
ISSN 2304-0122 Ufa Mathematical Journal. Vol. 9. No 2 (2017). P. 102-108.

517.5 517.9
doi:10.13108/2017-9-2-102 UDC 517.5 517.9

LOWER BOUND FOR THE HARDY CONSTANT FOR AN

ARBITRARY DOMAIN IN R𝑛

I.K. SHAFIGULLIN

Abstract. In the paper we consider the conjecture by E.B. Davies on an uniform lower
bound for the Hardy constant. We provide the known counterexamples rebutting this
conjecture for the dimension 4 and higher. In the work we obtain non-zero lower bounds
for the Hardy constants. These estimates are order sharp as 𝑛 → +∞, where 𝑛 is the space
dimension. Moreover, these estimates are independent of the properties of the considered
domains and are true for all domains not coinciding with the entire space. In the proof
of the main theorem we reduce the multidimensional case to the one-dimensional case by
choosing special classes of functions. As a result, the considered inequalities are reduced
to the well-known Poincaré inequality.
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1. Introduction

Let Ω ⊂ R𝑛 be a domain, Ω ̸= R𝑛. By 𝛿(𝑥) we denote the distance to the boundary of the
domain, namely,

𝛿(𝑥) = inf
𝑦∈𝜕Ω

|𝑥− 𝑦|.

In view of the introduced definitions, we consider the Hardy type inequality∫︁
Ω

|𝑓(𝑥)|2

𝛿2(𝑥)
𝑑𝑥 6 𝑐𝑛(Ω)

∫︁
Ω

|∇𝑓(𝑥)|2 𝑑𝑥 (1.1)

for all 𝑓 ∈ 𝐶1
0(Ω), where 𝐶1

0(Ω) is the set of continuously differentiable compactly supported
functions on Ω and 𝑐𝑛(Ω) is the smallest possible constant in this inequality for the given
domain Ω ̸= R𝑛.

By 𝑐𝑛 we denote the maximal constant bounding from below the Hardy constant in the above
given inequality, namely,

𝑐𝑛 = inf
Ω⊂R𝑛,Ω̸=R𝑛

𝑐𝑛(Ω) = inf
Ω⊂R𝑛,Ω̸=R𝑛

sup
𝑓∈𝐶1

0 (Ω),𝑓 ̸≡0

∫︀
Ω

|𝑓(𝑥)|2
𝛿2(𝑥)

𝑑𝑥∫︀
Ω

|∇𝑓(𝑥)|2 𝑑𝑥
.

It is obvious that 𝑐𝑛 > 0. Many mathematicians studied this quantity. The most well studied
are one-dimensional Hardy type inequalities. For instance, it is well-known that as 𝑛 = 1, the
classical results by Hardy imply that

𝑐1 = 4.
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Moreover, he showed that the constant is not attained, that is, there is no extremal function
𝑓 ̸≡ 0 turning the integral inequality into the identity with the constant 𝑐1 = 4.

It should be noted that studying one-dimensional Hardy type inequalities involves much more
issues apart of estimating of the quantity 𝑐1. A valuable contribution in the developing of this
subject was made by works by V.G. Maz’ya [1], G. Talenti [2], G. Tomaselli [3], A. Kufner and
L.E. Persson [4], Yu.A. Dubinskii [5], D.V. Prokhorov and V.D. Stepanov [6], F.G. Avkhadiev
and K.-J. Wirths [7] and by many other mathematicians. The results are obtained both for
various weight functions and for inequalities with many terms. Much attention was paid to the
sharpness of the constants.

The studying of one-dimensional Hardy type inequalities is still ongoing. However, in the
last 30 years, much more attention was paid to their multi-dimensional analogues. The theory
of multi-dimensional Hardy type inequalities contains many unsolved issues. For instance, the
issue on estimating the constant 𝑐𝑛 for the inequalities in 𝑛-dimensional space as 𝑛 > 2 is still
unsolved. At present, the researchers succeeded to obtain uniform estimates for these constants
for arbitrary domains. However, there were studied wide classes of the domains, for which the
lower estimates for the Hardy constants are obtained. For instance, it is shown that for each
convex domain we also have the inequality

𝑐𝑛(Ω) = 4.

This fact was proven by many mathematicians via using various technical tricks. One of the
simplest proofs was provided in paper [8], see also [9]–[12].

Moreover, 𝑐𝑛(Ω) > 0 for each bounded domain with a locally Lipschitz boundary, see, for
instance, [13]. However, it is unclear whether the quantity infΩ 𝑐𝑛(Ω) is positive even if the
infimum is taken over the class of the domains with locally Lipschitz boundaries.

While studying lower estimates for the Hardy constants, E.B. Davies employed another
approach, namely, he showed that the Hardy constant has a locally geometric nature and
while estimating it from below, one does not need to known the global structure of the domain
but it is sufficient to know only local structure of the boundary in the vicinity of one boundary
point [9]. Thus, there was obtained the result that if the boundary of the domain Ω ⊂ R𝑛 has
at least one point regular in the Davies sense, then the inequality

𝑐𝑛(Ω) > 4

holds true. The definition of a point regular in the Davies sense can be found in its work [9].
As a result he obtained that for a rather wide class of the domains obeying the known results,
the sought constant can not be less than 4. In 1997 he proposed a conjecture that the constant
𝑐𝑛(Ω) should be at least 4 for each domain with no restrictions, as in the case 𝑛 = 1. As 𝑛 = 2
and 𝑛 = 3, there is no counterexample. But as 𝑛 > 4, such counterexample exists, see, for
instance, [7], [8]. The following inequality is known:∫︁

R𝑛

|𝑓(𝑥)|2

|𝑥|2
𝑑𝑥 6

4

(𝑛− 2)2

∫︁
R𝑛

|∇𝑓(𝑥)|2 𝑑𝑥

for all 𝑓 ∈ 𝐶1
0(R𝑛). Since for Ω = R𝑛∖{0} the distance to the boundary of the domains is

expressed as dist(𝑥, 𝜕Ω) = 𝛿(𝑥) = |𝑥|, we can rewrite this inequality as∫︁
Ω

|𝑓(𝑥)|2

𝛿2(𝑥)
𝑑𝑥 6

4

(𝑛− 2)2

∫︁
Ω

|∇𝑓(𝑥)|2 𝑑𝑥

for all 𝑓 ∈ 𝐶1
0(Ω). This means that as 𝑛 > 4, the inequality

𝑐𝑛 6
4

(𝑛− 2)2
< 4
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holds true. Thus, the conjecture by E.B. Davies turns out to be wrong for 𝑛 > 4.
In the present work we consider lower bounds for the Hardy constants. Our results on the

upper bounds can be found in works [14], [15], [16].
Such intent and long attention to Hardy type inequalities is explained by the fact that these

inequalities have wide applications in various fields of the mathematics. For instance, they play
an important role in studying problems arising in functional analysis (in theory of embedding
functional spaces), operator theory (in the theory of elliptic operators and spectral theory), the
theory of differential equations (in the problem on resonant states existence), theory of integral
equation (in Sobolev-Hardy type inequalities), mathematical physics and nonlinear analysis.

2. Formulation of problem and main results

In view of the introduced definitions we formulate a theorem giving a lower bound for the
Hardy constant for an arbitrary domain not coinciding with the entire space.

Theorem 2.1. The constant 𝑐𝑛 satisfies the inequality

𝑐𝑛 = inf
Ω⊂R𝑛,Ω̸=R𝑛

sup
𝑓∈𝐶1

0 (Ω),𝑓 ̸≡0

∫︀
Ω

|𝑓(𝑥)|2
𝛿2(𝑥)

𝑑𝑥∫︀
Ω

|∇𝑓(𝑥)|2 𝑑𝑥
>

2𝜋2

5(8 + 𝑛(𝑛 + 1)𝜋2)
.

Proof. Consider an arbitrary domain Ω. Let 𝐵(𝑥, 𝑟) be an open ball of radius 𝑟 centered at the
point 𝑥. The boundary of the domain Ω possesses at least one finite boundary point and this
means that we can consider a ball inside the domain Ω, whose boundary contains at least one
point of the boundary of Ω. More rigorously we write this as

∃𝑥0 ∈ Ω, 𝑟0 > 0 | 𝐵(𝑥0, 𝑟0) ⊂ Ω and 𝜕𝐵(𝑥0, 𝑟0)
⋂︁

𝜕Ω ̸= ∅.

We choose arbitrarily one of the boundary point lying in the intersection of the boundary of
the ball 𝐵(𝑥0, 𝑟0) and the domain Ω. For the sake of the definiteness we denote it by 𝑎, that is,

𝑎 ∈ 𝜕𝐵(𝑥0, 𝑟0)
⋂︁

𝜕Ω.

It can be shown that the constant in Hardy type inequalities is invariant under conformal
linear transformations and therefore, without loss of generality we can suppose that

𝑥0 = 0, 𝑟0 = 1, 𝑎 = (1, 0, . . . , 0) ∈ R𝑛.

We pass to the spherical coordinate system:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

𝑥1 = 𝑟 cos(𝜙𝑛−1),

𝑥2 = 𝑟 sin(𝜙𝑛−1) cos(𝜙𝑛−2),

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

𝑥𝑛−1 = 𝑟 sin(𝜙𝑛−1) sin(𝜙𝑛−2) . . . sin(𝜙2) cos(𝜙1),

𝑥𝑛 = 𝑟 sin(𝜙𝑛−1) sin(𝜙𝑛−2) . . . sin(𝜙2) sin(𝜙1),

where
𝑟 ∈ R, 𝑟 > 0;𝜙1 ∈ [0, 2𝜋), 𝜙𝑘 ∈ [0, 𝜋], 𝑘 = 2, 𝑛− 1.

The Jacobian of such transformation is

𝑟𝑛−1 sin𝑛−2(𝜙𝑛−1) sin𝑛−3(𝜙𝑛−2) . . . sin𝜙2.

The introduced ball 𝐵(0, 1) in spherical coordinates is defined as

𝑥 ∈ R𝑛 | 𝑟 ∈ [0, 1), 𝜙1 ∈ [0, 2𝜋), 𝜙𝑘 ∈ [0, 𝜋], 𝑘 = 2, 𝑛− 1.

The coordinates of the point 𝑎 in the introduced coordinate system are

𝑟 = 1, 𝜙𝑛−1 = 0, 𝜙1 ∈ [0, 2𝜋), 𝜙𝑘 ∈ [0, 𝜋], 𝑘 = 2, 𝑛− 2.
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We need to estimate the Hardy constant from below and this means that it is sufficient to
prove this statement on a smaller class of functions than the initially considered class 𝐶1

0(Ω).
In order to do it, we introduce the domain

𝐴𝛼,𝜌 =
{︀
𝑥 ∈ Ω|𝑟 ∈ (𝜌, 1), 𝜙𝑛−1 ∈ (0, 𝛼), 𝜙1 ∈ [0, 2𝜋), 𝜙𝑘 ∈ [0, 𝜋], 𝑘 = 2, 𝑛− 2

}︀
,

where 𝜌 ∈ (0, 1), 𝛼 ∈ (0, 𝜋
2
). It is obvious that 𝐴𝛼,𝜌 ⊂ 𝐵 ⊂ Ω.

For further studies it will be important to understand how the boundary of the domain 𝐴𝛼,𝜌

looks like. Let us write it explicitly:⎧⎪⎨⎪⎩
𝑥 ∈ R𝑛 | 𝑟 = 𝜌, 𝜙𝑛−1 ∈ [0, 𝛼), 𝜙1 ∈ [0, 2𝜋), 𝜙𝑖 ∈ [0, 𝜋), 𝑖 = 2, 𝑛− 2,

𝑥 ∈ R𝑛 | 𝑟 = 1, 𝜙𝑛−1 ∈ [0, 𝛼), 𝜙1 ∈ [0, 2𝜋), 𝜙𝑖 ∈ [0, 𝜋), 𝑖 = 2, 𝑛− 2,

𝑥 ∈ R𝑛 | 𝜙𝑛−1 = 𝛼, 𝑟 ∈ (𝜌, 1), 𝜙1 ∈ [0, 2𝜋), 𝜙𝑖 ∈ [0, 𝜋), 𝑖 = 2, 𝑛− 2.

We choose domains 𝐴𝛼 as follows: among all domains 𝐴𝛼,𝜌 we consider only ones satisfying
the conditions 1−𝜌 = 2𝛼 and 𝛼 < 𝜋

10
. It can be shown that in 𝐴𝛼 ⊂ Ω the following inequalities

𝛿(𝑥) > 1 − 𝑟, 𝛿2(𝑥) 6 (1 − 𝑟)2 + 𝛼2

hold true for each point 𝑥 ∈ 𝐴𝛼, where 𝑟 is the radius vector of the considered point and 𝛿(𝑥)
is the distance to the boundary of the domain Ω.

Now we consider functions 𝑓 ∈ 𝐶1
0(Ω) compactly supported in 𝐴𝛼 and expressed as the

product of two functions of one variable:

𝑓0(𝑟, 𝜙1, . . . , 𝜙𝑛−1) = 𝑢(𝑟)𝑣(𝜙𝑛−1).

To simplify the understanding, we denote the functions of such kind by 𝑓0 and write the original
inequality for such functions ∫︁

Ω

|𝑓0(𝑥)|2

𝛿2(𝑥)
𝑑𝑥 6 𝑐𝑛(Ω)

∫︁
Ω

|∇𝑓0|2 𝑑𝑥

for all 𝑓0 ∈ 𝐶1
0(𝐴𝛼).

We pass to spherical coordinates and use the fact that the support of our function is contained
in 𝐴𝛼:∫︁

𝐴𝛼

|𝑓0|2

𝛿2
𝑟𝑛−1 sin𝑛−2(𝜙𝑛−1) sin𝑛−3(𝜙𝑛−2) . . . sin𝜙2 𝑑𝑟 𝑑𝜙1 . . . 𝑑𝜙𝑛−1

6 𝑐𝑛(Ω)

∫︁
𝐴𝛼

|∇𝑓0|2𝑟𝑛−1 sin𝑛−2(𝜙𝑛−1) sin𝑛−3(𝜙𝑛−2) . . . sin𝜙2 𝑑𝑟 𝑑𝜙1 . . . 𝑑𝜙𝑛−1

for all 𝑓0 ∈ 𝐶1
0(𝐴𝛼).

For the sake of the convenience in further calculations, we move the constant 𝑐𝑛(Ω) in the
left hand side. Since our function 𝑓0 is defined as the product of two functions of one variable,
we can calculate the length of the gradient of 𝑓0 by the following formula:

|∇𝑓0|2 =

(︂
𝜕𝑓0
𝜕𝑟

)︂2

+
1

𝑟2

(︂
𝜕𝑓0

𝜕𝜙𝑛−1

)︂2

.

We employ this relation in the previous inequality:

1

𝑐𝑛(Ω)

𝛼∫︁
0

𝑣2(𝜙𝑛−1) sin𝑛−2(𝜙𝑛−1)

1∫︁
𝜌

𝑢2(𝑟)𝑟𝑛−1

(1 − 𝑟)2 + 𝛼2
𝑑𝑟 𝑄
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6

𝛼∫︁
0

𝑣2(𝜙𝑛−1) sin𝑛−2(𝜙𝑛−1)

1∫︁
𝜌

𝑢′2(𝑟)𝑟𝑛−1 𝑑𝑟 𝑄

+

𝛼∫︁
0

𝑣′2(𝜙𝑛−1) sin𝑛−2(𝜙𝑛−1)

1∫︁
𝜌

𝑢2(𝑟)𝑟𝑛−3 𝑑𝑟 𝑄,

where

𝑄 =

𝜋∫︁
0

sin𝑛−3(𝜙𝑛−2) 𝑑𝜙𝑛−2· · ·
𝜋∫︁

0

sin(𝜙2) 𝑑𝜙2

2𝜋∫︁
0

𝑑𝜙1.

The quantity 𝑄 is a positive number. We divide the inequality by this constant. We need to
estimate the integral of 𝑣′2(𝜙) by the integral of 𝑣2(𝜙). Then we can cancel out this integral
and reduce all to the well-studied case of the integral inequality for a function of one variable.
We shall make such estimate in two stages.

At the first stage we consider the function 𝑣0(𝜙𝑛−1) = 𝛼−𝜙𝑛−1. Let us estimate the fraction

𝐿(𝛼) =

𝛼∫︀
0

𝑣′20 (𝜙𝑛−1) sin𝑛−2(𝜙𝑛−1) 𝑑𝜙𝑛−1

𝛼∫︀
0

𝑣20(𝜙𝑛−1) sin𝑛−2(𝜙𝑛−1) 𝑑𝜙𝑛−1

that will help us to make the needed estimate in what follows.
We consider separately the nominator and the denominator of this fraction. We employ the

well-known estimate for the function sin𝑥:
sin𝛼

𝛼
𝑥 6 sin𝑥 6 𝑥

for all 𝑥 ∈ [0, 𝛼].
Now we can consider the nominator of the studied fraction and estimate it from above:

𝛼∫︁
0

𝑣′20 (𝜙𝑛−1) sin𝑛−2(𝜙𝑛−1) 𝑑𝜙𝑛−1 =

𝛼∫︁
0

sin𝑛−2(𝜙𝑛−1) 𝑑𝜙𝑛−1 6

𝛼∫︁
0

𝜙𝑛−2
𝑛−1 𝑑𝜙𝑛−1 =

𝛼𝑛−1

𝑛− 1
.

The denominator is estimated from below:
𝛼∫︁

0

𝑣20(𝜙𝑛−1) sin𝑛−2(𝜙𝑛−1) 𝑑𝜙𝑛−1 =

𝛼∫︁
0

(𝛼− 𝜙𝑛−1)
2 sin𝑛−2(𝜙𝑛−1) 𝑑𝜙𝑛−1

>
sin𝑛−2(𝛼)

𝛼𝑛−2

𝛼∫︁
0

𝜙𝑛−2
𝑛−1(𝛼− 𝜙𝑛−1)

2 𝑑𝜙𝑛−1

=

(︂
sin𝛼

𝛼

)︂𝑛−2
𝛼∫︁

0

𝛼2𝜙𝑛−2
𝑛−1 − 2𝛼𝜙𝑛−1

𝑛−1 + 𝜙𝑛
𝑛−1 𝑑𝜙𝑛−1

=

(︂
sin𝛼

𝛼

)︂𝑛−2
2𝛼𝑛+1

𝑛(𝑛 + 1)(𝑛− 1)
.

Hence, we can estimate our function 𝐿(𝛼) as follows:

𝐿(𝛼) 6
(𝑛 + 1)𝑛

2𝛼2

(︁ 𝛼

sin𝛼

)︁𝑛−2

=
(𝑛 + 1)𝑛

2𝛼2
𝐾(𝛼),

where lim
𝛼→0

𝐾(𝛼) = 1.
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We proceed to the second stage. In view of the structure of the function 𝑣0(𝜙𝑛−1), we can
conclude that we can approximate it in the norm of 𝐿2(sin

𝑛−2(𝜙𝑛−1)) by the functions 𝑣1(𝜙𝑛−1)
vanishing in some neighbourhood of the point 𝑎 and whose derivatives vanish at 0. Such
functions satisfy the inequality:

𝛼∫︁
0

𝑣′
2
1 sin𝑛−2(𝜙𝑛−1) 𝑑𝜙𝑛−1 6

(︂
𝑛(𝑛 + 1)

2𝛼2
𝐾(𝛼) + 𝜀

)︂ 𝛼∫︁
0

𝑣21 sin𝑛−2(𝜙𝑛−1) 𝑑𝜙𝑛−1. (2.1)

We return back to the main idea of the proof and make the considered class of the functions
smaller; instead of 𝑓0, we shall consider the functions

𝑓1(𝑟, 𝜙1, . . . , 𝜙𝑛−1) = 𝑢(𝑟)𝑣1(𝜙𝑛−1).

Then the initial inequality for the functions of form 𝑓1 is reduced to the following one-
dimensional inequality:

1

𝑐𝑛(Ω)

1∫︁
𝜌

𝑢2(𝑟)𝑟𝑛−1

(1 − 𝑟)2 + 𝛼2
𝑑𝑟 6

1∫︁
𝜌

𝑢′2(𝑟)𝑟𝑛−1 𝑑𝑟 +

(︂
𝑛(𝑛 + 1)

2𝛼2
𝐾(𝛼) + 𝜀

)︂ 1∫︁
𝜌

𝑢2(𝑟)𝑟𝑛−3 𝑑𝑟

for all 𝑢 ∈ 𝐶1
0(𝜌, 1).

We employ that the variable 𝑟 ranges in [𝜌, 1] and make the change of variable 1−𝑟 = 𝛼(1−𝑡).
As the result, we get:

𝜌𝑛−1

𝛼2𝑐𝑛(Ω)

1∫︁
−1

𝑧2(𝑡)

(1 − 𝑡)2 + 1
𝑑𝑡 6

1

𝛼2

1∫︁
−1

𝑧′2(𝑡) 𝑑𝑡 +

(︂
𝑛(𝑛 + 1)

2𝛼2
𝐾(𝛼) + 𝜀

)︂ 1∫︁
−1

𝑧2(𝑡) 𝑑𝑡

for all 𝑧 ∈ 𝐶1
0(−1, 1). Now we pass to the limit as 𝛼 tends to zero, at that, 𝜌 tends to one and

hence,

1

𝑐𝑛(Ω)

1∫︁
−1

𝑧2(𝑡)

(1 − 𝑡)2 + 1
𝑑𝑡 6

1∫︁
−1

𝑧′2(𝑡) 𝑑𝑡 +
𝑛(𝑛 + 1)

2

1∫︁
−1

𝑧2(𝑡) 𝑑𝑡 ∀𝑧 ∈ 𝐶1
0(−1, 1).

We observe that in the integral in the left hand side the singularity disappears. Let us estimate
the denominator in the integrand by the obvious inequality (1 − 𝑡)2 + 1 6 5 as 𝑡 ∈ [−1, 1]. We
have: (︂

1

5𝑐𝑛(Ω)
− 𝑛(𝑛 + 1)

2

)︂ 1∫︁
−1

𝑧2(𝑡) 𝑑𝑡 6

1∫︁
−1

𝑧′2(𝑡) 𝑑𝑡

for all 𝑧 ∈ 𝐶1
0(−1, 1). This is the known one-dimensional Poincaré inequality and the constant

is estimated from below by 4
𝜋2 . This gives the sought estimate

𝑐𝑛(Ω) >
2𝜋2

5(8 + 𝑛(𝑛 + 1)𝜋2)
.

Thus, we have obtained that the Hardy constant is estimated from below uniformly for each
domain, that is,

𝑐𝑛 = inf
Ω⊂R𝑛,Ω̸=R𝑛

𝑐𝑛(Ω) >
2𝜋2

5(8 + 𝑛(𝑛 + 1)𝜋2)
.

The proof is complete.

In conclusion the author would like to express his gratitude to his scientific supervisor,
professor Farit Gabidinovich Avkhadiev for the attention to the work and valuable remarks.
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7. F.G. Avkhadiev, K.-J. Wirths. Unified Poincaré and Hardy inequalities with sharp constants for

convex domains // Z. Angew. Math. Mech. 87:8–9, 632–642 (2007).
8. M. Marcus, V.J. Mizel, Y. Pinchover. On the best constants for Hardy’s inequality in R𝑛 // Trans.

Amer. Math. Soc. 350:8, 3237–3250 (1998).
9. E.B. Davies. The Hardy constant // Quart. J. Math. Oxford. Ser. II. 46:184, 417–431 (1995).

10. T. Matskewich, P.E. Sobolevskii. The best possible constant in a generalized Hardy’s inequality
for convex domains in R𝑛 // Nonl. Anal. 28:9, 1601–1610 (1997).

11. H. Brezis, M. Marcus. Hardy’s inequality revisited // Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4).
25:1-2, 217–237 (1997).

12. M. Hoffmann-Ostenhof, T. Hoffmann-Ostenhof, A. Laptev. A geometrical version of Hardy’s
inequality // J. Funct. Anal. 189:2, 539–548 (2002).

13. V. Opic, A. Kufner. Hardy-type Inequalities. Pitman Research Notes Math. 219. Longman Sci-
entific & Technical, Harlow, John Wiley & Sons, New York (1990).

14. F.G. Avkhadiev, I.K. Shafigullin. Sharp estimates of Hardy constants for domains with special
boundary properties // Izv. VUZov. Matem. 2, 69–73 (2014). [Russ. Math. (Izv. VUZ. Matem.)
58:2, 58–61 (2014).]

15. F.G. Avkhadiev, I.K. Shafigullin. Estimates of Hardy’s constants for tubular extensions of sets
and domains with finite boundary moments // Matem. Trudy. 16:2, 3–12 (2013). [Siber. Adv.
Math. 24:3, 153–158 (2014).]

16. F.G. Avkhadiev, R.G. Nasibullin, I.K. Shafigullin. Hardy-type inequalities with power and loga-
rithmic weights in domains of the Euclidean space // Izv. VUZov. Matem. 9, 90-94 (2011). [Russ.
Math. Izv. VUZ. Matem. 55:9, 76–79 (2011).]

Il’nar Kasyimovich Shafigullin,
Kazan Federal University,
Kremlevskaya str., 18,
420008, Kazan, Russia
E-mail: shafigullin.ik@gmail.com


