁
0

𝜈(𝜆𝑛; 𝑡)

𝑡
𝑑𝑡

⃒⃒⃒⃒
⃒⃒⃒⃒ 6 𝑛(2𝜆𝑛) +𝑁(2𝜆𝑛) + ln𝑀𝑞(𝜆𝑛)

holds true, where 𝜈(𝜆𝑛; 𝑡) is the amount of the points 𝜆𝑘 ̸= 𝜆𝑛 in the segment {ℎ : |ℎ−𝜆𝑛| 6 𝑡}.
In what follows we make use of the next lemma.

Lemma 4. Let 𝑤 ∈ 𝑊 . Then the function 𝑣(𝑧) = 𝑤*(|𝑧|), where

𝑤*(𝑟) =

∞∫︁
1

ln

(︂
1 +

𝑟2

𝑡2

)︂
𝑑𝑤(𝑡), 𝑟 = |𝑧|,

is subharmonic in C.

Proof. We observe that

𝑣(𝑧) > 𝑢(𝑧) ≡
∞∫︁
1

ln

⃒⃒⃒⃒
1 − 𝑧2

𝑡2

⃒⃒⃒⃒
𝑑𝑤(𝑡),

and 𝑢 is a subharmonic in C function, see, for instance, [4]. We take an arbitrary point 𝑧0 ∈ C
and choose 𝑤0 in the imaginary axis so that |𝑤0| = |𝑧0|. Since 𝑧0 = 𝑤0𝑒

−𝛼𝑖, then

1

2𝜋

2𝜋∫︁
0

𝑣(𝑧0 + 𝜌𝑒𝑖𝜙)𝑑𝜙 =
1

2𝜋

2𝜋+𝛼∫︁
𝛼

𝑣
[︀
𝑒−𝛼𝑖(𝑤0 + 𝜌𝑒𝑖𝜓)

]︀
𝑑𝜓,
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𝜓 = 𝜙 + 𝛼. Since the function 𝑓(𝜓) = 𝑣
[︀
𝑒−𝛼𝑖(𝑤0 + 𝜌𝑒𝑖𝜓)

]︀
is 2𝜋-periodic and 𝑣(𝑧) = 𝑣(|𝑧|), we

have

1

2𝜋

2𝜋∫︁
0

𝑣(𝑧0 + 𝜌𝑒𝑖𝜙)𝑑𝜙 =
1

2𝜋

2𝜋∫︁
0

𝑣(𝑤0 + 𝜌𝑒𝑖𝜓)𝑑𝜓.

For each 𝜌 > 0 (𝑢 is subharmonic in C)

1

2𝜋

2𝜋∫︁
0

𝑣(𝑤0 + 𝜌𝑒𝑖𝜓)𝑑𝜓 >
1

2𝜋

2𝜋∫︁
0

𝑢(𝑤0 + 𝜌𝑒𝑖𝜓)𝑑𝜓 > 𝑢(𝑤0) = 𝑣(𝑧0).

This implies the subharmonicity of the function 𝑣.

3. Criterion of interpolation property for sequence Λ

Let Λ = {𝜆𝑛}, 0 < 𝜆𝑛 ↑ ∞, lim
𝑛→∞

𝑛
𝜆𝑛

= 𝜏 <∞.

The next theorem holds.

Theorem 2. The sequence Λ is interpolating if and only if there exists a function 𝑤 ∈ 𝑊
such that

a)
∞∑︁
𝑛=1

1

𝜆𝑛
<∞; b) − ln

∏︁
𝜆𝑛
2 <𝜆𝑘<2𝜆𝑛

𝑘 ̸=𝑛

⃒⃒⃒⃒
1 − 𝜆𝑛

𝜆𝑘

⃒⃒⃒⃒
6 𝑤(𝜆𝑛) (𝑛 > 1).

We observe that Lemma 3 and conditions a), b) implies that

ln
1

ℎ𝑛
6 𝑤0(𝜆𝑛) (𝑛 > 1),

where ℎ𝑛 = min

(︃
min
𝑘 ̸=𝑛
𝑘>1

|𝜆𝑛 − 𝜆𝑘|, 1

)︃
, 𝑤0 is a some function in class 𝑊 .

The proof of the sufficient condition in Theorem 2 is based on one theorem by Hörmander
for 𝜕-equation. Let us formulate this theorem.

Theorem 3. Let 𝜙 = 𝜙(𝑧) be a function subharmonic in C, 𝑔 ∈ 𝐶∞(C). Then there exists
a solution 𝑢 ∈ 𝐶∞(C) to equation 𝜕𝑢

𝜕𝑧
= 𝑔 satisfying the condition∫︁

C

|𝑢|2𝑒−𝜙(1 + |𝑧|2)−2𝑑𝜆 6
∫︁
C

|𝑔|2𝑒−𝜙𝑑𝜆 (13)

provided the right hand is finite; here 𝜆 is the Lebesgue measure.

Proof of Theorem 2. . We begin by proving the sufficient condition. In order to do it, we take
a function 𝜓 ∈ 𝐶∞ such that 𝜓(𝑧) = 1 as |𝑧| < 1

4
and 𝜓(𝑧) = 0 as |𝑧| > 1

2
. We let

𝐴(𝑧) =
∞∑︁
𝑛=1

𝑏𝑛Ψ𝑛(𝑧 − 𝜆𝑛), Ψ𝑛(𝑧) = 𝜓

(︂
𝑧

ℎ𝑛

)︂
,

{𝑏𝑛} is an arbitrary given sequence of complex numbers |𝑏𝑛| 6 1. Since 𝐴(𝑧) = 𝑏𝑘Ψ𝑘(𝑧−𝜆𝑘) for
𝑧 ∈ 𝐵𝑘 = {𝑧 : |𝑧−𝜆𝑘| < ℎ𝑘

2
} and 𝐴(𝑧) = 0 for 𝑧 in the complement of the union of the circles 𝐵𝑛

(𝑛 > 1), it is obvious that 𝐴 ∈ 𝐶∞. Since |𝜆𝑘 − 𝜆𝑛| > ℎ𝑛 as 𝑘 ̸= 𝑛, then 𝐴(𝜆𝑘) = 𝑏𝑘𝜓(0) = 𝑏𝑘
(𝑘 > 1).

Let

𝜙(𝑧) = 2 ln
∞∏︁
𝑛=1

⃒⃒⃒⃒
1 − 𝑧2

𝜆2𝑛

⃒⃒⃒⃒
+ 𝑣(𝑧),
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where 𝑣 is a subharmonic function, which will be chosen later. Since the sequence Λ has a finite

upper density, then
∏︀
𝑛

(︁
1 − 𝑧2

𝜆2𝑛

)︁
is an entire function of exponential type and 𝜙 is a subharmonic

function.
We have

𝑀𝜙(𝑟) = max
|𝑧|=𝑟

|𝜙(𝑧)| 6 2 ln
∞∏︁
𝑛=1

(︂
1 +

𝑟2

𝜆2𝑛

)︂
+𝑀𝑣(𝑟).

Then
∞∑︁
𝑛=1

ln

(︂
1 +

𝑟2

𝜆2𝑛

)︂
=

∞∫︁
0

ln

(︂
1 +

𝑟2

𝑡2

)︂
𝑑𝑛(𝑡). (14)

Integrating by parts Stieltjes integral (14) and taking into consideration that 𝑛(𝑡)
𝑡

→ 0 as 𝑡→ ∞,
we obtain:

∞∫︁
0

ln

(︂
1 +

𝑟2

𝑡2

)︂
𝑑𝑛(𝑡) = 2𝑟2

∞∫︁
1

𝑛(𝑡)

𝑡(𝑡2 + 𝑟2)
𝑑𝑡 ≡ 𝑤1(𝑟).

Let us check 𝑤1 ∈ 𝑊 . Indeed, letting 𝑡 = 𝑠𝑟, we have

𝑤1(𝑟) = 2

∞∫︁
1/𝑟

𝑛(𝑠𝑟)

𝑠(𝑠2 + 1)
𝑑𝑠,

and we see that 𝑤1 is an increasing function. Since

1

2

∞∫︁
1

𝑤1(𝑟)

𝑟2
𝑑𝑟 =

∞∫︁
1

𝑛(𝑡)

𝑡

⎛⎝ ∞∫︁
1

𝑑𝑟

𝑡2 + 𝑟2

⎞⎠ 𝑑𝑡 6
𝜋

2

∞∫︁
1

𝑛(𝑡)

𝑡2
𝑑𝑡 <∞,

then 𝑤1 ∈ 𝑊 .
Let us construct a subharmonic function 𝑣 so that the quantity 𝑀𝑣(𝑟), the maximum of the

absolute value of the function 𝑣, can be bounded from above by some function in the class 𝑊
and at that, the right hand side in (13) for 𝑔 = 𝜕𝐴

𝜕𝑧
is finite.

Let

𝐾𝑛 =

{︂
𝜉 :

ℎ𝑛
4
< |𝜉 − 𝜆𝑛| <

ℎ𝑛
2

}︂
(𝑛 > 1).

We note that the annuli 𝐾𝑛 (𝑛 > 1) are mutually disjoint. This is implied by the fact that

ℎ𝑛
2

+
ℎ𝑛+1

2
6 𝜆𝑛+1 − 𝜆𝑛 (𝑛 > 1).

We have ∫︁
C

⃒⃒⃒⃒
𝜕𝐴

𝜕𝜉

⃒⃒⃒⃒2
𝑒−𝜙𝑑𝜆 =

∫︁
∩𝑛{𝜉:|𝜉−𝜆𝑛|>ℎ𝑛

2
}

⃒⃒⃒⃒
𝜕𝐴

𝜕𝜉

⃒⃒⃒⃒2
𝑒−𝜙𝑑𝜆

+
∞∑︁
𝑛=1

∫︁
𝐾𝑛

⃒⃒⃒⃒
𝜕𝐴

𝜕𝜉

⃒⃒⃒⃒2
𝑒−𝜙𝑑𝜆+

∞∑︁
𝑛=1

∫︁
{𝜉:|𝜉−𝜆𝑛|<ℎ𝑛

4
}

⃒⃒⃒⃒
𝜕𝐴

𝜕𝜉

⃒⃒⃒⃒2
𝑒−𝜙𝑑𝜆.

(15)

The first and last integral in the right hand side in identity (15) obviously vanish. Then

𝐴(𝜉) = 𝑏𝑛𝜓

(︂
𝜉 − 𝜆𝑛
ℎ𝑛

)︂
for 𝜉 ∈ 𝐾𝑛.
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Assuming that 𝜓 = 𝜓(𝑤,𝑤), where 𝑤 = 𝑥+ 𝑖𝑦 = 𝜉−𝜆𝑛
ℎ𝑛

, we obtain:

𝜕𝜓

𝜕𝜉
=
𝜕𝜓

𝜕𝑤

(︂
𝜕𝑤

𝜕𝜉

)︂
=
𝜕𝜓

𝜕𝑤

1

ℎ𝑛
.

This implies ⃒⃒⃒⃒
𝜕𝜓

𝜕𝜉

⃒⃒⃒⃒
=

1

2ℎ𝑛

⃒⃒⃒⃒
𝜕𝜓

𝜕𝑥
+ 𝑖

𝜕𝜓

𝜕𝑦

⃒⃒⃒⃒
6

1

ℎ𝑛

⃒⃒⃒⃒
𝜕𝜓

𝜕𝑥

⃒⃒⃒⃒
, 𝜉 ∈ 𝐾𝑛.

Since |𝑏𝑛| 6 1, then ∫︁
C

⃒⃒⃒⃒
𝜕𝐴

𝜕𝜉

⃒⃒⃒⃒2
𝑒−𝜙𝑑𝜆 6 𝐶1

∞∑︁
𝑛=1

𝑇𝑛,

where

𝑇𝑛 =
1

ℎ2𝑛

∫︁
𝐾𝑛

𝑒−𝑣(𝜉)
∞∏︁
𝑘=1

⃒⃒⃒⃒
1 − 𝜉2

𝜆2𝑘

⃒⃒⃒⃒−2

𝑑𝜆(𝜉)

and 𝐶1 = max
|𝑥|6 1

2

⃒⃒
𝜕𝜓
𝜕𝑥

⃒⃒2
.

For each fixed 𝑛 and 𝜉 ∈ 𝐾𝑛 we have

𝑝(𝜉) =
∞∏︁
𝑘=1

⃒⃒⃒⃒
1 − 𝜉2

𝜆2𝑘

⃒⃒⃒⃒
=
∏︁

𝜆𝑘6
𝜆𝑛
2

⃒⃒⃒⃒
1 − 𝜉2

𝜆2𝑘

⃒⃒⃒⃒ ∏︁
𝜆𝑛
2 <𝜆𝑘<2𝜆𝑛

𝑘 ̸=𝑛

⃒⃒⃒⃒
1 − 𝜉2

𝜆2𝑘

⃒⃒⃒⃒ ∏︁
𝜆𝑘>2𝜆𝑛

⃒⃒⃒⃒
1 − 𝜉2

𝜆2𝑘

⃒⃒⃒⃒ ⃒⃒⃒⃒
1 − 𝜉2

𝜆2𝑛

⃒⃒⃒⃒
.

Since Re 𝜉 > 0 for 𝜉 ∈ 𝐾𝑛 (𝑛 > 1), then ⃒⃒⃒⃒
1 +

𝜉

𝜆𝑘

⃒⃒⃒⃒
> 1. (16)

As 𝜆𝑘 6 𝜆𝑛
2

, ⃒⃒⃒⃒
1 − 𝜉2

𝜆2𝑘

⃒⃒⃒⃒
>

|𝜉|2

𝜆2𝑘
− 1 > 4

[︂
1 − 1

2𝜆𝑛

]︂2
− 1 > 1 (17)

for 𝜆𝑛 > 1 + 1√
2
, that is, as 𝑛 > 𝑛0. Taking into consideration estimates (16), (17), we obtain

that for 𝜉 ∈ 𝐾𝑛, 𝑛 > 𝑛0, the inequality

𝑝(𝜉) >
∏︁

𝜆𝑛
2 <𝜆𝑘<2𝜆𝑛

𝑘 ̸=𝑛

⃒⃒⃒⃒
1 − 𝜉

𝜆𝑘

⃒⃒⃒⃒ ∏︁
𝜆𝑘>2𝜆𝑛

⃒⃒⃒⃒
1 − 𝜉2

𝜆2𝑘

⃒⃒⃒⃒ ⃒⃒⃒⃒
1 − 𝜉2

𝜆2𝑛

⃒⃒⃒⃒
(18)

holds. Applying Lemma 1, for 𝜉 ∈ 𝐾𝑛 (𝑛 > 1) we have⃒⃒⃒⃒
1 − 𝜉

𝜆𝑘

⃒⃒⃒⃒
=

⃒⃒⃒⃒
1 − 𝜆𝑛

𝜆𝑘

⃒⃒⃒⃒
|𝜉 − 𝜆𝑘|
|𝜆𝑛 − 𝜆𝑘|

>
1

2

⃒⃒⃒⃒
1 − 𝜆𝑛

𝜆𝑘

⃒⃒⃒⃒
(𝑘 ̸= 𝑛). (19)

Let us estimate the quantity
⃒⃒⃒
1 − 𝜉2

𝜆2𝑛

⃒⃒⃒
for 𝜉 ∈ 𝐾𝑛:⃒⃒⃒⃒

1 − 𝜉2

𝜆2𝑛

⃒⃒⃒⃒
>
ℎ𝑛
4

|𝜉 + 𝜆𝑛|
𝜆2𝑛

>
ℎ𝑛
4𝜆𝑛

.

Above conditions a) and b) imply that

1

ℎ𝑛
6 𝑒𝑤0(𝜆𝑛) (𝑛 > 1),

where 𝑤0 is some function in the class 𝑊 . Therefore, for 𝜉 ∈ 𝐾𝑛 (𝑛 > 1), we get⃒⃒⃒⃒
1 − 𝜉2

𝜆2𝑛

⃒⃒⃒⃒
> 𝑒−𝑤2(𝜆𝑛), 𝑤2 ∈ 𝑊. (20)
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The required estimate in terms of the function 𝑊 is easily implied by Conditions a) and b) if

we take into consideration (19). It remains to estimate the product
∏︀

𝜆𝑘>2𝜆𝑛

⃒⃒⃒
1 − 𝜉2

𝜆2𝑘

⃒⃒⃒
. We have1:

ln
∏︁

𝜆𝑘>2𝜆𝑛

⃒⃒⃒⃒
1 − 𝜉2

𝜆2𝑘

⃒⃒⃒⃒
=

∞∫︁
2𝜆𝑛

ln

⃒⃒⃒⃒
1 − 𝜉2

𝑡2

⃒⃒⃒⃒
𝑑𝑛(𝑡) > −𝐶2

∞∫︁
2𝜆𝑛

𝜆2𝑛
𝑡2
𝑑𝑛(𝑡) > −2𝐶2𝜆

2
𝑛

∞∫︁
2𝜆𝑛

𝑛(𝑡)

𝑡3
𝑑𝑡. (21)

Let

𝑤3(𝑟) ≡ 𝑟2
∞∫︁

2𝑟

𝑛(𝑡)

𝑡3
𝑑𝑡 =

∞∫︁
2

𝑛(𝑠𝑟)

𝑠3
𝑑𝑠.

We have
∞∫︁
1

𝑤3(𝑟)

𝑟2
𝑑𝑟 =

∞∫︁
1

1

𝑟2

⎛⎝ ∞∫︁
2

𝑛(𝑠𝑟)

𝑠3
𝑑𝑠

⎞⎠ 𝑑𝑟 =

∞∫︁
2

1

𝑠3

⎛⎝ ∞∫︁
1

𝑛(𝑠𝑟)

𝑟2
𝑑𝑟

⎞⎠ 𝑑𝑠

=

∞∫︁
2

1

𝑠2

⎛⎝ ∞∫︁
𝑠

𝑛(𝑥)

𝑥2
𝑑𝑥

⎞⎠ 𝑑𝑠 6
1

2

∞∫︁
1

𝑛(𝑥)

𝑥2
𝑑𝑥 <∞.

Since 𝑝(𝜉) > 𝛽 > 0 on ∪𝑛6𝑛0𝐾𝑛, by estimates (18)–(21), Conditions a), b) of the theorem we
finally obtain that there exists a function 𝑤4 ∈ 𝑊 such that for all 𝑛 > 1

𝑝(𝜉) > 𝑒−𝑤4(𝜆𝑛), 𝜉 ∈ 𝐾𝑛. (22)

We let

𝑤*(𝑟) =

∞∫︁
1

ln

(︂
1 +

𝑟2

𝑡2

)︂
𝑑𝑤*

4(𝑡) + (𝑤*
4(1) + 1) ln(1 + 𝑟2),

where 𝑤*
4 = 𝑤4 + 𝑤0. Then, for some 𝐶 > 0, the function 𝑣(𝑧) = 𝐶𝑤*(|𝑧|) is the sought one.

Indeed, by Lemma 4, the function 𝑣 is subharmonic in C and the quantity 𝑀𝑣(𝑟) = 𝐶𝑤*(𝑟), as
we saw above for the function 𝑤1, is a function in the class 𝑊 .

It remains to show that
∞∑︀
𝑛=1

𝑇𝑛 < ∞. Taking into consideration estimate (22) and the

definition of the function 𝑣, we get

𝑇𝑛 6
1

ℎ2𝑛

∫︁
𝐾𝑛

𝑒−𝐶𝑤
*(|𝜉|)+2𝑤4(𝜆𝑛)𝑑𝜆(𝜉) 6 𝐶3 exp

[︂
2𝑤0(𝜆𝑛) + 2𝑤4(𝜆𝑛) − 𝐶𝑤*(𝜆𝑛 −

1

2
)

]︂
,

where 𝐶3 = 3
16
𝜋. We observe that

𝑤*(𝑟) = 2𝑟2
∞∫︁
1

𝑤*
4(𝑡)

𝑡(𝑡2 + 𝑟2)
𝑑𝑡+ ln(1 + 𝑟2) > 2𝑟2𝑤*

4(𝑟)

∞∫︁
𝑟

𝑑𝑡

𝑡(𝑡2 + 𝑟2)
>

1

2
𝑤*

4(𝑟),

1Since |𝜉|2
𝑡2 6

(︁
𝜆𝑛+

1
2

2𝜆𝑛

)︁2
6
(︁

1
2 + 1

4𝜆1

)︁2
< 2

3 , then

ln

⃒⃒⃒⃒
1− 𝜉2

𝑡2

⃒⃒⃒⃒
> ln

(︂
1− |𝜉|2

𝑡2

)︂
> −3

|𝜉|2

𝑡2
,

since the function 𝜙(𝛼) = ln(1− 𝛼) + 3𝛼 increases as 𝛼 < 2
3 . But

|𝜉|
𝜆𝑛

6 3
2 as 𝜉 ∈ 𝐾𝑛 (𝑛 > 1) and this is why

ln

⃒⃒⃒⃒
1− 𝜉2

𝑡2

⃒⃒⃒⃒
> −𝐶2

𝜆2
𝑛

𝑡2
, 𝐶2 =

27

4
.



PAVLOV-KOREVAAR-DIXON INTERPOLATION PROBLEM. . . 33

and also
𝑤*(𝜆𝑛)

𝑤*(𝜆𝑛 − 1
2
)
6𝑀 (𝑛 > 1).

Therefore,
∞∑︁
𝑛=1

𝑇𝑛 6 𝐶3

∞∑︁
𝑛=1

𝑒−
𝐶
𝑀
𝑤*(𝜆𝑛)+2𝑤*

4(𝜆𝑛) 6 𝐶3

∞∑︁
𝑛=1

𝑒(−
𝐶
𝑀

+4)𝑤*(𝜆𝑛).

The definition of the function 𝑤*(𝑟) implies that 𝑤*(𝑟) > (𝑤*
4(1) + 1) ln(1 + 𝑟2), and this is why

∞∑︁
𝑛=1

𝑇𝑛 6 𝐶3

∞∑︁
𝑛=1

1

(1 + 𝜆2𝑛)𝐶4
,

where 𝐶4 =
(︀
𝐶
𝑀

− 4
)︀

(𝑤*
4(1) + 1), 𝐶 is the constant in the definition of the function 𝑣. Since

the sequence Λ = {𝜆𝑛} has a finite upper density, the latter series converges provided 2𝐶4 > 1.
The convergence is ensured by the inequality 𝐶 > 5𝑀 .

As we have said above, 𝑀𝑣(𝑟) = 𝐶𝑤*(𝑟), 𝑤* ∈ 𝑊 . Hence,

𝑀𝜙(𝑟) 6 𝑤5(𝑟), (23)

where 𝑤5 = 2𝑤1 + 𝐶𝑤* is a function in the class 𝑊 .
We are going to apply Theorem 3 for 𝑔 = 𝜕𝐴

𝜕𝑧
. Since the function 𝜙 is chosen so that 𝑒−𝜙 has

a non-integrable singularity at each point 𝜆𝑛, we should have 𝑢(𝜆𝑛) = 0 (𝑛 > 1).
Consider the equation

𝜕𝑢

𝜕𝑧
=
𝜕𝐴

𝜕𝑧
, 𝑢(𝜆𝑛) = 0 (𝑛 > 1). (24)

We let 𝑓 = 𝐴− 𝑢, where 𝑢 is the solution to equation (24); this exists by Hörmander theorem.
It is clear that 𝑓 is an entire function and 𝑓(𝜆𝑛) = 𝑏𝑛 (𝑛 > 1).

Since |𝑓 |2 is subharmonic in the entire plane, then for each 𝜌 > 0, and, in particular, as
1 6 𝜌 6 𝑟, we have [5, Ch. I, Sect. 6]:

|𝑓(𝑧)|2 6 1

𝜋𝜌2

∫︁
|𝜉−𝑧|6𝜌

|𝑓(𝜉)|2𝑑𝜆(𝜉) <

∫︁
|𝜉|62𝑟

|𝑓(𝜉)|2𝑑𝜆(𝜉), 𝑟 = |𝑧|.

Since |𝑓 |2 6 2(|𝐴|2 + |𝑢|2), we have∫︁
|𝑧|62𝑟

|𝑓 |2𝑑𝜆 62

∫︁
|𝑧|62𝑟

|𝐴|2𝑑𝜆+ 2

∫︁
|𝑧|62𝑟

|𝑢|2𝑑𝜆 6 8𝜋𝑟2 + 2

∫︁
|𝑧|62𝑟

|𝑢|2 𝑒−𝜙

(1 + |𝑧|2)2
(1 + |𝑧|2)2𝑒𝜙𝑑𝜆.

Applying estimate (13) from the Hörmander theorem to the latter integral, we obtain∫︁
|𝑧|62𝑟

|𝑓 |2𝑑𝜆 6 8𝜋𝑟2 + 2 exp
{︀

2 ln(1 + 4𝑟2) +𝑀𝜙(2𝑟)
}︀∫︁
C

|𝑔|2𝑒−𝜙𝑑𝜆.

In view of the convergence of latter integral and estimate (23), we conclude that

|𝑓(𝑧)| 6 𝐶5𝑒
𝑤6(|𝑧|),

where 𝑤6 ∈ 𝑊 . The latter means that the function 𝑓 = 𝐴−𝑢 solves the interpolation problem.
The sufficient condition is proven.

Let us prove the necessary condition. Let Λ = {𝜆𝑛} be an interpolation sequence and 𝑤̃ be a
function in the class 𝑊 , existence of which is stated in Definition 1. We first choose an entire
function 𝑓 solving the interpolation problem for 𝑏1 = 1 and 𝑏𝑛 = 0 (𝑛 > 1). By the Jensen
inequality and by property 2) of an interpolation sequence we obtain

𝑛(𝑟) 6 ln𝑀𝑓 (𝑒𝑟) 6 𝑤̃(𝑒𝑟).
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As we have said in Section 1, the convergence of the integral
∞∫︁
1

𝑛(𝑟)

𝑟2
𝑑𝑟

is equivalent to the condition
∞∑︁
𝑛=1

1

𝜆𝑛
<∞.

In order to prove Condition b), we fix 𝑛 and choose the entire function 𝑓 solving the inter-
polation problem for 𝑏𝑛 = 1 and 𝑏𝑘 = 0 (𝑘 ̸= 𝑛).

The representation

𝑓(𝑧) =
∏︁

𝜆𝑛
2 <𝜆𝑘<2𝜆𝑛,

𝑘 ̸=𝑛

(︂
1 − 𝑧

𝜆𝑘

)︂
𝐺(𝑧) (25)

holds true, where 𝐺 is an entire function; if none of 𝜆𝑘 (𝑘 ̸= 𝑛) is in the interval
(︀
𝜆𝑛
2
, 2𝜆𝑛

)︀
, we

assume that 𝐺 = 𝑓 . For 𝜆𝑛
2
< 𝜆𝑘 < 2𝜆𝑛 we have⃒⃒⃒⃒
1 − 𝑧

𝜆𝑘

⃒⃒⃒⃒
>

⃒⃒⃒⃒
1 − 4𝜆𝑛

𝜆𝑘

⃒⃒⃒⃒
> 1, |𝑧| = 4𝜆𝑛.

This implies that |𝐺(𝑧)| 6 |𝑓(𝑧)|, |𝑧| = 4𝜆𝑛. By the maximum modulus principle,

|𝐺(𝜆𝑛)| 6𝑀𝐺(4𝜆𝑛) 6𝑀𝑓 (4𝜆𝑛) 6 𝑒𝑤̃(4𝜆𝑛). (26)

On the other hand, it follows from (25) that

𝐺(𝜆𝑛) =
∏︁

𝜆𝑛
2 <𝜆𝑘<2𝜆𝑛,

𝑛 ̸=𝑘

(︂
1 − 𝜆𝑛

𝜆𝑘

)︂−1

(27)

since 𝑓(𝜆𝑛) = 1. By relations (26), (27) we finally obtain

− ln
∏︁

𝜆𝑛
2 <𝜆𝑘<2𝜆𝑛,

𝑘 ̸=𝑛

⃒⃒⃒⃒
1 − 𝜆𝑛

𝜆𝑘

⃒⃒⃒⃒
6 𝑤̃(4𝜆𝑛),

where 𝑤̃ is a function in the class 𝑊 . The proof is complete.

The author thanks professor A.M. Gaisin for pointing out the work by B. Berndtsson and is
grateful to the participants of the seminar on the theory of functions for useful discussions.
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