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TWO-SIDED ESTIMATES FOR THE RELATIVE GROWTH OF

FUNCTIONS AND THEIR DERIVATIVES

G.G. BRAICHEV

Abstract. We provide an extended presentation of a talk given at the International math-
ematical conference on theory of functions dedicated to centenary of corresponding member
of AS USSR A.F. Leont’ev. We propose a new method for obtaining uniform two-sided esti-
mates for the fraction of the derivatives of two real functions on the base of the information
of two-sided estimates for the functions themselves. At that, one of the functions possesses
certain properties and serves as a reference for measuring a growth and introduces some
scale. The other function, whose growth is compared with that of the reference function,
is convex, increases unboundedly or decays to zero on a certain interval. The method is
also applicable to some class of functions concave on an interval. We consider examples of
applications of the obtained results to the behavior of entire functions.

Keywords: monotone function, convex function, relative growth of two functions, uniform
upper and lower estimates, entire function.
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The themes of the work adjoin general Abelian and Tauberian theorems for functions of the real
variable (L’Hôpital’s rule and its inversion). In distinction to the classical formulation of the issue on
relative asymptotic behavior of two functions, here the matter is the uniform estimates. More precisely,
in the paper we establish new two-sided estimates connecting the relative growth of the derivatives of
two functions with that for the functions themselves. First we provide a simple statement of “Abelian”
type, in which the behavior of the quotient of two functions is determined by that for their derivatives
(Theorem A and its Corollary). Then we prove more difficult results of an inverse, “Tauberian”
character (Theorem 1 and 2). General facts are demonstrated by a series of particular examples. We
also mention some applications to the growth of entire functions.

We adopt a natural assumption that the considered functions preserve constant coinciding signs on
the considered sets.

We begin with a little known non-limiting “monotous” version of the L’Hôpital’s rule, which relates
the monotonicity of the quotient of function and the monotonicity of the quotient of their derivatives
(see, for instance, [1]–[3]).

Theorem A. Assume that functions 𝑓(𝑥) and 𝑔(𝑥) are defined and differentiable on a finite or
infinite interval (𝑎, 𝑏) and they satisfy the conditions

1) 𝑔′(𝑥) ̸= 0 on (𝑎, 𝑏),
2) 𝑔(𝑏−) = 𝑓(𝑏−) = 0 or 𝑔(𝑎+) = 𝑓(𝑎+) = 0.

Then if the quotient of the derivatives
𝑓 ′(𝑥)

𝑔′(𝑥)
is monotonous on (𝑎, 𝑏), then the quotient of the

functions
𝑓(𝑥)

𝑔(𝑥)
is monotonous in the same sense on (𝑎, 𝑏).
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In view of the classical L’Hôpital’s rule this implies immediately the following statement.

Corollary. Let the assumptions of Theorem A hold. Then

sup
𝑥∈(𝑎, 𝑏)

𝑓(𝑥)

𝑔(𝑥)
= sup

𝑥∈(𝑎, 𝑏)

𝑓 ′(𝑥)

𝑔′(𝑥)
or inf

𝑥∈(𝑎, 𝑏)

𝑓(𝑥)

𝑔(𝑥)
= inf

𝑥∈(𝑎, 𝑏)

𝑓 ′(𝑥)

𝑔′(𝑥)

depending on the character of the monotonicity of quotient
𝑓 ′(𝑥)

𝑔′(𝑥)
.

We proceed to formulating the main results of the work. Consider the case of growing infinitely
large functions. Hereafter the symbol 𝑓 ′(𝑥) stands for the right derivative of the function 𝑓 at the
point 𝑥.

Theorem 1. Assume that a function 𝑓(𝑥) is convex on an interval (𝑎, 𝑏), −∞ 6 𝑎 < 𝑏 6 +∞, the
function 𝑔(𝑥) is differentiable on this interval and 𝑔′(𝑥) > 0, and moreover, 𝑔(𝑎+) = 0, 𝑔(𝑏−) = +∞.
Assume also that

𝑚 6
𝑓(𝑥)

𝑔(𝑥)
6 𝑀, 𝑥 ∈ (𝑎, 𝑏), (1)

with nonnegative constants 𝑚, 𝑀 , 𝑚 6𝑀 . Then the two-sided estimate

𝑀 𝑐1(𝜃) 6
𝑓 ′(𝑥)

𝑔′(𝑥)
6 𝑀 𝑐2(𝜃), 𝑥 ∈ (𝑎, 𝑏), (2)

holds true, where 𝜃 = 𝑚
𝑀 , and the quantities 𝑐1(𝜃), 𝑐2(𝜃) are defined as

𝑐1(𝜃) = inf
𝑥∈(𝑎, 𝑏)

1

𝑔′(𝑥)
sup

𝑎<𝑡<𝑥

𝑔(𝑡)− 𝜃𝑔(𝑥)

𝑡− 𝑥
, (3)

𝑐2(𝜃) = sup
𝑥∈(𝑎, 𝑏)

1

𝑔′(𝑥)
inf

𝑏>𝑡>𝑥

𝑔(𝑡)− 𝜃𝑔(𝑥)

𝑡− 𝑥
. (4)

Proof. Since 𝑓(𝑥) is a convex function, for an arbitrary 𝑥 ∈ (𝑎, 𝑏) we can write

𝑓 ′(𝑥) = inf
𝑏>𝑡>𝑥

𝑓(𝑡)− 𝑓(𝑥)

𝑡− 𝑥
6 inf

𝑏>𝑡>𝑥

𝑀𝑔(𝑡)−𝑚𝑔(𝑥)

𝑡− 𝑥
= 𝑀 inf

𝑏>𝑡>𝑥

𝑔(𝑡)− 𝜃𝑔(𝑥)

𝑡− 𝑥
.

Thus,

𝑓 ′(𝑥) 6 𝑀 inf
𝑏>𝑡>𝑥

𝑔(𝑡)− 𝜃𝑔(𝑥)

𝑡− 𝑥
. (5)

Dividing both sides by 𝑔′(𝑥), for each 𝑥 ∈ (𝑎, 𝑏) we obtain

𝑓 ′(𝑥)

𝑔′(𝑥)
6 𝑀

1

𝑔′(𝑥)
inf

𝑏>𝑡>𝑥

𝑔(𝑡)− 𝜃𝑔(𝑥)

𝑡− 𝑥
6𝑀 𝑐2(𝜃)

and this completes the proof of the upper bound in (2).
The proof of the lower bound follows the same lines. Namely, for 𝑥 ∈ (𝑎, 𝑏) we write

𝑓 ′(𝑥) >𝑓 ′−(𝑥) = sup
𝑎<𝑡<𝑥

𝑓(𝑡)− 𝑓(𝑥)

𝑡− 𝑥

> sup
𝑎<𝑡<𝑥

𝑀𝑔(𝑡)−𝑚𝑔(𝑥)

𝑡− 𝑥
= 𝑀 sup

𝑎<𝑡<𝑥

𝑔(𝑡)− 𝜃𝑔(𝑥)

𝑡− 𝑥
,

or

𝑓 ′(𝑥) > 𝑀 sup
𝑎<𝑡<𝑥

𝑔(𝑡)− 𝜃𝑔(𝑥)

𝑡− 𝑥
. (6)

Dividing both sides by 𝑔′(𝑥), for all 𝑥 ∈ (𝑎, 𝑏) we obtain

𝑓 ′(𝑥)

𝑔′(𝑥)
> 𝑀

1

𝑔′(𝑥)
sup

𝑎<𝑡<𝑥

𝑔(𝑡)− 𝜃𝑔(𝑥)

𝑡− 𝑥
>𝑀 𝑐1(𝜃).

The proof is complete.
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We observe that we have not employed the conditions 𝑔(𝑎+) = 0, 𝑔(𝑏−) = +∞ in the proof of
Theorem 1. However, we can show that if these conditions fail, formulae (3), (4) determining the
quantities 𝑐1(𝜃), 𝑐2(𝜃) give 𝑐1(𝜃) = −∞, 𝑐2(𝜃) = +∞. One can confirm this also geometrically by
assuming that the points 𝑎 and 𝑏 are finite and considering a function 𝑓(𝑥) whose graph touches the
boundary lines 𝑥 = 𝑎, 𝑥 = 𝑏. Under the assumptions of Theorem 1, the considered quantities 𝑐1(𝜃),
𝑐2(𝜃) satisfy the inequalities

0 6 𝑐1(𝜃) 6 𝜃, 1 6 𝑐2(𝜃) 6 𝛽′𝑔 := sup
𝑥∈(𝑎,𝑏)

1

𝑔′(𝑥)
inf
𝑡>𝑥

𝑔(𝑡)

𝑡− 𝑥
. (7)

Indeed, the positivity of 𝑐1(𝜃) is implied by the inequality

sup
𝑎<𝑡<𝑥

𝑔(𝑡)− 𝜃𝑔(𝑥)

𝑡− 𝑥
>

−𝜃𝑔(𝑥)
𝑎− 𝑥

> 0.

Noting that

𝜃(𝑔(𝑡)− 𝑔(𝑥)) 6 𝑔(𝑡)− 𝑔(𝑥) 6 𝑔(𝑡)− 𝜃𝑔(𝑥) 6 𝑔(𝑡),

we confirm that all properties in (7) hold.
Let us show that if 𝑔(𝑥) is a convex on (𝑎, 𝑏) function, then estimate (2) is sharp. Let us construct a

function 𝑓(𝑥) obeying condition (1), for which the identities in both sides in (2) are attained at some
points in the segment 𝐽 = (𝑎, 𝑏). For the sake of convenience we suppose that 0 < 𝜃 = 𝑚 < 𝑀 = 1.

Let a positive differentiable function 𝑔(𝑥) be convex and increase on the segment 𝐽 and 𝜃 ∈ (0, 1)
be a fixed number. Let 𝑥0 ∈ 𝐽 . If from the point (𝑥0, 𝜃𝑔(𝑥0)) we draw to the right rays intersecting
the graph Γ𝑔 of the function 𝑔(𝑥), then the ray with the minimal slope 𝑘0 equalling to

𝑘0 =
𝑔(𝑡𝑥0)− 𝜃𝑔(𝑥0)

𝑡𝑥0 − 𝑥0
= min

𝑡>𝑥0

𝑔(𝑡)− 𝜃𝑔(𝑥0)

𝑡− 𝑥0
,

touches Γ𝑔 at some point (𝑡𝑥0 , 𝑔(𝑡𝑥0)). We choose this ray and continue it to the intersection with
the graph Γ𝜃𝑔 of the function 𝜃𝑔(𝑥) at a point (𝑥1, 𝜃𝑔(𝑥1)). We denote by 𝑙 a segment of the chosen
ray with the slope 𝑘0. If from the point (𝑥1, 𝜃𝑔(𝑥1)) we draw to the left a ray intersecting the graph
Γ𝑔, the slope of such ray is maximal once it touches Γ𝑔 (at the same point (𝑡𝑥0 , 𝑔(𝑡𝑥0))), that is, it
contains the segment 𝑙 and has the same slope:

𝑘0 =
𝑔(𝑡𝑥0)− 𝜃𝑔(𝑥1)

𝑡𝑥0 − 𝑥1
= max

𝑥0<𝑡<𝑥1

𝑔(𝑡)− 𝜃𝑔(𝑥1)

𝑡− 𝑥1
.

Assuming that (𝑥0, 𝑥1) ⊂ 𝐽, on (𝑥0, 𝑥1) we define the function 𝑓(𝑥) by the equation of the ray 𝑙, that
is, we let

𝑓(𝑥) = 𝜃𝑔(𝑥0) + 𝑘0(𝑥− 𝑥0), 𝑥 ∈ (𝑥0, 𝑥1).

On the rest of 𝐽 we let 𝑓(𝑥) = 𝜃𝑔(𝑥). Then such function satisfies the required conditions:

𝜃 6
𝑓(𝑥)

𝑔(𝑥)
6 1, 𝑥 ∈ 𝐽,

𝑓 ′(𝑥)

𝑔′(𝑥)
= 𝜃, 𝑥 ∈ 𝐽 ∖ (𝑥0, 𝑥1),

𝑘0
𝑔′(𝑥1)

6
𝑓 ′(𝑥)

𝑔′(𝑥)
6

𝑘0
𝑔′(𝑥0)

, 𝑥 ∈ (𝑥0, 𝑥1).

We observe that the identities can be attained in the last line: as 𝑥 = 𝑥0 in the right hand side and
as 𝑥 = 𝑥1 − 0 in the left hand side.

Thus, for convex on (𝑎, 𝑏) functions 𝑔(𝑥) the estimate in Theorem 1 is sharp.
A reasonable direct extension of Theorem 1 for the case of concave functions 𝑓(𝑥) is impossible.

Indeed, if in Theorem 1 a positive function 𝑓(𝑥) is concave on an interval (𝑎, 𝑏), by passing to the
functions with the opposite sign we can reduce the proof of such statement to the situation when
𝑔(𝑥) < 0, 𝑔′(𝑥) < 0 for all 𝑥 ∈ (𝑎, 𝑏). Formally, the arguing goes in this case. Indeed, multiplying
(1) by 𝑔(𝑥), we obtain the inequality opposite to (5). Dividing this by 𝑔′(𝑥), we again change the sign
of the inequality. Hence, in the proof, the sign of the inequality changes twice and it returns back
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to the initial one. However, now estimates (2) lose their meaning since in formulae (3), (4) for the
coefficients 𝑐1(𝜃), 𝑐2(𝜃) we get

sup
𝑎<𝑡<𝑥

𝑔(𝑡)− 𝜃𝑔(𝑥)

𝑡− 𝑥
= lim

𝑡→𝑥−

𝑔(𝑡)− 𝜃𝑔(𝑥)

𝑡− 𝑥
= +∞,

inf
𝑥<𝑡<𝑏

𝑔(𝑡)− 𝜃𝑔(𝑥)

𝑡− 𝑥
= lim

𝑡→𝑥+

𝑔(𝑡)− 𝜃𝑔(𝑥)

𝑡− 𝑥
= −∞.

The problem can be resolved if the function 𝑓(𝑥) satisfies some additional conditions. For instance,
if 𝑓(𝑥) is concave and 𝑥𝑓 ′(𝑥) increases on (𝑎, 𝑏), 𝑎 > 0, then the function 𝑓1(𝑡) = 𝑓(𝑒𝑡) is convex on
(ln 𝑎, ln 𝑏) since its derivative 𝑓 ′1(𝑡) = 𝑒𝑡𝑓 ′(𝑒𝑡) grows. Moreover, at appropriate points the identities

𝑓(𝑥)

𝑔(𝑥)
=
𝑓(𝑒𝑡)

𝑔(𝑒𝑡)
=
𝑓1(𝑡)

𝑔1(𝑡)
,

𝑓 ′(𝑥)

𝑔′(𝑥)
=
𝑒𝑡𝑓 ′(𝑒𝑡)

𝑒𝑡𝑔′(𝑒𝑡)
=
𝑓 ′1(𝑡)

𝑔′1(𝑡)

hold true. Similar arguing is applicable also in the case, when the concave function 𝑓(𝑥) satisfies a
slightly stronger condition: 𝑥𝛾𝑓 ′(𝑥) increases for some 𝛾 ∈ (0, 1) (see Examples 3 and 4 below).

Let us provide some simple demonstrations of Theorem 1.

Example 1. Let 𝑔(𝑥) = 𝑥𝑝, 𝑥 ∈ (0, +∞), with 𝑝 > 1. We fix 𝜃 ∈ [0, 1] and choose formulae (3), (4)
to calculate constants 𝑐1(𝜃), 𝑐2(𝜃). The standards way of studying extrema of the function

𝜓𝜃, 𝑥(𝑡) =
𝑔(𝑡)− 𝜃𝑔(𝑥)

𝑡− 𝑥
=

𝑡𝑝 − 𝜃𝑥𝑝

𝑡− 𝑥

lead us to the equation

(1− 𝑝)

(︂
𝑡

𝑥

)︂𝑝

+ 𝑝

(︂
𝑡

𝑥

)︂𝑝−1

= 𝜃,

and under the change 𝑡 = 𝑥 𝜉
1

𝑝−1 it becomes

(1− 𝑝) 𝜉
𝑝

𝑝−1 + 𝑝 𝜉 = 𝜃. (8)

In the interval (0, 𝑥), the function 𝜓𝜃, 𝑥(𝑡) attains the maximum at the point 𝑡1 = 𝑥 𝜉
1

𝑝−1

1 and the

minimum in the interval (𝑥,+∞) is attained at the point 𝑡2 = 𝑥 𝜉
1

𝑝−1

2 , where 𝜉1, 𝜉2 are roots of the
equation (8), and

0 6 𝜉1 6 1 6 𝜉2.

The associated extremal values are

𝜓𝜃, 𝑥(𝑡𝑘) =
𝑡𝑝𝑘 − 𝜃𝑥𝑝

𝑡𝑘 − 𝑥
=
𝑥𝑝𝜉

𝑝
𝑝−1

𝑘 − 𝜃𝑥𝑝

𝑥𝜉
1

𝑝−1

𝑘 − 𝑥

=𝑥𝑝−1 𝜉
𝑝

𝑝−1

𝑘 − (1− 𝑝)𝜉
𝑝

𝑝−1

𝑘 + 𝑝𝜉𝑘

𝜉
1

𝑝−1

𝑘 − 1

= 𝑝 𝑥𝑝−1𝜉𝑘, 𝑘 = 1, 2.

According to formulae (3), (4), we have

𝑐1(𝜃) = 𝜉1, 𝑐2(𝜃) = 𝜉2,

where 𝜉1, 𝜉2 are the roots of equation (8). In particular, as 𝑝 = 2, we obtain

𝑐1(𝜃) = 1−
√
1− 𝜃, 𝑐2(𝜃) = 1 +

√
1− 𝜃.

In this case Theorem 1 states that the derivative 𝑓 ′(𝑥) of a convex function 𝑓(𝑥) with the condition

𝑚𝑥2 6 𝑓(𝑥) 6𝑀 𝑥2, 𝑥 ∈ (0, +∞),

satisfies the two-sided estimate

2𝑀
(︁
1−

√︀
1−𝑚/𝑀

)︁
𝑥 6 𝑓 ′(𝑥) 6 2𝑀

(︁
1 +

√︀
1−𝑚/𝑀

)︁
𝑥, 𝑥 ∈ (0, +∞),

where 0 6 𝑚 6𝑀 .
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Example 2. Let 𝑔(𝑥) = 𝑒𝜌𝑥, 𝑥 ∈ (−∞, +∞), 𝜌 > 0. We calculate the quantity 𝑐1(𝜃) by formula (3).
For fixed 𝑥 and 𝜃 ∈ [0, 1] we have

sup
−∞<𝑡<𝑥

𝑒𝜌𝑡 − 𝜃𝑒𝜌𝑥

𝑡− 𝑥
= 𝑒𝜌𝑥 max

−∞<𝑡<𝑥

𝑒𝜌(𝑡−𝑥) − 𝜃

𝑡− 𝑥
=: 𝐾𝑥,𝜃.

The standard methods in analysis for finding the maximum point 𝑡 = 𝑡0 < 𝑥 lead us to the equation

𝑒𝜌(𝑡−𝑥) (1− 𝜌(𝑡− 𝑥)) = 𝜃.

Under the change 𝜉 = 𝑒𝜌(𝑡−𝑥), the equation

𝜉 ln
𝑒

𝜉
= 𝜃 (9)

arises and the sought maximum point is found by the formula 𝑡0 = 𝑥+ 1
𝜌 ln 𝜉1. Here 𝜉1 = 𝜉1(𝜃) stands

for the smaller root of equation (9). Hence,

𝐾𝑥,𝜃 =
𝑒𝜌𝑥(𝜉1 − 𝜃)

1
𝜌 ln 𝜉1

= 𝑒𝜌𝑥
𝜉1 − 𝜉1 ln

𝑒
𝜉1

1
𝜌 ln 𝜉1

= 𝜌𝑒𝜌𝑥𝜉1,

𝑐1(𝜃) = inf
𝑥∈(−∞,+∞)

1

𝜌𝑒𝜌𝑥
𝐾𝑥,𝜃 = 𝜉1.

In the same way we find that

𝑐2(𝜃) = 𝜉2,

where 𝜉2 = 𝜉2(𝜃) is the greater root of equation (9).
Thus, Theorem 1 states that the derivative of each convex function 𝑓(𝑥) with the condition

𝑚𝑒𝜌𝑥 6 𝑓(𝑥) 6𝑀 𝑒𝜌𝑥, 𝑥 ∈ (−∞, +∞), 𝜌 > 0,

satisfies the two-sided estimate

𝜉1 𝜌𝑀 𝑒𝜌𝑥 6 𝑓 ′(𝑥) 6 𝜉2 𝜌𝑀 𝑒𝜌𝑥, 𝑥 ∈ (−∞, +∞),

where 𝜉1, 𝜉2 are the roots of equation (9), 𝜉1 6 1 6 𝜉2.

As it has been mentioned, Theorem 1 does not work directly for concave functions 𝑓(𝑥). However,
if for some 𝛾 ∈ (0, 1] the function 𝑥𝛾𝑓 ′(𝑥) increase, the situation changes.

Example 3. Let 𝑓(𝑥) be a concave function on an interval (0, +∞) obeying the conditions

𝑚𝑥𝜌 6 𝑓(𝑥) 6 𝑀 𝑥𝜌, 𝜌 ∈ (0, 1),

and 𝑥𝑓 ′(𝑥) increases. Then applying Theorem 1 to the convex on the entire axis (−∞, +∞) function
𝑓1(𝑡) = 𝑓(𝑒𝑡), we obtain two-sided estimate (see Example 2):

𝜉1 𝜌𝑀 𝑥𝜌−1 6 𝑓 ′(𝑥) 6 𝜉2 𝜌𝑀 𝑥𝜌−1,

where 𝜉1, 𝜉2 are the roots to equation (9):

𝜉 ln
𝑒

𝜉
=
𝑚

𝑀
.

Example 4. Let 𝑓(𝑥) be a concave on the interval (0, +∞) function obeying the conditions

𝑚𝑥𝜌 6 𝑓(𝑥) 6 𝑀 𝑥𝜌, 𝜌 ∈ (0, 1),

and 𝑥𝛾𝑓 ′(𝑥) increases for some 𝛾 ∈ (1 − 𝜌, 1). Applying Theorem 1 to the convex on the interval

(0, +∞) function 𝑓1(𝑡) = 𝑓(𝑡𝛿) with the exponent 𝛿 =
1

1− 𝛾
>

1

𝜌
, we obtain that the condition

𝑚 6
𝑓(𝑥)

𝑥𝜌
=
𝑓(𝑡𝛿)

𝑡𝛿𝜌
=
𝑓1(𝑡)

𝑡𝛿𝜌
6 𝑀

yields the two-sided estimate

𝑀𝜁1 6
𝑓 ′1(𝑡)

𝛿𝜌 𝑡𝛿𝜌−1
6𝑀𝜁2.
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But since
𝑓 ′1(𝑡)

𝛿𝜌 𝑡𝛿𝜌−1
=

𝛿𝑡𝛿−1𝑓 ′(𝑡𝛿)

𝛿𝜌 𝑡𝛿𝜌−1
=

𝑓 ′(𝑡𝛿)

𝜌 𝑡𝛿(𝜌−1)
=

𝑓 ′(𝑥)

𝜌 𝑥𝜌−1
,

the inequalities hold:
𝜁1 𝜌𝑀 𝑥𝜌−1 6 𝑓(𝑥) 6 𝜁2 𝜌𝑀 𝑥𝜌−1.

Here 𝜁1, 𝜁2 are the roots of equation (8) in Example 1 with the parameter 𝑝 = 𝛿𝜌 > 1. Due to the
relation

(1− 𝑝) 𝜉
𝑝

𝑝−1 + 𝑝 𝜉 6 𝜉 ln
𝑒

𝜉
, 𝜉 ∈ (0, 𝑒),

the inclusion (𝜁1, 𝜁2) ⊂ (𝜉1, 𝜉2) holds and the estimates for the quotients of the derivatives in Exam-
ple 4 are sharper than those in Example 3.

Now we consider the issue on comparing decreasing infinitesimal function.

Theorem 2. Assume that a function 𝑓(𝑥) is convex on an interval (𝑎, 𝑏), −∞ 6 𝑎 < 𝑏 6 +∞, a
function 𝑔(𝑥) is differentiable on this interval and 𝑔′(𝑥) < 0 and moreover, 𝑔(𝑎+) = +∞, 𝑔(𝑏−) = 0.
Assume also that condition (1) holds with non-negative constants 𝑚, 𝑀 , 𝑚 6𝑀 , that is,

𝑚 6
𝑓(𝑥)

𝑔(𝑥)
6 𝑀, 𝑥 ∈ (𝑎, 𝑏).

Then the two-sided estimate

𝑀 𝑑1(𝜃) 6
𝑓 ′(𝑥)

𝑔′(𝑥)
6 𝑀 𝑑2(𝜃), 𝑥 ∈ (𝑎, 𝑏), (10)

holds true, where 𝜃 = 𝑚
𝑀 , while the quantities 𝑑1(𝜃), 𝑑2(𝜃) are defined as

𝑑1(𝜃) = inf
𝑥∈(𝑎, 𝑏)

1

𝑔′(𝑥)
inf

𝑏>𝑡>𝑥

𝑔(𝑡)− 𝜃𝑔(𝑥)

𝑡− 𝑥
, (11)

𝑑2(𝜃) = sup
𝑥∈(𝑎, 𝑏)

1

𝑔′(𝑥)
sup

𝑎<𝑡<𝑥

𝑔(𝑡)− 𝜃𝑔(𝑥)

𝑡− 𝑥
. (12)

Proof. The proof is similar to that of Theorem 1. We point out slight differences. Dividing (5) by
𝑔′(𝑥), for all 𝑥 ∈ (𝑎, 𝑏) we obtain

𝑓 ′(𝑥)

𝑔′(𝑥)
> 𝑀

1

𝑔′(𝑥)
inf

𝑏>𝑡>𝑥

𝑔(𝑡)− 𝜃𝑔(𝑥)

𝑡− 𝑥
>𝑀 𝑑1(𝜃),

which proves the left estimate in (10). Dividing (6) by 𝑔′(𝑥), for all 𝑥 ∈ (𝑎, 𝑏) we obtain

𝑓 ′(𝑥)

𝑔′(𝑥)
6 𝑀

1

𝑔′(𝑥)
sup

𝑎<𝑡<𝑥

𝑔(𝑡)− 𝜃𝑔(𝑥)

𝑡− 𝑥
6𝑀 𝑑2(𝜃).

The proof is complete.

We observe that the proof can be done in a different way by applying Theorem 1 to the functions
𝑓(−𝑥) and 𝑔(−𝑥). For case 𝑔(𝑥) < 0, 𝑔′(𝑥) > 0 as 𝑥 ∈ (𝑎, 𝑏), see the comments after Theorem 1.

Example 5. Let 𝑔(𝑥) = 𝑥−𝑞, 𝑥 ∈ (0, +∞), 𝑞 > 0. We find quantities 𝑑1(𝜃), 𝑑2(𝜃) by formulae (11),
(12). Since in our case

inf
𝑡>𝑥

𝑡−𝑞 − 𝜃𝑥−𝑞

𝑡− 𝑥
= 𝑥−𝑞−1 inf

𝑡>𝑥

(︀
𝑡
𝑥

)︀−𝑞 − 𝜃
𝑡
𝑥 − 1

= 𝑥−𝑞−1 inf
𝜉<1

𝜉 − 𝜃

𝜉
− 1

𝑞 − 1
,(︃

𝜉 − 𝜃

𝜉
− 1

𝑞 − 1

)︃′

= 𝑞−1
(︁
𝜉
− 1

𝑞 − 1
)︁−2

𝜉
− 𝑞+1

𝑞

[︁
𝜉(𝑞 + 1)− 𝑞𝜉

𝑞+1
𝑞 − 𝜃

]︁
,

then

𝑑𝑗(𝜃) = 𝜉
𝑞+1
𝑞

𝑗 , 𝑗 = 1, 2,

where 𝜉𝑗 are roots of equation (8) with 𝑝 = 𝑞 + 1. In particular, for 𝑞 = 1 we have

𝑑1(𝜃) =
(︁
1−

√
1− 𝜃

)︁2
, 𝑑2(𝜃) =

(︁
1 +

√
1− 𝜃

)︁2
,
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and Theorem 2 ensures that the derivative of each convex function 𝑓(𝑥) with the condition

𝑚 6 𝑥𝑓(𝑥) 6𝑀, 𝑥 ∈ (0, +∞),

satisfies the estimate(︁√
𝑀 −

√
𝑀 −𝑚

)︁2
6
(︀
−𝑥2

)︀
𝑓 ′(𝑥) 6

(︁√
𝑀 +

√
𝑀 −𝑚

)︁2
, 𝑥 ∈ (0, +∞).

Here we still have 0 6 𝑚 6𝑀 < +∞.

Example 6. Let 𝑔(𝑥) = 𝑒−𝜌𝑥, 𝑥 ∈ (−∞, +∞), 𝜌 > 0. As in the previous example we find

inf
𝑡>𝑥

𝑒−𝜌𝑡 − 𝜃𝑒−𝜌𝑥

𝑡− 𝑥
= 𝑒−𝜌𝑥 inf

𝑡>𝑥

𝑒−𝜌(𝑡−𝑥) − 𝜃

𝑡− 𝑥
= 𝜌𝑒−𝜌𝑥 inf

𝜉<1

𝜉 − 𝜃

ln 1
𝜉

,(︃
𝜉 − 𝜃

ln 1
𝜉

)︃′

=
𝜉 ln 𝑒

𝜉 − 𝜃

𝜉 ln2 𝜉
, 𝑑𝑗(𝜉) = −𝜉𝑗 − 𝜃

ln 1
𝜉𝑗

= −
𝜉𝑗 − 𝜉𝑗 ln

𝑒
𝜉𝑗

ln 1
𝜉𝑗

= 𝜉𝑗 .

Thus,
𝑑1(𝜃) = 𝜉1, 𝑑2(𝜃) = 𝜉2, 𝜉1 6 1 6 𝜉2,

where 𝜉1, 𝜉2 are roots of equation (9).
According to Theorem 2 we can state that the derivative of each convex function 𝑓(𝑥) with the

condition
𝑚 6 𝑒𝜌𝑥𝑓(𝑥) 6𝑀, 𝑥 ∈ (−∞, +∞),

satisfies the two-sided estimate

𝜉1 𝜌𝑀 6 (−𝑒𝜌𝑥) 𝑓 ′(𝑥) 6 𝜉2 𝜌𝑀, 𝑥 ∈ (−∞, +∞),

where 𝜉1, 𝜉2 are the roots of equation (9), 𝜉1 6 1 6 𝜉2.

We consider some applications.
Let 𝑓(𝑧) be an entire function, 𝑀𝑓 (𝑟) be the maximum of its absolute value in the circle of a radius

𝑟 centered at the origin and 0 6 𝜎0 < 𝜎 < +∞, 𝜌 > 0. We assume that the inequalities

𝑒𝜎0𝑟𝜌 6 𝑀𝑓 (𝑟) 6 𝑒𝜎𝑟
𝜌
, 𝑟 > 0,

hold true. Then
𝜉1 𝜎𝜌 𝑟

𝜌−1𝑀𝑓 (𝑟) 6 𝑀 ′
𝑓 (𝑟) 6 𝜉2 𝜎𝜌 𝑟

𝜌−1𝑀𝑓 (𝑟), 𝑟 > 0,

where 𝜉1, 𝜉2 are the roots of the equation

𝜉 ln
𝑒

𝜉
=
𝜎0
𝜎
,

see (9).
Indeed, we rewrite initial inequalities as

𝜎0 6
ln𝑀𝑓 (𝑒

𝑡)

𝑒𝜌𝑡
6 𝜎, 𝑡 = ln 𝑟 ∈ R.

Since the function ln𝑀𝑓 (𝑒
𝑡) is convex on R, by Theorem 1 we obtain

𝜉1 𝜎 6

(︀
ln𝑀𝑓 (𝑒

𝑡)
)︀′

(𝑒𝜌𝑡)′
=

𝑒𝑡𝑀 ′
𝑓 (𝑒

𝑡)

𝑀𝑓 (𝑒𝑡)𝜌 𝑒𝜌𝑡
6 𝜉2 𝜎.

Returning back to the initial variable, we arrive at the desired result.
By this, in particular, we conclude that if an entire function 𝑓(𝑧) with non-negative Taylor coeffi-

cients obeying 𝑓(0) = 1 satisfies the inequality

𝑓(𝑥) 6 𝑒𝜎𝑥, 𝑥 > 0,

for some 𝜎 > 0, then its derivative satisfies the estimate

𝑓 ′(𝑥) 6 𝜎𝑒𝑓(𝑥), 𝑥 > 0.

Indeed, as 𝜎0 = 0, the roots of equation (9), that is, of the equation

𝜉 ln
𝑒

𝜉
=
𝜎0
𝜎

= 0
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are the numbers 𝜉1 = 0, 𝜉2 = 𝑒.
It is reasonable to compare the obtained fact with the well-known Bernstein theorem stating that

an entire function of exponential type 𝜎 bounded on the real axis, that is, obeying the condition

|𝑓(𝑥)| 6 𝑀, 𝑥 ∈ R,
satisfies the estimate

|𝑓 ′(𝑥)| 6 𝜎𝑀, 𝑥 ∈ R.
At the same time, as it has been shown before, replacing the boundedness condition of a function on
the real axis by the condition |𝑓(𝑥)| 6 𝑒𝜎𝑥 on the half-axis and keeping the positivity of the Taylor
coefficients, we arrive at the estimate

𝑓 ′(𝑥) 6 𝜎𝑒𝑓(𝑥), 𝑥 > 0.

Similar estimates can be given for the functions of zero order.
For instance, consider entire functions of logarithmic growth. Let 0 6 𝜎0 < 𝜎 < +∞ and 𝛾 > 1.

Assume that an entire function satisfies the conditions

𝑒𝜎0(ln 𝑟)𝛾 6 𝑀𝑓 (𝑟) 6 𝑒𝜎(ln 𝑟)𝛾 , 𝑟 > 0.

Then
𝜉1 𝜎𝛾 (ln 𝑟)

𝛾−1𝑀𝑓 (𝑟) 6 𝑟𝑀 ′
𝑓 (𝑟) 6 𝜉2 𝜎𝛾 (ln 𝑟)

𝛾−1𝑀𝑓 (𝑟), 𝑟 > 0,

where 𝜉1, 𝜉2 are the roots of the equation

(1− 𝛾) 𝜉
𝛾

𝛾−1 + 𝛾 𝜉 =
𝜎0
𝜎

of form (8) with the parameters 𝑝 = 𝛾 and 𝜃 = 𝜎0
𝜎 .

Indeed, as above, we can write

𝜎0 6
ln𝑀𝑓 (𝑒

𝑡)

𝑡𝛾
6 𝜎, 𝑡 = ln 𝑟 ∈ R.

In this case Theorem 1 ensures the estimate

𝜉1 𝜎 6

(︀
ln𝑀𝑓 (𝑒

𝑡)
)︀′

(𝑡𝛾)′
=

𝑒𝑡𝑀 ′
𝑓 (𝑒

𝑡)

𝑀𝑓 (𝑒𝑡) 𝛾 𝑡𝛾−1
6 𝜉2 𝜎,

which for 𝑡 = ln 𝑟 gives the desired statement.
In conclusion we note that some results of asymptotic character related to the L’Hôpital’s rule and

its inversion were exposed in [4]–[6].
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