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EXISTENCE TESTS FOR LIMITING CYCLES OF

SECOND ORDER DIFFERENTIAL EQUATIONS

M.K. ARABOV, E. MUKHAMADIEV, I.D. NUROV, Kh.I. SOBIROV

Abstract. This work is devoted to finding limiting cycles in the vicinity of equilibria of
second order nonlinear differential equations. We obtain new conditions for the coefficients
of the equations ensuring the existence of a limiting cycle by employing the methods of
qualitative analysis and computer modeling. We study the behavior of a singular point
under variation of the parameters and we apply the Lyapunov stability theory. On the base
of the obtained results, we make a sector partition of the plane. This partition allows us to
predict the behavior of the solutions in various parts of the plane. We develop a package of
computer programs for constructing a phase portrait in the corresponding domains.

Ключевые слова: dynamical systems, nonsmoothness, phase portraits, limiting cycles,
sectorial partitions.
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Limiting cycles have wide applications in many fields in natural sciences: in radiophysics,
automatic control, chemistry, medicine, mathematical biology, economics, etc. This is why
studying the existences of limiting cycles is an important part of the theory of nonlinear oscilla-
tions. Various sufficient conditions for the existence of limiting cycles are known. The classical
examples of the equations with limiting cycles are Van der Pol equations and Rayleigh equation
[1–6]. Rather recently there was found that piecewise linear equations of the form

𝑥′′ + 𝑎𝑥′ + 𝑏𝑥+ 𝑐|𝑥′ − 𝜆| = 0 (1)

possess limiting cycles for certain values of the coefficients 𝑎, 𝑏, 𝑐 and of the parameter 𝜆.
Namely, by means of the computer modelling, it was established in work [7] that equation (1)
with 𝑎 = 1, 𝑏 = 1, 𝑐 = 3/2 and 𝜆 > 0 has a limiting cycle. A more general existence condition
for a limiting cycle of equation (1) was obtained in work [8].
As many authors mention, see, for instance, [3], the existence of the limiting cycles is one

of the most complicated issues and there are no general approaches for solving this. This is
why any method allowing to establish the existence of a limiting cycle at least partially is of
interest.
In the present work we study a nonlinear second order differential equation

𝑥′′ + 𝑎𝑥′ + 𝑏𝑥+ 𝑐|𝑥′ − 𝜙(𝑥, 𝑥′)| = 0, (2)

where 𝑎, 𝑏, 𝑐 are real numbers and the function 𝜙(𝑥, 𝑦) is continuous and satisfies certain growth
condition as |𝑥| + |𝑦| → ∞. We find the conditions of the coefficients 𝑎, 𝑏, 𝑐 and the function
𝜙(𝑥, 𝑦) ensuring the existence of a limiting cycle for equation (2).
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Analysis of the phase portrait for homogeneous equation

We begin by analysing the phase portrait of the homogeneous equation

𝑥′′ + 𝑎𝑥′ + 𝑏𝑥+ 𝑐|𝑥′| = 0 (3)

subject to the location of the coefficients (𝑎, 𝑏, 𝑐) as a point in the three-dimensional space R3,
see [8]. If 𝑐 = 0, then (3) is a linear second order equation, whose phase portrait is well-known,
see, for instance, [1, 2, 4]. In what follows we assume that 𝑐 > 0. We observe that if 𝑐 < 0, the
change of 𝑥 by −𝑥 transforms equation (3) to the same equation with the coefficients (𝑎, 𝑏,−𝑐).
Equation (3) is “glued” by the linear equations

𝑥′′ + (𝑎+ 𝑐)𝑥′ + 𝑏𝑥 = 0, if 𝑥′ > 0 (4)

and

𝑥′′ + (𝑎− 𝑐)𝑥′ + 𝑏𝑥 = 0, if 𝑥′ 6 0. (5)

By 𝜇±
1 and 𝜇±

2 we denote the roots of the characteristic equation

𝜇2 + (𝑎± 𝑐)𝜇+ 𝑏 = 0 (6)

corresponding to equations (4) and (5):

𝜇±
1 = −1

2

{︁
(𝑎± 𝑐)−

√︀
(𝑎± 𝑐)2 − 4𝑏

}︁
, 𝜇±

2 = −1

2

{︁
(𝑎± 𝑐) +

√︀
(𝑎± 𝑐)2 − 4𝑏

}︁
.

These formulae for the roots of characteristic equations (6) yield that in the half-space {(𝑎, 𝑏, 𝑐) :
𝑐 > 0} of the coefficients of equation (3), the roots 𝜇±

1 vanish as 𝑏 = 0 and change the sign as 𝑏
grows. The roots 𝜇±

1 , 𝜇
±
2 are respectively real as 4𝑏 < (𝑎± 𝑐)2, are degenerate as 4𝑏 = (𝑎± 𝑐)2

and complex conjugate as 4𝑏 > (𝑎± 𝑐)2.
In view of the above properties of the roots of the characteristic equations, we partition the

half-space {(𝑎, 𝑏, 𝑐) : 𝑐 > 0} into the following subsets:

1. {(𝑎, 𝑏, 𝑐) : 𝑏 < 0};
2. {(𝑎, 𝑏, 𝑐) : 0 < 4𝑏 6 (|𝑎| − 𝑐)2, |𝑎| > 𝑐};
3. {(𝑎, 𝑏, 𝑐) : 0 < 4𝑏 6 (|𝑎| − 𝑐)2, |𝑎| < 𝑐};
4. {(𝑎, 𝑏, 𝑐) : (|𝑎| − 𝑐)2 < 4𝑏 6 (|𝑎|+ 𝑐)2};
5. {(𝑎, 𝑏, 𝑐) : (|𝑎|+ 𝑐)2 < 4𝑏}.
The projection on the coordinate plane (𝑎, 𝑏) of the intersections of these subsets with the

plane 𝑐 = 𝑐𝑜𝑛𝑠𝑡 > 0 is shown on Fig. 1.
We observe that for the coefficients (𝑎, 𝑏, 𝑐) in sets 1–4 the non-zero solution 𝑥(𝑡) to equation

(3) with the initial conditions 𝑥(𝑡0) = 𝑥0, 𝑥
′(𝑡0) = 0 is a solution to linear equation (4) as

(𝑡− 𝑡0)𝑥0 < 0 to equation (5) as (𝑡− 𝑡0)𝑥0 > 0.
Equation (3) is equivalent to the system{︃

𝑥′ = 𝑦,

𝑦′ = −𝑎𝑦 − 𝑏𝑥− 𝑐|𝑦|.
(7)

If 𝑏 ̸= 0, then system (7) has the only singular point (0, 0). As for a linear equation, the
location of the roots of characteristic equations (6) on the complex plane determines uniquely
the behavior of the trajectories of piecewise linear system (7) in the phase plane (𝑥, 𝑦). As we
see in the table given below, the piecewise linear systems have isolated complicated singular
points, where there arises an elliptic sector formed by the trajectories approaching the singular
point both as 𝑡 → ∞ and 𝑡 → −∞.
In what follows we assume that 𝑏 ̸= 0. In the following table we classify the main cases of

the behavior of the trajectories of system (7) on the phase plane.
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Figure 1. Sectors

No. Domain in
the space of the
parameters

Roots of the charac-
teristic equation

Qualitative picture of phase trajectories

1 𝑏 < 0 The numbers 𝜇±
1,2 are

real and of opposite
signs

Saddle

2 0 < 4𝑏 6 (|𝑎| −
𝑐)2, |𝑎| > 𝑐.

The numbers 𝜇±
1 , 𝜇±

2
are real and of the
same sign

𝑎 > 0 𝑎 < 0
Node
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3 0 < 4𝑏 6 (|𝑎| −
𝑐)2, |𝑎| < 𝑐.

If 𝜇+
1 > 0, then

𝜇+
2 > 0, 𝜇−

1 < 0 and
𝜇−
2 < 0 that corre-

sponds to the condi-
tion 𝑐 < 0. If 𝜇+

1 < 0,
then 𝜇+

2 < 0, 𝜇−
1 > 0

and 𝜇−
2 > 0 that cor-

responds to the condi-
tion 𝑐 > 0

𝑐 > 0 𝑐 < 0
Nodal sector and elliptic sector

4 (|𝑎| − 𝑐)2 < 4𝑏 6
(|𝑎|+ 𝑐)2

Either 𝜇−
1,2 are real

and of the same sign
and 𝜇+

1,2 = 𝛼 ± 𝑖𝛽 are
complex conjugate or
𝜇+
1,2 are real and of the

same sign and 𝜇−
1,2 =

𝛼±𝑖𝛽 are complex con-
jugate

𝑎 < 0, 𝑐 < 0 𝑎 > 0, 𝑐 > 0

𝑎 < 0, 𝑐 > 0 𝑎 > 0, 𝑐 < 0
Nodal-spiral

5 4𝑏 > {|𝑎|+ 𝑐}2 The numbers 𝜇+
1,2,

𝜇−
1,2 are complex conju-

gate

𝑎 > 0 𝑎 < 0
Node (nodal source if 𝑎 < 0, nodal sink if 𝑎 > 0,

center if 𝑎 = 0)

Conditions for boundedness of solution on half-line

We proceed to studying equation (2). Equation (2) is equivalent to the system
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{︃
𝑥′ = 𝑦,

𝑦′ = −𝑎𝑦 − 𝑏𝑥1 − 𝑐|𝑦 − 𝜙(𝑥, 𝑦)|.
(8)

In what follows we assume that the function 𝜙(𝑥, 𝑦) satisfies the condition

lim
|𝑥|+|𝑦|→∞

|𝜙(𝑥, 𝑦)|
|𝑥|+ |𝑦|

= 0. (9)

Condition (9) guarantees the possibility to extend the solution of system (8) on the entire line
(−∞,∞).

Theorem 1. Assume that (9) holds and the coefficients of system (8) satisfies the conditions

𝑏 > 0, 𝑐 > 0, 𝑎 /∈ [min{0, 2
√
𝑏− 𝑐},max{0, 𝑐− 2

√
𝑏}].

Then all solutions of system (8) are bounded as 𝑡 > 0 if 𝑎 > 0 and as 𝑡 < 0 if 𝑎 < 0, that is,
𝑎 ̸= 0 and for each solution (𝑥(𝑡), 𝑦(𝑡)) the inequality

sup{|𝑥(𝑡)|+ |𝑦(𝑡)| : 𝑎 · 𝑡 > 0} < ∞.

holds true.

Proof. Let 𝑎 > 0. If some solution (𝑥(𝑡), 𝑦(𝑡)) of system (8) is unbounded as 𝑡 > 0, then there
exists a sequence 𝑡𝑘, 0 < 𝑡𝑘 < 𝑡𝑘+1, 𝑘 = 1, 2, . . ., such that 𝑡𝑘 → ∞ and |𝑥(𝑡𝑘)| + |𝑦(𝑡𝑘)| → ∞
as 𝑘 → ∞. We choose numbers 𝜏𝑘 ∈ [0, 𝑡𝑘] such that

|𝑥(𝜏𝑘)|+ |𝑦(𝜏𝑘)| = max
06𝑡6𝑡𝑘

(|𝑥(𝑡)|+ |𝑦(𝑡)|).

The inequality |𝑥(𝜏𝑘)| + |𝑦(𝜏𝑘)| > |𝑥(𝑡𝑘)| + |𝑦(𝑡𝑘)| implies that 𝑑𝑘 ≡ |𝑥(𝜏𝑘)| + |𝑦(𝜏𝑘)| → ∞ and
therefore, 𝜏𝑘 → ∞ as 𝑘 → ∞. The vector functions

(𝑢𝑘(𝑡), 𝑣𝑘(𝑡)) = (𝑥(𝜏𝑘 + 𝑡)/𝑑𝑘, 𝑦(𝜏𝑘 + 𝑡)/𝑑𝑘) − 𝜏𝑘 6 𝑡 6 0

satisfy the conditions

|𝑢𝑘(𝑡)|+ |𝑣𝑘(𝑡)| 6 |𝑢𝑘(0)|+ |𝑣𝑘(0)| = 1, −𝜏𝑘 6 𝑡 6 0

and solve the system {︃
𝑢′ = 𝑣,

𝑣′ = −𝑎𝑣 − 𝑏𝑢− 𝑐|𝑣 − ℎ𝑘(𝑡)|.
(10)

Here the functions ℎ𝑘(𝑡) are determined by the identity ℎ𝑘(𝑡) = 𝜙(𝑢𝑘(𝑡), 𝑣𝑘(𝑡))/𝑑𝑘 and by the
choice of the numbers 𝑑𝑘 and condition (9), they tend to zero as 𝑘 → ∞ uniformly in 𝑡.
Let (𝑢*, 𝑣*) be the limiting point of the sequence (𝑢𝑘(0), 𝑣𝑘(0)). Then the solution to system

(7) satisfying the initial condition (𝑥(0), 𝑦(0)) = (𝑢*, 𝑣*) is non-zero and bounded as 𝑡 6 0.
On the other hand, under the assumptions of the theorem and according lines 2 and 4 in the
table, all solutions to system (7) are unbounded as 𝑡 6 0. The obtained contradiction proves
the theorem for 𝑎 > 0.
The case 𝑎 < 0 is considered in the same way.

Stability of isolated singular point

We consider a general second order equation

𝑥′′ = 𝑓(𝑥, 𝑥′), (11)

where 𝑓(𝑥, 𝑦) is a continuous function on the entire plane (𝑥, 𝑦).
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Equation (11) is equivalent to the system of equations{︃
𝑥′ = 𝑦,

𝑦′ = 𝑓(𝑥, 𝑦).
(12)

In what follows we assume that each solution to system (12) can be extended to the entire real
line. As we have mentioned above, this assumption is true in the particular case of equation
(8), where the function 𝜙(𝑥, 𝑦) satisfies condition (9).
Singular points of system (12) are located on the abscisse axis, that is, they are of the form

(𝑥0, 0), where 𝑥0 is a solution to the scalar equation

𝑓(𝑥, 0) = 0. (13)

Let 𝑥0 be a solution of scalar equation (13). It should be noted that studying the behavior of
trajectories of system (12) in the vicinity of equilibria is one of the main issues in the qualitative
theory of differential equations.
In what follows we shall need some properties related to the qualitative behavior of the

trajectories of system (12) in the vicinity of a singular point (𝑥0, 0). In order to describe these
properties, we employ the Lyapunov function [2, 3].

Lemma 1. Assume that in some neighbourhood |𝑥−𝑥0|+ |𝑦| < 𝜎, 𝜎 > 0, of a singular point
(𝑥0, 0) the function 𝑓(𝑥, 𝑦) satisfies the conditions:

a) 𝑓(𝑥, 0)(𝑥 − 𝑥0) 6 0 and 𝑓(𝑥, 0) is not identically zero in each interval (−𝛿, 0) and (0, 𝛿),
𝛿 > 0;

b) (𝑓(𝑥, 𝑦)− 𝑓(𝑥, 0))𝑦 > 0.
Then for each solution (𝑥(𝑡), 𝑦(𝑡)) to system (12) not coinciding with the stationary solution

(𝑥0, 0) the inequality

inf
𝑡>0

[|𝑥(𝑡)− 𝑥0|+ |𝑦(𝑡)|] > 0 (14)

holds true.

Proof. Suppose that the statement of the lemma is wrong. Then there exists a solution
(𝑥(𝑡), 𝑦(𝑡)) to system (12) not coinciding with the singular point (𝑥0, 0) and a sequence
𝑡1 < 𝑡2 < . . . < 𝑡𝑘 < . . . such that

lim
𝑘→∞

|𝑥(𝑡𝑘)− 𝑥0|+ |𝑦(𝑡𝑘)| = 0. (15)

We consider the set

𝐸 = {𝑡 : 𝑡 > 0, |𝑥(𝑡)− 𝑥0|+ |𝑦(𝑡)| < 𝜎1},
where

0 < 𝜎1 < min{𝜎, |𝑥(0)− 𝑥0|+ |𝑦(0)|}.
We observe that 𝐸 is an open set and by (15), 𝑡𝑘 ∈ 𝐸 starting from some number 𝑘0. By
(𝛼𝑘, 𝛽𝑘) we denote the intervals in the set 𝐸 containing the numbers 𝑡𝑘. It is possible that the
intervals (𝛼𝑘, 𝛽𝑘) corresponding to different indices 𝑘 coincide 𝛽𝑘 = ∞ starting from some index
𝑘. By the definition of an interval in the set 𝐸 we have

|𝑥(𝑡)− 𝑥0|+ |𝑦(𝑡)| < |𝑥(𝛼𝑘)− 𝑥0|+ |𝑦(𝛼𝑘)| = 𝜎1, 𝛼𝑘 < 𝑡 6 𝑡𝑘. (16)

The solution (𝑥(𝑡), 𝑦(𝑡)) satisfies the identity

𝑑

𝑑𝑡

(︂
𝑦2

2
+𝐺(𝑥)

)︂
= ℎ(𝑥, 𝑦), (17)

where

𝐺(𝑥) = −
∫︁ 𝑥

𝑥0

𝑓(𝑠, 0)𝑑𝑠, ℎ(𝑥, 𝑦) = (𝑓(𝑥, 𝑦)− 𝑓(𝑥, 0))𝑦.
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Integrating identity (17) over the segment [0, 𝑡𝑘], we get

𝑦2(𝑡𝑘)

2
+𝐺[𝑥(𝑡𝑘)]−

𝑦2(𝛼𝑘)

2
−𝐺[𝛼𝑘)] =

∫︁ 𝑡𝑘

𝛼𝑘

ℎ(𝑥(𝑠), 𝑦(𝑠))𝑑𝑠. (18)

By Condition b), ℎ(𝑥, 𝑦) > 0 as |𝑥 − 𝑥0| + |𝑦| < 𝜎 and this is why the integrand in the right
hand side of (18) is non-negative. Therefore, the inequality

𝑦2(𝑡𝑘)

2
+𝐺[𝑥(𝑡𝑘)]−

𝑦2(𝛼𝑘)

2
−𝐺[𝛼𝑘)] > 0, 𝑘 > 𝑘0 (19)

holds true. Since by Condition a) the continuous function 𝐺(𝑥) is positive as 0 < |𝑥− 𝑥0| < 𝜎,

then 𝑦2

2
+𝐺[𝑥] > 𝑚 > 0 as |𝑥− 𝑥0|+ |𝑦| = 𝜎1. This is inequality (19) contradicts identity (15).

This contradiction completes the proof.

We observe that if the function 𝑓(𝑥, 𝑦) has continuous partial derivatives 𝜕𝑓
𝜕𝑥
(𝑥, 𝑦), 𝜕𝑓

𝜕𝑦
(𝑥, 𝑦)

in the vicinity of a singular point (𝑥0, 0), in order to satisfy Conditions a) and b) of Lemma 1,
it is sufficient to assume the inequalities 𝜕𝑓

𝜕𝑥
(𝑥0, 0) < 0, 𝜕𝑓

𝜕𝑦
(𝑥0, 0) > 0.

The next lemma generalizes Lemma 1.

Lemma 2. Assume that in some neighbourhood |𝑥− 𝑥0|+ |𝑦| < 𝜎, 𝜎 > 0 of a singular point
(𝑥0, 0) and for a given 𝜅 6 0 the function 𝑓(𝑥, 𝑦) satisfies the conditions

a) the function 𝑓(𝑥, 𝜅(𝑥−𝑥0))(𝑥−𝑥0)−𝜅2(𝑥−𝑥0)
2 > 0 is not identically zero in each interval

(−𝛿, 0) and (0, 𝛿), 𝛿 > 0;
b) (𝑓(𝑥, 𝜅(𝑥− 𝑥0) + 𝑦)− 𝜅𝑦 − 𝑓(𝑥, 𝜅(𝑥− 𝑥0)))𝑦 > 0.
Then for each solution (𝑥(𝑡), 𝑦(𝑡)) of system (12) not coinciding with the stationary solution

(𝑥0, 0) the inequality

inf
𝑡>0

(︀
|𝑥(𝑡)− 𝑥0|+ |𝑦(𝑡)|

)︀
> 0 (20)

holds true.

Similar to Lemma 1, the following statement can be proved.

Lemma 3. Assume that in some neighbourhood |𝑥−𝑥0|+ |𝑦| < 𝜎, 𝜎 > 0, of a singular point
(𝑥0, 0) the function 𝑓(𝑥, 𝑦) satisfies Condition a) of Lemma 1 and the condition

c) (𝑓(𝑥, 𝑦)− 𝑓(𝑥, 0))𝑦 6 0.
Then for each solution (𝑥(𝑡), 𝑦(𝑡)) of system (12) not coinciding with the stationary solution

(𝑥0, 0) the inequality

inf
𝑡60

(︀
|𝑥(𝑡)− 𝑥0|+ |𝑦(𝑡)|

)︀
> 0. (21)

holds true.

Property (21) of solutions to system (12) is closely related to the Lyapunov stability of the
stationary solution (𝑥0, 0). Namely, the following theorem holds.

Theorem 2. The stationary solution (𝑥0, 0) of system (12) is Lyapunov stable if and only
if each solution not coinciding with this stationary solution satisfies inequality (21).

Existence tests for limiting cycles

We continue studying system (8) assuming that 𝑏 > 0, 𝑐 > 0, the function 𝜙(𝑥, 𝑦) satisfies
condition (9) and 𝜙(0, 0) > 0 and system (8) has the only singular point, that is, the scalar
equation

𝑏𝑥+ 𝑐|𝜙(𝑥, 0)| = 0 (22)

has the only solution 𝑥0 and 𝑥0 ̸= 0.



10 M.K. ARABOV, E. MUKHAMADIEV, I.D. NUROV, Kh.I. SOBIROV

Theorem 3. Assume that
a) the coefficients of equation (2) satisfy conditions 𝑎 > max{0, 𝑐− 2

√
𝑏};

b) in some neighbourhood |𝑥− 𝑥0|+ |𝑦| < 𝜎, 𝜎 > 0 of the singular point (𝑥0, 0) the function
𝜙(𝑥, 𝑦) satisfies the inequality ((𝑐− 𝑎)𝑦 + 𝑐𝜙(𝑥, 𝑦)− 𝑐𝜙(𝑥, 0))𝑦 > 0.

Then for each non-stationary solution (𝑥(𝑡), 𝑦(𝑡)) to system (8) and each sequence ℎ𝑘 → +∞
there exists a subsequence ℎ𝑘𝑗 such that the solutions (𝑥(𝑡 + ℎ𝑘𝑗), 𝑦(𝑡 + ℎ𝑘𝑗)) approach some
periodic solution of system (8) as 𝑗 → +∞ uniformly on each segment.

Proof. Let (𝑥(𝑡), 𝑦(𝑡)) be an arbitrary non-stationary and non-periodic solution to system (8).
By Theorem 1, this solution is bounded as 𝑡 > 0. Therefore, for each sequence ℎ𝑘 → +∞, the
sequence of the solutions (𝑥(𝑡+ℎ𝑘), 𝑦(𝑡+ℎ𝑘)) is well-defined, continuous and equicontinuous on
each segment. By Arzelà-Ascoli theorem, there exists a subsequence ℎ𝑘𝑗 such that the solutions
(𝑥1(𝑡+ ℎ𝑘𝑗), 𝑥2(𝑡+ ℎ𝑘𝑗)) approach some solution (𝑥*(𝑡), 𝑦*(𝑡)) of system (8) uniformly on each
segment as 𝑗 → +∞.
By Lemma 1, the set of 𝜔-limiting points of solution (𝑥(𝑡), 𝑦(𝑡)) does not contain the unique

singular point of system (8). This is why by Poincaré-Bendixson theorem [9], the solution
(𝑥*

1(𝑡), 𝑥
*
2(𝑡)) is periodic. The proof is complete.

Figure 2 demonstrates the statement of the theorem.

Figure 2. Limiting cycle

Theorem 4. Assume that
a) the coefficients of equation (2) satisfy the conditions 𝑎 < min{0, 2

√
𝑏− 𝑐};

b) in some neighbourhood |𝑥 − 𝑥0| + |𝑦| < 𝜎, 𝜎 > 0, of a singular point (𝑥0, 0) the function
𝜙(𝑥, 𝑦) satisfies the inequality ((𝑐− 𝑎)𝑦 + 𝑐𝜙(𝑥, 𝑦)− 𝑐𝜙(𝑥, 0))𝑦 6 0.

Then for each non-stationary solution (𝑥(𝑡), 𝑦(𝑡)) of system (8) and each sequence ℎ𝑘 → +∞
there exists a subsequence ℎ𝑘𝑗 such that the solutions (𝑥(𝑡 − ℎ𝑘𝑗), 𝑦(𝑡 − ℎ𝑘𝑗)) approach some
periodic solution to system (8) as 𝑗 → +∞ uniformly on each segment.

As an example we consider the function 𝜙(𝑥, 𝑦) = cos(𝑥 + 𝑦). It satisfies condition (9) and
𝜙(0, 0) = 1 > 0. The next statement provides a uniqueness condition for solutions to equation
(22).

Lemma 4. The equation 𝑑𝑥 + | cos(𝑥)| = 0, where 𝑑 is a given number, has the unique

solution if and only |𝑑|
√︀
1 + 𝑥2

1 > 1, where 𝑥1 ∈ (𝜋/2, 𝜋) is the solution to equation cos(𝑥) +

𝑥 sin(𝑥) = 0, (𝑥1 ≈ 2, 798386,
√︀

1 + 𝑥2
1 ≈ 0, 336508).

We observe that in the case |𝑑| > 1, Lemma 4 follows the principle of contracting mappings,

while in the case 1 < |𝑑|
√︀

1 + 𝑥2
1 6

√︀
1 + 𝑥2

1 it is implied by the analysis of the graph of the
functions 𝑧 = −| cos(𝑥)| and of the straight line 𝑧 = 𝑑𝑥.
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Assume that the coefficients 𝑏, 𝑐 are such that 0 < 𝑐 < 𝑏
√︀
1 + 𝑥2

1. Then according Lemma 4,
the equation 𝑏𝑥 + 𝑐| cos(𝑥)| = 0 has the unique solution 𝑥0 = 𝑥0(𝑏/𝑐) < 0 depending on the
fraction 𝑏/𝑐. This is why, if the coefficients 𝑎, 𝑏, 𝑐 of system (8) satisfies the inequalities

max{0, 𝑐 − 2
√
𝑏} < 𝑎 < 𝑐(1 − sin(𝑥0)), then all assumptions of Theorem 3 are satisfied as

𝜙(𝑥, 𝑦) = cos(𝑥+ 𝑦). Therefore, equation (2) has the limiting cycle.
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