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DISCRETE INTEGRABLE EQUATIONS

AND SPECIAL FUNCTIONS

V.YU. NOVOKSHENOV

Abstract. A generic scheme based on the matrix Riemann-Hilbert problem theory is
proposed for constructing classical special functions satisfying difference equations. These
functions comprise gamma- and zeta functions, as well as orthogonal polynomials with cor-
responding recurrence relations. We show that all difference equations are the compatibility
conditions of certain Lax pair coming from the Riemann-Hilbert problem. At that, the in-
tegral representations for solutions to the classical Riemann-Hilbert problem on duality of
analytic functions on a contour in the complex plane are generalized for the case of discrete
measures, that is, for infinite sequences of points in the complex plane. We establish that
such generalization allows one to treat a series of nonlinear difference equations integrable
in the sense of solitons theory.

The solutions to the mentioned Riemann-Hilbert problems allows us to reproduce ana-
lytic properties of classical special functions described in handbooks and to describe a series
of new functions pretending to be special. For instance, this is true for difference Painlevé
equations. We provide the example of applying a difference second type Painlevé equation
to the representation problem for a symmetric group.

Mathematics Subject Classification: 33C05, 33C12, 34M55, 34M40, 34E20, 34M60

In work [18], there was considered a scheme for describing classical special functions based
on the matrix Riemann-Hilbert problem. It was shown that such functions satisfying ordinary
differential equations can be represented in terms of a solution to some Riemann-Hilbert prob-
lem, that is, in terms of the problem on recovering an analytic function by its boundary values.
In this way, for the corresponding differential equations, there was checked the integrability
property treated in the sense of the solutions theory [1], [26]. Such treating of the integrability
property as calculating of the values of a function by its global behavior means the presence
of an integrable representation for this function. In fact, the method of the Riemann-Hilbert
problem demonstrates the equivalency of these two definitions of the integrability [6], [15]. The
functions covered by such treating of the integrability are, for instance, hypergeometric and
elliptic functions. However, in the handbooks, see, for instance, [7], [14], [27], there are other
special functions satisfying no differential equations. Among such functions are Gamma and
zeta functions and their generalizations arising in the number theory, combinatorics and the
groups representation theory. How one can extend the method of the Riemann-Hilbert problem
to these special functions?

In the present paper we attempt to answer this question. The key point is that there exists
a discrete equation satisfied by special functions. It turns out that these equations can be
treated within the scheme of the solitons theory. Namely, for each discrete equation we provide
the Lax pair of two linear equations and their compatibility condition is exactly the considered
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discrete equation. In its turn, this Lax pair is constructed on the base of some spectral problem
for matrix operators. The equations of the Lax pair are discrete in a spectral parameter and
the differentiation is replaced by a difference operator or by an operator of another discrete
transform. In Section 2 we shall show how these operators are naturally constructed via the
solutions of an appropriate Riemann-Hilbert problem.

We should stress the specific features of the Riemann-Hilbert problem for the discrete case.
Here the problem of matching boundary values on a continuous contour in the complex plane is
replaced by defining the residues of a meromorphic function on a discrete set of the points. In
the solitons theory, an analogue of this problem is recovering of eigenfunctions by the discrete
spectrum of an operator and this is equivalent to solving equations of “dressing” chain for
𝑁 -soliton solution [22]. In our case, a chain of nonlinear equations of such type arises from
the discrete Riemann-Hilbert problem and possesses all integrability properties intrinsic to
differential equations. In Section 3 this approach will be demonstrated at the example of a
discrete Painlevé equation of second kind. In conclusion we consider briefly an application
of this equation in the combinatorics in order to stress the fact that a “discrete Painlevé”
transcendent serves as a new nonlinear special function.

1. Riemann-Hilbert problem and Lax pairs

Riemann-Hilbert problem on a contour. We begin with the classical Riemann-Hilbert
problem, in which we choose a oriented Hölder contour Γ in the complex plane 𝜆, which possibly
has self-intersection points and more than one connected component. On the contour Γ we
define an 𝑁×𝑁 invertible matrix 𝐺 = 𝐺(𝜆) called jump matrix. The Riemann-Hilbert problem
defined by the pair (Γ, 𝐺) consists in finding 𝑁 ×𝑁 -matrix-valued function 𝑌 (𝜆) ∈ Mat (𝑁,C)
satisfying the conditions

1) 𝑌 (𝜆) is piece-wise analytic in the domains 𝜆 ∈ C ∖ Γ and there exist its limits on the
contour Γ

𝑌±(𝜆) = lim
𝜆′→𝜆

𝜆′∈± side ofC∖Γ

𝑌 (𝜆′).

2) det𝐺(𝜆) ̸= 0 on the contour Γ and jump condition

𝑌+(𝜆) = 𝑌−(𝜆)𝐺(𝜆)

holds.
3) 𝑌 (𝜆) tends to the unit matrix 𝐼 at infinity 𝜆 → ∞.

In the scalar case 𝑁 = 1 the Riemann-Hilbert 1)–3) is solved explicitly. Indeed, as 𝐺(𝜆) ̸= 0,
we can pass to the additive matching problem

ln𝑌+(𝜆) = ln𝑌−(𝜆) + ln𝐺(𝜆).

The additive problem on a jump of the form 𝑦+(𝜆) = 𝑦−(𝜆) +𝑔(𝜆) with the condition 𝑦(𝜆) → 0
at infinity is solved explicitly by means of the Cauchy integral

𝑦(𝜆) =
1

2𝜋𝑖

∫︁
Γ

𝑔(𝜇)

𝜇− 𝜆
𝑑𝜇.

Condition 2 is implied by the Sokhotski–Plemelj formula on the boundary values of the Cauchy
integral (see, for instance, [11]). Moreover, Riemann-Hilbert problem 1)–3) has an explicit
solution in the Abelian case, when 𝐺(𝜆1)𝐺(𝜆2) = 𝐺(𝜆2)𝐺(𝜆1) for all 𝜆1 and 𝜆2 on the contour
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Γ. This solution is given by the formula

𝑌 (𝜆) = exp

⎧⎨⎩ 1

2𝜋𝑖

∫︁
Γ

ln𝐺(𝜇)

𝜇− 𝜆
𝑑𝜇

⎫⎬⎭ . (1)

Thus, formula (1) is true if the jump matrix has the zero index, that is, as ∆ ln𝐺|Γ = 0. If
the index is non-zero, formula (1) is modified by multiplying by a polynomial of degree not
exceeding the index [11]. In this case the Riemann-Hilbert problem is not uniquely solvable
and has finitely many linearly independent solutions.

In the non-Abelian case as 𝑁 > 1, when the matrices 𝐺(𝜆1) and 𝐺(𝜆2) do not commute on
the contour Γ, the formula (1) is not applicable. As a rule, in this case there is not explicit
solution for the Riemann-Hilbert problem. Nevertheless, the theorems on unique solvability
are true for wide classes of jump matrices. For instance, a sufficient condition for the unique
solvability of the Riemann-Hilbert problem is the positive definiteness of the matrix 𝐺(𝜆) [4]. In
the general case, the Riemann-Hilbert problem 1)–3) is reduced to solving a system of singular
integral equations for the entries of the matrix 𝑌 (𝜆) [11]. This approach is useful not only for
proving the solvability, but also for estimating the norm of the matrix 𝑌 (𝜆) and for analyzing
its asymptotic behavior.

In the applications, the jump matrix depend on the additional parameters. Here we restrict
ourselves by the case 𝑁 = 2 and by one scalar parameter 𝑥 and

𝐺(𝜆, 𝑥) = e𝑝(𝜆,𝑥)𝜎3𝑆e−𝑝(𝜆,𝑥)𝜎3 , 𝜎3 =

(︂
1 0
0 −1

)︂
, (2)

where 𝑆 is a constant in 𝜆 and 𝑥 matrix, and 𝑝 is a scalar polynomial in 𝜆 and 𝑥. Then the
solution of Riemann-Hilbert problem 1)–3) also depends on the paramerer 𝑥. Introducing new
matrices Ψ(𝜆, 𝑥) = 𝑌 (𝜆, 𝑥)e𝑝(𝜆,𝑥)𝜎3 , we obtain the Riemann-Hilbert problem

1′) Ψ(𝜆, 𝑥) is piecewise analytic in 𝜆 as 𝜆 ∈ C ∖ Γ

2′) Ψ+(𝜆, 𝑥) = Ψ−(𝜆, 𝑥)𝑆, 𝜆 ∈ Γ.

3′) Ψ(𝜆, 𝑥) → e𝑝(𝜆,𝑥)𝜎3 , 𝜆 → ∞.

We consider the logarithmic derivatives:

𝐴(𝜆, 𝑥) = Ψ𝜆Ψ−1, 𝑈(𝜆, 𝑥) = Ψ𝑥Ψ−1. (3)

Condition 2′) implies (𝑆 is a constant matrix!):

𝐴+(𝜆, 𝑥) = (Ψ−)𝜆𝑆Ψ−1
+ = (Ψ−)𝜆Ψ−1

− = 𝐴−(𝜆, 𝑥),

𝑈+(𝜆, 𝑥) = (Ψ−)𝑥𝑆Ψ−1
+ = (Ψ−)𝑥Ψ−1

− = 𝑈−(𝜆, 𝑥), 𝜆 ∈ Γ. (4)

Therefore, 𝐴 and 𝑈 are analytic in 𝜆 in the entire complex plane. On the other hand, it follows
from Condition 3′) that at infinity, these matrices has a polynomial growth:

𝐴(𝜆, 𝑥) → 𝑝𝜆(𝜆, 𝑥)𝜎3, 𝑈(𝜆, 𝑥) → 𝑝𝑥(𝜆, 𝑥)𝜎3, 𝜆 → ∞,

By the Liouville theorem, the matrices 𝐴 and 𝑈 are matrix polynomials in 𝜆 of the degree
deg 𝑝𝜆 and deg 𝑝𝑥, respectively. Thus, the matrix Ψ(𝜆, 𝑥) is determined by an over-determined
system of differential equations with polynomial coefficients (Lax pair):{︃

Ψ𝜆 = 𝐴Ψ,

Ψ𝑥 = 𝑈Ψ.
(5)
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The compatibility condition of system (5) is the equation

𝐴𝑥 − 𝑈𝜆 + [𝐴,𝑈 ] = 0. (6)

This equation is separated into a finite set of matrix equations for the coefficients at each power
of 𝜆 and its turn, this gives equations for scalar functions of 𝑥. Under a proper choice of the
pair (Γ, 𝐺), in this way we can get differential equations for the special functions and their
integral representations.

For instance, choosing the contour Γ as the union of three rays, Γ𝑘 = {𝜆 | argκ = 𝜋/2 + 2𝜋𝑘/3},
𝑘 = 0, 1, 2, letting 𝑝(𝜆, 𝑥) = 8𝜆3/3 + 𝜆𝑥 and defining the matrix 𝑆 in formula (2) as [9, Ch. 3],

𝑆𝑘 =

(︂
1 𝑠𝑘
0 1

)︂
, 𝑠0 + 𝑠1 + 𝑠2 = 0,

we obtain an explicit solution to Riemann-Hilbert problem 1)–3) as

𝑌 (𝜆, 𝑥) =

(︂
1 𝑦(𝜆, 𝑥)
0 1

)︂
, 𝑦(𝜆, 𝑥) =

⎧⎨⎩𝑠0

∫︁
Γ0

+𝑠1

∫︁
Γ1

+𝑠2

∫︁
Γ2

⎫⎬⎭ e𝑝(𝜇,𝑥)

𝜇− 𝜆
𝑑𝜇.

At that, equation (6) is equivalent to the Airy equation 𝑢′′ = 𝑥𝑢 for the function

𝑢(𝑥) = − lim
𝜆→∞

𝜆𝑦(𝜆, 𝑥) =

⎧⎨⎩𝑠0

∫︁
Γ0

+𝑠1

∫︁
Γ1

+𝑠2

∫︁
Γ2

⎫⎬⎭ e𝑝(𝜇,𝑥)𝑑𝜇.

In Section 2 we shall provide the examples of employing Riemann-Hilbert problem 1)–3) for
other special functions.

Disctere Riemann-Hilbert problem. Nonlinear difference equations for special functions
requires another version of the Riemann-Hilbert problem. Following works by A.Borodin [2],
[3], we define a discrete Riemann-Hilbert problem as follows.

Let Σ be some countable set of points in the complex plane 𝜆 ∈ C with the only accumulation
point at infinity. Let 𝐻(𝜆) be a matrix function on Σ, 𝐻 : Σ → Mat(𝑁,C).

We shall say that the matrix-valued function 𝑌 : C ∖ Σ → Mat(𝑁,C) with simple poles at
the points 𝑥 ∈ Σ is a solution to the discrete Riemann-Hilbert problem (Σ, 𝐻) if the following
conditions hold:

1∘ 𝑌 (𝜆) is analytic in C ∖ Σ and has simple poles at the points Σ,

2∘ Res𝜆=𝑥 𝑌 (𝜆) = lim
𝜆→𝑥

(𝑌 (𝜆)𝐻(𝑥)), 𝑥 ∈ Σ,

3∘ 𝑌 (𝜆) → 𝐼 as 𝜆 → ∞.

As above, 𝐻(𝜆) is called the jump matrix.
We note that this formulation of the discrete Riemann-Hilbert problem is very similar to the

pure soliton case in inverse scattering problem [26, Part III].
We denote

Z′ = Z+
1

2
=

{︂
. . . ,−3

2
,−1

2
,
1

2
,
3

2
, . . .

}︂
= Z′

+ ∪ Z′
−,

where Z′
+ =

{︀
1
2
, 3
2
, . . .

}︀
and Z′

− =
{︀
. . . ,−3

2
,−1

2

}︀
.
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Let us consider the construction of the Lax pair for problem 1∘–3∘ in the particular case
𝑁 = 2

Σ𝑘 = {𝑘, 𝑘 + 1, 𝑘 + 2, . . .} , 𝑘 ∈ Z′,

𝐻(𝑥) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(︃
0 − κ2𝑥

Γ2(𝑥+ 1
2)

0 0

)︃
, 𝑥 ∈ Z′

+,(︃
0 0

− κ−2𝑥

Γ2(−𝑥+ 1
2)

0

)︃
, 𝑥 ∈ Z′

−.

(7)

It was proved in paper [2] that there exists the unique solution to problem (Σ𝑘, 𝐻). Following
[3], let us prove that for each 𝑛 ∈ Z𝑘 there exists a constant nilpotent matrix 𝐴𝑛,

𝐴𝑛 =

(︂
𝑝𝑛 𝑞𝑛
𝑟𝑛 −𝑝𝑛

)︂
, 𝑝2𝑛 = −𝑟𝑛𝑞𝑛, (8)

and functions 𝑎𝑛, 𝑏𝑛, 𝑎𝑛𝑏𝑛 = 1, such that

𝑌𝑛+1(𝜆) =

(︂
𝐼 +

𝐴𝑛

𝜆− 𝑛

)︂
𝑌𝑛(𝜆), (9)

𝑌𝑛(𝜆− 1)

(︂
κ−1(𝜆− 1

2
) 0

0 κ(𝜆− 1
2
)−1

)︂
=

(︂
κ−1(𝜆− 1

2
− 𝑝𝑛) 𝑎𝑛

−𝑏𝑛 0

)︂
𝑌𝑛+1(𝜆). (10)

Indeed, since 𝐻 is independent of 𝑛, we see that 𝑌𝑛(𝜆) and 𝑌𝑛+1(𝜆) satisfy the same condition at
Σ𝑛. However, 𝑌𝑛+1 has an extra pole at zero {𝑛} = Σ𝑛+1 ∖Σ𝑛. Therefore, the quotient 𝑌𝑛+1𝑌

−1
𝑛

has one pole at the point 𝜆 = 𝑛. Denoting the residue at this point by 𝐴𝑛, we conclude that
the function

𝑌𝑛+1(𝜆)𝑌 −1
𝑛 (𝜆) − 𝐴𝑛

𝜆− 𝑛

is entire. Calculating the asymptotics in the vicinity of 𝜆 = ∞, by the Liouville theorem we
obtain that this function is identically equal to 𝐼 that proves the first equation. It follows from
det𝑌𝑛 ≡ det𝑌𝑛+1 ≡ 1 that det(𝐼 +𝐴𝑛/(𝜆− 𝑛)) ≡ 1. By this we conclude that 𝐴𝑛 is nilpotent.

We observe that Condition 2∘ means that the function 𝑌 (𝜆) has an essential singularity at
infinity. Indeed, the function with the poles accumulating at infinity can not have a regular
asymptotics. In order to make the condition well-posed, we should, for instance, assume an
uniform asymptotics at the sequence of circumferences |𝜆| = 𝑎𝑘, 𝑎𝑘 → +∞.

In order to ensure the uniqueness of solution to the discrete Riemann-Hilbert problem con-
sidered below in Section 3, we shall assume that there exists the sequence of expanding contours
separated by a positive distance from Σ and we shall assume that the solution 𝑌 (𝜆) possesses
a required asymptotics at these contours.

In view of these remarks, let us calculate the asymptotics of 𝑌𝑛(𝜆) at infinite. Condition 3∘

implies that

𝑌𝑛(𝜆) = 𝐼 +

(︂
𝛼𝑛 𝛽𝑛

𝛾𝑛 𝛿𝑛

)︂
𝜆−1 + 𝑂(𝜆−2), 𝜆 → ∞, (11)

with some constants 𝛼𝑛, . . . , 𝛿𝑛.
To get equation (10), we divide it at the left by 𝑌𝑛+1(𝜆) and let us prove that its left hand

side

𝑌𝑛(𝜆− 1)

(︂
κ−1(𝜆− 1

2
) 0

0 κ(𝜆− 1
2
)−1

)︂
𝑌 −1
𝑛+1(𝜆) (12)

is a polynomial in 𝜆.
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By (11), the asymptotics of matrix (12) is of the form(︂
𝐼 +

(︂
𝛼𝑛 𝛽𝑛

𝛾𝑛 𝛿𝑛

)︂
𝜆−1

)︂(︂
κ−1(𝜆− 1

2
) 0

0 0

)︂(︂
𝐼 −

(︂
𝛼𝑛+1 𝛽𝑛+1

𝛾𝑛+1 𝛿𝑛+1

)︂
𝜆−1)

)︂
+ 𝑂(𝜆−1)

= κ−1

(︂
𝜆− 1

2
+ 𝛼𝑛 − 𝛼𝑛+1 −𝛽𝑛+1

𝛾𝑛 0

)︂
+ 𝑂(𝜆−1).

We denote 𝑎𝑛 = −κ−1𝛽𝑛+1, 𝑏𝑛 = −κ−1𝛾𝑛, 𝑐𝑛 = 𝛼𝑛+1 − 𝛼𝑛. Then it follows from Liouville
theorem that expression (12) is equal to(︂

κ−1(𝜆− 1
2
− 𝑐𝑛) 𝑎𝑛

−𝑏𝑛 0

)︂
.

In conclusion let us show that 𝑐𝑛 = 𝑝𝑛 and 𝑎𝑛𝑏𝑛 = 1. The second identity is implied by the fact
that the determinant of 𝑌𝑛(𝜆) is equal to 1. In order to prove that 𝑐𝑛 = 𝑝𝑛, we substitute (9)
into just proved relation (10). We get:

𝑌𝑛(𝜆− 1)

(︂
κ−1(𝜆− 1

2
) 0

0 κ(𝜆− 1
2
)−1

)︂
=

(︂
κ−1(𝜆− 1

2
− 𝑐𝑛) 𝑎𝑛

−𝑏𝑛 0

)︂(︂
𝐼 + (𝜆− 𝑛)−1

(︂
𝑝𝑛 𝑞𝑛
𝑟𝑛 −𝑝𝑛

)︂)︂
𝑌𝑛(𝜆).

Comparing the asymptotics of the matrix entries ( · )11 in this identity, we conclude that 𝑐𝑛 = 𝑝𝑛.
This proves the equations in Lax pair (9) and (10).

2. Linear difference equations

As it has been mentioned in Introduction, there are many special functions satisfying no
differential equations. In this case, what does serve as the integrability property for such
functions? We are going to demonstrate this property at three examples.

Gamma function. We define a “cut” Gamma function as follows:

𝛾(𝑥)
𝑑𝑒𝑓
=

1

2𝜋𝑖

(︀
1 − e2𝜋𝑖𝑥

)︀
Γ(𝑥 + 1) =

1

2𝜋𝑖

∫︁
𝐶

e−𝜃(𝜆,𝑥)𝑑𝜆,

where 𝜃(𝜆, 𝑥) = 𝜆 − 𝑥 ln𝜆 and the integration contour 𝐶 envelops the positive semi-axis and
this contour is passed clockwise. We define the Abelian Riemann-Hilbert problem as 𝑁 = 2 on
the contour 𝐶 with the jump matrix [16]

𝐺(𝜆, 𝑥) =

(︂
1 e−𝜃(𝜆,𝑥)

0 1

)︂
.

Its solution is reduced to two scalar problems of matching analytic functions and its solution
is given by the explicit formula

𝑌 (𝜆, 𝑥) =

(︃
1
∫︀
𝐶

e−𝜃(𝜇,𝑥)

𝜇−𝜆
𝑑𝜇

0 1

)︃
.

The corresponding Lax pair is written in terms of Ψ-function (see [16])

Ψ(𝜆, 𝑥) = 𝑌 (𝜆, 𝑥)e−𝜃(𝜆,𝑥)𝜎3/2𝜆
𝑥
2
𝜎3

𝐴 = Ψ𝜆(𝜆, 𝑥)Ψ−1(𝜆, 𝑥) = −𝜎3

2
+

1

𝜆

(︂
𝑥/2 −𝛾(𝑥)
0 −𝑥/2

)︂
,

𝑈 = Ψ(𝜆, 𝑥 + 1)Ψ−1(𝜆, 𝑥) = −
√
𝜆

(︂
0 𝛾(𝑥)
0 1

)︂
+

1√
𝜆

(︂
0 𝛾(𝑥)
0 1

)︂
,
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where the compatibility condition is of the form

𝑈𝜆 = 𝐴(𝜆, 𝑥 + 1)𝑈 − 𝑈𝐴(𝜆, 𝑥).

The latter identity splits into the chain of identities and one non-trivial difference equation

𝛾(𝑥 + 1) = (𝑥 + 1)𝛾(𝑥),

which implies the determining equation for the Gamma function:

Γ(𝑥 + 1) = 𝑥Γ(𝑥).

Riemann zeta function. As above, we begin with the integral representation for 𝜁-function
[27]

𝜋−𝑥
2 Γ
(︁𝑥

2

)︁
𝜁(𝑥) = −1

𝑥
+

1

𝑥− 1
+

1∫︁
0

𝜔(𝜆−1)𝜆
𝑥
2
− 3

2𝑑𝜆 +

∞∫︁
1

𝜔(𝜆)𝜆
𝑥
2
−1𝑑𝜆,

where

𝜔(𝜆) =
∞∑︁
𝑛=1

e−𝜋𝑛2𝜆 ≡ 1

2
(𝜃3(0|𝑖𝜆) − 1) ,

and
𝜃3(𝑧|𝜅) =

∑︁
𝑚

e𝜋𝑖𝜅𝑚
2+2𝜋𝑖𝑧𝑚

is the Jacobi theta function of the variable 𝑥 with the modulus 𝜅 [7].
The Riemann relation for 𝜁-function

𝜋−𝑥
2 Γ
(︁𝑥

2

)︁
𝜁(𝑥) = 𝜋− 1−𝑥

2 Γ

(︂
1 − 𝑥

2

)︂
𝜁(1 − 𝑥)

is rewritten in terms of the function

𝜉(𝑥) =

1∫︁
0

𝜔(𝜆−1)𝜆
𝑥
2
− 3

2𝑑𝜆 +

∞∫︁
1

𝜔(𝜆)𝜆
𝑥
2
−1𝑑𝜆

as the difference equation
𝜉(𝑥) = 𝜉(1 − 𝑥), 𝑥 ̸= 0, 𝑥 ̸= 1. (13)

Following [15], we define the contour 𝐶 as the union of the segments Γ1 = [0, 1] and Γ2 = [1,+∞)
with the natural orientation and choose the jump matrix as

𝐺(𝜆, 𝑥) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(︂
1 2𝜋𝑖𝜔(𝜆−1)𝜆

𝑥
2
− 3

2

0 1

)︂
, 𝜆 ∈ Γ1,

(︂
1 2𝜋𝑖𝜔(𝜆)𝜆

𝑥
2
−1

0 1

)︂
, 𝜆 ∈ Γ2.

(14)

By the Abelian property of the Riemann-Hilbert problem (Γ1 ∪ Γ2, 𝐺), its solution 𝑌 (𝜆, 𝑥)
exists and is unique. In order to obtain the corresponding Lax pair, we define the Ψ-function
as follows:

Ψ(𝜆, 𝑥) = 𝑌 (𝜆, 𝑥)𝜆(𝑥
4
− 5

8
)𝜎3 , 𝜎3 =

(︂
1 0
0 −1

)︂
.

Then the matrix Ψ satisfies the equations:⎧⎨⎩𝜎3Ψ

(︂
1

𝜆
, 5 − 𝑥

)︂
𝜎3 = 𝐴(𝜆, 𝑥)Ψ(𝜆, 𝑥),

Ψ(𝜆, 𝑠 + 2) = 𝑈(𝜆, 𝑥)Ψ(𝜆, 𝑥),

(15)
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where the matrices 𝐴 and 𝑈 are of the form:

𝐴(𝜆, 𝑥) =

(︂
1 −𝜉(3 − 𝑥)
0 1

)︂
, 𝑈(𝜆, 𝑥) =

(︂ 1√
𝜆

−𝜉(𝑥)

0
√
𝜆

)︂
.

The equations of Lax pair (15) are implied by the estimate of “logarithmic derivatives”

𝜎3Ψ

(︂
1

𝜆
, 5 − 𝑥

)︂
𝜎3Ψ

−1(𝜆, 𝑥) and Ψ (𝜆, 𝑥 + 2) Ψ−1(𝜆, 𝑥).

In their turn, the latter estimates are implied by the invariance of jump matrices (14) w.r.t.

the shift 𝑥 ↦→ 𝑥 + 2 and modular transform of theta-constant 𝜃3(0|𝑖/𝜆) =
√
𝜆𝜃3(0|𝑖𝜆) (see [7],

[15]). The compatibility condition for Lax pair (15) is

𝜎3𝑈

(︂
1

𝜆
, 3 − 𝑥

)︂
𝜎3𝐴(𝜆, 𝑥 + 2)𝑈(𝜆, 𝑥)𝐴−1(𝜆, 𝑥) = 𝐼,

which is equivalent to difference equation (13).

Orthogonal polynomials. As a contour 𝐶, we choose the real axis with the natural orienta-
tion 𝐶 = R. The jump matrix is chosen as

𝐺(𝜆) =

(︂
1 2𝜋𝑖𝑤(𝜆)
0 1

)︂
, 𝜆 ∈ Γ,

where

𝑤(𝜆) = e−𝑉 (𝜆), 𝑉 (𝜆) =
2𝑘∑︁
𝑗=1

𝜆𝑗𝑡𝑗, 𝑡2𝑘 > 0. (16)

We consider the Riemann-Hilbert problem (Γ, 𝐺), in which Condition 3) is replaced by

𝑌 (𝜆)

(︂
𝜆−𝑛 0

0 𝜆𝑛

)︂
→ 𝐼, 𝜆 → ∞, 𝑛 ∈ Z+. (17)

It was proved in work by A.S. Fokas, A.R. Its, and A.V. Kitaev [8] that this problem possesses
the unique solution for each 𝑛 ∈ Z+. Moreover, this solution can be represented as

𝑌𝑛(𝜆) =

⎛⎜⎜⎜⎜⎜⎜⎝
𝑃𝑛(𝜆)

∞∫︁
−∞

𝑃𝑛(𝜇)𝑤(𝜇)𝑑𝜇

𝜆− 𝜇

1

ℎ𝑛−1

𝑃𝑛−1(𝜆)
1

ℎ𝑛−1

∞∫︁
−∞

𝑃𝑛−1(𝜇)𝑤(𝜇)𝑑𝜇

𝜆− 𝜇

⎞⎟⎟⎟⎟⎟⎟⎠ , (18)

where {𝑃𝑛}∞𝑛=1 is the family of the polynomials of the form

𝑃𝑛(𝜆) = 𝜆𝑛 + 𝑎𝑛,𝑛−1𝜆
𝑛−1 + . . . + 𝑎𝑛,0.

It is easy to find the properties of these polynomials by the formulation of the Riemann-Hilbert
problem. In particular, they are orthogonal on the real axis with the weight 𝑤(𝜆) = e−𝑉 (𝜆):

∞∫︁
−∞

𝑃𝑛(𝜆)𝑃𝑚(𝜆)𝑤(𝜆)𝑑𝜆 = ℎ𝑛𝛿𝑛𝑚. (19)

In order to prove formula (19) we write out the asymptotics at infinity by condition (17)

𝑌𝑛(𝜆) =
{︁
𝐼 + 𝑚

(𝑛)
1 𝜆−1 + 𝑂(𝜆−2)

}︁(︂𝜆𝑛 0
0 𝜆−𝑛

)︂
, 𝜆 → ∞, (20)
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and hence,

(𝑌𝑛(𝜆)22 = 𝜆−𝑛 + 𝑂(𝜆−𝑛−1) =
1

ℎ𝑛−1

∞∫︁
−∞

𝑃𝑛−1(𝜇)𝑤(𝜇)𝑑𝜇

𝜆− 𝜇
=

=
1

𝜆ℎ𝑛−1

∞∫︁
−∞

𝑃𝑛−1(𝜇)𝑤(𝜇)

(︂
1 +

𝜇

𝜆
+ . . . +

𝜇𝑛

𝜆𝑛
+ . . .

)︂
𝑑𝜇.

This implies

ℎ𝑛−1 =

∞∫︁
−∞

𝑃𝑛−1(𝜇)𝑤(𝜇)𝜇𝑛−1𝑑𝜇, 0 =

∞∫︁
−∞

𝑃𝑛−1(𝜇)𝑤(𝜇)𝜇𝑘𝑑𝜇, 0 6 𝑘 6 𝑛− 2,

which proves identity (19).
The orthogonal polynomials satisfy a linear recurrent identity relating polynomials with

indices 𝑛− 1, 𝑛 and 𝑛 + 1 [25]. It can be considered as an equation in 𝑛 for the family of the
polynomials orthogonal with a given weight.

In order to get this recurrent identity, we consider the “logarithmic derivative”

𝑈𝑛(𝜆) = 𝑌𝑛+1(𝜆)𝑌 −1
𝑛 (𝜆).

It is obvious that by explicit formulae (16) and (18), the function 𝑈𝑛(𝑧) is analytic in the entire
complex plane. Let us find the asymptotics for 𝑈𝑛(𝜆) at infinity. By asymptotics (20), the
matrix 𝑈𝑛 has the following asymptotic expansion

𝑈𝑛(𝜆) = 𝑌𝑛+1(𝜆)𝑌 −1
𝑛 (𝜆) = 𝜆

(︂
1 0
0 0

)︂
+ 𝑚

(𝑛+1)
1

(︂
1 0
0 0

)︂
−
(︂

1 0
0 0

)︂
𝑚

(𝑛)
1 + . . .

Thus, as 𝜆 → ∞,

𝑌𝑛+1𝑌
−1
𝑛 =

(︂
𝜆 0
0 0

)︂
+

(︂
𝑎𝑛+1 − 𝑎𝑛 −𝑏𝑛

𝑐𝑛+1 0

)︂
+ 𝑂(𝜆−1), where 𝑚

(𝑛)
1 =

(︂
𝑎𝑛 𝑏𝑛
𝑐𝑛 𝑑𝑛

)︂
.

By the Liouville theorem

𝑈𝑛(𝜆) =

(︂
𝜆 + 𝑎𝑛+1 − 𝑎𝑛 −𝑏𝑛

𝑐𝑛+1 0

)︂
,

which gives the difference equation for the entry ( · )11:

𝑃𝑛+1(𝜆) = 𝜆𝑃𝑛(𝜆) + (𝑎𝑛+1 − 𝑎𝑛)𝑃𝑛(𝜆) − 𝑏𝑛
ℎ𝑛−1

𝑃𝑛−1(𝜆).

Finally, the recurrent identity is of the form

𝑃𝑛+1(𝜆) + (𝛼𝑛 − 𝜆)𝑃𝑛(𝜆) + 𝛽𝑛𝑃𝑛−1(𝜆) = 0, (21)

where
𝛼𝑛 = 𝑎𝑛 − 𝑎𝑛+1 = lim

𝜆→∞
[𝜆1−𝑛(𝑌𝑛(𝜆))11 − 𝜆−𝑛(𝑌𝑛+1(𝜆))11] ,

𝛽𝑛 =
𝑏𝑛

ℎ𝑛−1

= lim
𝜆→∞

𝜆2(𝑌𝑛(𝜆))12(𝑌𝑛(𝜆))21.

In the particular case of the weight function 𝑤(𝜆) = e−𝜆2
we get the Hermit polynomials (see

[5, Ch. 3]):

𝑃𝑛(𝜆) = 𝐻𝑛(𝜆) = (−1)𝑛𝑒𝜆
2 𝑑𝑛

𝑑𝜆𝑛
𝑒−𝜆2

.



DISCRETE INTEGRABLE EQUATIONS AND SPECIAL FUNCTIONS 127

In this case the Riemann-Hilbert problem allows us to calculate and justify the asymptotics
for the Hermit polynomial as 𝑛 → ∞, see [5, Ch. 7]. This calculation reproduces Plancherel-
Rotach formulae [21], at that, the method of “asymptotic undressing” of the Riemann-Hilbert
problem in [6] is applicable for other classes of polynomials [19].

In conclusion we note that in the case of exponential weight (16) with the parameters 𝑡 =
{𝑡1, . . . , 𝑡2𝑘}, the coefficients 𝛼𝑛 and 𝛽𝑛 in recurrent identity (21) become functions of 𝑡. At
that, they satisfy integrable equations. For instance, in the case

𝑉 (𝜆) =
𝜆4

4
+ 𝑡𝜆2,

the coefficient 𝛽𝑛 satisfies Painlevé equation of fourth type

𝑢𝑡𝑡 =
𝑢2
𝑡

2𝑢
+

1

2𝑢
(3𝑢2 + 2𝑡𝑢− 𝑛− 1))(𝑢2 + 2𝑡𝑢 + 𝑛 + 1),

where 𝑢(𝑡) = 𝛽𝑛ℎ𝑛−1 [17].

3. Nonlinear difference equations

Equation dPII. We apply the discrete Riemann-Hilbert problem considered in Section 1 to
obtain a discrete analogue of the second Painlevé equation (dPII). The solutions of the classical
differential Painlevé equation are by right among “nonlinear” special functions (see [9]) thanks
to numerous applications in various problems of mathematics and physics. Below we shall show
that the solutions to the discrete equation dPII also deserve a status of special functions.

Following work [2] and the discrete Riemann-Hilbert problem 1∘–3∘ formulate in Section 1
on the set Σ𝑘 with jump matrix (7), we are going to obtain the compatibility conditions for
Lax pair (9), (10). Shifting 𝜆 to 1 in (10) and substituting the right hand side (10) into the
right hand side in (9), we obtain

𝑌𝑛+1(𝜆) =

(︂
𝐼 +

𝐴𝑛

𝜆− 𝑛

)︂(︂
κ−1(𝜆 + 1

2
− 𝑝𝑛) 𝑎𝑛

−𝑏𝑛 0

)︂
𝑌𝑛+1(𝜆 + 1)

(︂
κ(𝜆 + 1

2
)−1 0

0 κ−1(𝜆 + 1
2
)

)︂
.

On the other hand, shifting 𝑛 and 𝜆 to 1 in (9) and (10) and substituting the right hand side
of (9) into the right hand side in (10), we obtain

𝑌𝑛+1(𝜆) =

(︂
κ−1(𝜆 + 1

2
− 𝑝𝑛+1) 𝑎𝑛+1

−𝑏𝑛+1 0

)︂(︂
𝐼 +

𝐴𝑛+1

𝜆− 𝑛

)︂
𝑌𝑛+1(𝜆 + 1)

(︂
κ(𝜆 + 1

2
)−1 0

0 κ−1(𝜆 + 1
2
)

)︂
.

Comparing these two relations, we obtain the compatibility condition for Lax pair (9), (10):(︂
𝐼 +

𝐴𝑛

𝜆− 𝑛

)︂(︂
κ−1(𝜆 + 1

2
− 𝑝𝑛) 𝑎𝑛

−𝑏𝑛 0

)︂
=

(︂
κ−1(𝜆 + 1

2
− 𝑝𝑛+1) 𝑎𝑛+1

−𝑏𝑛+1 0

)︂(︂
𝐼 +

𝐴𝑛+1

𝜆− 𝑛

)︂
. (22)

This relation is the analogue of equation (6) obtained by cross differentiation of the equation
in the Lax pair in Section 1.

By the matrix equation (22), one can get easily scalar equations for the variables 𝑝𝑛 and 𝑟𝑛.
Namely, calculating the asymptotics of the entries ( · )12 and ( · )21 in identity (22) as 𝜆 → ∞
yields the relations {︃

𝑎𝑛 = 𝑎𝑛+1 + κ−1𝑞𝑛+1, 𝑏𝑛 = 𝑏𝑛+1 + κ−1𝑟𝑛,

𝑎𝑛𝑟𝑛 = −𝑏𝑛+1𝑞𝑛+1.
(23)

The residues at a simple pole 𝜆 = 𝑛 in identity (22) are of the form(︂
𝑝𝑛 𝑞𝑛
𝑟𝑛 −𝑝𝑛

)︂(︂
κ−1(𝑛 + 1

2
− 𝑝𝑛) 𝑎𝑛

−𝑏𝑛 0

)︂
=

(︂
κ−1(𝑛 + 1

2
− 𝑝𝑛+1) 𝑎𝑛+1

−𝑏𝑛+1 0

)︂(︂
𝑝𝑛+1 𝑞𝑛+1

𝑟𝑛+1 −𝑝𝑛+1

)︂
.
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The matrix entry ( · )22 of this identity coincides with the last identity in (23), while the entry
( · )12 gives

𝑎𝑛𝑝𝑛 = κ−1(𝜆 + 1
2
− 𝑝𝑛+1)𝑞𝑛+1 − 𝑎𝑛+1𝑝𝑛+1.

Multiplying both sides by 𝑏𝑛+1, we obtain (recall that 𝑎𝑛+1𝑏𝑛+1 = 1)

𝑏𝑛+1𝑎𝑛𝑝𝑛 = −κ−1(𝜆 + 1
2
− 𝑝𝑛+1)𝑎𝑛𝑟𝑛 − 𝑝𝑛+1. (24)

We denote

𝑠𝑛 = 𝑎𝑛𝑟𝑛,

and multiplying the first identity in (23) by 𝑏𝑛+1, we see that 𝑎𝑛𝑏𝑛+1 = 1−κ−1𝑠𝑛. Substituting
this expression into (24), we obtain:

(𝑝𝑛 + 𝑝𝑛+1)(𝑠𝑛 − κ) =
(︀
𝑛 + 1

2

)︀
𝑠𝑛.

Employing the nilpotent property of the matrix 𝐴𝑛 (8), we have

𝑝2𝑛+1 = −𝑞𝑛+1𝑟𝑛+1 = (−𝑏𝑛+1𝑞𝑛+1)(𝑎𝑛+1𝑟𝑛+1) = 𝑠𝑛𝑠𝑛+1.

Thus, for each 𝑛 ∈ Z𝑘 we obtain the system of scalar equations{︃
(𝑝𝑛 + 𝑝𝑛+1)(𝑠𝑛 − κ) =

(︀
𝑛 + 1

2

)︀
𝑠𝑛,

𝑝2𝑛+1 = 𝑠𝑛𝑠𝑛+1.

We can exclude easily the variable 𝑝𝑛 from this system, namely, letting

𝑠𝑛 = κ𝑥2
𝑛,

we obtain the scalar difference equation

𝑥𝑛+1 + 𝑥𝑛−1 =

(︀
𝑛 + 1

2

)︀
𝑥𝑛

κ(𝑥2
𝑛 − 1)

. (25)

Equation (25) is equation dPII or difference Painlevé II equation, (see [3], [13], [24]). Let us
show [20] that this equation becomes the differential Painlevé II equation in the limit κ → ∞.
We introduce a continuous variable 𝑡 as

𝑡 = (𝑛− 2κ)κ− 1
3

and assume that 𝑥𝑛 ≈ (−1)𝑛κ− 1
3𝑢(𝑡) as κ → ∞ with some smooth function 𝑢( · ). Then

𝑥𝑛±1 = (−1)𝑠+1κ− 1
3

(︁
𝑢(𝑡) ± κ− 1

3𝑢′(𝑡) + κ− 2
3𝑢′′(𝑡) + 𝑂(κ−1)

)︁
,

(𝑛 + 1
2
)𝑥𝑛

κ(𝑥2
𝑛 − 1)

= (−1)𝑛+1
(︁

2 + κ− 2
3 𝑡 + 1

2
κ−1

)︁
κ− 1

3𝑢(𝑡)
(︁

1 + κ− 2
3𝑢2(𝑡) + 𝑂(κ− 4

3 )
)︁

= (−1)𝑛+1κ− 1
3

(︁
2𝑢(𝑡) + κ− 2

3 (𝑡𝑢(𝑡) + 2𝑢3(𝑡)) + 𝑂(κ−1)
)︁
.

Substituting this into (25) and passing to the limit as κ → ∞, we obtain

𝑢′′(𝑡) = 𝑡𝑢(𝑡) + 2𝑢3(𝑡),

which a particular case of Painlevé II equation [9].
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Representation of symmetric group. Let 𝑆𝑛 be a symmetric group of degree 𝑛, that is,
the group of permutations of a set with 𝑛 elements denoted usually by the natural numbers
1, 2, . . . , 𝑛. We denote by 𝑙𝑛(𝜎) the length of the maximal increasing sequence of a permutation
𝜎 ∈ 𝑆𝑛 and by | · | we denote the number of the elements in a set. we let

𝑝𝑛𝑘 =
1

𝑛!

⃒⃒⃒
{𝜎 ∈ 𝑆𝑛 | 𝑙𝑛(𝜎) 6 𝑘}

⃒⃒⃒
,

and introduce the generating function

𝑝𝑘(κ) = e−κ2
∞∑︁
𝑛=0

κ2𝑛

𝑛!
𝑝𝑛𝑘 ,

where κ is some complex parameter. Another equivalent definition follows the Robinson–
Schensted correspondence [10]. We take all partitions of the permutation 𝜆 = (𝜆1, 𝜆2, . . . , 𝜆𝑙) ∈
𝑆|𝜆| such that |𝜆1| > . . . > |𝜆𝑙| > 0, |𝜆1| 6 𝑘 and |𝜆| = |𝜆1|+ · · ·+ |𝜆𝑙|. We denote by dim𝜆 the
dimension of a irreducible symmetric group 𝑆|𝜆|, then

𝑝𝑘(κ) = e−κ2
∑︁
|𝜆1|6𝑘

(︂
dim𝜆

|𝜆|!
κ|𝜆|
)︂2

,

where the summation is taken over all such partitions 𝜆.
The calculation of the function 𝑝𝑘(κ) is an important issue in the representation theory of

symmetric group. It was proved in work [12] that this function can be written as the Toeplitz
determinant

𝑝𝑘(κ) = e−κ2

det[𝑓𝑖−𝑗 ]𝑘𝑖,𝑗=1 ,
+∞∑︁

𝑚=−∞

𝑓𝑚𝜁
𝑚 = eκ(𝜁+𝜁−1). (26)

In paper [23] there was first established a relation between the function 𝑝𝑘(κ) and a solution
to equation dPII. We define a sequence {𝑥𝑛}∞𝑛=0 by the initial conditions 𝑥0 = −1, 𝑥1 = 𝑓1/𝑓0
with 𝑓𝑖 in (26) and by the recurrent relation

𝑥𝑛+1 + 𝑥𝑛−1 =
𝑛𝑥𝑛

κ(𝑥2
𝑛 − 1)

, 𝑛 > 1.

Then in the general situation, for each 𝑘 > 1 and κ, the recurrent relations

𝑝𝑘+1(κ)𝑝𝑘−1(κ)

𝑝2𝑘(κ)
= 1 − 𝑥2

𝑘

hold true. Here the words “in the general situation” mean that κ does not belong to the set of
the poles of the meromorphic function 𝑥𝑘 = 𝑥𝑘(κ).

Another way of obtaining this results by means of the discrete Riemann-Hilbert problem was
given later in [2].
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