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ESTIMATES OF HARDY-RELLICH CONSTANTS

FOR POLYHARMONIC OPERATORS

AND THEIR GENERALIZATIONS

F.G. AVKHADIEV

Abstract. We prove the lower bounds for the functions introduced as the maximal
constants in the Hardy and Rellich type inequalities for polyharmonic operator of order 𝑚
in domains in a Euclidean space. In the proofs we employ essentially the known integral
inequality by O.A. Ladyzhenskaya and its generalizations. For the convex domains we
establish two generalizations of the known results obtained in the paper M.P. Owen, Proc.
Royal Soc. Edinburgh, 1999 and in the book A.A. Balinsky, W.D. Evans, R.T. Lewis, The
analysis and geometry of hardy’s inequality, Springer, 2015. In particular, we obtain a
new proof of the theorem by M.P. Owen for polyharmonic operators in convex domains.
For the case of arbitrary domains we prove universal lower bound for the constants in the
inequalities for 𝑚th order polyharmonic operators by using the products of 𝑚 different
constants in Hardy type inequalities. This allows us to obtain explicit lower bounds for the
constants in Rellich type inequalities for the dimension two and three. In the last section
of the paper we discuss two open problems. One of them is similar to the problem by
E.B. Davies on the upper bounds for the Hardy constants. The other problem concerns
the comparison of the constants in Hardy and Rellich type inequalities for the operators
defined in three-dimensional domains.
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1. Introduction

Let Ω be a domain in the Euclidean space R𝑑 (𝑑 > 2). We assume that Ω ̸= R𝑑 and hence,
the distance dist(𝑥, 𝜕Ω) from a point 𝑥 ∈ Ω to the boundary of the domain is well-defined. We
shall consider real-valued functions 𝑓 ∈ 𝐶∞

0 (Ω), that is, smooth functions 𝑓 : Ω → R such that
supp (𝑓) ⊂ Ω. A functional 𝑐2(𝑠,Ω) introduced as the sharp constant in the following Hardy
type inequality∫︁

Ω

|∇𝑓(𝑥)|2

(dist(𝑥, 𝜕Ω))𝑠−2
𝑑𝑥 > 𝑐2(𝑠,Ω)

∫︁
Ω

𝑓 2(𝑥)

(dist(𝑥, 𝜕Ω))𝑠
𝑑𝑥 ∀𝑓 ∈ 𝐶∞

0 (Ω) (1)

is well-studied, where 𝑠 ∈ (1,∞) is a fixed parameter. In particular, a series of authors proved
independently that 𝑐2(2,Ω) = 1

4
for each convex domain Ω ̸= R𝑑 (see [1]–[7]). If 𝑠 ∈ (1, 𝑑 ], there

exist non-convex domains Ω′ ⊂ R𝑑 for which 𝑐2(𝑠,Ω
′) = 0, that is, the considered inequality is

meaningless. There are various conditions ensuring the positivity of the constant 𝑐2(2,Ω) (see,
for instance, [3], [8]). In particular, it is well-known that 𝑐2(2,Ω) > 0 for each bounded domain
with a locally Lipschitz boundary.
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Let 𝑚 be a fixed natural number. Given a smooth real-valued function 𝑓 , we consider the
linear combinations of its partial derivatives of order 𝑚 introduced by the formulae:

∆𝑚/2𝑓(𝑥) :=

{︃
∆𝑗𝑓(𝑥), if 𝑚 = 2𝑗 is even;

∇∆𝑗𝑓(𝑥), if 𝑚 = 2𝑗 + 1 is odd.
(2)

Here, as usually, ∆ stands for the Laplace operator and ∇𝑓 is the gradient of the function 𝑓 .
It is obvious that ∆

𝑚
2 is a polyharmonic operator for even 𝑚.

We shall make use of the standard expression

|𝐷𝑚𝑓(𝑥)|2 :=
𝑑∑︁

𝑘1=1

𝑑∑︁
𝑘2=1

· · ·
𝑑∑︁

𝑘𝑚=1

(︂
𝜕𝑚𝑓(𝑥)

𝜕𝑥𝑘1𝜕𝑥𝑘2 · · · 𝜕𝑥𝑘𝑚

)︂2

(3)

involving only the squares of partial derivatives of order 𝑚.
It should be noted that there are many works on Rellich inequalities for harmonic and

polyharmonic operators as 𝑚 > 2, Ω = R𝑑 ∖ {0} and weight functions are the powers of |𝑥|
(see [7]—[11] and the references therein). We shall consider the analogues of such inequalities
as Ω ⊂ R𝑑 is a bounded or an unbounded domain and the weight functions are the powers of
dist(𝑥, 𝜕Ω).

The aim of the present paper is the studying of the following inequality extending (1) for the
case of the polyharmonic operators∫︁

Ω

|∆𝑚/2𝑓(𝑥)|2𝑑𝑥 > 𝐴𝑚(Ω)

∫︁
Ω

𝑓 2(𝑥) 𝑑𝑥

(dist(𝑥, 𝜕Ω))2𝑚
∀𝑓 ∈ 𝐶∞

0 (Ω), (4)

where the function ∆𝑚/2𝑓 is defined by formula (2), the constant 𝐴𝑚(Ω) ∈ [0,∞) is the maximal
possible, that is,

𝐴𝑚(Ω) = inf
𝑓∈𝐶∞

0 (Ω),𝑓 ̸≡0

∫︀
Ω
|∆𝑚/2𝑓(𝑥)|2𝑑𝑥∫︀

Ω
𝑓 2(𝑥)(dist(𝑥, 𝜕Ω))−2𝑚𝑑𝑥

.

Moreover, we consider the following generalization of (1):∫︁
Ω

|𝐷𝑚𝑓(𝑥)|2 𝑑𝑥
(dist(𝑥, 𝜕Ω))𝜎

> 𝐶𝑚(𝜎,Ω)

∫︁
Ω

𝑓 2(𝑥) 𝑑𝑥

(dist(𝑥, 𝜕Ω))2𝑚+𝜎
∀𝑓 ∈ 𝐶∞

0 (Ω), (5)

where 𝜎 ∈ (−1,∞) is a fixed number, the function |𝐷𝑚𝑓 |2 is defined by formula (3) and the
constant 𝐶𝑚(𝜎,Ω) ∈ [0,∞) is maximal, that is,

𝐶𝑚(𝜎,Ω) = inf
𝑓∈𝐶∞

0 (Ω),𝑓 ̸≡0

∫︀
Ω
|𝐷𝑚𝑓(𝑥)|2(dist(𝑥, 𝜕Ω))−𝜎𝑑𝑥∫︀

Ω
𝑓 2(𝑥)(dist(𝑥, 𝜕Ω))−2𝑚−𝜎𝑑𝑥

.

We note that for the case 𝑚 > 2, inequality (4) was studied just in several papers, while, to
the best of the author’s knowledge, inequality (5) was not studied before for the case 𝑚 > 2
and 𝜎 ̸= 0.

Inequality (4) was considered first by M.P. Owen [12]. He proved that for each 𝑚 ∈ N,
𝑚 > 2, and each convex domain Ω ̸= R𝑑 the estimate

𝐴𝑚(Ω) >
((2𝑚− 1)!!)2

4𝑚

holds true and this estimate is sharp since for the half-space 𝑥1 > 0 it becomes the identity.
Some generalization and strengthening of the result by M.P. Owen were obtained in papers

[13]—[18]. In particular, we proved (see [17] and [18]) that 𝐴2(Ω) = 9
16

for each convex domain

Ω ̸= R𝑑.
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2. Simplest properties of the constants and some known facts

It is obvious that as 𝑚 = 1, inequalities (4), (5) are reduced to inequality (1) since

|∆1/2𝑓(𝑥)|2 ≡ |𝐷1𝑓(𝑥)|2 ≡ |∇𝑓(𝑥)|2,
and the identities 𝐴1(Ω) = 𝑐2(2,Ω) and 𝐶1(𝜎,Ω) = 𝑐2(𝜎 + 2,Ω) hold. This is why the natural
condition 𝑚 > 2 arises in statements on inequalities (4), (5) and the constants 𝐴𝑚(Ω), 𝐶𝑚(𝜎,Ω).

It is easy to check that the constants 𝐴𝑚(Ω), 𝐶𝑚(𝜎,Ω) and 𝑐2(𝑠,Ω) are invariant w.r.t. linear
conformal mappings of the domain, that is, for each 𝑎 ∈ R ∖ {0}, 𝑏 ∈ R𝑑 the identities

𝐴𝑚(Ω) = 𝐴𝑚(𝑎Ω + 𝑏), 𝐶𝑚(𝜎,Ω) = 𝐶𝑚(𝜎, 𝑎Ω + 𝑏)

hold true and 𝑐2(𝑠,Ω) = 𝑐2(𝑠, 𝑎Ω + 𝑏), where 𝑎Ω + 𝑏 = {𝑎𝑥 + 𝑏 : 𝑥 ∈ Ω}.
Let us formulate three theorems, which will be used in what follows. We consider the

functions 𝑢 : Ω → R ∈ 𝐶∞
0 (Ω) and we concern Hardy type inequalities (1).

Theorem A. (see [1], [2] for 𝑠 = 2 and [19] for 𝑠 ̸= 2). Let Ω ⊂ R𝑑 be a convex domain,
Ω ̸= R𝑑. If 𝑠 ∈ (1,∞), then∫︁

Ω

|∇𝑢(𝑥)|2 𝑑𝑥
(dist(𝑥, 𝜕Ω))𝑠−2

>
(𝑠− 1)2

4

∫︁
Ω

𝑢2(𝑥) 𝑑𝑥

(dist(𝑥, 𝜕Ω))𝑠
∀𝑢 ∈ 𝐶∞

0 (Ω). (6)

Theorem B. (see [19]). Let Ω ⊂ R𝑑 be an arbitrary domain, Ω ̸= R𝑑. If 𝑠 ∈ (𝑑,∞), then∫︁
Ω

|∇𝑢(𝑥)|2 𝑑𝑥
(dist(𝑥, 𝜕Ω))𝑠−2

>
(𝑠− 𝑑)2

4

∫︁
Ω

𝑢2(𝑥) 𝑑𝑥

(dist(𝑥, 𝜕Ω))𝑠
∀𝑢 ∈ 𝐶∞

0 (Ω). (7)

A series of Hardy and Rellich type inequalities with sharp constants are characterized by the
absence of extremal functions in appropriate Sobolev spaces turning inequalities (1) and (4)
into the identities. This is why there is a chance to strengthen these inequalities via increasing
the right hand side by an additional positive term. For instance, as we have mentioned above,
𝑐2(2,Ω) = 1

4
for each convex domain Ω ̸= R𝑑. Nevertheless, the following statement holds true.

Theorem C. (see [4]). Let Ω ⊂ R𝑑 be a convex domain and let

𝛿0(Ω) = sup
𝑥∈Ω

dist(𝑥, 𝜕Ω).

If 𝛿0(Ω) < ∞, then for each function 𝑢 ∈ 𝐶∞
0 (Ω)∫︁

Ω

|∇𝑢(𝑥)|2 𝑑𝑥 >
1

4

∫︁
Ω

𝑢2(𝑥) 𝑑𝑥

(dist(𝑥, 𝜕Ω))2
+

𝜆2
0

𝛿20(Ω)

∫︁
Ω

𝑢2(𝑥) 𝑑𝑥, (8)

where 𝜆0 ≈ 0.940 is the first positive root of the Lamb equation 𝐽0(𝜆) + 2𝜆𝐽 ′
0(𝜆) = 0 for the

Bessel function of zero order.

3. Rellich type inequalities in convex domains

Our main aim is to generalize Theorem C for the polyharmonic operators. We first introduce

some useful formulae for the integrals
∫︀
Ω

⃒⃒
∆𝑚/2𝑓(𝑥)

⃒⃒2
𝑑𝑥.

Let 𝑓 ∈ 𝐶∞
0 (Ω) be an arbitrary real function, then for the functions ∆

1
2𝑓 := ∇𝑓 and

∆1𝑓 := ∆𝑓 the following integral identities hold:∫︁
Ω

|∇𝑓(𝑥)|2 𝑑𝑥 =

∫︁
Ω

𝑑∑︁
𝑘=1

(︂
𝜕𝑓(𝑥)

𝜕𝑥𝑘

)︂2

𝑑𝑥, (9)

∫︁
Ω

(∆𝑓(𝑥))2 𝑑𝑥 =

∫︁
Ω

𝑑∑︁
𝑘=1

𝑑∑︁
𝑗=1

(︂
𝜕 2𝑓(𝑥)

𝜕𝑥𝑘𝜕𝑥𝑗

)︂2

𝑑𝑥. (10)
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Identity (9) is obviously implied simply by the definition of the gradient of the function. Identity
(10) seems to be obtained first by O.A. Ladyzhenskaya (see, for instance, [21, Ch. 2, Form.
(6.26)]) and this is a non-trivial identity since

(∆𝑓(𝑥))2 =
𝑑∑︁

𝑘=1

𝑑∑︁
𝑗=1

𝜕 2𝑓(𝑥)

𝜕𝑥2
𝑘

𝜕 2𝑓(𝑥)

𝜕𝑥2
𝑗

̸≡
𝑑∑︁

𝑘=1

𝑑∑︁
𝑗=1

(︂
𝜕 2𝑓(𝑥)

𝜕𝑥𝑘𝜕𝑥𝑗

)︂2

.

We shall need an analogue of formulae (9) and (10) for polyharmonic operators. The following
statement holds.

Assume that 𝑚 ∈ N, Ω ⊂ R𝑑 is a domain. Then for each real-valued function 𝑓 ∈ 𝐶∞
0 (Ω)

the identity ∫︁
Ω

⃒⃒
∆𝑚/2𝑓(𝑥)

⃒⃒2
𝑑𝑥 =

∫︁
Ω

𝑑∑︁
𝑘1=1

𝑑∑︁
𝑘2=1

· · ·
𝑑∑︁

𝑘𝑚=1

(︂
𝜕𝑚𝑓(𝑥)

𝜕𝑥𝑘1𝜕𝑥𝑘2 · · · 𝜕𝑥𝑘𝑚

)︂2

𝑑𝑥 (11)

holds true, or, the same, the identity∫︁
Ω

⃒⃒
∆𝑚/2𝑓(𝑥)

⃒⃒2
𝑑𝑥 =

∫︁
Ω

∑︁
|𝛼|=𝑚

𝑚!

𝛼!

(︂
𝜕𝑚𝑓(𝑥)

𝜕𝑥𝛼

)︂2

𝑑𝑥, (12)

where 𝜕𝑥𝛼 = 𝜕𝑥𝛼1
1 𝜕𝑥𝛼2

2 · · · 𝜕𝑥𝛼𝑑
𝑑 , 𝜕𝑥0

𝑘 := 1; 𝛼 = (𝛼1, 𝛼2, · · · , 𝛼𝑑) is a multi-index, 𝛼𝑘 are non-
negative integer not exceeding 𝑚; |𝛼| = 𝛼1 + 𝛼2 + · · · + 𝛼𝑑, 𝛼! = 𝛼1!𝛼2! · · ·𝛼𝑑!.

It is obvious that identity (12) is implied by (11) since by applying simple formulae of
combinatorics we arrive at the following identity

𝑑∑︁
𝑘1=1

𝑑∑︁
𝑘2=1

· · ·
𝑑∑︁

𝑘𝑚=1

(︂
𝜕𝑚𝑓(𝑥)

𝜕𝑥𝑘1𝜕𝑥𝑘2 · · · 𝜕𝑥𝑘𝑚

)︂2

≡
∑︁
|𝛼|=𝑚

𝑚!

𝛼!

(︂
𝜕𝑚𝑓(𝑥)

𝜕𝑥𝛼

)︂2

. (13)

We observe that formula (11) is known and it was provided, for instance, in monograph [22,
Ch. 2, Form. (2.12)].

As we shall confirm in what follows, formula (11) turns out to be useful for studying inequal-

ities (4) for the polyharmonic operators since it allows us to represent
∫︀
Ω

⃒⃒
∆𝑚/2𝑓(𝑥)

⃒⃒2
𝑑𝑥 as the

sum of the integrals of squares of partial derivatives of order 𝑚.
Our main result is provided below in Theorem 2. First we obtain an analogue of Theorem A

for inequalities (5) considered in convex domains. We note that Theorem 1 is used essentially
in the proof of Theorem 2.

Theorem 1. Let Ω ⊂ R𝑑 be a convex domain, Ω ̸= R𝑑. Assume that 𝜎 ∈ (−1,∞) is a fixed
number, 𝑚 is a natural number, 𝑚 > 2. Then for each real-valued function 𝑓 ∈ 𝐶∞

0 (Ω) the
inequality ∫︁

Ω

|𝐷𝑚𝑓(𝑥)|2 𝑑𝑥
(dist(𝑥, 𝜕Ω))𝜎

>
Γ2(𝑚 + 𝜎

2
+ 1

2
)

Γ2(𝜎
2

+ 1
2
)

∫︁
Ω

𝑓 2(𝑥) 𝑑𝑥

(dist(𝑥, 𝜕Ω))2𝑚+𝜎
(14)

holds true, where Γ is the Euler Gamma-function. Therefore, for each convex domain Ω ̸= R𝑑

the inequality

𝐶𝑚(𝜎,Ω) >
Γ2(𝑚 + 𝜎

2
+ 1

2
)

Γ2(𝜎
2

+ 1
2
)

holds true.

Proof. Let 𝑓 be a real-valued function belonging to 𝐶∞
0 (Ω). By the definition of |𝐷𝑚𝑓 |2 and

formula (13), the identity

|𝐷𝑚𝑓(𝑥)|2 ≡
𝑑∑︁

𝑘1=1

𝑑∑︁
𝑘2=1

· · ·
𝑑∑︁

𝑘𝑚−1=1

⃒⃒
∇𝑢𝑘1𝑘2···𝑘𝑚−1(𝑥)

⃒⃒2
(15)
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holds true, where

𝑢𝑘1𝑘2···𝑘𝑚−1 =
𝜕𝑚−1𝑓

𝜕𝑥𝑘1𝜕𝑥𝑘2 · · · 𝜕𝑥𝑘𝑚−1

. (16)

Applying inequality (6) with 𝑠 = 𝜎 + 2 to the function 𝑢 = 𝑢𝑘1𝑘2···𝑘𝑚−1 ∈ 𝐶∞
0 (Ω) and summing

up over indices 𝑘1, 𝑘2, · · · , 𝑘𝑚−1 and taking into consideration formula (15), we have∫︁
Ω

|𝐷𝑚𝑓(𝑥)|2 𝑑𝑥
(dist(𝑥, 𝜕Ω))𝜎

>
(1 + 𝜎)2

4

∫︁
Ω

𝑑∑︁
𝑘1=1

𝑑∑︁
𝑘2=1

· · ·
𝑑∑︁

𝑘𝑚−1=1

𝑢2
𝑘1𝑘2···𝑘𝑚−1

(𝑥) 𝑑𝑥

(dist(𝑥, 𝜕Ω))2+𝜎
,

or, the same, ∫︁
Ω

|𝐷𝑚𝑓(𝑥)|2 𝑑𝑥
(dist(𝑥, 𝜕Ω))𝜎

>
(1 + 𝜎)2

4

∫︁
Ω

|𝐷𝑚−1𝑓(𝑥)|2 𝑑𝑥
(dist(𝑥, 𝜕Ω))2+𝜎

. (17)

Since |𝐷1𝑓 |2 = |∇𝑓 |2, as 𝑚 = 2, inequality (17) is equivalent to the following∫︁
Ω

|𝐷2𝑓(𝑥)|2 𝑑𝑥
(dist(𝑥, 𝜕Ω))𝜎

>
(1 + 𝜎)2

4

∫︁
Ω

|∇𝑓(𝑥)|2 𝑑𝑥
(dist(𝑥, 𝜕Ω))2+𝜎

.

Estimating from below the integral in the right hand side of this inequality by applying (6)
with 𝑠 = 𝜎 + 4 to the function 𝑢 = 𝑓 , we obtain∫︁

Ω

|𝐷2𝑓(𝑥)|2 𝑑𝑥
(dist(𝑥, 𝜕Ω))𝜎

>
(1 + 𝜎)2(3 + 𝜎)2

42

∫︁
Ω

𝑓 2(𝑥) 𝑑𝑥

(dist(𝑥, 𝜕Ω))4+𝜎
,

which is equivalent to inequality (14) as 𝑚 = 2 thanks to the identity

(1 + 𝜎)(3 + 𝜎)

4
=

Γ(𝜎
2

+ 5
2
)

Γ(𝜎
2

+ 1
2
)
.

If 𝑚 > 3, we arrive at inequality (14) by iterations and employing inequality (17) and the
convention (𝐷0𝑓,𝐷0𝑓) = 𝑓 2. Namely, applying (17) with the numbers 𝑚 and 𝜎 replaced by
the numbers 𝑚− 𝑗 and 𝜎 + 2𝑗 as 𝑗 = 1, · · · ,𝑚− 1, we get the inequalities∫︁

Ω

|𝐷𝑚−𝑗𝑓(𝑥)|2 𝑑𝑥
(dist(𝑥, 𝜕Ω))𝜎+2𝑗

>
(2𝑗 + 1 + 𝜎)2

4

∫︁
Ω

|𝐷𝑚−𝑗−1𝑓(𝑥)|2 𝑑𝑥
(dist(𝑥, 𝜕Ω))2𝑗+2+𝜎

,

where |𝐷0𝑓 |2 := 𝑓 2. Applying these inequalities with 𝑗 = 1, · · · ,𝑚 − 1 for estimating from
below the integral in the right hand side (17), we obtain∫︁

Ω

|𝐷𝑚𝑓(𝑥)|2 𝑑𝑥
(dist(𝑥, 𝜕Ω))𝜎

>

(︃
𝑚−1∏︁
𝑗=0

2𝑗 + 1 + 𝜎

2

)︃2 ∫︁
Ω

𝑓 2(𝑥) 𝑑𝑥

(dist(𝑥, 𝜕Ω))2𝑚+𝜎
,

which is equivalent to inequality (14) due to the identity

𝑚−1∏︁
𝑗=0

2𝑗 + 1 + 𝜎

2
=

Γ(𝑚 + 𝜎
2

+ 1
2
)

Γ(𝜎
2

+ 1
2
)

.

The proof is complete.

Identity (12) and the definition of the constants 𝐴𝑚(Ω) and 𝐶𝑚(𝜎,Ω) show that 𝐴𝑚(Ω) =
𝐶𝑚(0,Ω) for each domain Ω ⊂ R𝑑, Ω ̸= R𝑑.

Applying Theorem 1 with 𝜎 = 0, in view of this remark and the identity

Γ(𝑚 + 1
2
)

Γ(1
2
)

=
(2𝑚− 1)!!

2𝑚
,

as a corollary, we obtain the result by M.P. Owen [12].
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Corollary 1. (see [12]). For each natural 𝑚 > 2 and each convex domain Ω ⊂ R𝑑 (Ω ̸= R𝑑)
the inequality ∫︁

Ω

|∆𝑚/2𝑓(𝑥)|2𝑑𝑥 >
((2𝑚− 1)!!)2

4𝑚

∫︁
Ω

𝑓 2(𝑥) 𝑑𝑥

(dist(𝑥, 𝜕Ω))2𝑚

holds true for all 𝑓 ∈ 𝐶∞
0 (Ω).

We note that the original proof by M.P. Owen was based on using the distance function by
E.B. Davies (see [3]) and it changes substantially from ours.

The next statement was proved in [7] as 𝑚 = 2. It strengthens the result by M.P. Owen in
the case, when the domain Ω is convex and has a finite inner radius 𝛿0(Ω). We note at the
same time that there exist unbounded convex domains satisfying the condition 𝛿0(Ω) < ∞. For
instance, 𝛿0(Ω

′) = 1
2

for the domain

Ω′ = {(𝑥1, 𝑥2, · · · , 𝑥𝑑) ∈ R𝑑 : 0 < 𝑥1 < 1}.

Theorem 2. Let 𝑚 ∈ N, 𝑚 > 2, and let Ω ⊂ R𝑑 be a convex domain with a finite inner
radius 𝛿0(Ω). Then for each real-valued function 𝑓 ∈ 𝐶∞

0 (Ω) the inequalities∫︁
Ω

|∆𝑚/2𝑓(𝑥)|2𝑑𝑥 > Φ𝑚(𝑓) +
𝜆2
0

𝛿20(Ω)

∫︁
Ω

|∆(𝑚−1)/2𝑓(𝑥)|2𝑑𝑥, (18)∫︁
Ω

|∆𝑚/2𝑓(𝑥)|2𝑑𝑥 >
𝑚∑︁
𝑗=1

𝜆
2(𝑗−1)
0 Φ𝑚−𝑗+1(𝑓)

𝛿
2(𝑗−1)
0 (Ω)

+
𝜆2𝑚
0

𝛿2𝑚0 (Ω)

∫︁
Ω

𝑓 2(𝑥) 𝑑𝑥, (19)

where 𝜆0 ≈ 0.940 is the first positive root of the Lamb equation 𝐽0(𝜆) + 2𝜆𝐽 ′
0(𝜆) = 0 for the

Bessle function of zero order and

Φ𝑘(𝑓) =
((2𝑘 − 1)!!)2

4𝑘

∫︁
Ω

𝑓 2(𝑥) 𝑑𝑥

(dist(𝑥, 𝜕Ω))2𝑘
(𝑘 = 1, 2, · · · ,𝑚).

Proof. Let 𝑓 ∈ 𝐶∞
0 (Ω) be an arbitrary real-valued function. This function satisfies formula

(15). It is obvious that the function 𝑢𝑘1𝑘2···𝑘𝑚−1 defined by identity (16) belongs also to the
family 𝐶∞

0 (Ω). Applying inequality (8) of Theorem C to the function 𝑢 = 𝑢𝑘1𝑘2···𝑘𝑚−1 , we get∫︁
Ω

|∇𝑢𝑘1𝑘2···𝑘𝑚−1(𝑥)|2 𝑑𝑥 >
1

4

∫︁
Ω

𝑢2
𝑘1𝑘2···𝑘𝑚−1

(𝑥) 𝑑𝑥

(dist(𝑥, 𝜕Ω))2

+
𝜆2
0

𝛿20(Ω)

∫︁
Ω

𝑢2
𝑘1𝑘2···𝑘𝑚−1

(𝑥) 𝑑𝑥.

Summing up these inequalities over the indices 𝑘1, 𝑘2, · · · , 𝑘𝑚−1 and taking into considerations
identities (11)—(13), (15), we obtain∫︁

Ω

|∆𝑚/2𝑓(𝑥)|2𝑑𝑥 =

∫︁
Ω

|𝐷𝑚𝑓(𝑥)|2 𝑑𝑥 >
1

4

∫︁
Ω

|𝐷𝑚−1𝑓(𝑥)|2 𝑑𝑥
(dist(𝑥, 𝜕Ω))2

+
𝜆2
0

𝛿20(Ω)

∫︁
Ω

|𝐷𝑚−1𝑓(𝑥)|2 𝑑𝑥.

By Theorem 1 applied for 𝑚− 1 and 𝜎 = 2 we have∫︁
Ω

|𝐷𝑚−1𝑓(𝑥)|2 𝑑𝑥
(dist(𝑥, 𝜕Ω))2

>
((2𝑚− 1)!!)2

4𝑚−1

∫︁
Ω

𝑓 2(𝑥) 𝑑𝑥

(dist(𝑥, 𝜕Ω))2𝑚
= Φ𝑚(𝑓).

Therefore, we obtain the inequality∫︁
Ω

|𝐷𝑚𝑓(𝑥)|2 𝑑𝑥 > Φ𝑚(𝑓) +
𝜆2
0

𝛿20(Ω)

∫︁
Ω

|𝐷𝑚−1𝑓(𝑥)|2 𝑑𝑥 (20)

equivalent to (18).
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Let us prove main inequality (19). It is obvious that as 𝑚 = 1, inequality (20) coincides with
inequality (8) in Theorem C. This, for each 𝑘 ∈ N the inequality∫︁

Ω

|𝐷𝑘𝑓(𝑥)|2 𝑑𝑥 > Φ𝑘(𝑓) +
𝜆2
0

𝛿20(Ω)

∫︁
Ω

|𝐷𝑘−1𝑓(𝑥)|2 𝑑𝑥 (21)

holds true. It is clear that we can estimate from below the second term in the right hand side
of inequality (20) by applying inequality (21) with 𝑘 = 𝑚− 1. As a result we have∫︁

Ω

|𝐷𝑚𝑓(𝑥)|2 𝑑𝑥 > Φ𝑚(𝑓) +
𝜆2
0

𝛿20(Ω)
Φ𝑚−1(𝑓) +

𝜆4
0

𝛿40(Ω)

∫︁
Ω

|𝐷𝑚−2𝑓(𝑥)|2 𝑑𝑥.

If 𝑚 = 2, the proof of inequality (19) is complete in view of identity |𝐷0𝑓 |2 = 𝑓 2.
If 𝑚 > 3, we continue the process employing inequality (21) with 𝑘 = 𝑚 − 2 for estimating

the integral
∫︀
Ω
|𝐷𝑚−2𝑓(𝑥)|2 𝑑𝑥 from below. It is obvious that in 𝑚 steps we arrive at inequality

(19). This completes the proof of the theorem.

4. Estimates of constants for arbitrary domains

Let 𝑐2(𝑠,Ω) be the Hardy constant defined in Introduction. We recall that

𝑐2(𝑠,Ω) = 𝐶1(𝑠− 2,Ω).

We are going to estimate from below the constant 𝐶𝑚(𝜎,Ω) for an arbitrary 𝑑-dimensional
domain obeying the only condition Ω ̸= R𝑑. This condition ensures the well-definiteness of the
distance dist(𝑥, 𝜕Ω) and is hence natural for inequalities (5).

Theorem 3. Let 𝑚 ∈ N, 𝑚 > 2, and let Ω ⊂ R𝑑 be an arbitrary domain Ω ̸= R𝑑. If
𝜎 ∈ (−1,∞), then

𝐶𝑚(𝜎,Ω) >
𝑚∏︁
𝑗=1

𝑐2(2𝑗 + 𝜎,Ω). (22)

In particular,

𝐴𝑚(Ω) >
𝑚∏︁
𝑗=1

𝑐2(2𝑗,Ω). (23)

If 𝜎 ∈ (𝑑− 2,∞), then

𝐶𝑚(𝜎,Ω) >

∏︀𝑚
𝑗=1(2𝑗 + 𝜎 − 𝑑)2

4𝑚
. (24)

Proof. We follow the main lines of the proof of Theorem 1 with needed changes.
Let 𝑓 ∈ 𝐶∞

0 (Ω) be a fixed real-valued function. We write identity (15) for this function. At
the first step we apply general Hardy inequality (1) to the function 𝑢 = 𝑢𝑘1𝑘2···𝑘𝑚−1 ∈ 𝐶0(Ω) in
formula (15). Letting 𝑠− 2 = 𝜎 in inequality (1), we obtain∫︁

Ω

|∇𝑢𝑘1𝑘2···𝑘𝑚−1(𝑥)|2

(dist(𝑥, 𝜕Ω))𝜎
𝑑𝑥 > 𝑐2(2 + 𝜎,Ω)

∫︁
Ω

𝑢2
𝑘1𝑘2···𝑘𝑚−1

(𝑥)

(dist(𝑥, 𝜕Ω))2+𝜎
𝑑𝑥.

Summing up these inequalities over the indices 𝑘1, 𝑘2, · · · , 𝑘𝑚−1, in view of formula (15) we get∫︁
Ω

|𝐷𝑚𝑓(𝑥)|2 𝑑𝑥
(dist(𝑥, 𝜕Ω))𝜎

> 𝑐2(2 + 𝜎,Ω)

∫︁
Ω

|𝐷𝑚−1𝑓(𝑥)|2 𝑑𝑥
(dist(𝑥, 𝜕Ω))2+𝜎

.

Arguing in the same way to estimate from below the integral in the right hand side of this
inequality for the indices 𝑚− 1,𝑚− 2, · · · , 1 and corresponding numbers 𝜎 + 2, 𝜎 + 4, · · · , 𝜎 +
2𝑚− 2. It is easy to see that in 𝑚 step we arrive at the inequality∫︁

Ω

|𝐷𝑚𝑓(𝑥)|2 𝑑𝑥
(dist(𝑥, 𝜕Ω))𝜎

>

(︃
𝑚∏︁
𝑗=1

𝑐2(2𝑗 + 𝜎,Ω)

)︃∫︁
Ω

𝑓 2(𝑥) 𝑑𝑥

(dist(𝑥, 𝜕Ω))2𝑚+𝜎
.
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The latter inequality implies estimate (22) since 𝐶𝑚(𝜎,Ω) is defined as the maximal constant
in inequality (5).

If 𝜎 ∈ (𝑑− 2,∞) and 𝑗 = 1, 2, · · · ,𝑚, then 2𝑗 + 𝜎 > 𝑑. Therefore,

𝑐2(2𝑗 + 𝜎,Ω) >
(2𝑗 + 𝜎 − 𝑑)2

4

by Theorem B. Hence, inequality (24) follows Theorem B and inequality (22).
Thanks to the identity 𝐴𝑚(Ω) = 𝐶𝑚(0,Ω), by inequality (24) we obtain (23). The proof is

complete.

Corollary 2. Let 𝑚 ∈ N, 𝑚 > 2, and Ω ⊂ R𝑑 be an arbitrary domain, Ω ̸= R𝑑. Then the
following statements holds:

1) if 𝑑 = 2, then

𝐴𝑚(Ω) > ((𝑚− 1)!)2 𝑐2(2,Ω);

2) if 𝑑 = 3, then

𝐴𝑚(Ω) >
((2𝑚− 3)!!)2𝑐2(2,Ω)

4𝑚−1
.

Proof. Estimate (23) obviously implies the inequality 𝐴𝑚(Ω) > 𝑋𝑚𝑐2(2,Ω), where 𝑋𝑚 =∏︀𝑚
𝑗=2 𝑐2(2𝑗,Ω).

Let 𝑑 = 2, then 𝑐2(2𝑗,Ω) > (𝑗 − 1)2 for 𝑗 = 2, · · · ,𝑚 by Theorem B. Therefore, 𝑋𝑚 >
((𝑚− 1)!)2 for two-dimensional domains.

If 𝑑 = 3, we apply again Theorem B to estimate from below the constant 𝑐2(2𝑗,Ω) as 𝑗 > 2.
We have

𝑐2(2𝑗,Ω) >
(2𝑗 − 3)2

4
as 𝑗 = 2, · · · ,𝑚. This yields the desired lower bound for 𝐴𝑚(Ω) for three-dimensional domains.

The constant 𝑐2(2,Ω) is well-studied and there a series of known estimate for this constant
in terms of geometric characteristics of the domain Ω (see, for instance, [3], [7], [8], [17]–[20],
[25]). This is why Corollary 2 allows one to obtain a series of effective lower bounds for the
constant 𝐴𝑚(Ω) for two- and three-dimensional domains.

5. On unsolved problems

The theory of multi-dimensional Hardy and Rellich type inequalities is intensively developed.
The interest to these inequalities is due to various applications in mathematical physics and
harmonic analysis (see, for instance, [7]–[9], [23]). We provide just two unsolved problems
related to the foundations of the theory and having simple formulations.

1. On upper bound for the constant 𝐴𝑚(Ω).
It follows from the definition 𝐴𝑚(Ω) that

𝐴𝑚(Ω) 6

∫︀
Ω
|∆𝑚/2𝑓(𝑥)|2𝑑𝑥∫︀

Ω
𝑓 2(𝑥)(dist(𝑥, 𝜕Ω))−2𝑚𝑑𝑥

for each function 𝑓 ∈ 𝐶∞
0 (Ω), 𝑓 ̸≡ 0. This is why 𝐴𝑚(Ω) < ∞ for each domain Ω ̸= R𝑑 for

each 𝑚 ∈ N.

Conjecture 1. Let 𝑑 = 2 and 𝑑 = 3. Then for each natural 𝑚 and each domain Ω ⊂ R𝑑

(Ω ̸= R𝑑) the sharp estimate

𝐴𝑚(Ω) 6
((2𝑚− 1)!!)2

4𝑚

holds.
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We note that as 𝑚 = 1, that is, for 𝐴1(Ω) = 𝑐2(2,Ω), such conjecture was proposed by
E.B. Davies in 1995 (see [24]) but it is not proved yet.

2. On positivity criterions for 𝑐2(2,Ω).
We consider the domain Ω ⊂ R2 (Ω ̸= R2). By 𝑀0(Ω) we denote Euclidean maximal modulus

defined by the identity

𝑀0(Ω) =
1

2𝜋
sup
𝐾

ln
𝑅(𝐾)

𝑟(𝐾)
,

where the supremum is taken over the concentric annuli

𝐾 = {𝑥 ∈ R2 : 𝑟(𝐾) < |𝑥− 𝑥𝐾 | < 𝑅(𝐾)}
such that 𝐾 ⊂ Ω , 0 < 𝑟(𝐾) < 𝑅(𝐾) < ∞, 𝑥𝐾 ∈ 𝜕Ω. If a domain Ω′ ⊂ R2 contains no such
annuli, by the definition we let 𝑀0(Ω

′) = 0.
It is clear that the inequality 𝑀0(Ω) < ∞ is a geometric condition for the domain Ω ⊂ R2.
It is known (see [17]-[20], [25]) that for a domain Ω ⊂ R2 (Ω ̸= R2)

𝐴1(Ω) = 𝑐2(2,Ω) > 0 ⇐⇒ 𝐴2(Ω) > 0 ⇐⇒ 𝑀0(Ω) < ∞. (25)

In particular, 𝑐2(2,R
2 ∖ {0}) = 0 and 𝑀0(R

2 ∖ {0}) = ∞.
It is clear that one can define 𝑀0(Ω) for a domain Ω ⊂ R3 similar to the two-dimensional

case replacing the annuli 𝐾 by spherical layers {𝑥 ∈ R3 : 𝑟(𝐾) < |𝑥− 𝑥𝐾 | < 𝑅(𝐾)}.
Since 𝑐2(2,R

3 ∖ {0}) = 1
4
> 0, 𝐴2(R

3 ∖ {0}) = 9/16 > 0 and 𝑀0(R
3 ∖ {0}) = ∞, statement

(25) is not true for three-dimensional domains. Unfortunately, it is unclear by what one should
replace the inequalty 𝑀0(Ω) < ∞ for multi-dimensional domains. This is why we can propose
just a cut-down version of (25) for three-dimensional domains.

We have 𝑐2(4,Ω) > 0 for three-dimensional domain by Theorems C and 𝐴2(Ω) >
𝑐2(2,Ω) 𝑐2(4,Ω) for arbitrary domains by estimate (23). Therefore, 𝑐2(2,Ω) > 0 =⇒ 𝐴2(Ω) > 0
for three-dimensional domains. These facts and the analogy with the two-dimensional case
allow us to formulate the following conjecture.

Conjecture 2. For each domain Ω ⊂ R3 (Ω ̸= R3) the relations

𝐴1(Ω) = 𝑐2(2,Ω) > 0 ⇐⇒ 𝐴2(Ω) > 0

hold.

The difficulties arising while studying Conjecture 1, 2 are standard for the theory of Hardy
and Rellich type inequalities. First, it is impossible to employ the methods of classical varia-
tional calculus because of the absence of extremal functions providing the identities and second,
it is impossible to employ the symmetrization methods from the theory of isoperimetric inequal-
ities because of the presence of the weight functions being the powers of the distance function
dist(𝑥, 𝜕Ω).

The author thanks the referee for the useful remarks.
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