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ADIABATIC APPROXIMATION IN

A RESONANCE CAPTURE PROBLEM

L.A. KALYAKIN

Abstract. By means of the averaging method, we analyze two model problems on
capture into resonance that leads us to the adiabatic approximation in the leading term in
the asymptotics. The main aim is an approximate (by using a small parameter) description
of the domain of capture into resonance. This domain is in the phase plane and it is formed
by the initial points for the resonance solutions with an unboundedly increasing energy. The
capture domain depends on an additional parameter involved in the equation. We show
that the adiabatic approximation fails as the capture domain becomes narrow. In this case
we have to modify substantially the averaging method. As a result, a system of nonlinear
differential equations arises for the leading term in the asymptotics and this system is not
always integrable.
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adiabatic approximation.
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1. Introduction

The opinion on an exceptional efficiency of mathematical methods in scientific studies is
current and makes an impression of an all-powerfull mathematics. A wide use of computers
encourages the spreading of this myth. Meanwhile, in applied studies, the limited possibility of
mathematical approach often arises. The arising problems are usually explained by disadvan-
tages in the employed models, either by excessive complicacy or by excessive simplicity. The
efficiency of the mathematics in applications is mostly based on the art of simplifying compli-
cated models to a reasonable level. In the most clear way this is reflected in problems posed
in the form of differential equations. original complicated equations are replaced by equations
more simple and admissible for an analytic and numerical analysis. An accurate mathematical
formalization of simplification is made by involving the notion of asymptotic approximation
[1], [2]. Such approach is not always simple. The difficulties one has to overcome are related
with non-uniformness of the asymptotics [3]. Sometimes, the provided asymptotic formulae
are not applicable in one or another domain. For instance, in the trivial example exp(−𝑥

𝜀
) the

asymptotic approximation exp(−𝑥
𝜀
) ≈ 0 as 𝜀→ 0 is apriori not applicable in the sector 𝑥

𝜀
6 1.

The non-uniformities in asymptotic expansion arise for the functions of several variables and
usually indicate the presence of essentially singular points.

While studying the solutions to differential equations, the expansions in a small parameter
are widely used. Since apart of the parameter, the solution depends on at least on indepen-
dent variable, in such problems one often faces with the problem of non-uniform expansions.
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Various methods based on the idea of the many scales were developed for constructing uniform
asymptotic expansions [3]–[5]. At that, the most part of the researchers prefer to deal with
expansions in one scalar parameter. The presence of more independent parameters leads one to
additional problems with the uniformity, which are seldom discussed. However, this direction
of the studying is interesting for applications and contains new mathematical problems, see,
for instance, [6].

In this problem we analyze the problem on capture into resonance under the presence of
two parameters in the original equations. The expansion in one of the parameters create an
illusion that the other parameter is inessential. The invalidation of such illusion is shown by
two examples.

1.1. Formulation of the problem. While analyzing resonance effects in dynamical sys-
tems, one of the targets is the domain of the capture into the resonance, which is the initial
points for the resonance trajectories. For nonlinear systems this set, as a rule, does not coincide
with the entire phase space. A character example is provided by the system of two equations

𝑑𝜌

𝑑𝑡
= 𝛼 sin𝜙,

𝑑𝜙

𝑑𝑡
= 𝜆− 𝜌, 𝑡 > 0. (1)

In asymptotic constructions giving rise to these equation, the functions 𝜌(𝑡) and 𝜙(𝑡) are in-
terpreted as a corrector for the energy and the phase shift of fast oscillations. The resonance
solutions are identified with an unboundedly increasing function 𝜌(𝑡) and a bounded phase
𝜙(𝑡). Such solutions can exist for several parameters, say, as 𝜆 = 𝜇𝑡, 𝜇, 𝛼 = const > 0 [7]. In
a more general case 𝜆 = 𝜆0 + 𝜇𝑡, the constant 𝜆0 is excluded by a shift in the variable 𝜌. The
differences between resonance and non-resonance solutions are shown in Figure 1.

Figure 1. Numerical solution of equation (1). The parameters are 𝜇 = 0.02,
𝛼 = 0.2. The left trajectory is of the non-resonance solution with the initial point
(−2.2, 0). The right trajectory is of the resonance solution with the initial point
(−2, 0)

The capture domain for the case 𝜆 = 𝜇𝑡 is given in the phase plane with the Cartesian
coordinates (𝜙, 𝜌), see Figure 2. This set is described by inequalities (6), see Section 2. In view
of the relations in (6), we see that as 𝜇 → 0, the capture domain is extended to the maximal
possible one bounded by the separatrices of the mathematical pendulum. And as 𝛼 → 0, this
domain becomes smaller and disappears at all as |𝛼| < |𝜇|. Such result is possible thanks to
the integrability of the system as 𝜆 = 𝜇𝑡.
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Figure 2. The domain of the capture into resonance as 𝜆 = 𝜇𝑡, 𝜇 =
√
3
2

, 𝛼 = 1

However, such explicit description of the capture domain is not always possible. A less trivial
example is given by the system of main resonance equations:

𝑑𝑟

𝑑𝑡
= 𝛼 cos𝜓, 𝑟

[︁𝑑𝜓
𝑑𝑡

+ 𝑟2 − 𝜆
]︁

= −𝛼 sin𝜓, 𝑡 > 0. (2)

Here the variables 𝑟, 𝜓 are interpreted as the amplitude and the angle in polar coordinates in
the plane. In the case 𝜆 = 𝜆0 + 𝜇𝑡, 𝛼, 𝜇, 𝜆0 = const > 0, the existence of resonance solutions
can be proved by studying the asymptotics of the solutions at infinity. For the amplitude
unboundedly growing in the leading term, we obtain 𝑟(𝑡) =

√
𝜇𝑡+ 𝒪(1), 𝑡 → ∞. There exists

a two-parametric family of such solutions [8]. However, we fail to identify the corresponding
set of the initial data [9]. The situation becomes also worse because of the presence of a two-
parametric solution of non-resonance solutions with a bounded amplitude. The impossibility of
analytic description of the capture domain is explained sometimes by the non-integrability of
the system (2), more precisely, by the absence of the connection formulae known, for instance,
the Painlevé equations.

We note that in the above examples the growth of the amplitude is due to the non-autonomy
of the equations. As 𝜆 = const, each of the systems has a first integral and all solutions
are bounded in the component 𝜌(𝑡) or 𝑟(𝑡). The integrability of the “frozen” problem can
be employed for studying the capture domain in the particular case of a weak non-autonomy
when 𝜆 = 𝜆0 + 𝜇𝑡 and the factor 𝜇 is small. The corresponding approaches are based on
constructing the asymptotics in the small parameter 𝜇 → 0 and are usually related with the
notion “adiabatic approximation” [5]. However, in the asymptotic constructions in a small
parameter, there always rises the problem on uniformity in other parameters involved in the
equation. In the considered systems the problems arise as |𝛼| ≪ 1. For instance, in the first
example the condition necessary for the existence of the capture domain imposes the restriction
|𝜇/𝛼| 6 1, which means that 𝛼 can not be too small.

The above examples looks rather simple. In these examples, the parameter 𝛼 can be excluded
by a scale transform reducing the examples to the case 𝛼 = 1. It is clear that a new combination
arises instead of 𝜇. For instance, in the first example there arises the quotient 𝜇/𝛼. In this case
the adiabatic approximation makes sense only as 𝜇/𝛼 → 0.

In more complicated examples, it is impossible to get rid of additional parameters in such
simple way. As an example, the following system of two differential equations serve:

𝛾
𝑑𝛾

𝑑𝑡
= 𝜕𝜓𝑍(𝛾, 𝜓), 𝛾

𝑑𝜓

𝑑𝑡
= −𝜕𝛾𝑍(𝛾, 𝜓), 𝑡 > 0, (3)
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defined by the function

𝑍(𝛾, 𝜓) ≡ 1

2
(𝛾 − 𝜆)2 + 𝛼

√︀
𝛾2 + 2𝑏𝛾 − 𝑑 sin𝜓. (4)

Here 𝑏, 𝑑 > 0 are fixed constants. The positive zero of the radicand in 𝛾0 =
√
𝑏2 + 𝑑 − 𝑏

determines the boundary of the domain 𝐷 = {𝛾 > 𝛾0, 𝜓 ∈ R1}, in which the problem
is considered. The equations of form (3), (4) rise while describing the motion of a charged
particle in the field of a plane electromagnetic wave running in the direction of a homogeneous
magnetic field [10, Sect. 17], see also[11].

If 𝜆 = const, system (3) is integrable and on each solution the component 𝛾(𝑡) is bounded. In
the non-autonomous case with 𝜆 = 𝜆0 + 𝜇𝑡 system (3) is not integrable. In the case of a weak
non-autonomy with |𝜇| ≪ 1, there arise solutions with an unboundedly growing component
𝛾(𝑡) [12]. However, now 𝛼 is not excluded by scale transformation and it remains unclear what
problem rise in the adiabatic approximation because of this additional parameter.

One should bear in mind that in the known works devoted to the analysis of system (3) the
adiabatic approximation was not used at all. For instance, the construction proposed in [13],
[14] does not correspond to the adiabatic approximation. At first glance, the ignoring of the
adiabatic approximation for a weakly non-autonomous system looks strange and moreover, this
leads to more complicated asymptotic constructions. Nevertheless, such ignoring was also in
similar situations [9], [15].

In the present work we find out the relations for the parameters of the original system, under
which the adiabatic approximation turns out to be ineligible for describing the domain of the
capture into the resonance. The ineligibility is found for a small coefficient 𝛼 and it is reflected
in a narrow capture domain, which collapses into a line as 𝛼 → 0. This phenomenon has no
relation with the dynamical bifurcation saddle-center, which is often discussed in relation with
the problem on capture into the resonance, see, for instance, [15]–[17]. The principal difference
is that the collapsing of the capture domain corresponds to the bifurcation to a slipping line
consisting of the equilibrium points.

2. Example of a shifted pendulum

In order to clarify the role of the parameter 𝛼 in the adiabatic approximation, it is useful to
analyse a problem with a known explicit solution. As such problem, we consider the simplest
nonlinear weakly non-autonomous problem (1). In this system, the small parameter 0 < 𝜇≪ 1
is involved in the coefficient 𝜆 = 𝜇 𝑡. The differential equations are completed by the initial
conditions

𝜌|𝑡=0 = 𝜌0, 𝜙|𝑡=0 = 𝜙0.

We need the following.
1. Find conditions, under which there exist exact solutions with an unboundedly growing
component 𝜌(𝑡), that is, to determine the exact domain of the capture into resonance.
2. Obtain an approximate description of the capture domain on the base of adiabatic approxi-
mation with the small parameter 𝜇.
3. Find the restrictions for the parameter 𝛼, under which the adiabatic approximation become
ineligible for describing the capture domain.

2.1. Exact solution. In the case 𝜆 = 𝜇 𝑡 system (1) with reduced to the equation of the
mathematical pendulum with a constant torsional moment (shifted pendulum equation)

𝑑2𝜙

𝑑𝑡2
= 𝜇− 𝛼 sin𝜙 (5)
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well-known in the problems on the capture into resonance [5], [7]. The equation is integrable
since there exists a first integral

�̇�2

2
− 𝜇𝜙− 𝛼 cos𝜙 = const.

The information on possible solutions can be found in the phase portrait in the Cartesian
coordinates (𝜙, �̇�).

Figure 3. Phase portrait of the equation of the mathematical pendulum with
a torsional moment. In the left: |𝜇/𝛼| > 1, in the right: |𝜇/𝛼| < 1

If |𝜇/𝛼| > 1, equation (5) has no stationary points and all trajectories go to infinity, see
Figure 3. Such solutions with an unboundedly increasing component 𝜓(𝑡) = 𝜇𝑡2[1

2
+ 𝒪(𝑡−1)],

𝑡→ ∞, correspond to the slipping. The second component 𝜌(𝑡) is bounded for such solutions.
If |𝜇/𝛼| < 1, equation (5) has stationary points of saddle and center type. The separatrix loop

envelopes the center and forms the boundary of the domain, inside which the phase trajectories
are closed and are associated with periodic solutions with a bounded phase 𝜓(𝑡), see the right
part of Figure 3. Apart this, there are many solutions with slipping (an unbounded growth) of
the phase.

These results obtained for equation (5) allow one to solve completely the issue on resonance
solutions in system (1). Such solutions exist only under the condition |𝜇/𝛼| 6 1. Their
initial values (𝜙0, 𝜌0) are either inside the separatrix loop or lie on the separatrices coming to
the saddle. The component 𝜙(𝑡) of such solutions is bounded, while according to the second
equation in (1), 𝜌(𝑡) grows:

𝜌(𝑡) = 𝜆(𝑡) − �̇�(𝑡) = 𝜇𝑡+ 𝒪(1), 𝑡→ ∞.

The analytic description of the original capture domain (the set of initial data (𝜙0, 𝜌0)) is given
by the formulae:

− 𝛼 cos𝜙𝑐 − 𝜇𝜙𝑐 6
1

2
𝜌20 − 𝛼 cos𝜙0 − 𝜇𝜙0 6 −𝛼 cos𝜙𝑠 − 𝜇𝜙𝑠. (6)

Here 𝜙𝑐, 𝜙𝑠 are the coordinates of the stationary points of center and saddle type determined
by the equation sin𝜙 = 𝜇/𝛼 with the conditions 0 < 𝜙𝑐 < 𝜙𝑠 < 𝜋. Because of 2𝜋–periodicity
in 𝜙, we consider one loop in the phase plane.

As 𝜇 → 0, the limiting position of the capture domain is a cell bounded by the separatrices
of the pendulum:

− 𝛼 6
1

2
𝜌20 − 𝛼 cos𝜙0 6 𝛼. (7)
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This domain can be employed as the approximation of the exact capture domain for small
𝜇 ≪ 1. However, such approximation is not uniform in 𝛼. For small 𝛼 ≈ 𝜇 ≪ 1, cell (7) can
not be employed for approximate description of the capture domain because of large errors.
For instance, as 𝛼 < 𝜇, there are no resonance solutions at all, while cell (7) has a non-zero
area of order 𝒪(

√
𝛼), 𝛼 → 0.

The reason of the non-uniformity can be found out by a scale transformation. Under the
change 𝜌 =

√
𝛼𝜌, 𝑡 = 𝑡/

√
𝛼 we obtain the equation with the coefficients 𝛼 = 1, 𝜆 = (𝜇/𝛼)𝑡. By

this we see that as a small parameter, one should use the quotient 𝜇/𝛼, while as 𝜇 ≈ 𝛼, there
are no small parameters in the problem and it can not be simplified.

In what follows we consider system (1) and we focus the attention on the role of the addi-
tional parameter 𝛼, which can not be removed by such simple transform in more complicated
equations.

2.2. Adiabatic approximation. If the parameter 𝜇 is small, the coefficient 𝜆 = 𝜇 𝑡 varies
slowly. The idea of the adiabatic approximation is to use a solution to the frozen system, in
which 𝜆 is supposed to be constant. Frozen system (1) possesses the first integral

𝐻(𝜌, 𝜙;𝜆) ≡ (𝜌− 𝜆)2

2
− 𝛼 cos𝜙 = 𝐸 = const

and is reduced to the pendulum equation by a shift in 𝜌. The solution can be written out:

𝜌 = 𝜆+ 𝜌(𝑡, 𝐸), 𝜙 = 𝜙(𝑡, 𝐸).

Here 𝜌, 𝜙 is the solution to the pendulum equations with the first integral being equal to

𝜌2

2
− 𝛼 cos𝜙 = 𝐸.

In what follows we employ the family of periodic solutions (for the energies −𝛼 < 𝐸 < 𝛼). Their
frequency 𝜔 = 𝜔(𝐸) depends on 𝐸. In terms of these functions we write out an approximate
solution for the “unfrozen” problem with 𝜆 = 𝜇 𝑡.

In the formal constructions, it is convenient to employ functions with a fixed period:

𝑅(𝑆,𝐸) = 𝜌

(︂
𝑆

𝜔
,𝐸

)︂
, Φ(𝑆,𝐸) = 𝜙

(︂
𝑆

𝜔
,𝐸

)︂
.

By the pendulum equation, these functions satisfy the following identities in the variables 𝑆,
𝐸:

𝜔𝜕𝑠𝑅 = 𝛼 sin Φ, 𝜔𝜕𝑠Φ = −𝑅, 𝑅2

2
−𝛼 cos Φ = 𝐸, 𝑅𝜕𝐸𝑅+𝛼 sin Φ 𝜕𝐸Φ = 1, for all 𝑆,𝐸.

In the original problem with the varying coefficient 𝜆 = 𝜆(𝑡) we make the change of variables
by the formulae

𝜌(𝑡) = 𝜆(𝑡) +𝑅(𝑆(𝑡), 𝐸(𝑡)), 𝜙(𝑡) = Φ(𝑆(𝑡), 𝐸(𝑡)).

For the new unknown functions 𝑆(𝑡), 𝐸(𝑡) we obtain the equations

𝑑𝑆

𝑑𝑡
= 𝜔(𝐸) − 𝜆′(𝑡)𝜔(𝐸)𝜕𝐸Φ(𝑆,𝐸),

𝑑𝐸

𝑑𝑡
= 𝜆′(𝑡)𝜔(𝐸)𝜕𝑆Φ(𝑆,𝐸).

If the coefficient 𝜆(𝑡) varies slowly so that 𝜆′(𝑡) = 𝒪(𝜇), 𝜇 → 0, then the leading terms of
the asymptotics depend on the slow time:

𝐸 = 𝐸0(𝜏) + 𝒪(𝜇), 𝑆 = 𝜇−1𝑆0(𝜏) + 𝒪(1), 𝜇→ 0, 𝜏 = 𝜇𝑡.
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They are determined by the averaged equations

𝑑𝐸0

𝑑𝜏
= 0,

𝑑𝑆0

𝑑𝜏
= 𝜔(𝐸0).

Thus, in the leading term of the asymptotics, the function 𝐸(𝑡) = const+𝒪(𝜇) remains constant
(is an adiabatic invariant) for the times 0 < 𝜏 < 𝒪(1) or in the fast scale 0 < 𝑡 < 𝒪(𝜇−1).

In the adiabatic approximation, the solution is described in terms of the solution to the
pendulum by the formulae:

𝜌(𝑡) = 𝜆(𝑡) + 𝜌(𝑡, 𝐸0) + 𝒪(𝜇), 𝜙 = 𝜙(𝑡+ 𝒪(1), 𝐸0) + 𝒪(𝜇), 𝜇→ 0, 0 < 𝑡 < 𝒪(𝜇−1).

As 𝜆 = 𝜇𝑡, the approximate solutions have the ampltiude 𝜌 = 𝜇𝑡+𝜌(𝑡, 𝐸)+𝒪(𝜇) slowly growing
in time 𝜌 = 𝜇𝑡 + 𝒪(1), 𝑡 → ∞. The initial data, under which the functions 𝜌, 𝜙 are bounded,
correspond to the separatrix cell of the pendulum (7).

These formulae can make an impression that cell (7) is the domain of capture into resonance.
However, while comparing it with the exact capture domain, we see that from the points near
its boundary, non-resonance solutions with the slipping phase start. The numerical solutions
to equations (1) is given in Figure 1. In the left, the solution with the initial point (−2.2, 0)
in the approximate capture domain is given, it turns out to be non-resonance. In the right, we
provide the resonance solution with the initial point (−2, 0) in the exact capture domain.

The differences between the domains are presented in Figures 4 and 5. The difference between
exact (6) and approximate (7) domains is of order 𝒪(

√
𝜇) as 𝜇 → 0 provided we fix 𝛼 ̸= 0. If

both 𝜇 → 0 and 𝛼 → 0, then the width of the exact and approximate capture domains shrink
and the width is of order 𝒪(

√
𝛼). At the same time, the exact capture domain shifts and the

error in the phase turns out to be of order one if 𝛼 = 𝒪(𝜇).
As it was mentioned above, the proper small parameter is the quotient 𝜇/𝛼 and the difference

between the capture domains is of order 𝒪
(︁√︀

𝜇/𝛼
)︁

. Let us provide more precise results on

this.

2.3. Error of capture domain in the adiabatic approximation. The stationary saddle
point 𝜙𝑠 of the original exact equation (5) is determined by the equation

sin𝜙 =
𝜇

𝛼
.

The main term of its asymptotics is equal to 𝜋 and its determined the distance to the saddle
point of the pendulum:

𝜋 − 𝜙𝑠 =
𝜇

𝛼
+ 𝒪

(︂(︁𝜇
𝑎

)︁2
)︂
,

𝜇

𝛼
→ 0.

The separatrix trajectory for equation (5) (as �̇� = 𝜌) satisfies the relation

1

2
𝜌2 − 𝛼 cos𝜙− 𝜇𝜙 = −𝛼 cos𝜙𝑠 − 𝜇𝜙𝑠 = 𝛼− 𝜇𝜋 + 𝜇𝒪

(︁𝜇
𝑎

)︁
,

𝜇

𝛼
→ 0,

which determines the exact boundary of the capture domain 𝜌 = 𝜌𝑒𝑥(𝜙). The asymptotic
description of these two branches of the boundary is given by the formula

𝜌𝑒𝑥 = ±
√
𝛼

[︃√︀
2(cos𝜙+ 1) +

𝜇

𝛼

𝜙− 𝜋

2
√︀

2(cos𝜙+ 1)
+ 𝒪

(︂(︁𝜇
𝛼

)︁2
)︂]︃

,
𝜇

𝛼
→ 0.

The equation of the boundary of the approximate capture domain 𝜌 = 𝜌𝑎𝑠(𝜙) corresponds to
the separatrices of the pendulum

𝜌𝑎𝑠 = ±
√
𝛼
√︀

2(cos𝜙+ 1).
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The difference of these functions describes the “vertical gap” between the boundaries. For this
gap we write the asymptotics:

|𝜌𝑎𝑠(𝜙) − 𝜌𝑒𝑥(𝜙)| =
√
𝛼

[︃
𝜇

𝛼

𝜋 − 𝜙

2
√︀

2(cos𝜙+ 1)
+ 𝒪

(︂(︁𝜇
𝛼

)︁2
)︂]︃

,
𝜇

𝛼
→ 0,

on the segment 𝜙0 < 𝜙 < 𝜙𝑠, where the separatrix loop of the original system is defined.
The left end-point 𝜙 = 𝜙0 of this segment is the intersection point of the separatrix loop and

the axis 𝜌 = 0. It is defined by the equation

−𝛼 cos𝜙− 𝜇𝜙 = −𝛼 cos𝜙𝑠 − 𝜇𝜙𝑠 = 𝛼− 𝜇𝜋 + 𝜇𝒪
(︁𝜇
𝛼

)︁
,

𝜇

𝛼
→ 0,

and its asymptotics determines the distance to −𝜋 (the left saddle point of the pendulum)

𝜋 + 𝜙0 =

√︂
𝜇

𝛼
2
√
𝜋 + 𝒪

(︁𝜇
𝛼

)︁
,

𝜇

𝛼
→ 0.

Thus, on the most part of the segment 𝜙0 < 𝜙 < 𝜙𝑠 the distance between the boundaries is
estimates by 𝒪 (𝜇/𝛼), 𝜇/𝛼 → 0. However, in the vicinity of the turning point (𝜌 = 0, 𝜙 = 𝜙0)
of the separatrix, the distance increases to 𝒪

(︀√︀
𝜇
𝛼

)︀
, Figures 4, 5. This result corresponds to

the known estimate for the applicability domain of the averaging method [18].

Figure 4. Separatrices of the pendulum (dashed line) border the domain of
the capture into resonance in the adiabatic approximation. The separatrix loop
(solid line) borders the exact domain of the capture into resonance. For the fixed
𝛼 = 1 the difference depends on the parameter 𝜇. The left figure corresponds to
𝜇 = 0.5; the right one does to 𝜇 = 0.1.

The discussed asymptotic formulae make sense as 𝜇/𝛼 → 0. If both parameters are of the
same order, 𝜇/𝛼 ≈ 1, then the discussion on closeness of the capture domains become wrong.
Although both domains become narrow, 𝜌2 6 𝛼, but there is a large change in the phase 𝜓
because of the shift of the point

𝜙0 = −𝜋 + 𝒪
(︂√︂

𝜇

𝛼

)︂
.

The exact capture domain disappears at all as 𝛼 < 𝜇.

Conclusion. The adiabatic approximation is not applicable for describing the capture do-
main for small amplitude 𝛼 ≈ 𝜇.
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Figure 5. Separatrices of the pendulum (dashed line) border the domain of
the capture into resonance in the adiabatic approximation. The separatrix loop
(solid line) borders the exact domain of the capture into resonance. For small
𝑎, 𝜇 the difference depends on the quotient 𝜇/𝛼. The left figure corresponds to
𝜇 = 0.1, 𝛼 = 0.2; the right one does to 𝜇 = 0.02, 𝛼 = 0.2. This figure is in the
same scale shrinking of as Figure 4.

In the considered example the non-integrability of original non-autonomous system (1) plays
the crucial role for an exhausting analysis of the problem. This property allows us to describe
the exact capture domain and compare it with the result of the asymptotic approximation.

3. Main resonance system

One more rather simple example is given by the known main resonance system (2). The
coefficient 𝜆 = 𝜆0 + 𝜇𝑡 is supposed to depend on the slow time, that is, 0 < 𝜇≪ 1 is regarded
as a small parameter. Moreover, the positive coefficient 𝛼 > 0 can be also small. The studied
issue is on resonance solutions with an unboundedly growing amplitude 𝑟(𝑡). The main aim is
as follows: to find out the ineligibility of the adiabatic approximation for small 𝛼 in the problem
on determining the capture domain.

The constant 𝜆0 = const > 0 is taken fixed and positive. Without loss of generality we can
assume that 𝜆0 = 1 since the equations are reduced to this case by the renormalization of the

variables 𝑟 = 𝑟
√
𝜆0, 𝑡 = 𝑡/𝜆0 and other coefficients 𝛼 = �̃�𝜆

3/2
0 , 𝜇 = �̃�/𝜆20. In what follows we

omit the tilde.
The problem with 𝜆 = 1 + 𝜇𝑡 allows us to reduce a little the bulkiness of the formulae

and clarify better the role of the remaining pair of the parameters 𝜇, 𝛼. For equation (2),
the existence of the two-parametric family of resonance solutions with an unboundedly growing
amplitude 𝑟(𝑡) is known [8]. However, the set of the initial points for such solutions, the domain
of the capture into resonance, remains unknown.

3.1. Frozen system. The autonomous (frozen) system with 𝜆 = const has the first integral

𝐽(𝑟, 𝜓) ≡ 1

4
𝑟4 − 1

2
𝜆𝑟2 + 𝛼 𝑟 sin𝜓 = const.

The structure of the phase portrait (the level lines of the first integral) depends on the param-
eters 𝛼, 𝜆, see Figure 6. No resonance solutions exist in the autonomous system.

3.2. Adiabatic approximation. If the parameter 𝜇 is small, the adiabatic approximation
is possible. It is based on the solution of the frozen system. The asymptotic construction is
made by the averaging method similar to the previous examples; the details are given in work



70 L.A. KALYAKIN

[19]. Under this approximation, a part of the capture domain can be identified. It is bordered
by the separatrices loops taken in the phase portrait for the initial value of 𝜆; in the considered
case this is 𝜆 = 1. The capture domain determined in this way (more precisely, its determined
part) depends on the parameter 𝛼. In Figure 7 we provide examples for various 𝛼. Here we do
not discuss the capture intro resonance from the set of the points located outside the separatrix
loop, which is described in probability terms [18].

Figure 6. Phase portrait of the frozen main resonance system depends on the
parameters 𝛼 and 𝜆.

Figure 7. The domain of the capture into resonance for the main resonance
system in the adiabatic approximation is found by the phase portrait for the
initial value of 𝜆. This domain shrinks as the parameter 𝛼 becomes smaller.

Under the variation of the coefficient 𝜆, the phase portrait is deformed. In particular, the
separatrices loops goes to infinity as 𝜆 grows. At the same time, the closed trajectories corre-
sponding to the periodic solutions of the frozen sytstem are shifted. The exact trajectories for
the unfrozen system look like spirals. They are approximately described by means of the ave-
raged system. The area enveloped by such approximated trajectory is constant in the leading
term of the asymptotics in the small parameter 𝜇 → 0. In this case the area is an adiabatic
invariant and the corresponding approximation is called adiabatic. Since the area between the
separatrices grows as 𝜆 does, the trajectories starting from the capture domain slowly goes to
the infinity. This phenomenon is identified as the capture into the resonance.

However, one should keep in mind that such approximation does not always corresponds to
an exact solution. The solutions starting near the boundary of the mentioned approximated



ADIABATIC APPROXIMATION IN A RESONANCE CAPTURE PROBLEM 71

capture domain can turn out to be non-resonance. The width of such boundary strip is esti-
mated as 𝒪(

√
𝜇| ln𝜇|) as 𝜇 → 0, [18]. This means that the capture into resonance is ensured

by a narrower domain in comparison with that between the separatrices. Moreover, the de-
scription of the capture domain in the adiabatic approximation can turn out to be wrong at all
if the distance between the separatrices is too small. Exactly such phenomenon is observed for
small 𝛼. Here the matter is not in the estimates for the error, which can be rough. Numeri-
cal experiments show that the trajectories starting from a narrow capture domain are mostly
non-resonance. The estimates of the width of the boundary strip, for which the capture into
resonance is not ensured, are known in terms of the adiabatic parameter 𝜇 [18]. In that fol-
lows we provide the estimates of the width of the capture domain in terms of the parameter
𝛼. All this allows us to formulate restrictions for the pair of the parameters 𝛼, 𝜇 ensuring
that the boundary strip covers the entire domain and the capture into resonance between the
separatrices is not guaranteed.

Theorem 1. As 𝜆 = 1, the distance between the separatrices has the asymptotics

2
√
𝛼 [1 + 𝒪(𝛼)] as 𝛼 → 0. (8)

Proof. The stationary points of the system are located on the rays of the angle 𝜓 = ±𝜋
2
. Their

radius-coordinates are determined by the equations 𝑟3 − 𝑟 ± 𝛼 = 0. This implies easily the
asymptotics for the radius-coordinates of the saddle 𝑟+(𝛼) in the upper half-plane and the
center 𝑟−(𝛼) in the lower half-plane

𝑟±(𝛼) = 1 ∓ 𝛼

2
+ 𝒪(𝛼2), 𝛼→ 0.

For the values of the first integral 𝐽± at these points we obtain the relation

𝐽± = 𝐽(𝑟±,±𝜋/2) =
1

4
𝑟±[𝑟3± − 2𝑟± ∓ 4𝛼] =

1

4
𝑟±[±3𝛼− 𝑟±],

and for the difference we get the asymptotics

𝐽+ − 𝐽− = −1

4
[(𝑟+ + 𝑟−)3𝛼 + 𝑟2+ − 𝑟2−] = 𝛼 + 𝒪(𝛼2).

We consider the equation for the separatrices 𝐽(𝑟, 𝜓) = 𝐽+ on the ray 𝜓 = −𝜋
2

and employ
the Taylor expansion at the stationary point 𝑟−:

𝐽− +
1

2
𝐽𝑟𝑟

(︁
𝑟−,−

𝜋

2

)︁
(𝑟 − 𝑟−)2 + 𝒪(𝑟 − 𝑟−)3 = 𝐽+.

Since

𝐽𝑟𝑟

(︁
𝑟−,−

𝜋

2

)︁
= 3𝑟2− − 1 = 2 + 𝒪(𝛼),

we obtain

(𝑟 − 𝑟−)2[1 + 𝒪(𝛼)] + 𝒪(𝑟 − 𝑟−)3 = 𝐽+ − 𝐽− = 𝛼 + 𝒪(𝛼2).

Therefore, the distance from the center to the separatrix is |𝑟 − 𝑟−| =
√
𝛼[1 + 𝒪(𝛼)]. This

implies the asymptotic estimate for the distance between the separatrices.
In the same way we estimate the distance over other rays. At the same time, the monotonicity

of the distance between the separatrices in the angle is seen in the phase portrait.

Corollary 1. If the parameter 𝛼 is not too small, 𝛼 ≫ 𝒪(𝜇| ln𝜇|), 𝜇→ 0, then the method
of adiabatic approximation in the small parameter 𝜇 → 0 is applicable for system (2). The
boundaries of the capture domain are approximately described by the separatrices of the frozen
system as 𝑡 = 0 [18].
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Corollary 2. If the parameter 𝛼 is too small, 𝛼 6 𝒪(𝜇), 𝜇 → 0, then the method of the
adiabatic approximation in the small parameter 𝜇→ 0 is not applicable and the capture domain
is not determined by the separatrices of the frozen system.

These corollaries are implied by the estimate of the width of the boundary strip by 𝒪(𝜇| ln𝜇|)
and by estimate (8).

3.3. Approximation by the shifted pendulum. It follows from estimate (8) that the
capture domain shrinks as 𝛼 becomes smaller. This effect exactly corresponds to what was
demonstrated in the previous example. In that simpler problem we knew the location of the
capture domain. The error of the adiabatic approximation was found by the comparison. This
estimate turned out to be large if the parameter 𝛼 is small, for instance, as 𝛼 = 𝒪(𝜇). Moreover,
we found out that as 𝛼 = 𝒪(𝜇), by a scale transform the original system is reduced to equations
(1) with 𝛼 = 1, 𝜇 = 𝒪(1) (or, the same, to shifted pendulum (5)) with no small parameters.
The exact capture domain was bounded by the separatrix loop of such system.

System (2) considered here is more complicated and we can not exclude the parameter by
a scale transform. However, such procedure can be done in the asymptotic approximation. In
this way, in the leading term of the asymptotics the same shifted pendulum (5) rises, which
in the case 𝛼 = 𝒪(𝜇) involves not small parameters. The separatrix loop for such system
determines the location of the capture domain in the asymptotic approximation as 𝛼 ≈ 𝜇→ 0.

Theorem 2. If the small parameters 𝛼, 𝜇 obey the relation 𝒪(𝜇) 6 𝛼 ≪ 1, then the capture
domain is narrow of order 𝒪(

√
𝛼). Its boundary is approximately described by the separatrix

loop of the shifted pendulum corresponding to the system

𝑑𝜌

𝑑𝜏
= sin𝜓,

𝑑𝜓

𝑑𝜏
= 𝜈𝜏 − 𝜌, 𝜏 > 0, (9)

with the coefficient 𝜈 = 𝜇/2𝛼 and 𝜏 =
√

2𝛼 𝑡.

Proof. If the parameter 𝛼 ≪ 1 is small, at the initial moment, the separatrices of frozen system
(2) are located near the circumference 𝑟 = 1. This is an attempt to specify the location of
narrow (for small 𝛼) capture domain near this line looks natural. In order to do it, we make a
shift and a scale transform of the amplitude

𝑟(𝑡) = 1 +

√︂
𝛼

2
𝜌(𝜏), 𝜓 = 𝜙− 𝜋

2
, 𝜏 =

√
2𝛼 𝑡.

After such change we obtain system

𝑑𝜌

𝑑𝜏
= sin𝜓,

𝑑𝜙

𝑑𝜏
+ 𝜌− 𝜈𝜏 =

√
𝛼
[︁ 1√

2 +
√
𝛼 𝜌

cos𝜓 − 1

2
√

2
𝜌2
]︁
, 𝜏 > 0,

with the coefficient 𝜈 = 𝜇
2
𝛼. After that we pose the problem on finding a solution with an

unboundedly growing function 𝜌(𝜏). The problem is solved by the asymptotic approximation
in the parameter 𝛼 → 0 under the condition that the second parameter 𝜈 6 const < ∞ is not
large. For the leading terms of the asymptotics

𝜌(𝜏) = 𝜌0(𝜏) + 𝒪(
√
𝑎), 𝜙(𝜏) = 𝜙0(𝜏) + 𝒪(

√
𝑎)

we obtain the system (9), which is reduced to shifted pendulum (5). The separatrix loop in
the phase portrait of this equation exists as |𝜈| < 1 and describes the capture domain in this
approximation. It is obvious that as |𝛼| < 𝜇

2
, such domain does not exist.

If the parameter 𝛼 is not too small, |𝛼| ≫ 𝜇, then in the equation of the shifted pendulum the
parameter 𝜈 turns out to be small. Here again the adiabatic approximation as 𝜈 → 0 is possible.
The obtained in this way capture domain coincides with the cell bounded by the separatrices
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Figure 8. Differences in determining the capture domain between the adiabatic
approximation (dashed line) and the approximation by the shifted pendulum
(solid line) for small 𝛼 ≈ 𝜇≪ 1. The result is similar to Figure 5.

of the pendulum. Taking into consideration the conditions for passing to the shifted pendulum,
we obtain the restrictions 𝜇≪ |𝛼| ≪ 1.

Thus, the plane of the parameters 𝛼, 𝜇 is split into several sectors in the vicinity of the zero.
In each of these sectors, the capture domain is described by different formulae. These formulae
coincide asymptotically in the intersections of the sectors. Moreover, in the intersection we can
write out a separate formula obtained in the adiabatic approximation for system (9). These
results correspond to the ideas in matching of asymptotic expansions [3], which are usually
applied in different domains of independent variables.

3.4. Approximation of main resonance. original system (2) with 𝜆 = 𝜆0+𝜇𝑡 involves one
more parameter 𝜆0. Up to now, this parameter has been assumed to be a fixed positive constant.
However, if this parameter is small or is zero, the above given analysis is not applicable. In
particular, the adiabatic approximation does not determine the capture domain at least since as
𝜆 = 0, the phase portrait contains no separatrices. In this case it is convenient to renormalize
the variables excluding one of the parameters: 𝑡 = 𝛼− 2

3 𝜏 , 𝑟 = 𝛼
1
3𝑅(𝜏). As a result, for new

functions 𝑅, 𝜓(𝜏) we obtain the system

𝑑𝑅

𝑑𝑡
= cos𝜓, 𝑅

[︁𝑑𝜓
𝑑𝑡

+𝑅2 − Λ
]︁

= − sin𝜓, 𝑡 > 0, (10)

with the coefficient Λ = 𝜆0𝛼
− 2

3 + 𝜇𝛼− 4
3 𝜏 .

The parameter 𝜇𝛼− 4
3 ≪ 1 in this coefficient is small and 𝜆0𝛼

− 2
3 6 𝒪(1) is not large, the

adiabatic approximation is possible. The capture domain is approximately determined by
𝜆0𝛼

− 2
3 . This approximation can be ineligible if 𝜆0 is too small.

If the parameter 𝜇𝛼− 4
3 = 𝒪(1) is not small and 𝜆0𝛼

− 2
3 6 𝒪(1) is not large, then the adiabatic

approximation is impossible. In this case complete main resonance system (10) is a model
problem, which can not be further simplified. The capture domain is determined in numerical
experiments.

4. Asymptotic approximation for general system

A similar situation holds for more general equations (3),(4). Here non-autonomous system
is not integrable, too, and there is no information on exact capture domain.
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Figure 9. Phase portrait of frozen system (3), (4)

The analysis of the problem in the adiabatic approximation is based on the first integral for
the frozen system

𝑍(𝛾, 𝜓) ≡ 1

2
(𝛾 − 𝜆)2 + 𝛼

√︀
𝛾2 + 2𝑏𝛾 − 𝑑 sin𝜓 = const.

The phase portrait is similar to main resonance system. The phase trajectories except a pair of
separatrices are closed curs in the plane with polar coordinates 𝜓, 𝛾. The domain of the capture
into resonance is located between the separatrices loops. This domain shrinks as 𝛼 → 0. The
detailed study of a narrow capture domain was provided in [22].

We note that the specifying the location of a narrow capture domain leads one either to
the problem for the shifted pendulum or to the main resonance system [22]. Such results
correspond to the known works by physicists in [13], [14]. They explain the reason why the
adiabatic approximation was ignored in these and other works, for instance, in [20], [21].

5. Conclusion

The problems on capture into resonance can be approximately studied by the averaging
method if the original differential equations involve slowly varying coefficients. In the general
situation this approximation is not uniform w.r.t. other parameters involved in the equation.
The condition of applicability of the used approximation are found out while analyzing the
role of additional parameters. The critical values of the parameters turn out to be those, for
which the approximate capture domain collapses into the line. In the vicinity of such values,
another form of averaging method is employed, which in the leading term of the asymptotics
leads either to the shifted pendulum equation or to the main resonance system. The issue on
how exact is the description of the capture domain in such approach remains open.
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