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ON ONE LEONTIEV-LEVIN THEOREM

A.S. KRIVOSHEYEV, A.F. KUZHAEV

Abstract. In this work we study the relations between different densities of a positive
sequence and related quantities. More precisely, in the work we consider the upper density,
the maximal density introduced by G. Polya, the logarithmic block density, which seems
to be introduced first by L.A. Rubel. In particular, there were obtained relations between
the maximal density and a quantity being very close to the logarithmic block density.
The results of these studies are applied for generalizing the classical statement obtained
independently by A.F. Leont’ev B.Ya. Levin on the completeness in a convex domain of a
system of exponential monomials with positive exponents; we generalized this statement
for the exponents with no density. We find out that for the aforementioned result, one can
weaken the condition of the measurability of the sequence (that is, the existence of a density)
and replace it by the identity of upper and maximal densities. Namely, we obtain a condition
under which there holds the criterion of the completeness of the system of exponential
monomials in convex domains. It should be noted that this criterion holds in a rather wide
class of convex domains, for instance, having vertical and horizontal symmetry axes. The
main role in solving this issues was played by the results of the studies by L.A. Rubel and
P. Malliavin on relation between the growth of an entire function of exponential type along
the imaginary axis and the logarithmic block density of its positive zeroes. These results
were applied by these authors for studying the completeness of the system of exponentials
in a horizontal strip.
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Let Λ = {𝜆𝑛,𝑚𝑛}∞𝑛=1 be a multiple sequence of positive numbers. Here {𝜆𝑛}∞𝑛=1 is an un-
bounded strictly increasing sequence and 𝑚𝑛 is the natural number called the multiplicity of
an element 𝜆𝑛, 𝑛 > 1. We recall that the upper density and lower density of the sequence Λ
are respectively the quantities

𝑛̄(Λ) = lim
𝑡→+∞

𝑛(𝑡,Λ)

𝑡
, 𝑛(Λ) = lim

𝑡→+∞

𝑛(𝑡,Λ)

𝑡
,

where
𝑛(𝑡,Λ) =

∑︁
𝜆𝑛6𝑡

𝑚𝑛

is the counting function of the sequence Λ, that is, the number of its elements counting the
multiplicities located in the semi-interval (0, 𝑡]. If 𝑛̄(Λ) = 𝑛(Λ), the sequence Λ is called
measurable and the quantity

𝑛(Λ) = lim
𝑡→+∞

𝑛(𝑡,Λ)

𝑡
is well-defined and called the density of the sequence Λ.

We let ℰ(Λ) = {𝑧𝑘𝑒𝜆𝑛𝑧}∞,𝑚𝑛−1
𝑛=1,𝑘=0. We shall say that a system of functions ℰ(Λ) is complete in

a convex domain 𝐷 ⊆ C if it is complete in the space 𝐻(𝐷) of functions analytic in the domain
𝐷 with the topology of uniform convergence on compact subsets in 𝐷.
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The issue on completeness of the system ℰ(Λ) in a convex domain 𝐷 was studied in many
works (see, for instance, [1–3] and others). A.F. Leont’ev [4] and B.Ya. Levin [5, Ch. IV, Thm.
21] obtained independently the following classical result, which we formulate for the case of
convex domains.

Let 𝐷 be a convex domain. A vertical diameter of domain 𝐷 is

𝑑(𝐷) = sup
𝑥

sup
(𝑦1,𝑦2)

{︁
|𝑦1 − 𝑦2| : 𝑧1 = 𝑥 + 𝑖𝑦1, 𝑧2 = 𝑥 + 𝑖𝑦2, 𝑧1, 𝑧2 ∈ 𝐷, 𝑥, 𝑦1, 𝑦2 ∈ R

}︁
.

If Λ is a measurable sequence with a density 𝑛(Λ) = 𝜏 > 0, then the system ℰ(Λ) is complete
in each convex domain with a vertical diameter satisfying 𝑑(𝐷) 6 2𝜋𝜏 and is incomplete in
each convex domain with a vertical diameter obeying 𝑑(𝐷) > 2𝜋𝜏 .

The aim of the present work is to generalize this result for the sequences without density
in a wide class of convex domain, in particular, in the classes of domain having vertical and
horizontal symmetry axes.

The mentioned generalization is based on the studies on relation between various densities
of a positive sequence. We recall the definition of these densities.

First of all we need a characteristics introduced by G. Pólya [6], the maximal density of the
sequence Λ:

𝑛̄0(Λ) = lim
𝛿→+0

lim
𝑡→+∞

𝑛(𝑡,Λ) − 𝑛(𝑡(1 − 𝛿),Λ)

𝛿𝑡
, 𝛿 ∈ (0; 1).

According the lemma in Section E3, Chapter IV in book [7], the limit as 𝛿 → +0 always exists
and the maximal density is well-defined.

The logarithmic block density (or simply logarithmic density) 𝐿̄(Λ) of a positive sequence Λ
is

𝐿̄(Λ) = inf
𝑎>1

lim
𝑡→+∞

𝜆(𝑎𝑡) − 𝜆(𝑡)

ln 𝑎
, 𝜆(𝑡) =

∑︁
𝜆𝑛6𝑡

𝑚𝑛

𝜆𝑛

. (1)

According to Lemma 3.2 of work [1], the quantity 𝐿̄(Λ) can be calculated as follows:

𝐿̄(Λ) = lim
𝑎→+∞

lim
𝑡→+∞

𝜆(𝑎𝑡) − 𝜆(𝑡)

ln 𝑎
,

that is, the limit as 𝑎 → +∞ exists. In what follows we shall employ exactly this identity while
working with the logarithmic density. Making a change of variables in the latter identity, we
can write

𝐿̄(Λ) = lim
𝛿→1−0

lim
𝑡→+∞

𝜆(𝑡) − 𝜆(𝑡(1 − 𝛿))

− ln(1 − 𝛿)
, (2)

where 𝛿 ∈ (0; 1). We shall also make use of the following quantities:

𝐿̄(Λ, 𝛿) = lim
𝑡→+∞

𝜆(𝑡) − 𝜆(𝑡(1 − 𝛿))

− ln(1 − 𝛿)
, 𝛿 ∈ (0; 1), (3)

𝑛̄0(Λ, 𝛿) = lim
𝑡→+∞

𝑛(𝑡) − 𝑛(𝑡(1 − 𝛿))

𝛿𝑡
, 𝛿 ∈ (0; 1). (4)

Employing these notations, we obtain

𝐿̄(Λ) = lim
𝛿→1−0

𝐿̄(Λ, 𝛿), 𝑛̄0(Λ) = lim
𝛿→+0

𝑛̄0(Λ, 𝛿).

The following statement holds.

Lemma 1. Assume that a sequence Λ has a finite maximal density. Then the chain of the
inequalities

𝑛(Λ) 6 𝐿̄(Λ) 6 𝑛̄(Λ) 6 𝑛̄0(Λ, 𝛿) 6 𝑛̄0(Λ), 𝛿 ∈ (0; 1). (5)

holds.
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Proof. The inequalities 𝑛̄(Λ) 6 𝑛̄0(Λ, 𝛿) 6 𝑛̄0(Λ), 𝛿 ∈ (0; 1) were proved in [8, Lm. 2.1]. Let us
prove the inequalities 𝑛(Λ) 6 𝐿̄(Λ) 6 𝑛̄(Λ).

Since 𝑛̄0(Λ) < +∞, then 𝑛̄(Λ) < +∞. Then for each 𝜀 > 0 there exists 𝑟𝜀 such that for each
𝑟 > 𝑟𝜀 the inequality

𝑛(𝑟,Λ) < (𝑛̄(Λ) + 𝜀)𝑟

holds true. Let 𝛿 ∈ (0; 1) and 𝑡(1 − 𝛿) > 𝑟𝜀. Then by the previous inequality we obtain

∑︁
𝑡(1−𝛿)<𝜆𝑛6𝑡

𝑚𝑛

𝜆𝑛

=

𝑡∫︁
𝑡(1−𝛿)

𝑑𝑛(𝑟,Λ)

𝑟
=

𝑛(𝑡,Λ)

𝑡
− 𝑛(𝑡(1 − 𝛿),Λ)

𝑡(1 − 𝛿)
+

𝑡∫︁
𝑡(1−𝛿)

𝑛(𝑟,Λ)𝑑𝑟

𝑟2

<
𝑛(𝑡,Λ)

𝑡
− 𝑛(𝑡(1 − 𝛿),Λ)

𝑡(1 − 𝛿)
+ (𝑛̄(Λ) + 𝜀)

𝑡∫︁
𝑡(1−𝛿)

𝑑𝑟

𝑟

6
𝑛(𝑡,Λ)

𝑡
+ (𝑛̄(Λ) + 𝜀)

𝑡∫︁
𝑡(1−𝛿)

𝑑𝑟

𝑟
< 𝑛̄(Λ) + 𝜀 + (𝑛̄(Λ) + 𝜀) ln

(︂
1

1 − 𝛿

)︂
=(𝑛̄(Λ) + 𝜀)(1 − ln(1 − 𝛿)).

(6)

Thus, in view of the arbitrariness of the number 𝜀 > 0, by (3) we have

𝐿̄(Λ, 𝛿) 6 𝑛̄(Λ)
1 − ln(1 − 𝛿)

− ln(1 − 𝛿)
.

By (2) this implies the inequality 𝐿̄(Λ) 6 𝑛̄(Λ).
Employing the definition of the lower density, as in (6) we obtain

∑︁
𝑡(1−𝛿)<𝜆𝑛6𝑡

𝑚𝑛

𝜆𝑛

>− 𝑛(𝑡(1 − 𝛿),Λ)

𝑡(1 − 𝛿)
+ (𝑛(Λ) − 𝜀)

𝑡∫︁
𝑡(1−𝛿)

𝑑𝑟

𝑟

>− 𝑛̄(Λ) − 𝜀 + (𝑛(Λ) − 𝜀) ln

(︂
1

1 − 𝛿

)︂
, 𝛿 ∈ (0; 1), 𝑡(1 − 𝛿) > 𝑟𝜀.

By the arbitrariness of the number 𝜀 > 0 and identity this follows that 𝑛(Λ) 6 𝐿̄(Λ). The proof
is complete.

Remarks. 1. According (5) and [8, Lm. 2.1], if the sequence Λ is measurable, the identities

𝑛(Λ) = 𝐿̄(Λ) = 𝑛̄(Λ) = 𝑛̄0(Λ, 𝛿) = 𝑛̄0(Λ), 𝛿 ∈ (0; 1), (7)

hold true.
2. According (1) and (3), the identity

𝐿̄(Λ) 6 𝐿̄(Λ, 𝛿), 𝛿 ∈ (0; 1). (8)

holds.
In view of this and chain of inequalities (5), a natural question arises: whether the identity

𝐿̄(Λ, 𝛿) 6 𝑛̄(Λ), 𝛿 ∈ (0; 1), is true. The positive answer would extend chain (5). However, the
mentioned inequality is wrong. Let us consider the corresponding example.

Let 𝛿 ∈ (0; 1), 0 < 𝑅𝑘 → ∞, 𝑘 → ∞, and 𝑅𝑘+1/𝑅𝑘 → ∞, 𝑘 → ∞. We define Λ =
⋃︀

𝑘∈N Λ𝑘,

where Λ𝑘 is the set consisting of all natural numbers in the interval
(︀
(1− 𝛿)𝑅𝑘, 𝑅𝑘

)︀
, 𝑘 ∈ N; the

multiplicity of each such number is equal to one. By the choice of the numbers 𝑅𝑘 we have

𝑛̄(Λ) = lim
𝑡→+∞

𝑛(𝑡,Λ)

𝑡
= lim

𝑘→∞

𝑛(𝑅𝑘,Λ)

𝑅𝑘

6 lim
𝑘→∞

𝑅𝑘−1 + 𝛿𝑅𝑘

𝑅𝑘

= 𝛿.
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On the other hand,

𝑛̄(Λ) = lim
𝑘→∞

𝑛(𝑅𝑘,Λ)

𝑅𝑘

> lim
𝑘→∞

𝛿𝑅𝑘

𝑅𝑘

= 𝛿.

Thus, 𝑛̄(Λ) = 𝛿. Moreover,

𝑛(Λ) = lim
𝑘→∞

𝑛(𝑅𝑘(1 − 𝛿),Λ)

𝑅𝑘(1 − 𝛿)
6 lim

𝑘→∞

𝑅𝑘−1

𝑅𝑘(1 − 𝛿)
= 0.

Therefore, 𝑛(Λ) = 0. Let 𝛼 ∈ (0; 𝛿]. Then

𝑛̄0(Λ, 𝛼) = lim
𝑘→∞

𝑛(𝑅𝑘,Λ) − 𝑛(𝑅𝑘(1 − 𝛼),Λ)

𝛼𝑅𝑘

= lim
𝑘→∞

𝛼𝑅𝑘

𝛼𝑅𝑘

= 1,

𝑛̄0(Λ) = lim
𝛼→0

𝑛̄0(Λ, 𝛼) = 1.

Moreover,

𝐿̄(Λ, 𝛼) = lim
𝑘→∞

𝜆(𝑅𝑘) − 𝜆(𝑅𝑘(1 − 𝛼))

− ln(1 − 𝛼)
. (9)

By the Euler formula we have

𝜆(𝑅𝑘) − 𝜆(𝑅𝑘(1 − 𝛼)) =
∑︁

𝑅𝑘(1−𝛼)<𝑛6𝑅𝑘

1

𝑛
= ln

[𝑅𝑘]

[𝑅𝑘(1 − 𝛼) + 1]
+ 𝑟𝑘,

where [𝑎] is the integer part of a number 𝑎 and 𝑟𝑘 → 0, 𝑘 → ∞. By the latter identity and (9)
we get: 𝐿̄(Λ, 𝛼) = 1, 𝛼 ∈ (0; 𝛿]. Assume now that 𝛼 ∈ (𝛿; 1). Then identity (9) holds but at
that,

𝜆(𝑅𝑘) − 𝜆(𝑅𝑘(1 − 𝛼)) =
∑︁

𝑅𝑘(1−𝛿)<𝑛6𝑅𝑘

1

𝑛
= ln

[𝑅𝑘]

[𝑅𝑘(1 − 𝛿) + 1]
+ 𝑟𝑘,

where 𝑟𝑘 → 0, 𝑘 → ∞. Therefore,

𝐿̄(Λ) = lim
𝛼→1−0

𝐿̄(Λ, 𝛼) = lim
𝛼→1−0

− ln(1 − 𝛿)

− ln(1 − 𝛼)
= 0.

Thus, in the considered examples the relations

𝑛(Λ) = 0 = 𝐿̄(Λ) < 𝛿 = 𝑛̄(Λ) < 1 = 𝐿̄(Λ, 𝛼) = 𝑛̄0(Λ, 𝛼) = 𝑛̄0(Λ), 𝛼 ∈ (0; 𝛿]

hold true.
3. Assume that the sequence Λ is such that its upper and maximal densities are finite and

coincide: 𝑛̄(Λ) = 𝑛̄0(Λ) = 𝜏 < +∞. Then it follows from (5) that 𝑛̄0(Λ, 𝛿) = 𝜏 , 𝛿 ∈ (0; 1).

It turns out that the statement opposite to that in the above Remark 3 is true. In order to
do it, we prove an auxiliary statement.

Lemma 2. Let 𝑛̄(Λ) < +∞. The identities hold:

𝑛̄(Λ) = 𝑛̄(Λ, 1) = lim
𝛿→1−0

𝑛̄0(Λ, 𝛿).

Proof. The identity 𝑛̄(Λ) = 𝑛̄(Λ, 1) is implied immediately by (4).
Let 𝛿𝑘 ∈ (0; 1), 𝑘 ∈ N, be a sequence such that 𝛿𝑘 → 1, 𝑘 → ∞. We have

0 6𝑛̄0(Λ, 𝛿𝑘) − 𝑛̄0(Λ, 1) = lim
𝑡→+∞

𝑛(𝑡) − 𝑛(𝑡(1 − 𝛿𝑘))

𝛿𝑘𝑡
− 𝑛̄0(Λ, 1)

6 lim
𝑡→+∞

𝑛(𝑡)

𝛿𝑘𝑡
− 𝑛̄0(Λ, 1) =

1

𝛿𝑘
𝑛̄(Λ) − 𝑛̄0(Λ, 1) = 𝑛̄(Λ)

1 − 𝛿𝑘
𝛿𝑘

→ 0, 𝑘 → ∞.

Therefore, 𝑛̄0(Λ, 𝛿𝑘) → 𝑛̄(Λ) as 𝛿𝑘 → 1, 𝑘 → ∞. The proof is complete.

Lemma 2, Remark 3 to Lemma 1 and the definition of the maximal density imply
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Corollary 1. The following statements are equivalent:
1) 𝑛̄(Λ) = 𝑛̄0(Λ) = 𝜏 < +∞;
2) 𝑛̄0(Λ, 𝛿) = 𝜏 < +∞, 𝛿 ∈ (0; 1).

In the example in Remark 2 to Lemma 1 the identity 𝐿̄(Λ, 𝛼) = 𝑛̄0(Λ) was obtained provided
𝛼 ∈ (0; 𝛿]. This suggests another equivalent definition of the maximal density by means of
𝐿̄(Λ, 𝛼). We first prove an auxiliary statement.

Lemma 3. Let 𝛿 ∈ (0; 1). The inequalities

−𝛿

ln(1 − 𝛿)
𝑛̄0(Λ, 𝛿) 6 𝐿̄(Λ, 𝛿) 6

𝛿

(𝛿 − 1) ln(1 − 𝛿)
𝑛̄0(Λ, 𝛿) (10)

hold true.

Proof. We have

𝑛(𝑡,Λ) − 𝑛(𝑡(1 − 𝛿),Λ)

𝛿𝑡
6

1

𝛿

∑︁
𝑡(1−𝛿)<𝜆𝑛6𝑡

𝑚𝑛

𝜆𝑛

.

This yields:

𝑛̄0(Λ, 𝛿) 6
− ln(1 − 𝛿)

𝛿
𝐿̄(Λ, 𝛿).

This implies the first inequality in (10). Let us prove the second inequality. We have

1

− ln(1 − 𝛿)

∑︁
𝑡(1−𝛿)<𝜆𝑛6𝑡

𝑚𝑛

𝜆𝑛

6
1

− ln(1 − 𝛿)

𝑛(𝑡,Λ) − 𝑛(𝑡(1 − 𝛿),Λ)

(1 − 𝛿)𝑡
.

Therefore,

𝐿̄(Λ, 𝛿) 6
𝛿

(𝛿 − 1) ln(1 − 𝛿)
𝑛̄0(Λ, 𝛿).

The proof is complete.

Theorem 1. The identity

𝑛̄0(Λ) = lim
𝛿→+0

𝐿̄(Λ, 𝛿) (11)

holds true.

The statement of the theorem is implied immediately by the definition of 𝑛̄0(Λ) and inequal-
ities (10).

Let us provide one more equivalent definition of the maximal density. In order to do it, we
need to get an additional information about the relations between 𝐿̄(Λ, 𝛿) and 𝑛̄0(Λ).

Let 𝛿 ∈ (0; 1) and {𝑡𝑘}∞𝑘=1 be an increasing sequence such that 0 < 𝑡𝑘 → ∞. We choose a
natural number 𝑝 by the conditions 𝛿/((1 − 𝛿)𝑝) < 1, 𝑝 > 1. Following [8], we let

𝛼𝑙 := 1 − (𝑙 − 1)𝛿

𝑝
, 𝑡𝑘,𝑙 := 𝛼𝑙𝑡𝑘, 𝛿𝑙 :=

𝛿

𝛼𝑙𝑝
, 𝑙 = 1, 𝑝. (12)

By the choice of the number 𝑝 we have 𝛿𝑙 ∈ (0; 1), 𝛿𝑙 < 1, 𝑙 = 1, 𝑝. For each 𝑘 ∈ N, the semi-
interval (𝑡𝑘(1 − 𝛿); 𝑡𝑘] is partitioned into 𝑝 semi-intervals of form (𝑡𝑘,𝑙(1 − 𝛿𝑙); 𝑡𝑘,𝑙]. The length
of each of them is in 𝑝 times less than the length of the original semi-interval (𝑡𝑘(1 − 𝛿); 𝑡𝑘].

Lemma 4. The inequality

𝐿̄(Λ, 𝛿) 6 𝑛̄0(Λ), 𝛿 ∈ (0; 1), (13)

holds true.
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Proof. It is clear that we can assume that 𝑛̄0(Λ) = 𝜏 < +∞. Let 𝛿 ∈ (0; 1) and a natural
number 𝑝 satisfies the condition 𝛿/((1 − 𝛿)𝑝) < 1, 𝑝 > 1. We choose an increasing sequence
0 < 𝑡𝑘 → ∞ such that

𝐿̄(Λ, 𝛿) = lim
𝑘→+∞

𝜆(𝑡𝑘) − 𝜆(𝑡𝑘(1 − 𝛿))

− ln(1 − 𝛿)
. (14)

Assume (12). We have

𝜆(𝑡𝑘) − 𝜆(𝑡𝑘(1 − 𝛿)) =

𝑝∑︁
𝑙=1

(︀
𝜆(𝑡𝑘,𝑙) − 𝜆(𝑡𝑘,𝑙(1 − 𝛿𝑙))

)︀
, 𝑘 ∈ N. (15)

By Lemma 1 the inequality

𝑛̄0(Λ, 𝛿𝑙) 6 𝑛̄0(Λ) = 𝜏, 𝑙 = 1, 𝑝,

holds true. We fix 𝜀 > 0. Then according the definition of 𝑛̄0(Λ, 𝛿𝑙) there exists an index 𝑘(𝜀)
such that

𝑛
(︀
𝑡𝑘,𝑙,Λ

)︀
− 𝑛

(︀
𝑡𝑘,𝑙(1 − 𝛿𝑙),Λ

)︀
𝛿𝑙𝑡𝑘,𝑙

6 𝜏 + 𝜀, 𝑙 = 1, 𝑝, 𝑘 > 𝑘(𝜀). (16)

Let 𝑘 > 𝑘(𝜀) and 𝑙 = 1, 𝑝. If 𝑡𝑘,𝑙(1 − 𝛿𝑙) < 𝜆𝑛 6 𝑡𝑘,𝑙, then

1

𝜆𝑛

6
1

𝑡𝑘,𝑙(1 − 𝛿𝑙) −𝑚𝛽
, 𝑚 = 1, 𝑠𝑘,

where 𝛽 = 1/(𝜏 + 𝜀) and 𝑠𝑘 =
[︀
(𝜏 + 𝜀)𝑡𝑘,𝑙𝛿𝑙

]︀
=
[︀
(𝜏 + 𝜀)𝛿𝑡𝑘/𝑝

]︀
. Therefore, due to (16) we get

𝜆
(︀
𝑡𝑘,𝑙
)︀
− 𝜆
(︀
𝑡𝑘,𝑙(1 − 𝛿𝑙)

)︀
=

∑︁
𝑡𝑘,𝑙(1−𝛿𝑙)<𝜆𝑛6𝑡𝑘,𝑙

𝑚𝑛

𝜆𝑛

6
𝑠𝑘∑︁

𝑚=1

1

𝑡𝑘,𝑙(1 − 𝛿𝑙) −𝑚𝛽

=

𝑠𝑘∑︁
𝑚=1

𝜏 + 𝜀

𝑡𝑘,𝑙(1 − 𝛿𝑙)(𝜏 + 𝜀) −𝑚
6

𝑠𝑘∑︁
𝑚=1

𝜏 + 𝜀

𝑠𝑘,𝑙 −𝑚
=

𝑠𝑘,𝑙−1∑︁
𝑠=𝑠𝑘,𝑙−𝑠𝑘

𝜏 + 𝜀

𝑠
,

(17)

where 𝑠𝑘,𝑙 =
[︀
𝑡𝑘,𝑙(1 − 𝛿𝑙)(𝜏 + 𝜀)

]︀
. We observe that by (12) with 𝑙 = 1, 𝑝− 1

𝑠𝑘,𝑙 − 𝑠𝑘 >𝑡𝑘,𝑙(1 − 𝛿𝑙)(𝜏 + 𝜀) − (𝜏 + 𝜀)𝑡𝑘,𝑙𝛿𝑙 − 1 = (𝜏 + 𝜀)(𝑡𝑘,𝑙 − 2𝑡𝑘,𝑙𝛿𝑙) − 1

=(𝜏 + 𝜀)

(︃(︂
1 − (𝑙 − 1)𝛿

𝑝

)︂
𝑡𝑘 − 2

𝛿𝑡𝑘
𝑝

)︃
− 1

=(𝜏 + 𝜀)

(︃(︂
1 − ((𝑙 + 1) − 1)𝛿

𝑝

)︂
𝑡𝑘 −

𝛿𝑡𝑘
𝑝

)︃
− 1 = (𝜏 + 𝜀)

(︂
𝛼𝑙+1𝑡𝑘 −

𝛼𝑙+1𝛿𝑡𝑘
𝛼𝑙+1𝑝

)︂
− 1

=(𝜏 + 𝜀)(𝑡𝑘,𝑙+1 − 𝑡𝑘,𝑙+1𝛿𝑙+1) − 1 = 𝑡𝑘,𝑙+1(1 − 𝛿𝑙+1)(𝜏 + 𝜀) − 1 > 𝑠𝑘,𝑙+1 − 1.

We also note that by the choice of the number 𝑝 the inequality 𝑠𝑘,𝑝 − 𝑠𝑘 > 0 holds true. At
that, 𝑠𝑘,𝑝 − 𝑠𝑘 > 0 for all sufficiently large indices 𝑘.

Thus, in view of (15) and (17), we obtain

𝜆(𝑡𝑘) − 𝜆(𝑡𝑘(1 − 𝛿)) 6
𝑝∑︁

𝑙=1

𝑠𝑘,𝑙−1∑︁
𝑠=𝑠𝑘,𝑙−𝑠𝑘

𝜏 + 𝜀

𝑠
6

𝑠𝑘,1−1∑︁
𝑠=𝑠𝑘,𝑝−𝑠𝑘

𝜏 + 𝜀

𝑠
, 𝑘 > 𝑘(𝜀).

Since for each natural 𝑙 > 1 the identity (the Euler formula)

𝑙∑︁
𝑠=1

1

𝑠
= ln 𝑙 + 𝛾 + 𝛼(𝑙)
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holds, where 𝛾 is the Euler constant and 𝛼(𝑙) → 0 as 𝑙 → ∞, by the previous relation we get

𝜆(𝑡𝑘) − 𝜆(𝑡𝑘(1 − 𝛿)) 6 (𝜏 + 𝜀) ln
𝑠𝑘,1 − 1

𝑠𝑘,𝑝 − 𝑠𝑘
+ 𝛼̃(𝑘), 𝑘 > 𝑘(𝜀), (18)

where 𝛼̃(𝑘) → 0, 𝑘 → ∞. Let us find an upper bound for the expression under the logarithm:

𝑠𝑘,1 − 1

𝑠𝑘,𝑝 − 𝑠𝑘
6

𝑡𝑘,1(1 − 𝛿1)(𝜏 + 𝜀) − 1

𝑡𝑘,𝑝(1 − 𝛿𝑝)(𝜏 + 𝜀) − (𝜏 + 𝜀)𝑡𝑘,𝑝𝛿𝑝 − 2
6

𝑡𝑘

(︁
1 − 𝛿

𝑝

)︁
(𝜏 + 𝜀)

𝑡𝑘,𝑝(1 − 2𝛿𝑝)(𝜏 + 𝜀) − 2

6
𝑡𝑘(𝜏 + 𝜀)

𝑡𝑘,𝑝(𝜏 + 𝜀) − 2
(︁

1 + 𝑡𝑘
𝛿
𝑝

)︁ =
𝑡𝑘(𝜏 + 𝜀)

(1 − 𝛿)𝑡𝑘(𝜏 + 𝜀) + 𝑡𝑘
𝛿
𝑝
− 2

(︁
1 + 𝑡𝑘

𝛿
𝑝

)︁
6

𝑡𝑘(𝜏 + 𝜀)

(1 − 𝛿)𝑡𝑘(𝜏 + 𝜀) − 2
(︁

1 + 𝑡𝑘
𝛿
𝑝

)︁ =
1

1 − 𝛿

⎛⎝1 −
2
(︁

1 + 𝑡𝑘
𝛿
𝑝

)︁
(1 − 𝛿)𝑡𝑘(𝜏 + 𝜀)

⎞⎠−1

=
1

1 − 𝛿
(1 − 𝑐𝑘(𝑝))−1.

By (14) and (18) this implies

𝐿̄(Λ, 𝛿) 6 (𝜏 + 𝜀) lim
𝑘→∞

ln(1 − 𝛿) + ln(1 − 𝑐𝑘(𝑝))

ln(1 − 𝛿)
= 𝜏 + 𝜀 +

ln(1 − 𝑐(𝑝))

ln(1 − 𝛿)
,

where

𝑐(𝑝) = lim
𝑘→∞

𝑐𝑘(𝑝) =
𝛿/𝑝

(1 − 𝛿)(𝜏 + 𝜀)
→ 0, 𝑝 → ∞.

Since the natural number 𝑝 can be chosen arbitrarily large and 𝜀 > 0 arbitrarily small, by the
above relations we get: 𝐿̄(Λ, 𝛿) 6 𝜏 . The proof is complete.

Theorem 1 and Lemma 4 imply immediately the following statement.

Theorem 2. The identity

𝑛̄0(Λ) = sup
𝛿∈(0;1)

𝐿̄(Λ, 𝛿) (19)

holds true.

Let us find out the conditions ensuring the identity 𝑛̄0(Λ) = 𝐿̄(Λ). Let 𝛿 ∈ (0; 1) and
𝑛̄0(Λ, 𝛿) = 𝜏 < +∞. According to the definition of 𝑛̄0(Λ, 𝛿), there exists an increasing sequence
0 < 𝑡𝑘 → ∞, 𝑘 → ∞ such that

𝜏 = 𝑛̄0(Λ, 𝛿) = lim
𝑘→∞

𝑛(𝑡𝑘) − 𝑛(𝑡𝑘(1 − 𝛿))

𝛿𝑡𝑘
. (20)

It turns out that under condition (20) the points of the sequence Λ possess additional uniform
distribution in the semi-intervals (𝑡𝑘(1 − 𝛿), 𝑡𝑘] provided we additionally have 𝑛̄0(Λ, 𝛼) = 𝜏 ,
0 < 𝛼 < 𝛿. More precisely the meaning of such uniformity is clarified in the following statement.

Lemma 5. Let 𝜏 > 0, 𝛿 ∈ (0; 1) and a natural number 𝑝 satisfy the condition 𝛿/((1− 𝛿)𝑝) <
1. Assume that 𝑛̄0(Λ, 𝛼) = 𝜏 , 𝛼 ∈ (0; 𝛿], and (20) and (12) hold. Then for each 𝑙 = 1, 𝑝 the
limit

lim
𝑘→∞

𝑛(𝑡𝑘,𝑙) − 𝑛(𝑡𝑘,𝑙(1 − 𝛿𝑙))

𝛿𝑙𝑡𝑘,𝑙
(21)

exists and is equal to 𝜏 .
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Proof. By the assumption 𝑛̄0(Λ, 𝛼) = 𝜏 , 𝛼 ∈ (0; 𝛿]. Since 𝛿𝑙 6 𝛿, by the definition of 𝑛̄0(Λ, 𝛿𝑙)
we obtain

lim
𝑘→∞

𝑛(𝑡𝑘,𝑙) − 𝑛(𝑡𝑘,𝑙(1 − 𝛿𝑙))

𝛿𝑙𝑡𝑘,𝑙
6 𝑛̄0(Λ, 𝛿𝑙) 6 𝜏, 𝑙 = 1, 𝑝. (22)

Assume that there exists an index 𝑙0 obeying

lim
𝑘→∞

𝑛(𝑡𝑘,𝑙0) − 𝑛(𝑡𝑘,𝑙0(1 − 𝛿𝑙0))

𝑡𝑘,𝑙0𝛿𝑙0
< 𝜏. (23)

Let 𝑘𝑖, 𝑖 ∈ N, be a sequence of natural numbers realizing the bottom limit in (23). Then by
(20) we have

𝜏 = lim
𝑖→∞

𝑛(𝑡𝑘𝑖) − 𝑛(𝑡𝑘𝑖(1 − 𝛿))

𝑡𝑘𝑖𝛿

= lim
𝑖→∞

1

𝑡𝑘𝑖𝛿

(︃
𝑛(𝑡𝑘𝑖,𝑙0) − 𝑛(𝑡𝑘𝑖,𝑙0(1 − 𝛿𝑙0)) +

𝑝∑︁
𝑙=1,𝑙 ̸=𝑙0

(︁
𝑛(𝑡𝑘𝑖,𝑙) − 𝑛(𝑡𝑘𝑖,𝑙(1 − 𝛿𝑙))

)︁)︃
.

By the choice of subsequence 𝑘𝑖, the limit

lim
𝑖→∞

(︁(︀
𝑛(𝑡𝑘𝑖,𝑙0) − 𝑛(𝑡𝑘𝑖,𝑙0(1 − 𝛿𝑙0))

)︀
/𝛿𝑡𝑘𝑖

)︁
exists. Therefore, there exists also the limit as 𝑖 → ∞ for the expression

1

𝑡𝑘𝑖𝛿

𝑝∑︁
𝑙=1,𝑙 ̸=𝑙0

(︁
𝑛(𝑡𝑘𝑖,𝑙) − 𝑛(𝑡𝑘𝑖,𝑙(1 − 𝛿𝑙))

)︁
.

Hence, in view of (12), (22) and (23) we get

𝜏 = lim
𝑖→∞

𝑛(𝑡𝑘𝑖,𝑙0) − 𝑛(𝑡𝑘𝑖,𝑙0(1 − 𝛿𝑙0))

𝑡𝑘𝑖𝛿
+ lim

𝑖→∞

𝑝∑︁
𝑙=1,𝑙 ̸=𝑙0

𝑛(𝑡𝑘𝑖,𝑙) − 𝑛(𝑡𝑘𝑖,𝑙(1 − 𝛿𝑙))

𝑡𝑘𝑖𝛿

= lim
𝑖→∞

𝑛(𝑡𝑘𝑖,𝑙0) − 𝑛(𝑡𝑘𝑖,𝑙0(1 − 𝛿𝑙0))

𝑡𝑘𝑖,𝑙0𝛿𝑙0

𝑡𝑘𝑖,𝑙0𝛿𝑙0
𝑡𝑘𝑖𝛿

+ lim
𝑖→∞

𝑝∑︁
𝑙=1,𝑙 ̸=𝑙0

𝑛(𝑡𝑘𝑖,𝑙) − 𝑛(𝑡𝑘𝑖,𝑙(1 − 𝛿𝑙))

𝑡𝑘𝑖,𝑙𝛿𝑙

𝑡𝑘𝑖,𝑙𝛿𝑙
𝑡𝑘𝑖𝛿

=
1

𝑝

(︃
lim
𝑖→∞

𝑛(𝑡𝑘𝑖,𝑙0) − 𝑛(𝑡𝑘𝑖,𝑙0(1 − 𝛿𝑙0))

𝑡𝑘𝑖,𝑙0𝛿𝑙0
+ lim

𝑖→∞

𝑝∑︁
𝑙=1,𝑙 ̸=𝑙0

𝑛(𝑡𝑘𝑖,𝑙) − 𝑛(𝑡𝑘𝑖,𝑙(1 − 𝛿𝑙))

𝑡𝑘𝑖,𝑙𝛿𝑙

)︃

<
𝜏

𝑝
+

(𝑝− 1)𝜏

𝑝
= 𝜏.

We have obtained the contradiction. Hence, (23) is wrong, that is,

lim
𝑘→∞

𝑛(𝑡𝑘,𝑙0) − 𝑛(𝑡𝑘,𝑙0(1 − 𝛿𝑙0))

𝑡𝑘,𝑙0𝛿𝑙0
> 𝜏.

In view of (22) this completes the proof.

Let us prove one more auxiliary statement.

Lemma 6. Let 𝑛̄(Λ) = 𝑛̄0(Λ) = 𝜏 < +∞. Then for each 𝛿 ∈ (0; 1) the inequality 𝐿̄(Λ, 𝛿) > 𝜏
holds true.

Proof. Theorem 1 and Lemma 1 imply the identity 𝑛̄0(Λ, 𝛼) = 𝜏 if 𝛼 ∈ (0; 1). Let 𝛿 ∈ (0; 1),
𝜀 > 0, a natural number 𝑝 satisfy the condition 𝛿/((1 − 𝛿)𝑝) < 1 and (12) holds. According
the definition of 𝑛̄0(Λ, 𝛿), there exists a sequence 𝑡𝑘, 𝑘 ∈ N, such that (20) is true. Then by
Lemma 5, for each 𝑙 = 1, 𝑝, limit (21) exists and is equal to 𝜏 . Therefore, there exists an index
𝑘(𝜀) such that

𝑛(𝑡𝑘,𝑙) − 𝑛(𝑡𝑘,𝑙(1 − 𝛿𝑙)) > (𝜏 − 𝜀)𝛿𝑙𝑡𝑘,𝑙, 𝑙 = 1, 𝑝, 𝑘 > 𝑘(𝜀). (24)
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Let 𝑘 > 𝑘(𝜀) and 𝑙 = 1, 𝑝. If 𝑡𝑘,𝑙(1 − 𝛿𝑙) < 𝜆𝑛 6 𝑡𝑘,𝑙, then

1

𝜆𝑛

>
1

𝑡𝑘,𝑙 + 𝑚𝛽
, 𝑚 = 1, 𝑠𝑘,

where

𝛽 =
1

𝜏 − 𝜀
, 𝑠𝑘 =

[︀
(𝜏 − 𝜀)𝑡𝑘,𝑙𝛿𝑙

]︀
=

[︂
(𝜏 − 𝜀)𝛿𝑡𝑘

𝑝

]︂
.

Therefore, in view of (24) we obtain

𝜆
(︀
𝑡𝑘,𝑙
)︀
− 𝜆
(︀
𝑡𝑘,𝑙(1 − 𝛿𝑙)

)︀
=

∑︁
𝑡𝑘,𝑙(1−𝛿𝑙)<𝜆𝑛6𝑡𝑘,𝑙

𝑚𝑛

𝜆𝑛

>
𝑠𝑘∑︁

𝑚=1

1

𝑡𝑘,𝑙 + 𝑚𝛽

=

𝑠𝑘∑︁
𝑚=1

𝜏 − 𝜀

𝑡𝑘,𝑙(𝜏 − 𝜀) + 𝑚
>

𝑠𝑘∑︁
𝑚=1

𝜏 − 𝜀

𝑠𝑘,𝑙 + 1 + 𝑚
=

𝑠𝑘,𝑙+𝑠𝑘+1∑︁
𝑠=𝑠𝑘,𝑙+2

𝜏 − 𝜀

𝑠
,

(25)

where 𝑠𝑘,𝑙 =
[︀
𝑡𝑘,𝑙(𝜏 − 𝜀)

]︀
. We note that by (12)

𝑠𝑘,𝑙 6𝑡𝑘,𝑙(𝜏 − 𝜀) = (𝜏 − 𝜀)

(︂
1 − (𝑙 − 1)𝛿

𝑝

)︂
𝑡𝑘

=(𝜏 − 𝜀)

(︃(︂
1 − ((𝑙 + 1) − 1)𝛿

𝑝

)︂
𝑡𝑘 +

𝛿𝑡𝑘
𝑝

)︃
= (𝜏 − 𝜀)

(︂
𝛼𝑙+1𝑡𝑘 +

𝛿𝑡𝑘
𝑝

)︂
− 1

=(𝜏 − 𝜀)(𝑡𝑘,𝑙+1 + 𝑡𝑘,𝑙+1𝛿𝑙+1) 6 𝑠𝑘,𝑙+1 + 𝑠𝑘 + 2.

Thus, in view of (15) and (25) we have

𝜆(𝑡𝑘) − 𝜆(𝑡𝑘(1 − 𝛿)) >
𝑝∑︁

𝑙=1

𝑠𝑘,𝑙+𝑠𝑘+1∑︁
𝑠=𝑠𝑘,𝑙+2

𝜏 − 𝜀

𝑠
>

𝑠𝑘,1+𝑠𝑘+1∑︁
𝑠=𝑠𝑘,𝑝+2

𝜏 − 𝜀

𝑠
−

𝑝∑︁
𝑙=1

(︂
1

𝑠𝑘,𝑙
+

1

𝑠𝑘,1 + 1

)︂

>

𝑠𝑘,1+𝑠𝑘+1∑︁
𝑠=𝑠𝑘,𝑝+2

𝜏 − 𝜀

𝑠
− 2𝑝

𝑡𝑘(1 − 𝛿)(𝜏 − 𝜀)
, 𝑘 > 𝑘(𝜀).

By Euler formula this implies:

𝜆(𝑡𝑘) − 𝜆(𝑡𝑘(1 − 𝛿)) > (𝜏 − 𝜀) ln
𝑠𝑘,1 + 𝑠𝑘 + 1

𝑠𝑘,𝑝 + 2
−− 2𝑝

𝑡𝑘(1 − 𝛿)(𝜏 − 𝜀)
+ 𝛼̃(𝑘), 𝑘 > 𝑘(𝜀), (26)

where 𝛼̃(𝑘) → 0, 𝑘 → ∞. Let us estimate from below the expression under the logarithm:

𝑠𝑘,1 + 𝑠𝑘 + 1

𝑠𝑘,1 + 2
>
𝑡𝑘,1(𝜏 − 𝜀) + (𝜏 − 𝜀)𝛿 𝑡𝑘

𝑝
− 1

𝑡𝑘,𝑝(𝜏 − 𝜀) + 2

>
𝑡𝑘(𝜏 − 𝜀) − 1

𝑡𝑘(1 − 𝛿)(𝜏 − 𝜀) + (𝜏 − 𝜀)𝛿 𝑡𝑘
𝑝

+ 2
= 𝑐𝑘(𝑝).

In view of the definition of 𝐿̄(Λ, 𝛿) and (26) this yields

𝐿̄(Λ, 𝛿) > (𝜏 − 𝜀) lim
𝑘→∞

𝑐𝑘(𝑝)

− ln(1 − 𝛿)
= (𝜏 − 𝜀)

ln 𝑐(𝑝)

− ln(1 − 𝛿)
,

where

𝑐(𝑝) = lim
𝑘→∞

𝑐𝑘(𝑝) = lim
𝑘→∞

𝑡𝑘(𝜏 − 𝜀) − 1

𝑡𝑘(1 − 𝛿)(𝜏 − 𝜀) + (𝜏 − 𝜀)𝛿 𝑡𝑘
𝑝

+ 2

=
1

(1 − 𝛿) + 𝛿
𝑝

→ 1

1 − 𝛿
, 𝑝 → ∞.
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Since the natural number 𝑝 can be chosen arbitrarily large and 𝜀 > 0 can be arbitrarily small,
we get: 𝐿̄(Λ, 𝛿) > 𝜏 . The proof is complete.

Theorem 3. Let 𝑛̄0(Λ) = 𝜏 < +∞. Then the following statements are equivalent:
1) 𝑛̄0(Λ, 𝛿) = 𝜏 , 𝛿 ∈ (0; 1);
2) 𝑛̄(Λ) = 𝜏 ;
3) 𝐿̄(Λ, 𝛿) = 𝜏 , 𝛿 ∈ (0; 1);
4) 𝐿̄(Λ, 𝛿) = 𝜏 .

Proof. The implication 1) =⇒ 2) follows Lemma 2.
2) =⇒ 3). Let 𝑛̄(Λ) = 𝜏 . Then by the assumption and Lemma 6 the inequality 𝐿̄(Λ, 𝛿) > 𝜏 ,

𝛿 ∈ (0; 1), holds true. Moreover, the assumption and Lemma 4 implies also the inequality
𝐿̄(Λ, 𝛿) 6 𝜏 , 𝛿 ∈ (0; 1). Thus, 𝐿̄(Λ, 𝛿) = 𝜏, 𝛿 ∈ (0; 1).

The implication 3) =⇒ 4) is due to formulae (2) and (3).
Finally, by Lemma 1 and in view of the assumption we get the implication 4) =⇒ 1). The

proof is complete.

Remark. It follows from Theorem 3 that under at least one of the relations 𝑛̄0(Λ) = 𝑛̄(Λ) <
+∞ and 𝑛̄0(Λ) = 𝐿̄(Λ) < +∞ the identities 𝑛̄0(Λ) = 𝑛̄(Λ) = 𝐿̄(Λ) hold. A natural question
arises: whether these identities are due to the relation 𝑛̄(Λ) = 𝐿̄(Λ) < +∞? The answer is
negative. Let us consider the corresponding example

Let 0 < 𝑅𝑘 → ∞ and 𝑅𝑘+1/𝑅𝑘 → ∞, 𝑘 → ∞. We define Λ =
⋃︀

𝑘∈N

(︁
Λ𝑘 ∪ Λ̃𝑘

)︁
, where Λ𝑘 is

the set of all natural numbers in the interval (𝑅2𝑘;𝑅2𝑘+1) and the multiplicity of each number
is equal to and Λ̃𝑘 = {𝑅2𝑘+2, 𝑝𝑘}, where 𝑝𝑘 =

[︀
𝑅2𝑘+2

]︀
−
[︀
𝑅2𝑘+1

]︀
, 𝑘 ∈ N, is the multiplicity of

the number 𝑅2𝑘+2. By the choice of the numbers 𝑅𝑘 we have

lim
𝑘→∞

𝑛(𝑅2𝑘+1,Λ)

𝑅2𝑘+1

> lim
𝑘→∞

𝑅2𝑘+1 −𝑅2𝑘

𝑅2𝑘+1

= 1.

We note that by the construction 𝑛(𝑡,Λ) 6 𝑡, 𝑡 > 0. This is why

𝑛̄(Λ) = lim
𝑡→+∞

𝑛(𝑡,Λ)

𝑡
6 lim

𝑡→+∞

𝑡

𝑡
= 1.

Therefore, 𝑛̄(Λ) = 1. Let 𝛿 ∈ (0; 1). By the Euler formula we obtain:

𝐿̄(Λ, 𝛿) > lim
𝑘→∞

𝜆(𝑅2𝑘+1) − 𝜆(𝑅2𝑘+1(1 − 𝛿))

− ln(1 − 𝛿)

= lim
𝑘→∞

ln
[︀
𝑅2𝑘+1] − ln[𝑅2𝑘+1(1 − 𝛿) + 1

]︀
− ln(1 − 𝛿)

= lim
𝑘→∞

− ln(1 − 𝛿)

− ln(1 − 𝛿)
= 1.

By Lemma 1 and formula (2) this implies the identity 𝐿̄(Λ) = 𝑛̄(Λ). At the same time we have

𝑛̄0(Λ, 𝛿) = lim
𝑘→∞

𝑛(𝑅2𝑘+2,Λ) − 𝑛(𝑅2𝑘+2(1 − 𝛿),Λ)

𝛿𝑅2𝑘+2

= lim
𝑘→∞

[︀
𝑅2𝑘+2

]︀
−
[︀
𝑅2𝑘+1

]︀
𝛿𝑅2𝑘+2

=
1

𝛿
.

Thus,

𝑛̄0(Λ) = lim
𝛿→0+

𝑛̄0(Λ, 𝛿) lim
𝛿→0+

1

𝛿
= +∞.

We are going to apply the obtained result to the issue on the completeness of the system of
exponential monomials with positive exponents in convex domains in the complex plane.

We recall that an entire function 𝑓 is called an entire function of exponential type if for some
positive constants 𝐴, 𝐵 depending on 𝑓 and for each 𝑧 ∈ C the inequality ln |𝑓(𝑧)| 6 𝐴|𝑧| + 𝐵
holds. It indicator (upper indicator) is the function

ℎ𝑓 (𝜙) = lim
𝑟→+∞

ln |𝑓(𝑟𝑒𝑖𝜙)|
𝑟

, 𝜙 ∈ (−𝜋; 𝜋].
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By Pólya theorem, see, for instance, [10, Ch. I, Sect. 5, Thm. 5.4], the indicator coincides
with the support function 𝐻𝐾(𝜙) of some convex compact set 𝐾 ⊂ C called the indicator
diagram of the function 𝑓 [10, Ch. I, Sect. 5]:

ℎ𝑓 (𝜙) = 𝐻𝐾(𝜙) = sup
𝑧∈𝐾

Re(𝑧𝑒−𝑖𝜙). (27)

The compact set complex conjugate for the compact set 𝐾 is called the conjugate diagram of
the function 𝑓 .

Let 𝐷 be a convex domain. By the Khan-Banach theorem, the system ℰ(Λ) = {𝑧𝑘𝑒𝜆𝑛𝑧}∞,𝑚𝑛

𝑛=1,𝑘=1

is incomplete in the space 𝐻(𝐷) if and only if there exists a non-zero linear continuous functional
𝜈 ∈ 𝐻*(𝐷) vanishing on all elements of this system.

Let 𝑃𝐷 be the space of all entire functions of exponential type, whose conjugate diagrams
are located in 𝐷. It is equipped with the standard topology of inductive limit, see, for instance,
[9, Ch. III, Sect. 12, Subsect. 7]. The Laplace transform 𝑓(𝜆) = 𝜈(exp(𝜆𝑧)), 𝜈 ∈ 𝐻*(𝐷), makes
an isomorphism of the linear topological spaces 𝐻*(𝐷) and 𝑃𝐷, see, for instance, [9, Ch. III,
Sect. 12, Thms. 12.3, 12.13].

Thus, the incompleteness of ℰ(Λ) in the domain 𝐷 is equivalent to the existence of a function
0 ̸= 𝑓 ∈ 𝑃𝐷 vanishing at the points 𝜆𝑛 with the multiplicities at least 𝑚𝑛, 𝑛 ∈ N.

We shall say that a convex domain 𝐷 is vertically balanced if

𝐻𝐷

(︁
−𝜋

2

)︁
+ 𝐻𝐷

(︁𝜋
2

)︁
= 𝑑(𝐷),

where 𝐻𝐷 is the support function of the domain 𝐷 and 𝑑(𝐷) is its vertical diameter. It is
easy to show that vertically balanced domains are, for instance, those having a vertical or a
horizontal symmetry axis.

The next statement generalizes the result by A.F. Leontiev and B.Ya. Levin mentioned in
the beginning of the work; the generalization is made for verically balanced convex domains.

Theorem 4. Let 𝑛̄0(Λ) = 𝜏 < +∞. Then the following statements are equivalent:
1) 𝑛̄(Λ) = 𝜏 ;
2) the system ℰ(Λ) is incomplete in each convex domain 𝐷 with the vertical diameter 𝑑(𝐷) >

2𝜋𝜏 and is complete in each vertically balanced convex domain 𝐷 with the vertical diameter
𝑑(𝐷) 6 2𝜋𝜏 .

Proof. Assume that the sequence Λ has a finite maximal density 𝜏 . Let us prove the implication
1 =⇒ 2. Since 𝑛̄0(Λ) = 𝜏 , by Lemma 2.1 in work [11] (see also [12, Lm. 5]) there exists a
measurable sequence Λ′ = {𝜇𝑘, 𝑝𝑘}∞𝑘=1 with the density 𝜏 such that the relations

𝜇𝑘𝑛 = 𝜆𝑛, 𝑚𝑛 6 𝑝𝑘𝑛 , 𝑛 ∈ N,

hold true, where {𝑘𝑛}∞𝑛=1 is a some subsequence of natural numbers. Since the arguments of
the terms in the sequence do not influence its density, we can assume that 𝜇𝑘 > 0, 𝑘 ∈ N. We
consider the function

𝑓(𝜆) =
∞∏︁
𝑘=1

(︂
1 − 𝜆2

𝜇2
𝑘

)︂𝑝𝑘

.

It vanishes at the points 𝜇𝑘 with the multiplicities 𝑝𝑘, 𝑘 > 1 and in particular, at the points 𝜆𝑛

with the multiplicities at least 𝑚𝑛, 𝑛 > 1. Since Λ′ has the density 𝜏 , then 𝑓(𝜆) is an entire
function of exponential type with the indicator ℎ𝑓 (𝜙) = 𝜋𝜏 | sin𝜙| [10, Ch. I, Sect. 5, Thm. 5.9],
[5, Ch. II, Sect.1, Thm. 2]. It coincides with the support function 𝐻𝐾(𝜙) of the segment of the
imaginary axis [−𝑖𝜋𝜏 ; 𝑖𝜋𝜏 ]. Therefore, this segment is the indicator diagram of the function 𝑓
and hence, also its conjugate diagram.

Let 𝐷 be a convex domain with a vertical diameter 𝑑(𝐷) > 2𝜋𝜏 . Then in the domain 𝐷
there exist points 𝑧1 = 𝑥0 + 𝑖𝑦1 and 𝑧2 = 𝑥0 + 𝑖𝑦2 such that

|𝑧2 − 𝑧1| = |𝑦2 − 𝑦1| = 2𝜋𝜏.
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Thus, the domain 𝐷 contains the vertical segment [𝑧1, 𝑧2] of the length 2𝜋𝜏 . We let 𝑓(𝜆) =
𝑓(𝜆)𝑒𝑧0𝜆, where 𝑧0 = (𝑧2 − 𝑧1)/2. It is to observe that the indicator diagram of this function
coincides with the segment [𝑧1; 𝑧2] complex conjugate with the segment [𝑧1; 𝑧2]. This is why

the conjugate diagram of this function coincides with the segment [𝑧1, 𝑧2], that is, 𝑓 ∈ 𝑃𝐷.
Therefore, in view of the said above, the system ℰ(Λ) is incomplete in the domain 𝐷. This
proves the first part of Statement 2).

Let us prove the second part. Let 𝐷 be a vertically balanced domain with a vertical diameter
𝑑(𝐷) 6 2𝜋𝜏 . Since 𝑛̄(Λ) = 𝑛̄0(Λ) = 𝜏 , by Theorem 3 the identity 𝐿̄(Λ) = 𝜏 holds.

Assume that the system ℰ(Λ) is incomplete in the domain 𝐷. Then there exists a function
0 ̸= 𝑓 ∈ 𝑃𝐷 vanishing at the points 𝜆𝑛 with the multiplicity at least 𝑚𝑛, 𝑛 > 1. Its conjugate
diagram 𝐾 is located in the domain 𝐷, that is, the inequality 𝐻𝐾(𝜙) < 𝐻𝐷(𝜙), 𝜙 ∈ (−𝜋; 𝜋],
holds true. This is why in view of the vertical balance of 𝐷 we obtain

𝐻𝐾

(︁
−𝜋

2

)︁
+ 𝐻𝐾

(︁𝜋
2

)︁
< 𝐻𝐷

(︁
−𝜋

2

)︁
+ 𝐻𝐷

(︁𝜋
2

)︁
= 𝑑(𝐷) 6 2𝜋𝜏. (28)

We let

𝑦0 = −1

2

(︂
𝐻𝐾

(︁𝜋
2

)︁
−𝐻𝐾

(︁
−𝜋

2

)︁)︂
, 𝑓(𝑧) = 𝑓(𝑧)𝑒𝑖𝑦0𝑧.

Let 𝐾̃ be the conjugate diagram of the function 𝑓 . By the choice of the number 𝑦0 we have

𝐻𝐾̃

(︁
−𝜋

2

)︁
= 𝐻𝐾̃

(︁𝜋
2

)︁
.

Therefore, in view of (28) we obtain

𝐻𝐾̃

(︁
±𝜋

2

)︁
< 𝜋𝜏.

The same inequality is obviously true for the indicator diagram of the function 𝑓 . This is why
by (27)

ℎ𝑓

(︁
∓𝜋

2

)︁
< 𝜋𝜏.

Then by Theorem 6.2 in [1] the inequality 𝐿̄(Λ) < 𝜏 holds true. We have obtained the contra-
diction. Thus, system ℰ(Λ) is complete in the domain 𝐷.

Now we are going to prove the implication 2) =⇒ 1). By Theorem 3 it is sufficient to show
that 𝐿̄(Λ) = 𝜏 . Assume that 𝐿̄(Λ) < 𝜏 . Then by Theorem 6.2 of work [1], there exists an entire
function 𝑓 ̸= 0 of exponential type vanishing at the points 𝜆𝑛 with the multiplicities at least
𝑚𝑛, 𝑛 > 1, such that

ℎ𝑓

(︁
∓𝜋

2

)︁
< 𝜋𝜏.

Therefore, the indicator diagram of the function 𝑓 (and its conjugate diagram) lies in the
strip 𝐷 = {𝑧 : |Im 𝑧| < 𝜋𝜏}. This means that the system ℰ(Λ) is incomplete in this strip.
We have obtained the contradiction with Statement 2 since the convex domain 𝐷 is vertically
balanced and has the vertical diameter 𝑑(𝐷) = 2𝜋𝜏 . Thus, our assumption is wrong, that
is, the inequality 𝐿̄(Λ) > 𝜏 holds true. It remains to observe that by Lemma 1 we have
𝐿̄(Λ) 6 𝑛̄0(Λ) = 𝜏 . The proof is complete.

In conclusion we note that according to Remark 1 to Lemma 1, a measurable sequence
Λ always satisfies the identity 𝑛̄(Λ) = 𝑛̄0(Λ). The opposite is wrong. Let us provide the
corresponding example. Let 0 < 𝑅𝑘 → ∞, 𝑘 → ∞, and 𝑅𝑘+1/𝑅𝑘 → ∞, 𝑘 → ∞. We define
Λ =

⋃︀
𝑘∈N Λ𝑘, where Λ𝑘 is the set of all natural numbers in the segment (𝑅2𝑘;𝑅2𝑘+1), 𝑘 ∈ N,

the multiplicty of each number is equal to one. By the choice of the numbers 𝑅𝑘 we have:

𝑛̄(Λ) = lim
𝑡→+∞

𝑛(𝑡,Λ)

𝑡
> lim

𝑘→∞

𝑛(𝑅2𝑘+1,Λ)

𝑅2𝑘+1

> lim
𝑘→∞

𝑅2𝑘+1 −𝑅2𝑘

𝑅2𝑘+1

= 1.
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Let 𝛿 ∈ (0; 1). Then

𝑛̄0(Λ, 𝛿) = lim
𝑘→∞

𝑛(𝑅2𝑘+1,Λ) − 𝑛(𝑅2𝑘+1(1 − 𝛿),Λ)

𝛿𝑅2𝑘+1

= lim
𝑘→∞

𝛿𝑅2𝑘+1

𝛿𝑅2𝑘+1

= 1.

By Lemma 1 this implies: 𝑛̄0(Λ) = 𝑛̄(Λ). At the same time, we have

𝑛(Λ) = lim
𝑘→∞

𝑛(𝑅2𝑘,Λ)

𝑅2𝑘

6 lim
𝑘→∞

𝑅2𝑘−1

𝑅2𝑘

= 0.

Thus, 𝑛(Λ) < 𝑛̄(Λ), that is, the sequence Λ has no density.
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