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REPRESENTATION OF FUNCTIONS IN LOCALLY CONVEX

SUBSPACES OF 𝐴∞(𝐷) BY SERIES OF EXPONENTIALS

K.P. ISAEV, K.V. TROUNOV, R.S. YULMUKHAMETOV

Abstract. Let 𝐷 be a bounded convex domain in the complex plane, ℳ0 = (𝑀𝑛)
∞
𝑛=1 be

a convex sequence of positive numbers satisfying the “non-quasi-analyticity” condition:∑︁
𝑛

𝑀𝑛

𝑀𝑛+1
< ∞,

ℳ𝑘 = (𝑀𝑛+𝑘)
∞
𝑛=1, 𝑘 = 0, 1, 2, 3, . . . be the sequences obtained from the initial ones by

removing first 𝑘 terms. For each sequence ℳ0 = (𝑀𝑛)
∞
𝑛=1 we consider the Banach space

𝐻(ℳ0, 𝐷) of functions analytic in a bounded convex domain 𝐷 with the norm:

‖𝑓‖2 = sup
𝑛

1

𝑀2
𝑛

sup
𝑧∈𝐷

|𝑓 (𝑛)(𝑧)|2.

In the work we study locally convex subspaces in the space of analytic functions in 𝐷
infinitely differentiable in 𝐷 obtained as the inductive limit of the spaces 𝐻(ℳ𝑘, 𝐷). We
prove that for each convex domain there exists a system of exponentials 𝑒𝜆𝑛𝑧, 𝑛 ∈ N, such
that each function in the inductive limit 𝑓 ∈ lim i𝑛𝑑𝐻(ℳ𝑘, 𝐷) := ℋ(ℳ0, 𝐷) is represented
as the series over this system of exponentials and the series converges in the topology of
ℋ(ℳ0, 𝐷). The main tool for constructing the systems of exponentials is entire functions
with a prescribed asymptotic behavior. The characteristic functions 𝐿 with more sharp
asymptotic estimates allow us to represent analytic functions by means of the series of the
exponentials in the spaces with a finer topology. In the work we construct entire functions
with gentle asymptotic estimates. In addition, we obtain lower bounds for the derivatives
of these functions at zeroes.

Keywords: analytic functions, entire functions, subharmonic functions, series of exponen-
tials.
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1. Introduction

In the work we consider subspaces 𝐴 ⊂ 𝐴∞(𝐷) = 𝐻(𝐷)
⋂︀
𝐶∞(𝐷) for a bounded convex

domain 𝐷 in the plane and we are interesting in representing the functions 𝑓 ∈ 𝐴 in these
subspaces by the exponentials series

𝑓(𝑧) =
∞∑︁
𝑛=1

𝑓𝑛𝑒
𝜆𝑛𝑧

converging in the topology of the subspace 𝐴. In the classical theory of exponentials series
exposed in details in monograph [1] by A.F. Leontiev, one the main theorems is the theorem
on representation by exponentials series in 𝐻(𝐷) with the topology of uniform convergence on
compact sets in 𝐷 [1, Thm. 5.3.2]

K.P. Isaev, K.V. Trounov, R.S. Yulmukhametov, Representation of functions in locally
convex subspaces of 𝐴∞(𝐷) by series of exponentials.
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Theorem A. Let 𝐷 be a bounded convex domain. Then there exists a sequence {𝜆𝑛} de-
pending only on the domain 𝐷 such that each function 𝐹 (𝑧) analytic in the domain 𝐷 can be
expanded into the Dirichlet series in 𝐷:

𝐹 (𝑧) =
∞∑︁
𝑛=1

𝑎𝑛𝑒
𝜆𝑛𝑧, 𝑧 ∈ 𝐷.

As the main tool in constructing the exponentials series, entire functions with a prescribed
asymptotic behavior serve. For instance, in the proof of Theorem A, the exponents {𝜆𝑛} are
chosen are simple zeroes of an entire function 𝐿(𝜆) of exponential type and of completely regular
growth with the property: for each 𝜀 > 0,

|𝐿(𝜆)| ≺ 𝑒𝐻𝐷(𝜆)+𝜀|𝜆|, 𝜆 ∈ C, |𝐿′(𝜆𝑛)| ≻ 𝑒𝐻𝐷(𝜆𝑛)−𝜀|𝜆𝑛|, 𝑛 ∈ N. (1)

Here 𝐻𝐷(𝜆) = max𝑧∈𝐷 Re 𝜆𝑧 is the support function of the domain 𝐷. In view of this fact,
convex polygons are in a special place in the theory of representation by exponentials series.
The matter is that in this case the characteristic entire function 𝐿 can be chosen as the quais-
polynomial:

𝐿(𝜆) =
∑︁
𝑗

𝑎𝑗𝑒
𝛾𝑗𝜆, 𝜆 ∈ C,

where 𝛾𝑗 are the vertices of the polygon and required property (1) holds in much more specified
form

|𝐿(𝜆)| ≺ 𝑒𝐻𝐷(𝜆), 𝜆 ∈ C, |𝐿′(𝜆𝑛)| ≻ 𝑒𝐻𝐷(𝜆𝑛), 𝑛 ∈ N. (2)

By means of such entire functions, it was proven in [1, Thm. 4.7.4] that a function analytic
in a polygon 𝐷 and continuous together with its first derivative in 𝐷 can be represented as a
series over the system 𝑒𝜆𝑛𝑧 and this series converges everywhere in 𝐷 and converges uniformly
in 𝐷 ∖

⋃︀
𝐵(𝛾𝑗, 𝜀). Here 𝛾𝑗 are the vertices of the polygon and 𝜀 > 0 is arbitrary. It was proven

in work [2] that this system forms an unconditional basis in Smirnov space 𝐸2(𝐷).

Theorem B. Let a function 𝐿(𝜆) with simple zeroes 𝜆𝑛 satisfy the conditions

|𝐿(𝜆)| ≺ 𝑒𝐻𝐷(𝜆), 𝜆 ∈ C, |𝐿(𝜆)| ≻ 𝑒𝐻𝐷(𝜆), 𝑧 /∈
⋃︁
𝑛

𝐵(𝜆𝑛, 𝛿),

and the balls 𝐵(𝜆𝑛, 𝛿) are mutually disjoint. Then each function 𝑓 ∈ 𝐸2(𝐷) can be represented
uniquely as the series

𝑓(𝑧) =
∑︁
𝑛

𝑓𝑛𝑒
𝜆𝑛𝑧,

and the relation

‖𝑓‖2 ≍
∑︁
𝑛

|𝑓𝑛|2𝑒−2𝐻𝐷(𝜆𝑛), 𝑓 ∈ 𝐸2(𝐷),

holds true.

Thus, the characteristic functions 𝐿 admitting more precise asymptotic estimates, allow one
to represent analytic functions by exponentials series in spaces with a finer topology.

The problem on existence and constructing entire functions with prescribed asymptotic prop-
erties arose as an inner problem of theory of entire functions. In the most general formulation
such problem was solved in work [3].

Theorem C. For each subharmonic function 𝑢 on the plane having a finite type at an order
𝜌 > 0, there exists an entire function 𝑓 satisfying the relation

|𝑢(𝜆)− ln |𝑓(𝜆)|| = 𝑜(|𝜆|𝜌), 𝜆 /∈ 𝐸, |𝜆| → ∞.
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The exceptional set 𝐸 is a 𝐶0-set, that is, it can be covered by the balls 𝐵(𝑤𝑘, 𝑟𝑘) so that∑︁
|𝑤𝑘|6𝑅

𝑟𝑘 = 𝑜(𝑅), 𝑅 → ∞.

In work [4] this theorem was specified in the sense of the estimates for the difference and for
the size of the exceptional set.

Theorem D. For each subharmonic function 𝑢 on the plane having a finite growth order,
there exists an entire function 𝑓 satisfying the relation

|𝑢(𝜆)− ln |𝑓(𝜆)|| = 𝑂(ln(|𝜆|+ 1)), 𝜆 /∈ 𝐸, |𝜆| → ∞.

For each 𝛽 > 0, the exceptional set 𝐸 can be covered by a system of balls 𝐵(𝑤𝑘, 𝑟𝑘) so that∑︁
|𝑤𝑘|>𝑅

𝑟𝑘 = 𝑂(𝑅−𝛽), 𝑅 → ∞.

Theorems C and D can not be applied directly in issues on expansions into the exponentials
series. One has to obtain additionally the lower bounds for |𝐿′(𝜆𝑘)|, and in order to do this,
one needs to have not only the estimates for the size of the exceptional set but mainly the
information on the structure of this set.

In the present work we prove the following theorem.

Theorem 1. Let 𝑢 be a subharmonic function on the plane having a finite growth order 𝜌,
𝜇 is the measure associated in the Riesz set. If for some 𝑎, 𝛼 > 0, for all points 𝑧 ∈ C the
condition

𝜇(𝐵(𝑧, 𝑡)) 6 𝑎(|𝑧|+ 1)𝛼𝑡, 𝑡 ∈ (0; (|𝑧|+ 1)−𝛼), (3)

holds, then there exists an entire function 𝑓 with simple zeroes 𝜆𝑛 such that for some 𝛿, 𝛽 > 0
the balls 𝐵𝑛 = 𝐵(𝜆𝑛, 𝛿(|𝜆𝑛| + 1)−𝛽) are mutually disjoint and for some constants 𝐴, 𝐵, 𝐶 the
function satisfies the relations

ln |𝑓(𝜆)| 6 𝑢(𝜆) + 𝐴1 ln(|𝜆|+ 1), 𝜆 ∈ C,

ln |𝑓(𝜆)| > 𝑢(𝜆)− 𝐴2 ln(|𝜆|+ 1), 𝜆 /∈
⋃︁
𝑛

𝐵𝑛,

ln |𝑓 ′(𝜆𝑛)| > 𝑢(𝜆𝑛)− 𝐴3 ln(|𝜆𝑛|+ 1), 𝑛 ∈ N.

The constants 𝐴1, 𝐴2, 𝐴3 depend on 𝜌, 𝛼, 𝑎 and are independent on the particular form of the
function 𝑢.

For each sequence ℳ0 = (𝑀𝑛)
∞
𝑛=1 we consider the Banach space 𝐻(ℳ0, 𝐷) of functions

analytic in a bounded convex domain 𝐷 with the norm

‖𝑓‖2 = sup
𝑛

1

𝑀2
𝑛

sup
𝑧∈𝐷

|𝑓 (𝑛)(𝑧)|2.

Let

𝑇𝑘(𝑟) = sup
𝑛

𝑟𝑛

𝑀𝑛+𝑘

, 𝑘 = 0, 1, 2, . . .

be the trace functions of the “shifted” sequences ℳ𝑘 = (𝑀𝑛+𝑘)
∞
𝑛=1. By 𝑃𝑘(𝐷) we denote the

Banach spaces of entire functions 𝐹 with the norm

‖𝐹‖2 = sup
𝜆∈C

|𝐹 (𝜆)|2𝑒−2𝐻𝐷(𝜆)

𝑇𝑘(|𝜆|)
,

while the symbol 𝒫(ℳ0, 𝐷) stands for the projective limit of the spaces 𝑃𝑘, 𝑘 = 0, 1, 2, . . .. It
was shown in [5, Thm. 1] that each function 𝑓 ∈ 𝐻(ℳ𝑘, 𝐷), 𝑘 ∈ N, is the Fourier-Laplace
transform of some linear continuous functional 𝑆 on the space 𝒫(ℳ0, 𝐷), that is,

𝑓(𝑧) = 𝑆𝜆(𝑒
𝜆𝑧), 𝑧 ∈ 𝐷.
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Employing this fact and the idea of sufficient set, we prove the following theorem.

Theorem 2. Let ℳ0 = (𝑀𝑛)
∞
𝑛=1 be a convex sequence satisfying the “non-quasi-analyticity”

condition ∑︁
𝑛

𝑀𝑛

𝑀𝑛+1

< ∞.

For each convex domain there exists a system of exponentials 𝑒𝜆𝑛𝑧, 𝑛 ∈ N, such that each
function in the inductive limit

𝑓 ∈ lim i𝑛𝑑𝐻(ℳ𝑘, 𝐷) := ℋ(ℳ0, 𝐷)

is represented by a series over this system of exponentials

𝑓(𝑧) =
∑︁
𝑛

𝑓𝑛𝑒
𝜆𝑛𝑧

and this series converges in the topology of ℋ(ℳ0, 𝐷).

In what follows such systems will be called representing systems.

2. Entire functions with prescribed asymptotic behavior.
Proof of Theorem 1

The proof of Theorem 1 is a minor modification of the proof of Theorem 4’ in work [4].

Lemma 1. Let a function 𝑢 satisfies 𝑢(0) = 0, is subharmonic in the entire plane and obeys
the condition

𝑢(𝜆) 6 𝜎(|𝜆|+ 1)𝜌, 𝜆 ∈ C. (4)

Assume that its associated measure satisfies condition (3). Then there exists a subharmonic
function 𝑣 ∈ 𝐶∞(C) satisfying conditions (3), (4) and

𝑢(𝜆) 6 𝑣(𝜆) 6 𝑢(𝜆) +𝑂
(︀
ln(|𝜆|+ 1)

)︀
, 𝜆 → ∞, Δ𝑣(𝜆) = 𝑂

(︀
(|𝜆|+ 1)3(𝜌+𝛼)

)︀
, 𝜆 → ∞.

Proof. By the Jensen formula

1

2𝜋

∫︁ 2𝜋

0

𝑢(𝑅𝑒𝑖𝜙)𝑑𝜙 =

∫︁ 𝑅

0

𝜇(𝑡)

𝑡
𝑑𝑡

it follows from condition (4) that

𝜇

(︂
𝑅

𝑒

)︂
6 𝜎(𝑅 + 1)𝜌, 𝑅 > 0,

or

𝜇(𝑅) 6 𝜎𝑒𝜌(𝑅 + 1)𝜌, 𝑅 > 0. (5)

We partition the segment [2𝑛−1; 2𝑛] into 𝑁𝑛 = [𝜎𝑒𝜌2(𝑛+1)(𝜌+1)] + 1 segments 𝐼𝑘 of the same
length; here [𝑥] denotes the integer part of 𝑥. Then by the Dirichlet principle there exists at
least one annulus 𝑆𝑛 := {𝑧 = 𝑡𝑒𝑖𝜙, 𝑡 ∈ 𝐼𝑘𝑛 , 𝜙 ∈ [0; 2𝜋]}, whose measure 𝜇 satisfies the estimate

𝜇(𝑆𝑛) 6
𝜇(2𝑛)

𝑁𝑛

< 2−𝑛. (6)

We denote the width of these annuli by ℎ𝑛:

𝑆𝑛 = {𝑧 : 𝑅𝑛 6 |𝑧| < 𝑅𝑛 + ℎ𝑛}, 𝑛 ∈ N,

at that,

ℎ𝑛 >
1

8𝜎𝑒𝜌
2−(𝑛+1)𝜌, 𝑅𝑛 ∈ [2𝑛; 2𝑛+1]. (7)
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Let

𝜈 =
∞∑︁
𝑛=1

𝜇
⃒⃒⃒
𝑆𝑛

be the sum of the restrictions of the measure 𝜇 on the annuli 𝑆𝑛. It follows from (6) that
𝜈(C) 6 1. In the usual way, this condition and (3), we prove the estimate

𝜋(𝜆) :=

∫︁
C

ln

⃒⃒⃒⃒
1− 𝜆

𝑤

⃒⃒⃒⃒
𝑑𝜈(𝑤) = 𝑂(ln(|𝜆|+ 1), 𝜆 → ∞.

The function 𝑢0(𝜆) = 𝑢(𝜆)− 𝜋(𝜆)
1) is subharmoninc in the entire plane and is harmonic in annuli 𝑆𝑛;
2) the associated measure 𝜇0 satisfy conditions (3), (4);
3) satisfies the estimate

|𝑢0(𝜆)− 𝑢(𝜆)| = |𝜋(𝜆)| = 𝑂(|𝜆|+ 1), 𝜆 → ∞. (8)

We apply the regularization procedure to the function 𝑢0. Let 𝛼(𝑡) ∈ 𝐶∞(R) be a non-zero
compactly supported function with the support in [−1; 1] such that∫︁

C

𝛼(|𝜆|)𝑑𝑚(𝜆) = 1,

where 𝑑𝑚 is the plane Lebesgue measure. We take a sequence of numbers

𝛿𝑛 = min

(︂
ℎ𝑛

4
, 2−𝛼(𝑛+2)

)︂
and we let 𝛼𝑛(𝜆) = 𝛿−2𝛼(𝛿−1(𝜆− 𝑤)). Then the functions

𝑢𝑛(𝜆) =

∫︁
C

𝛼𝑛(𝜆− 𝑤)𝑢0(𝑤)𝑑𝑚(𝑤), 𝜆 ∈ C, 𝑛 ∈ N,

possess general properties of the regularizations. They are
1) subharmonic, infinitely differentiable and 𝑢𝑛(𝜆) > 𝑢0(𝜆), 𝜆 ∈ C, 𝑛 ∈ N.
And they possess the property implied by the properties of 𝑢0:

2) 𝑢𝑛(𝜆) ≡ 𝑢0(𝜆) in the annulus ̃︀𝑆 =
{︀
𝜆 : |𝜆| ∈ [𝑅𝑛 +

ℎ𝑛

4
;𝑅𝑛 +

3ℎ𝑛

4
]
}︀
.

We define the function 𝑣 as

𝑣(𝜆) = 𝑢𝑛(𝜆), |𝜆| ∈
[︂
𝑅𝑛 +

ℎ𝑛

4
;𝑅𝑛+1 +

3ℎ𝑛+1

4

]︂
, 𝑛 ∈ N.

By the second property of the functions 𝑢𝑛, the function 𝑣 is “glued” into a function subhar-

monic in the annuli ̃︀𝑆𝑛 equalling to the function 𝑢0 in the annuli ̃︀𝑆. It is obvious that 𝑣 ∈ 𝐶∞(C)

and this function satisfies conditions (3), (4). If 𝜆 lies between the annuli ̃︀𝑆𝑛 and ̃︀𝑆𝑛+1, then

𝑣(𝜆)− 𝑢0(𝜆) = 𝑢𝑛(𝜆)− 𝑢0(𝜆) =

∫︁
C

(𝑢0(𝑤)− 𝑢0(𝜆))𝛼𝑛(𝜆− 𝑤)𝑑𝑚(𝑤).

Passing to the polar coordinates and employing the Jensen formula, we obtain

𝑣(𝜆)− 𝑢0(𝜆) = 2𝜋

∫︁ 𝛿𝑛

0

𝛼𝑛(𝑡)

(︂∫︁ 𝑡

0

𝜇0(𝜆, 𝑠)

𝑠
𝑑𝑠

)︂
𝑡𝑑𝑡.

By the definition
𝛿𝑛 6 2−𝛼(𝑛+1) 6 (|𝜆|+ 1)−𝛼,

and by property (3) we get

𝑣(𝜆)− 𝑢0(𝜆) 6 𝑎

∫︁
C

𝛼𝑛(𝜆)𝑑𝑚(𝜆) = 𝑎.

By estimate (8) this implies the first statement of Lemma 1.
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Let us estimate Δ𝑣. If 𝜆 lies between the annuli ̃︀𝑆𝑛 and ̃︀𝑆𝑛+1, we consider 𝑢0 as a generalized
function to obtain

Δ𝑣(𝜆) =

∫︁
Δ𝜆𝛼𝑛(𝜆− 𝑤)𝑢0(𝑤)𝑑𝑚(𝑤) =

∫︁
Δ𝑤𝛼𝑛(𝜆− 𝑤)𝑢0(𝑤)𝑑𝑚(𝑤) = 𝜋

∫︁
𝛼𝑛(𝜆− 𝑤)𝑑𝜇(𝑤).

If 𝛼 = max𝑡 𝛼(𝑡), then in view of (4) we have

Δ𝑣(𝜆) 6 𝛿−2
𝑛 2𝜇(|𝜆|+ 1) = 𝑂((|𝜆|+ 1)3(𝜌+𝛼)).

The proof is complete.

Lemma 2. Let 𝑢 be a smooth subharmonic function, 𝜇 be the associated measure satisfying
conditions (3), (4), and for some 𝛽, the estimate

Δ𝑢(𝜆) = 𝑂((|𝜆|+ 1)𝛽), |𝜆| → ∞,

holds true. Then there exists a subharmonic function ̃︀𝑢 such that

|̃︀𝑢(𝜆)− 𝑢(𝜆)| = 𝑂(|𝜆|), 𝜆 → ∞.

At that, the associated measure ̃︀𝜇 of the function ̃︀𝑢 satisfies conditions (3), (4). Moreover, there
exist measures 𝜇𝑛 and rectangles 𝑃𝑛, 𝑛 ∈ N, such that
1)
∑︀

𝑛 𝜇𝑛 = 𝜇;
2) the interiors of convex hulls of the supports of the measures 𝜇𝑛 are mutually disjoint;
3) the support of the measure 𝜇𝑛 is located in 𝑃𝑛, 𝑛 ∈ N;
4) the quotient of the sides of the rectangle 𝑃𝑛 is in the interval [3−1; 3];
5) each point of the plane belongs to at most four rectangles 𝑃𝑛;
6) if 𝐹𝑛 is a convex hull of the support of the measure 𝜇𝑛, then

diam𝐹𝑛 6 2
√
2 min
𝜆∈𝐹𝑛

|𝜆|.

7) Inside the supports 𝐹𝑛, the function ̃︀𝑢 is smooth and the estimate

Δ̃︀𝑢(𝜆) = 𝑂((|𝜆|+ 1)𝛽), |𝜆| → ∞,

holds true.

Proof. Let 𝑄𝑛, 𝑛 ∈ N, be the square centered at the origin with the sides of length 3𝑛 and
being parallel to the axes. Then 𝑄𝑛+1 ∖ 𝑄𝑛 =

⋃︀8
1𝑄𝑛𝑗, 𝑛 ∈ N, where 𝑄𝑛𝑗 are the squared

obtained by the shift of the square 𝑄𝑛 by the vectors (±3𝑛, 0), (0,±3𝑛), (±3𝑛,±3𝑛). We let
𝜇(𝑄𝑛𝑗) := 𝑚𝑛𝑗 + 𝑞𝑛𝑗, 𝑗 = 1, 2, . . . , 8, 𝑛 ∈ N, where 𝑞𝑛𝑗 = {𝜇(𝑄𝑛𝑗)} ∈ [0; 1) is the fractional part
of 𝜇(𝑄𝑛𝑗). We let

𝑞+𝑛 =
∑︁
𝑗

𝑞𝑛𝑗 ∈ [0; 8), 𝑞−𝑛 =
∑︁
𝑗

(𝑞𝑛𝑗 − 1) ∈ [−8; 0).

We define a sequence 𝑞𝑛 as follows: we let 𝑞0 = {𝜇(𝑄1)}, if 𝑞𝑗 are defined for 𝑗 6 𝑘− 1 then as∑︀
𝑗6𝑘−1 𝑞𝑗 > 0, we let 𝑞𝑘 := 𝑞−𝑘 and 𝑞𝑘 := 𝑞+𝑘 otherwise. Thus,

𝑛∑︁
𝑘=0

𝑞𝑘 ∈ (−8; 8), 𝑛 ∈ N. (9)

Then we define the sequence of natural numbers 𝑁0, 𝑁𝑛𝑗, 𝑗 = 1, . . . 8, 𝑛 ∈ N. We let 𝑁0 =
[𝜇(𝑄1)], if 𝑞𝑛 = 𝑞−𝑛 , then 𝑁𝑛𝑗 = 𝜇(𝑄𝑛𝑗) − (𝑞𝑛𝑗 − 1), and if 𝑞𝑛 = 𝑞+𝑛 , then 𝑁𝑛𝑗 = 𝜇(𝑄𝑛𝑗) − 𝑞𝑛𝑗.
Thus, either 𝑁𝑛𝑗 = 𝑚𝑛𝑗 + 1 or 𝑁𝑛𝑗 = 𝑚𝑛𝑗. The restriction of the measure 𝜇 on the square 𝑄𝑛𝑗

is denoted by 𝜇𝑛𝑗, 𝜇0 = 𝜇
⃒⃒⃒
𝑄0

and we let

̃︀𝜇0 =
𝑁0

𝜇(𝑄0)
𝜇0, ̃︀𝜇𝑛𝑗 =

𝑁𝑛𝑗

𝜇(𝑄𝑛𝑗)
𝜇𝑛𝑗, 𝑗 = 1, . . . , 8, 𝑛 ∈ N.
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If 𝜇(𝑄𝑛𝑗) = 0, then ̃︀𝜇𝑛𝑗 = 0. Then ̃︀𝜇𝑛𝑗(C) = 𝑁𝑛𝑗 are non-negative integer numbers and if we
let 𝜈𝑛𝑗 = 𝜇𝑛𝑗 − ̃︀𝜇𝑛𝑗, then

𝜈𝑛𝑗(C) ∈ (−1; 1),

(︃
8∑︁

𝑗=1

𝜈𝑛𝑗

)︃
(C) ∈ (−8; 8).

Let

𝜈 = 𝜈0 +
∞∑︁
𝑛=1

8∑︁
𝑗=1

𝜈𝑛𝑗, 𝜈+ = 𝜈0 +
∑︁

𝑞𝑛=𝑞+𝑛

8∑︁
𝑗=1

𝜈𝑛𝑗, 𝜈− = −
∑︁

𝑞𝑛=𝑞−𝑛

8∑︁
𝑗=1

𝜈𝑛𝑗,

then 𝜈± are non-negative measures and 𝜈 = 𝜈+ − 𝜈−. At that,

𝜈±

(︃⋃︁
𝑗

𝑄𝑛𝑗

)︃
= 𝑞± ∈ (−8; 8).

Proposition 1. The identity

𝜋(𝜆) :=

∫︁ ⃒⃒⃒⃒
1− 𝜆

𝑤

⃒⃒⃒⃒
𝑑𝜈(𝑤) = 𝑂(ln(|𝜆|+ 1)), |𝜆| → ∞.

holds true.

Proof. Let us prove that

|𝜈(𝑡)| = |𝜈(𝐵(0, 𝑡))| 6 17, 𝑡 > 0, (10.1)

and that for |𝜈| = 𝜈+ + 𝜈−, the identity

|𝜈|(𝑡) = |𝜈|(𝐵(0, 𝑡)) 6 17 ln(𝑡+ 𝑒), 𝑡 > 0. (10.2)

holds.
If 𝑡 < 9√

2
, then 𝐵(0, 𝑡) ⊂ 𝑄2 and therefore

|𝜈(𝑡)| 6 𝜈0(𝑡) +
8∑︁

𝑗=1

|𝜈1𝑗(C)| 6 9.

For 𝑡 > 9√
2
by 𝑛 we denote the maximal natural number, for which 3𝑛√

2
6 𝑡, then 𝑄𝑛 ⊂ 𝐵(0, 𝑡)

and
3𝑛+2

2
>

3√
2

3𝑛+1

√
2

>
3√
2
𝑡 > 𝑡.

Hence, 𝑄𝑛+2 ⊃ 𝐵(0, 𝑡). Thus, in view of (8) we obtain

|𝜈(𝑡)| 6 |𝜈(𝑄𝑛)|+
𝑛+1∑︁
𝑖=𝑛

8∑︁
𝑗=1

|𝜈𝑖𝑗(C)| 6 17.

We can also estimate 𝜈±(𝑡) and summing up the obtained estimate, we can prove inequality
(10.2).

We choose arbitrary 𝜆 ∈ C and partition the plane into the sets

𝐸1 = C ∖𝐵(0; 2|𝜆|), 𝐸2 = 𝐵(0; 1), 𝐸3 = 𝐵

(︂
0;

|𝜆|
2

)︂
∖𝐵(0; 1),

𝐸4 = 𝐵(𝜆, (|𝜆|+ 1)−𝛼), 𝐸 ′ = C ∖
⋃︁
𝑘

𝐸𝑘.

On the set 𝐸1, we obtained the needed estimate by employing (10.2) and the inequality: for
some constant 𝐶, for all |𝑧| 6 1

2

| ln |1− 𝑧|| 6 𝐶|𝑧|, (*)
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𝐸1

ln

⃒⃒⃒⃒
1− 𝜆

𝑤

⃒⃒⃒⃒
𝑑𝜈(𝑤)

⃒⃒⃒⃒
= 𝑂(ln |𝜆|), |𝜆| → ∞.

On 𝐸2, the estimate for the integral is obvious:⃒⃒⃒⃒∫︁
𝐸2

ln

⃒⃒⃒⃒
1− 𝜆

𝑤

⃒⃒⃒⃒
𝑑𝜈(𝑤)

⃒⃒⃒⃒
= 𝑂(ln |𝜆|), |𝜆| → ∞.

The estimate of the first integral in the right hand side of the inequality⃒⃒⃒⃒∫︁
𝐸3

ln

⃒⃒⃒⃒
1− 𝜆

𝑤

⃒⃒⃒⃒
𝑑𝜈(𝑤)

⃒⃒⃒⃒
6

⃒⃒⃒⃒∫︁
𝐸3

ln
⃒⃒⃒
1− 𝑤

𝜆

⃒⃒⃒
𝑑𝜈(𝑤)

⃒⃒⃒⃒
+

⃒⃒⃒⃒∫︁
𝐸3

ln
⃒⃒⃒𝑤
𝜆

⃒⃒⃒
𝑑𝜈(𝑤)

⃒⃒⃒⃒
is implied by (10.2) and (*). In the second integral we integrate by parts:⃒⃒⃒⃒∫︁

𝐸3

ln
⃒⃒⃒𝑤
𝜆

⃒⃒⃒
𝑑𝜈(𝑤)

⃒⃒⃒⃒
=

⃒⃒⃒⃒
⃒
∫︁ |𝜆|

2

1

ln
|𝜆|
𝑡
𝑑𝜈(𝑡)

⃒⃒⃒⃒
⃒ 6 ln 2

⃒⃒⃒⃒
𝜈

(︂
|𝜆|
2

)︂⃒⃒⃒⃒
+

⃒⃒⃒⃒
⃒
∫︁ |𝜆|

2

1

𝜈(𝑡)𝑑𝑡

𝑡

⃒⃒⃒⃒
⃒ .

We obtain the needed estimate by employing (10.1):⃒⃒⃒⃒∫︁
𝐸3

ln

⃒⃒⃒⃒
1− 𝜆

𝑤

⃒⃒⃒⃒
𝑑𝜈(𝑤)

⃒⃒⃒⃒
= 𝑂(ln |𝜆|), |𝜆| → ∞.

By property (3) we have ⃒⃒⃒⃒∫︁
𝐸4

ln

⃒⃒⃒⃒
1− 𝜆

𝑤

⃒⃒⃒⃒
𝑑𝜈(𝑤)

⃒⃒⃒⃒
6 𝑎, 𝜆 ∈ C.

Let 𝑛 be the smallest natural number, for which 𝐵(0, 2|𝜆|) ⊂ 𝑄𝑛, that is,

3𝑛−1

2
< 2|𝜆| 6 3𝑛

2
.

Then

𝐸 ′ ⊂ 𝐵(0, 2|𝜆|) ∖𝐵(0,
|𝜆|
2
) ⊂ 𝑄𝑛 ∖𝑄𝑛−3

and this is why
|𝜈|(𝐸 ′) 6 24.

On the other hand,

max
𝑤∈𝐸′

⃒⃒⃒⃒
ln

⃒⃒⃒⃒
1− 𝜆

𝑤

⃒⃒⃒⃒⃒⃒⃒⃒
= 𝑂(ln |𝜆|), |𝜆| → ∞.

Two latter estimates imply the estimate for the integral over the set 𝐸 ′.

We return back to the proof of Lemma 2. We let ̃︀𝑢(𝜆) = 𝑢(𝜆) − 𝜋(𝜆), where 𝜋(𝜆) is the
potential of the measure 𝜈 defined in Proposition 1. Then ̃︀𝑢 is a subharmonic function with
the associated measure ̃︀𝜇. By construction, conditions (3) and (4) are satisfied. And in the
interior of each square 𝑄𝑛𝑗 we have

Δ̃︀𝑢(𝜆)𝑑𝑚(𝜆) = 𝜋̃︀𝜇(𝜆) = 𝜋
𝑁𝑛𝑗

𝜇(𝑄𝑛𝑗)
𝜇𝑛𝑗 =

𝑁𝑛𝑗

𝜇(𝑄𝑛𝑗)
Δ𝑢(𝜆),

and this is why the estimate

Δ̃︀𝑢(𝜆) = 𝑂((|𝜆|+ 1)𝛽), |𝜆| → ∞ (11)

holds true. Proposition 1 implies the relation

|̃︀𝑢(𝜆)− 𝑢(𝜆)| = 𝑂((|𝜆|), |𝜆| → ∞.

By construction, ̃︀𝜇(𝑄𝑛𝑗) = 𝑁𝑛𝑗 are non-negative integer numbers and we can apply Theorem 1
in work [4] on partition of the measures to the restrictions ̃︀𝜇𝑛𝑗: there exists a set of pairs
(𝜇𝑘

𝑛𝑗, 𝑃
𝑘
𝑛𝑗) of rectangles 𝑃

𝑘
𝑛𝑗 and unit measures 𝜇𝑘

𝑛𝑗 such that Statements 1–5 of Lemma 2 hold.

In addition, the rectangles 𝑃 𝑘
𝑛𝑗 are located in squares 𝑄𝑛𝑗. It remains to renumber them by a
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single index. Statement 7 holds thanks to estimate (11), while Statement 6 is implied by the
corresponding property of the squares 𝑄𝑛𝑗.

We continue proving Theorem 1.
We denote by 𝜆𝑛 the gravity center of the unit measures 𝜇𝑛 constructed in Lemma 2:∫︁

𝑤𝑑𝜇(𝑤) = 𝜆𝑛, 𝑛 ∈ N.

By ̃︀𝜇𝑛 we denote the restriction of the measure ̃︀𝜇 on the set 𝑄𝑛 ∖𝑄0 and by 𝜋𝑛 we denote the
potential of this measure:

𝜋𝑛(𝜆) =

∫︁
ln

⃒⃒⃒⃒
1− 𝜆

𝑤

⃒⃒⃒⃒
𝑑̃︀𝜇𝑛(𝜆).

Then the measure ̃︀𝜇𝑛 satisfies the assumptions of Theorem 3 in work [4] and by this theorem,
in view of condition (3), we obtain the existence of the polynomial 𝑃 such that outside a set
of the balls 𝐵𝑛(𝜀) = 𝐵(𝜆𝑘, 𝜀(|𝜆𝑘| + 1)−𝛾), where 𝜆𝑘 are the zeroes of the polynomial 𝑃 , 𝛾 > 𝛼
and 𝜀 > 0 is a sufficiently small number, the inequality

|𝜋(𝜆)− ln |𝑃 (𝜆)|| 6 𝐴 ln(|𝜆|+ 1)

holds. At that, the constant 𝐴 is independent of 𝑛. Thanks to the latter fact, in the usual way
we justify the passage to the limit. As a result we get that there exists an entire function 𝑓
with simple zeroes at the points 𝜆𝑛 satisfying the condition

|̃︀𝑢(𝜆)− ln |𝑓(𝜆)|| 6 𝐴 ln(|𝜆|+ 1), 𝜆 /∈
⋃︁
𝑛

𝐵𝑛(𝜀). (12)

We need to show that for sufficiently small 𝜀 > 0, the balls 𝐵𝑛(𝜀) are mutually disjoint. Let
us estimate the distance 𝑑𝑛 from the point 𝜆𝑛 to the boundary of the convex hull 𝐹𝑛 of the
support of the measure 𝜇𝑛. Let 𝑤𝑛 be a point, at which this distance is attained:

|𝜆𝑛 − 𝑤𝑛| = inf
{︀
|𝜆𝑛 − 𝑤|, 𝑤 /∈ 𝐹𝑛

}︀
.

Let 𝜆𝑛−𝑤𝑛 = 𝑒𝑖𝜙𝑛 |𝜆𝑛−𝑤𝑛| and 𝑧 = 𝑇𝑤 = 𝑒−𝜙𝑛(𝜆𝑛−𝑤). under such transformation, the image
𝐹 * of the hull 𝐹𝑛 is located in {Re 𝑧 6 𝑑𝑛} and the image of the measure 𝑑𝜇*(𝑧) = 𝑑𝜇𝑛(𝜆−𝑒𝑖𝜙𝑛𝑧)
satisfies the conditions∫︁

𝑑𝜇*(𝑧) = 1,

∫︁
𝑧𝑑𝜇*(𝑧) = 0, 𝑑𝜇*(𝑧) =

1

𝜋
𝜒𝑛(𝑧)Δ̃︀𝑢(𝜆𝑛 − 𝑒𝑖𝜙𝑛𝑧)𝑑𝑚(𝑧),

where 𝜒𝑛(𝑧) is the characteristic function of 𝐹 *. Let

𝛿(𝑥) =
1

𝜋

∫︁
𝜒𝑛(𝑥+ 𝑖𝑦)Δ̃︀𝑢(𝜆𝑛 − 𝑒𝑖𝜙𝑛(𝑥+ 𝑖𝑦))𝑑𝑦.

Then 𝛿(𝑥) is a compactly supported function on the segment [𝑎; 𝑑𝑛] and by Statements 6, 7 in
Lemma 2,

0 6 𝛿(𝑥) 6 𝐶(|𝜆𝑛|+ 1)𝛽+1 := 𝑀𝑛.

Moreover, it follows from the properties of 𝜇* that∫︁ 𝑑𝑛

𝑎

𝛿(𝑥)𝑑𝑥 = 1,

∫︁ 𝑑𝑛

𝑎

𝑥𝛿(𝑥)𝑑𝑥 = 0.

Proposition 2. Let 𝛿(𝑥) be a non-negative continuous compactly supported function satis-
fying the conditions

1) conv supp 𝛿 = [𝑎; 𝑑], 2) sup
𝑥

𝛿(𝑥) 6 𝑀 < ∞,

3)

∫︁
𝛿(𝑥)𝑑𝑥 = 1, 4)

∫︁
𝑥𝛿(𝑥)𝑑𝑥 = 0.
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Then

𝑑 >
1

6𝑀
.

Proof. We introduce a number 𝑐 > 0 by the identity∫︁ 𝑐

−𝑐

𝛿(𝑥)𝑑𝑥 =
1

3
.

It follows from Condition 2) that 𝑐 > 1
6𝑀

. Assume that 𝑑 < 𝑐. Then taking into consideration
3), we have ∫︁ −𝑐

−∞
𝛿(𝑥)𝑑𝑥 = 1−

∫︁ 𝑑

−𝑐

𝛿(𝑥)𝑑𝑥 = 1−
∫︁ 𝑐

−𝑐

𝛿(𝑥)𝑑𝑥 =
2

3
.

This is why ∫︁ 0

−∞
|𝑥|𝛿(𝑥)𝑑𝑥 >

2𝑐

3
+

∫︁ 0

−𝑐

|𝑥|𝛿(𝑥)𝑑𝑥 >
2𝑐

3
.

On the other hand, ∫︁ 𝑑

0

|𝑥|𝛿(𝑥)𝑑𝑥 =

∫︁ 𝑐

0

|𝑥|𝛿(𝑥)𝑑𝑥 6 𝑐

∫︁ 𝑐

−𝑐

𝛿(𝑥)𝑑𝑥 =
𝑐

3
.

By Condition 4),
2𝑐

3
6
∫︁ 0

−∞
|𝑥|𝛿(𝑥)𝑑𝑥 =

∫︁ 1

0

|𝑥|𝛿(𝑥)𝑑𝑥 =6
𝑐

3
.

By the obtained contradiction we get

𝑑 > 𝑐 >
1

6𝑀
.

The proof is complete.

The proven proposition implies that for 𝛾 = 3(𝜌+𝛼)+1 and sufficiently small 𝜀 > 0 the ball

𝐵𝑛(𝜀) = 𝐵(𝜆𝑛, 𝜀(|𝜆|+ 1)−𝛾)

is located inside the hull 𝐹𝑛 and thus, these balls are mutually disjoint. By usual tricks and by
the Cauchy formula

1

𝑓 ′(𝜆𝑛)
=

1

2𝜋𝑖

∫︁
𝑑𝑧

𝑓(𝑧)(𝑧 − 𝜆𝑛)
,

one can obtain the needed estimates for the derivatives at the points 𝜆𝑛.
The proof of Theorem 1 is complete.

3. Representing systems of exponentials in the space ℋ(ℳ0, 𝐷). Proof of
Theorem 2

Let ℳ0 = (𝑀𝑛)
∞
𝑛=1 be an increasing convex sequence of positive numbers. The convexity is

understood in the sense that if

𝑇0(𝑟) = sup
𝑛

𝑟𝑛

𝑇𝑛

, 𝑟 > 0,

is the trace function for this sequence, then

𝑀𝑛 = sup
𝑟>0

𝑟𝑛

𝑇 (𝑟)
, 𝑛 ∈ N.

In Introduction we have introduced the notations: given 𝑘 ∈ N, by ℳ𝑘 we have denoted the
shift of the sequence ℳ𝑘 = (𝑀𝑛+𝑘)

∞
𝑛=1 and we introduced the subspaces

𝐻(ℳ𝑘, 𝐷) =

{︂
𝑓 ∈ 𝐻(𝐷) : ‖𝑓‖𝑘 = sup

𝑛

sup𝑧∈𝐷 |𝑓 (𝑧)|
𝑀𝑛+𝑘

}︂
, 𝑘 ∈ N,
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and the inductive limit of these spaces

ℋ(ℳ0, 𝐷) =
⋃︁
𝑘

𝐻(ℳ𝑘, 𝐷).

By 𝑃𝑘(𝑑) we have denoted the Banach space of entire functions with the norm

‖𝐹‖𝑘 = sup
𝜆∈C

|𝐹 (𝜆)|𝑒−𝐻𝐷(𝜆)

𝑇𝑘(|𝜆|)
,

where 𝑇𝑘 is the trace function for the sequence ℳ𝑘 and the inductive limit of these spaces was
denoted by 𝒫(ℳ0, 𝐷). The Fourier-Laplace transform of the linear continuous functional 𝑆 on
𝒫(ℳ0, 𝐷) is introduced as

𝑆 → ̂︀𝑆(𝑧) = 𝑆𝜆(𝑒
𝜆𝑧).

It was shown in [5] that for a sequence ℳ0 satisfying the condition∑︁
𝑛

𝑀𝑛

𝑀𝑛+1

< ∞, (13)

the Fourier-Laplace transform defines the isomorphism between the strongly dual space
𝒫*(ℳ0, 𝐷) and the space ℋ(ℳ0, 𝐷).

To each subset 𝑆 ⊂ C, we associate the semi-norm in 𝒫(ℳ0, 𝐷):

‖𝐹‖𝑘,𝑆 = sup
𝜆∈𝑆

|𝐹 (𝜆)|𝑒−𝐻𝐷(𝜆)

𝑇𝑘(|𝜆|)
.

If the topology defined by the system of these semi-norms coincides with the initial topology
of the space 𝒫(ℳ0, 𝐷), then the set 𝑆 is called sufficient for the space 𝒫(ℳ0, 𝐷) (see [6], [7]).

Theorem 3. Assume that an entire function 𝐿(𝜆) with zeroes 𝜆𝑛, 𝑛 ∈ N, satisfies the
conditions

1) for some 𝐴 > 0,

|𝐿(𝜆)| ≺ 𝑒𝐻𝐷(𝜆)𝑇0(|𝜆|)(|𝜆|+ 1)𝐴, 𝜆 ∈ C,
2) for some 𝐵 > 0 and some sequence 𝑅𝑘 → ∞,

|𝐿(𝜆)| ≻ 𝑒𝐻𝐷(𝜆)𝑇0(|𝜆|)(|𝜆|+ 1)−𝐵, |𝜆| = 𝑅𝑘, 𝑘 ∈ N,

3) for some 𝐶 > 0,

|𝐿′(𝜆𝑛)| ≻ 𝑒𝐻𝐷(𝜆𝑛)𝑇0(|𝜆𝑛|)(|𝜆𝑛|+ 1)−𝐶 , 𝑛 ∈ N.

Then the set 𝑆 = {𝜆𝑛, 𝑛 ∈ N} is sufficient for the space 𝒫(ℳ0, 𝐷).

Proof. In the estimate we shall employ the following relation between the trance functions
introduced in work [5, Lm 1.2]: for each natural 𝑘, 𝑚, 𝑚 6 𝑘, there exists 𝑟𝑘,𝑚 such that as
𝑟 > 𝑟𝑘,𝑚,

𝑇𝑘(𝑟) = 𝑟𝑚−𝑘𝑇𝑚(𝑟). (14)

So, we choose and fix a natural number 𝑘, take a number 𝑁 > 𝐴 + 𝑘 and a number 𝑚 >
𝑁 + 𝐶 + 𝐵 + 2, where the constants 𝐴, 𝐶 come from the assumptions of the theorem. Let
𝐹 ∈ 𝒫(ℳ0, 𝐷), then

|𝐹 (𝜆)| 6 ‖𝐹‖𝑚𝑒𝐻𝐷(𝜆)𝑇𝑚(|𝜆|), 𝜆 ∈ C, (15)

and by relation (14),

|𝜆𝑁𝐹 (𝜆)| ≺ 𝑒𝐻𝐷(𝜆)𝑇0(|𝜆|)(|𝜆|+ 1)−𝐵−2.

By the second condition for the function 𝐿 this implies that on the circles |𝜆| = 𝑅𝑛, the estimate

|𝜆𝑁𝐹 (𝜆)|
|𝐿(𝜆)|

≺ (|𝜆|+ 1)−2
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holds true. Therefore, the Lagrange series

𝜆𝑁𝐹 (𝜆) =
∑︁
𝑛

𝜆𝑁
𝑛 𝐹 (𝜆𝑛)

(𝜆− 𝜆𝑛)𝐿′(𝜆𝑛)
𝐿(𝜆)

converges uniformly in the plane. By the choice of 𝑚 and by (15), for |𝜆− 𝜆𝑛| > 1 we have the
estimate

|𝜆𝑁
𝑛 𝐹 (𝜆𝑛)|
|𝐿′(𝜆𝑛)|

6 ‖𝐹‖𝑚,𝑆|𝜆𝑛|−𝐵−2.

This is why, as |𝜆− 𝜆𝑛| > 1, we get

|𝐹 (𝜆)| ≺ ‖𝐹‖𝑚,𝑆|𝐿(𝜆)||𝜆|−𝑁 .

In view of Condition 1) of the theorem we obtain

|𝐹 (𝜆)|𝑒−𝐻𝐷(𝜆)

𝑇𝑘(|𝜆|)
≺ ‖𝐹‖𝑚,𝑆

𝑇0(|𝜆|)(|𝜆|+ 1)𝐴

𝑇𝑘(|𝜆|)
≺ ‖𝐹‖𝑚,𝑆

or

‖𝐹‖𝑘 ≺ ‖𝐹‖𝑚,𝑆, 𝑓 ∈ 𝒫(ℳ0, 𝐷).

The proof is complete.

Theorem 2 follows Theorem 3 thanks to the well-known relation between the sufficient sets
and representing systems. The existence of entire functions 𝐿 with required properties is implied
by Theorem 1.

It is obvious that if the system 𝑒𝜆𝑛𝑧 is representing for the space ℋ(ℳ0, 𝐷), after removing
finitely many elements, the remaining part of the system is again representing. But after
removing infinitely many elements, the system is, generally speaking, no longer representing.

Proposition 3. Let 𝜆𝑛, 𝑛 ∈ N, be the zeroes of an entire function 𝐿 satisfying the assump-
tions of Theorem 3 and 𝜇𝑘, 𝑘 ∈ N, be a subset of the zeroes. Then the system

𝐸 = {𝑒𝜆𝑛𝑧, 𝑛 ∈ N} ∖ {𝑒𝜇𝑛𝑧, 𝑛 ∈ N}

is not representing in the space ℋ(ℳ0, 𝐷).

Proof. Passing if needed to a subset, we suppose that the set {𝜇𝑘} satisfies the condition: each
segment [2𝑛; 2𝑛+1]¡ 𝑛 ∈ N contains at most one 𝑟𝑘 = |𝜇𝑘| and 𝑟𝑘 > 1. By 𝑚(𝑡) denote the
counting function of this set. Then the function

𝑔(𝜆) =
∏︁
𝑘

(︂
1− 𝜆

𝜇𝑘

)︂
, 𝜆 ∈ C,

is entire.
Let 𝜆 ∈ [2𝑛; 2𝑛+1]. Then⃒⃒⃒⃒

⃒⃒ ∑︁
|𝜇𝑘|>2𝑛+2

ln

⃒⃒⃒⃒
1− 𝜆

𝜇𝑘

⃒⃒⃒⃒⃒⃒⃒⃒⃒⃒ 6 |𝜆|
∞∑︁

𝑘=𝑛+2

1

2𝑘
6 1,

⃒⃒⃒⃒
⃒⃒ ∑︁
|𝜇𝑘|62𝑛−1

ln
⃒⃒⃒
1− 𝜇𝑘

𝜆

⃒⃒⃒⃒⃒⃒⃒⃒⃒ 6 𝑛−1∑︁
𝑘=1

1

2𝑘
6 1.

Since as |𝜆− 𝜇𝑘| > 1, we have⃒⃒⃒⃒
⃒⃒ ∑︁
2𝑛−1<|𝜇𝑘|<2𝑛+2

⃒⃒⃒⃒
1− 𝜆

𝜇𝑘

⃒⃒⃒⃒⃒⃒⃒⃒⃒⃒ = 𝑂(ln |𝜆|), |𝜆| → ∞,
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then

| ln |𝑔(𝜆)|| =
∑︁

|𝜇𝑘|62𝑛−1

ln

⃒⃒⃒⃒
𝜆

𝜇𝑘

⃒⃒⃒⃒
+𝑂(ln |𝜆|)

=

∫︁ |𝜆|

1

𝑚(𝑡)𝑑𝑡

𝑡
+𝑂(ln |𝜆|), 𝜆 → ∞, |𝜆− 𝜇𝑛| > 1, 𝑛 ∈ N.

And since 𝑚(𝑡) → ∞ as 𝑡 → ∞, we get

ln |𝜆| = 𝑜(ln |𝑔(𝜆)|), |𝜆− 𝜇𝑘| > 1, 𝑘 ∈ N, |𝜆| → ∞.

Thus, the function 𝐿1(𝜆) = 𝐿(𝜆)/𝑔(𝜆) belongs to the space 𝒫(ℳ0, 𝐷) and the system 𝐸 is not
representing in ℋ(ℳ0, 𝐷). The proof is complete.
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