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THIRD HANKEL DETERMINANT FOR THE INVERSE OF

RECIPROCAL OF BOUNDED TURNING FUNCTIONS HAS A

POSITIVE REAL PART OF ORDER ALPHA

B. VENKATESWARLU, N. RANI

Abstract. Let 𝑅𝑇 be the class of functions 𝑓(𝑧) univalent in the unit disk 𝐸 = 𝑧 : |𝑧| < 1
such that Re 𝑓 ′(𝑧) > 0, 𝑧 ∈ 𝐸, and 𝐻3(1) be the third Hankel determinant for inverse
function to 𝑓(𝑧). In this paper we obtain, first an upper bound for the second Hankel
determinant, |𝑡2𝑡3−𝑡4|, and the best possible upper bound for the third Hankel determinant
𝐻3(1) for the functions in the class of inverse of reciprocal of bounded turning functions
having a positive real part of order alpha.
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1. Introduction

Let 𝐴 denote the class of all functions 𝑓(𝑧) of the form

𝑓(𝑧) = 𝑧 +
∞∑︁
𝑛=2

𝑎𝑛𝑧
𝑛 (1.1)

in the open unit disc 𝐸 = {𝑧 : |𝑧| < 1}. Let 𝑆 be the subclass of 𝐴 consisting of univalent
functions. For a univalent function in the class 𝐴, it is well known that the 𝑛𝑡ℎ coefficient is
bounded by 𝑛. The bounds for the coefficients of univalent functions give information about
their geometric properties. In particular, the growth and distortion properties of a normalized
univalent function are determined by the bound of its second coefficient. The Hankel determi-
nant of 𝑓 for 𝑞 > 1 and 𝑛 > 1 was defined by Pommerenke [12] as

𝐻𝑞(𝑛) =

𝑎𝑛 𝑎𝑛+1 · · · 𝑎𝑛+𝑞−1

𝑎𝑛+1 𝑎𝑛+2 · · · 𝑎𝑛+𝑞
...

...
...

...
𝑎𝑛+𝑞−1 𝑎𝑛+𝑞 · · · 𝑎𝑛+2𝑞−2

.

This determinant has been considered by many authors. For example, Noor [10] determined the
rate of growth of 𝐻𝑞(𝑛) as 𝑛 → ∞ for the bounded functions in 𝑆. Ehrenborg [4] studied the
Hankel determinant of exponential polynomials. The Hankel transform of an integer sequence
and some of its properties were discussed by Layman in [7]. One can easily observe that
the Fekete-Szego functional is 𝐻2(1). Fekete-Szego then further generalized the estimate for
|𝑎3−𝜇𝑎22| with 𝜇 real and 𝑓 ∈ 𝑆. R. M. Ali [1] found sharp bounds for the first four coefficients

B. Venkateswarlu, N. Rani, Third Hankel determinant for the inverse of reciprocal of
bounded turning functions has a positive real part of order alpha.

c○ B. Venkateswarlu, N. Rani, 2017.
29 2016 .

109

http://dx.doi.org/10.13108/2017-9-2-109


110 B. VENKATESWARLU, N. RANI

and sharp estimate for the Fekete-Szego functional |𝛾3 − 𝑡𝛾2
2 |, where 𝑡 is real, for the inverse

function of 𝑓 defined as

𝑓−1(𝑤) = 𝑤 +
∞∑︁
𝑛=2

𝛾𝑛𝑤
𝑛,

when it belongs to the class of strongly starlike functions of order 𝛼(0 < 𝛼 6 1) denoted

by ̃︁𝑆𝑇 (𝛼). In the recent years several authors studied bounds for the Hankel determinant of
functions belonging to various subclasses of univalent and multivalent analytic functions. In
particular, for 𝑞 = 2, 𝑛 = 1, 𝑎1 = 1 and 𝑞 = 2, 𝑛 = 2, 𝑎1 = 1, the Hankel determinant simplifies
respectively to

𝐻2(1) =
𝑎1 𝑎2
𝑎2 𝑎3

= 𝑎3 − 𝑎22 and 𝐻2(2) =
𝑎2 𝑎3
𝑎3 𝑎4

= 𝑎2𝑎4 − 𝑎23.

For our discussion in this paper, we consider the Hankel determinant in the case of 𝑞 = 3 and
𝑛 = 1, denoted by 𝐻3(1), given by

𝐻3(1) =
𝑎1 𝑎2 𝑎3
𝑎2 𝑎3 𝑎4
𝑎3 𝑎4 𝑎5

. (1.2)

For 𝑓 ∈ 𝐴, 𝑎1 = 1 we have

𝐻3(1) = 𝑎3(𝑎2𝑎4 − 𝑎23) − 𝑎4(𝑎4 − 𝑎2𝑎3) + 𝑎5(𝑎3 − 𝑎22)

and by applying the triangle inequality, we obtain

|𝐻3(1)| 6 |𝑎3||𝑎2𝑎4 − 𝑎23| + |𝑎4||𝑎2𝑎3 − 𝑎4| + |𝑎5||𝑎3 − 𝑎22|. (1.3)

For the second Hankel functional 𝐻2(2) for the subclass 𝑅𝑇 of 𝑆 consisting of functions whose
derivative has a positive real part studied by Mac Gregor [9] the sharp upper bound was
obtained by Janteng [6]. It was known that if 𝑓 ∈ 𝑅𝑇 then |𝑎𝑘| 6 2

𝑘
, for 𝑘 ∈ {2, 3, · · · }. Also

the best possible sharp upper bound for the functional |𝑎2𝑎3−𝑎4| was obtained by Babalola [2]
and hence the sharp inequality for |𝐻3(1)|, for the class 𝑅𝑇. Vamshee Krishna et al. [14] and
also Venkateswarlu et al. [15] was obtained the sharp inequality |𝐻3(1)|, for the class of inverse
of a function whose reciprocal derivative has a real part and of order alpha respectively. The
sharp upper bound for the third Hankel determinant for the inverse of reciprocal of bounded
turning functions was obtained by Venkateswarlu et al. [15].

Motivated by the above mentioned results obtained by different authors in this direction and
the results by Babalola [2], in the present paper we seek an upper bound for the second Hankel
determinant |𝑡2𝑡3 − 𝑡4| and hence an upper bound to the third Hankel determinant for certain
subclass of analytic functions defined as follows.

Definition 1.1. A function 𝑓(𝑧) ∈ 𝐴 is said to be function whose reciprocal derivative has
a positive real part of order alpha (also called reciprocal of bounded turning function of order

alpha) denoted by 𝑓 ∈ ̃︂𝑅𝑇 (𝛼) for 0 6 𝛼 6 1 if and only if

Re
(︁ 1

𝑓 ′(𝑧)

)︁
> 𝛼, ∀𝑧 ∈ 𝐸. (1.4)

Choosing 𝛼 = 0, we obtain ̃︂𝑅𝑇 (0) = ̃︂𝑅𝑇. Some preliminary lemmas required for proving our
results are as follows.
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2. Preliminary Results

Let P denote the class of functions denoted by 𝑝 such that

𝑝(𝑧) = 1 + 𝑐1𝑧 + 𝑐2𝑧
2 + 𝑐3𝑧

3 + . . . = 1 +
∞∑︁
𝑛=1

𝑐𝑛𝑧
𝑛, (2.1)

which are regular in the open unit disc 𝐸 and satisfy Re {𝑝(𝑧)} > 0 for each 𝑧 ∈ 𝐸. Here 𝑝(𝑧)
is called the Caratheódory function [3].

Lemma 2.1. [11, 13] If 𝑝 ∈ P, then |𝑐𝑘| 6 2, for each 𝑘 > 1 and the inequality is sharp for
the function 1+𝑧

1−𝑧
.

Lemma 2.2. [5] The power series for 𝑝(𝑧) given in (2.1) converges in the open unit disc 𝐸
to a function in P if and only if the Toeplitz determinants

𝐷𝑛 =

2 𝑐1 𝑐2 · · · 𝑐𝑛
𝑐−1 2 𝑐1 · · · 𝑐𝑛−1

𝑐−2 𝑐−1 2 · · · 𝑐𝑛−2
...

...
...

...
...

𝑐−𝑛 𝑐−𝑛+1 𝑐−𝑛+2 · · · 2

for 𝑛 = 1, 2, 3, . . . .

and 𝑐−𝑘 = 𝑐𝑘, are all non-negative. These determinants are strictly positive except for

𝑝(𝑧) =
𝑚∑︁
𝑘=1

𝜌𝑘𝑝0(𝑒
𝑖𝑡𝑘𝑧),

𝜌𝑘 > 0, 𝑡𝑘 real and 𝑡𝑘 ̸= 𝑡𝑗, for 𝑘 ̸= 𝑗, where 𝑝0(𝑧) = 1+𝑧
1−𝑧

; in this case 𝐷𝑛 > 0 for 𝑛 < (𝑚− 1)
and 𝐷𝑛 = 0 for 𝑛 > 𝑚.

This necessary and sufficient condition found in [5] is due to Caratheódory and Toeplitz. We
may assume without restriction that 𝑐1 > 0. On using Lemma 2.2, for 𝑛 = 2, we have

𝐷2 =
2 𝑐1 𝑐2
𝑐1 2 𝑐1
𝑐2 𝑐1 2

= [8 + 2Re {𝑐21𝑐2} − 2 | 𝑐2 |2 − 4|𝑐1|2] > 0,

which is equivalent to

2𝑐2 = 𝑐21 + 𝑥(4 − 𝑐21) for some 𝑥, |𝑥| 6 1. (2.2)

For 𝑛 = 3,

𝐷3 =

2 𝑐1 𝑐2 𝑐3
𝑐1 2 𝑐1 𝑐2
𝑐2 𝑐1 2 𝑐1
𝑐3 𝑐2 𝑐1 2

> 0

and this is equivalent to

|(4𝑐3 − 4𝑐1𝑐2 + 𝑐31)(4 − 𝑐21) + 𝑐1(2𝑐2 − 𝑐21)
2| 6 2(4 − 𝑐21)

2 − 2|(2𝑐2 − 𝑐21)|2. (2.3)

Simplifying the relations (2.2) and (2.3), we get

4𝑐3 = 𝑐31 + 2𝑐1(4 − 𝑐21)𝑥− 𝑐1(4 − 𝑐21)𝑥
2 + 2(4 − 𝑐21)(1 − |𝑥|2)𝑧

for some 𝑧 with |𝑧| 6 1.
To obtain our results, we refer to the classical method initiated by Libera and Zlotkiewicz

[8] and used then by several authors.
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3. Main Result

Theorem 3.1. If 𝑓 ∈ ̃︂𝑅𝑇 (𝛼)(0 6 𝛼 6 1) and

𝑓−1(𝑤) = 𝑤 +
∞∑︁
𝑛=2

𝑡𝑛𝑤
𝑛

in the vicinity of 𝑤 = 0 is the inverse function of 𝑓 , then

|𝑡2𝑡4 − 𝑡23| 6

⎧⎨⎩
(1−𝛼)2

144

[︁
128𝛼2−176𝛼+137

𝛼2−2𝛼+2

]︁
, for 0 6 𝛼 < 3

8
,[︁

2
3
(1 − 𝛼)

]︁2
, for 3

8
6 𝛼 6 1,

and the inequality is sharp.

Proof. For

𝑓(𝑧) = 𝑧 +
∞∑︁
𝑛=2

𝑎𝑛𝑧
𝑛 ∈ ̃︂𝑅𝑇 (𝛼),

there exists an analytic function 𝑝 ∈ P in the open unit disc 𝐸 with 𝑝(0) = 1 and Re 𝑝(𝑧) > 0
such that

1 − 𝛼𝑓 ′(𝑧)

(1 − 𝛼)𝑓 ′(𝑧)
= 𝑝(𝑧) ⇔ 1 − 𝛼𝑓 ′(𝑧) = (1 − 𝛼)𝑓 ′(𝑧)𝑝(𝑧). (3.1)

Replacing 𝑓 ′(𝑧) and 𝑝(𝑧) with their equivalent series expressions in (3.1), we have

1 − 𝛼
(︁

1 +
∞∑︁
𝑛=2

𝑛𝑎𝑛𝑧
𝑛−1

)︁
= (1 − 𝛼)

(︁
1 +

∞∑︁
𝑛=2

𝑛𝑎𝑛𝑧
𝑛
)︁(︁

1 +
∞∑︁
𝑛=1

𝑐𝑛𝑧
𝑛
)︁
.

Upon simplification, we obtain

(1 − 𝛼) − 2𝛼𝑎2𝑧 − 3𝛼𝑎3𝑧
2 − 4𝛼𝑎4𝑧

3 − 5𝛼𝑎5𝑧
4 − . . . = (1 − 𝛼) + 𝑧(1 − 𝛼)(𝑐1 + 2𝑎2)

+ 𝑧2(1 − 𝛼)(𝑐2 + 2𝑎2𝑐1 + 3𝑎3) + 𝑧3(1 − 𝛼)(𝑐3 + 2𝑎2𝑐2 + 3𝑎3𝑐1 + 4𝑎4)

+ 𝑧4(1 − 𝛼)(𝑐4 + 2𝑎2𝑐3 + 3𝑎3𝑐2 + 4𝑎4𝑐1 + 5𝑎5) . . . .

(3.2)

Equating the coefficients at like powers of 𝑧, 𝑧2, 𝑧3 and 𝑧4 respectively on both sides of (3.2),
after simplifying, we get

𝑎2 = −𝑐1(1 − 𝛼)

2
;

𝑎3 = −(1 − 𝛼)

3
[𝑐2 − (1 − 𝛼)𝑐21];

𝑎4 = −(1 − 𝛼)

4

[︁
𝑐3 − 2(1 − 𝛼)𝑐1𝑐2 + (1 − 𝛼)2𝑐31

]︁
;

𝑎5 = −(1 − 𝛼)

5

[︁
𝑐4 − 2(1 − 𝛼)𝑐1𝑐3 + 3(1 − 𝛼)2𝑐21𝑐2 − (1 − 𝛼)𝑐22 − (1 − 𝛼)3𝑐41

]︁
.

(3.3)

Since

𝑓(𝑧) = 𝑧 +
∞∑︁
𝑛=2

𝑎𝑛𝑧
𝑛 ∈ ̃︂𝑅𝑇 (𝛼),

by the definition of inverse function of 𝑓, we have

𝑤 = 𝑓(𝑓−1(𝑤)) = 𝑓−1(𝑤) +
∞∑︁
𝑛=2

𝑎𝑛
(︀
𝑓−1(𝑤)

)︀𝑛 ⇔ 𝑤 = 𝑤 +
∞∑︁
𝑛=2

𝑡𝑛𝑤
𝑛 +

∞∑︁
𝑛=2

𝑎𝑛

(︂
𝑤 +

∞∑︁
𝑛=2

𝑡𝑛𝑤
𝑛

)︂𝑛

.
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After simplifying, we get

(𝑡2 + 𝑎2)𝑤
2 + (𝑡3 + 2𝑎2𝑡2 + 𝑎3)𝑤

3 + (𝑡4 + 2𝑎2𝑡3 + 𝑎2𝑡
2
2 + 3𝑎3𝑡2 + 𝑎4)𝑤

4

+ (𝑡5 + 2𝑎2𝑡4 + 2𝑎2𝑡2𝑡3 + 3𝑎3𝑡3 + 3𝑎3𝑡
2
2 + 4𝑎4𝑡2 + 𝑎5)𝑤

5 + · · · = 0.
(3.4)

Equating the coefficients of like powers of 𝑤2, 𝑤3, 𝑤4 and 𝑤5 on both sides of (3.4), respectively,
further simplification gives

𝑡2 = −𝑎2; 𝑡3 = −𝑎3 + 2𝑎22; 𝑡4 = −𝑎4 + 5𝑎2𝑎3 − 5𝑎32;

𝑡5 = −𝑎5 + 6𝑎2𝑎4 − 21𝑎22𝑎3 + 3𝑎23 + 14𝑎42.
(3.5)

Using the values of 𝑎2, 𝑎3, 𝑎4 and 𝑎5 in (3.3) along with (3.5), upon simplification, we obtain

𝑡2 =
𝑐1(1 − 𝛼)

2
; 𝑡3 =

(1 − 𝛼)

6

[︁
2𝑐2 + (1 − 𝛼)𝑐21

]︁
;

𝑡4 =
(1 − 𝛼)

24

[︁
6𝑐3 + 8(1 − 𝛼)𝑐1𝑐2 + (1 − 𝛼)2𝑐31

]︁
;

𝑡5 =
(1 − 𝛼)

120

[︁
(1 − 𝛼)3𝑐41 + 42𝑐1𝑐3(1 − 𝛼) + 16𝑐22(1 − 𝛼) + 22𝑐21𝑐2(1 − 𝛼)2 + 24𝑐4

]︁
.

(3.6)

Substituting the values of 𝑡2, 𝑡3 and 𝑡4 from (3.6) in the functional |𝑡2𝑡4 − 𝑡23| for the function

𝑓 ∈ ̃︂𝑅𝑇 (𝛼), upon simplification, we obtain

|𝑡2𝑡4 − 𝑡23| =
(1 − 𝛼)2

144

⃒⃒⃒
18𝑐1𝑐3 + 8(1 − 𝛼)𝑐21𝑐2 − 16𝑐22 − (1 − 𝛼)2𝑐41

⃒⃒⃒
which is equivalent to

|𝑡2𝑡4 − 𝑡23| =
(1 − 𝛼)2

144

⃒⃒⃒
𝑑1𝑐1𝑐3 + 𝑑2𝑐

2
1𝑐2 + 𝑑3𝑐

2
2 + 𝑑4𝑐

4
1

⃒⃒⃒
, (3.7)

𝑑1 = 18; 𝑑2 = 8(1 − 𝛼); 𝑑3 = −16; 𝑑4 = −(1 − 𝛼)2. (3.8)

Substituting the values of 𝑐2 and 𝑐3 given in (2.2) and (2.4) respectively from Lemma 2.2 into
the right-hand side of (3.7), and using the fact that |𝑧| < 1, we have

4|𝑑1𝑐1𝑐3 + 𝑑2𝑐
2
1𝑐2 + 𝑑3𝑐

2
2 + 𝑑4𝑐

4
1| 6

⃒⃒⃒
(𝑑1 + 2𝑑2 + 𝑑3 + 4𝑑4)𝑐

4
1 + 2𝑑1𝑐1(4 − 𝑐21)

+ 2(𝑑1 + 𝑑2 + 𝑑3)𝑐
2
1(4 − 𝑐21)|𝑥| − {(𝑑1 + 𝑑3)𝑐

2
1 + 2𝑑1𝑐1 − 4𝑑3}|𝑥|2(4 − 𝑐21)

⃒⃒⃒
.

(3.9)

From (3.8) and (3.9), we can now write

𝑑1 + 2𝑑2 + 𝑑3 + 4𝑑4 = 2(−2𝛼2 − 4𝛼 + 7);

2(𝑑1 + 𝑑2 + 𝑑3) = 4(5 − 4𝛼);

(𝑑1 + 𝑑3)𝑐
2
1 + 2𝑑1𝑐1 − 4𝑑3 = 2(𝑐21 + 18𝑐1 + 32); 𝑑1 = 18.

(3.10)

Since 𝑐1 = 𝑐 ∈ [0, 2], using the result (𝑐1 + 𝑎)(𝑐1 + 𝑏) > (𝑐1 − 𝑎)(𝑐1 − 𝑏), where 𝑎, 𝑏 > 0, and
applying triangle inequality, we can have

− (𝑑1 + 𝑑3)𝑐
2
1 + 2𝑑1𝑐1 − 4𝑑3 = −2(𝑐21 − 18𝑐1 + 32). (3.11)

Substituting the calculated values from (3.10) and (3.11) on the right-hand side of (3.9), we
have

4|𝑑1𝑐1𝑐3 + 𝑑2𝑐
2
1𝑐2 + 𝑑3𝑐

2
2 + 𝑑4𝑐

4
1| 6

⃒⃒⃒
2(−2𝛼2 − 4𝛼 + 7)𝑐41

+ 36(4𝑐1 − 𝑐31) + 4𝑐21(5 − 4𝛼)(4 − 𝑐21)|𝑥| − 2(𝑐21 − 18𝑐1 + 32)|𝑥|2(4 − 𝑐21)
⃒⃒⃒
.

(3.12)
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Choosing 𝑐1 = 𝑐 ∈ [0, 2], applying the triangle inequality and replacing |𝑥| by 𝜇 on the right-
hand side of the above inequality

4|𝑑1𝑐1𝑐3 + 𝑑2𝑐
2
1𝑐2 + 𝑑3𝑐

2
2 + 𝑑4𝑐

4
1| 6

⃒⃒⃒
2(−2𝛼2 − 4𝛼 + 7)𝑐4 + 36𝑐(4 − 𝑐2)

+ 4𝑐2(5 − 4𝛼)(4 − 𝑐2)𝜇 + 2(𝑐− 16)(𝑐− 2)𝜇2(4 − 𝑐2)
⃒⃒⃒

= 𝐹 (𝑐, 𝜇), 0 6 𝜇 = |𝑥| 6 1 and 0 6 𝑐 6 2.

(3.13)

Now we maximize the function 𝐹 (𝑐, 𝜇) on the closed region [0, 2] × [0, 1]. Differentiating
𝐹 (𝑐, 𝜇) given in (3.13) with respect to 𝜇, we obtain

𝜕𝐹

𝜕𝜇
= 4

[︁
(5 − 4𝛼)𝑐2 + (𝑐− 16)(𝑐− 2)𝜇

]︁
(4 − 𝑐2) > 0. (3.14)

For 0 < 𝜇 < 1 and for fixed 𝑐 with 0 < 𝑐 < 2, from (3.14), we observe that 𝜕𝐹
𝜕𝜇

> 0. Therefore,

𝐹 (𝑐, 𝜇) becomes an increasing function of 𝜇 and hence it cannot have a maximum value at any
point in the interior of the closed region [0, 2] × [0, 1]. Moreover, for a fixed 𝑐 ∈ [0, 2], we have

max
06𝜇61

𝐹 (𝑐, 𝜇) = 𝐹 (𝑐, 1) = 𝐺(𝑐).

Therefore, replacing 𝜇 by 1 in 𝐹 (𝑐, 𝜇), upon simplification, we obtain

𝐺(𝑐) = −4(𝛼2 − 2𝛼 + 2)𝑐4 + 8(3 − 8𝛼)𝑐2 + 256. (3.15)

𝐺′(𝑐) = −16(𝛼2 − 2𝛼 + 2)𝑐3 + 16(3 − 8𝛼)𝑐. (3.16)

𝐺′′(𝑐) = −48(𝛼2 − 2𝛼 + 2)𝑐2 + 16(3 − 8𝛼). (3.17)

For optimum value of 𝐺(𝑐), consider 𝐺′(𝑐) = 0. From (3.16), we get

𝑐 = 0 or 𝑐2 =
[︁ 3 − 8𝛼

𝛼2 − 2𝛼 + 2

]︁
. (3.18)

Case 1. Suppose 0 6 𝛼 < 3
8
. By (3.18), for 𝑐 = 0, in (3.17), we get 𝐺′′(𝑐) = 16(3 − 8𝛼) > 0.

Then 𝐺(𝑐) has minimum at 𝑐 = 0. For 𝑐2 = 3−8𝛼
𝛼2−2𝛼+2

, in (3.17), we get 𝐺′′(𝑐) = −32(3−8𝛼) < 0.
Therefore, by the second derivative test, 𝐺(𝑐) has maximum value at

𝑐 =

√︂
3 − 8𝛼

𝛼2 − 2𝛼 + 2
.

Substituting the value of 𝑐 in expression (3.15), upon simplification, we obtain the maximum
value of 𝐺(𝑐):

𝐺𝑚𝑎𝑥(𝑐) =
4(128𝛼2 − 176𝛼 + 137)

𝛼2 − 2𝛼 + 2
. (3.19)

Simplifying expressions (3.13) and (3.19), we have

|𝑑1𝑐1𝑐3 + 𝑑2𝑐
2
1𝑐2 + 𝑑3𝑐

2
2 + 𝑑4𝑐

4
1| 6

128𝛼2 − 176𝛼 + 137

𝛼2 − 2𝛼 + 2
. (3.20)

By relations (3.7) and (3.20), upon simplification, we obtain

|𝑡2𝑡4 − 𝑡23| =
(1 − 𝛼)2

144

[︁128𝛼2 − 176𝛼 + 137

𝛼2 − 2𝛼 + 2

]︁
. (3.21)

Case 2. Suppose 3
8
6 𝛼 6 1. By (3.18), for

𝑐2 =
3 − 8𝛼

𝛼2 − 2𝛼 + 2
,



THIRD HANKEL DETERMINANT FOR . . . 115

in (3.17), we get 𝐺′′(𝑐) = −32(3 − 8𝛼) > 0. Then 𝐺′′(𝑐) has minimum at

𝑐2 =
3 − 8𝛼

𝛼2 − 2𝛼 + 2
.

For 𝑐 = 0, in (3.17) we get 𝐺′′(𝑐) = 16(3 − 8𝛼) < 0. Therefore, by the second derivative
test, 𝐺(𝑐) has maximum value at 𝑐 = 0. Substituting the value of 𝑐 in expression (3.15), upon
simplification, we obtain the maximum value of 𝐺(𝑐):

𝐺𝑚𝑎𝑥(𝑐) = 256. (3.22)

Simplifying the expressions (3.13) and (3.22), we obtain

|𝑑1𝑐1𝑐3 + 𝑑2𝑐
2
1𝑐2 + 𝑑3𝑐

2
2 + 𝑑4𝑐

4
1| 6 64. (3.23)

From the relations (3.7) and (3.23), upon simplification, we obtain

|𝑡2𝑡4 − 𝑡23| =
[︁2

3
(1 − 𝛼)

]︁2
.

By setting 𝑐1 = 𝑐 = 0 and choosing 𝑥 = 1 in expressions (2.2) and (2.4), we find that 𝑐2 = 2
and 𝑐3 = 0 respectively. Substituting the identity is attained, which shows that our result is
sharp and the extremal function in this case is given by[︁ 1

𝑓 ′(𝑧)

]︁
= 1 + 2𝑧2 + 2𝑧4 + · · · =

1 + 𝑧2

1 − 𝑧2
.

This completes the proof of our theorem.

Remark 3.1. For this we chose 𝛼 = 0, in (3.21) we get |𝑡2𝑡3 − 𝑡24| 6 137
288

. This result is
coincides with Venkateswarlu et al. [15] and also Vamshee Krishna et al. [14]. From this we
conclude that, for 𝛼 = 0, the sharp upper bound for the second Hankel determinant of a function
whose derivative has a positive real part and a function whose reciprocal derivative has a positive
real part is the same.

Theorem 3.2. If 𝑓 ∈ ̃︂𝑅𝑇 (𝛼)(0 6 𝛼 6 1) and

𝑓−1(𝑤) = 𝑤 +
∞∑︁
𝑛=2

𝑡𝑛𝑤
𝑛

in the vicinity of 𝑤 = 0 is the inverse function of 𝑓 , then

| 𝑡2𝑡3 − 𝑡4 |6
2

3

[︃
1 − 𝛼√

𝛼2 − 2𝛼 + 4

(︁13 − 4𝛼

6

)︁ 3
2

]︃
.

Proof. Substituting the values of 𝑡2, 𝑡3 and 𝑡4, from (3.3) in the determinant |𝑡2𝑡3 − 𝑡4| for the

function 𝑓 ∈ ̃︂𝑅𝑇 (𝛼), after simplifying, we get

|𝑡2𝑡3 − 𝑡4| =
⃒⃒⃒(1 − 𝛼)2

12
(2𝑐1𝑐2 + (1 − 𝛼)𝑐31) −

(1 − 𝛼)

24
(6𝑐3 + 8(1 − 𝛼)𝑐1𝑐2 + (1 − 𝛼)2𝑐31)

⃒⃒⃒
=

(1 − 𝛼)

24
|(1 − 𝛼)2𝑐31 − 6𝑐3 − 4𝑐1𝑐2(1 − 𝛼)|.

(3.24)

Substituting the values of 𝑐2 and 𝑐3 from (2.2) and (2.4) respectively from Lemma 2.2 into
the right-hand side of (3.24) and using the fact |𝑧| < 1, we have

2 | (1 − 𝛼)2𝑐31 − 6𝑐3 − 4𝑐1𝑐2(1 − 𝛼) |6
⃒⃒⃒
− (5 − 2𝛼2)𝑐31 − 6(4 − 𝑐21)

− 2𝑐1(4 − 𝑐21)(5 − 2𝛼) | 𝑥 | +3(𝑐1 + 2)(4 − 𝑐21) | 𝑥 |2
⃒⃒⃒
.

(3.25)



116 B. VENKATESWARLU, N. RANI

Since 𝑐1 = 𝑐 ∈ [0, 2], using the estimate (𝑐1+𝑎) > (𝑐1−𝑎), where 𝑎 > 0, applying the triangle
inequality and replacing |𝑥| by 𝜇 in the right-hand side of the above inequality, we have

2 | (1 − 𝛼)2𝑐31 − 6𝑐3 − 4𝑐1𝑐2(1 − 𝛼) |6
⃒⃒⃒
(5 − 2𝛼2)𝑐3 + 6(4 − 𝑐2)

+ 2𝑐(4 − 𝑐2)(5 − 2𝛼)𝜇 + 3(𝑐− 2)(4 − 𝑐2)𝜇2
⃒⃒⃒

= 𝐹 (𝑐, 𝜇), 0 6 𝜇 =| 𝑥 |6 1 and 0 6 𝑐 6 2.

(3.26)

Then we maximize the function 𝐹 (𝑐, 𝜇) on the closed square [0, 2]× [0, 1]. Differentiating (3.26),
i.e., 𝐹 (𝑐, 𝜇) with respect to 𝜇, we get

𝜕𝐹

𝜕𝜇
= 2

[︁
(5 − 2𝛼)𝑐 + 3(𝑐− 2)𝜇

]︁
(4 − 𝑐2) > 0.

As described in Theorem 3.1, further, we obtain

𝐺(𝑐) = −2𝑐3(𝛼2 − 2𝛼 + 4) + 4𝑐(13 − 4𝛼). (3.27)

𝐺′(𝑐) = −6𝑐2(𝛼2 − 2𝛼 + 4) + 4(13 − 4𝛼). (3.28)

𝐺′′(𝑐) = −12𝑐(𝛼2 − 2𝛼 + 4). (3.29)

For optimum value of 𝐺(𝑐), consider 𝐺′(𝑐) = 0. From (3.28), we get

𝑐2 =
2(13 − 4𝛼)

3(𝛼2 − 2𝛼 + 4)
for 0 6 𝛼 6 1.

Using the obtained value of 𝑐 =
√︁

2(13−4𝛼)
3(𝛼2−2𝛼+4)

∈ [0, 2] in (3.29), we arrive at

𝐺′′(𝑐) = −12

[︃√︃
2(13 − 4𝛼)

3(𝛼2 − 2𝛼 + 4)

]︃
(𝛼2 − 2𝛼 + 4) < 0.

Therefore, by the second derivative test, 𝐺(𝑐) has maximum value at 𝑐, where

𝑐 =

√︃
2(13 − 4𝛼)

3(𝛼2 − 2𝛼 + 4)
.

Substituting the value of 𝑐 in the expression (3.27), upon simplification, we obtain the maximum
value of 𝐺(𝑐) at 𝑐:

𝐺𝑚𝑎𝑥 =
32√

𝛼2 − 2𝛼 + 4

[︁13 − 4𝛼

6

]︁ 3
2
. (3.30)

By expressions (3.26) and (3.30), after simplifying, we get

| (1 − 𝛼)2𝑐31 − 6𝑐3 − 4(1 − 𝛼)𝑐1𝑐2 |6
16√

𝛼2 − 2𝛼 + 4

[︁13 − 4𝛼

6

]︁ 3
2
. (3.31)

Simplifying the relations (3.24) and (3.31), we obtain

|𝑡2𝑡3 − 𝑡4| 6
2(1 − 𝛼)

3
√
𝛼2 − 2𝛼 + 4

[︁13 − 4𝛼

6

]︁ 3
2
. (3.32)

This completes the proof of the theorem.

Remark 3.2. For the choice of 𝛼 = 0, from (3.32), we obtain |𝑡2𝑡3 − 𝑡4| 6 1
3

[︁
13
6

]︁ 3
2
. This

result coincide with that by Vamshee Krishna et al. [14] and also by Venkateswarlu et al. [16].
We observe that the upper bound for |𝑡2𝑡3− 𝑡4| of a function whose derivative has a positive real
part [14] and a function whose reciprocal derivative has a positive real part is the same.
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The next theorem can be proved straightforwardly by applying the same procedure as in the
proof of Theorems 3.1 and 3.2 and the result is sharp for the values 𝑐1 = 0, 𝑐2 = 2 and 𝑥 = 1.

Theorem 3.3. If 𝑓 ∈ ̃︂𝑅𝑇 (𝛼)(0 6 𝛼 6 1) and 𝑓−1(𝑤) = 𝑤 +
∞∑︀
𝑛=2

𝑡𝑛𝑤
𝑛 near 𝑤 = 0 is the

inverse function of 𝑓 then |𝑡3 − 𝑡22| 6 2
3
[1 − 𝛼].

Using the fact that

|𝑐𝑛| 6 2, 𝑛 ∈ 𝑁 = {1, 2, 3, . . .},

by values of 𝑐2 and 𝑐3 given in (2.2) and (2.4) respectively together with the values in (3.6), we
arrive at the following inequalities.

Theorem 3.4. If 𝑓(𝑧) ∈ ̃︂𝑅𝑇 (𝛼), (0 6 𝛼 6 1) and

𝑓−1(𝑤) = 𝑤 +
∞∑︁
𝑛=2

𝑡𝑛𝑤
𝑛

in the vicinity of 𝑤 = 0 is the inverse function of 𝑓 , then the following inequalities
(i) |𝑡2| 6 (1 − 𝛼),
(ii) |𝑡3| 6 2

3
(1 − 𝛼)(2 − 𝛼),

(iii) |𝑡4| 6 (1−𝛼)
6

[2𝛼2 − 12𝛼 + 13],

(iv) |𝑡5| 6 (1−𝛼)
15

[−2𝛼3 + 28𝛼2 − 79𝛼 + 59]
hold.

Using the results of Theorems 3.1, 3.3, 3.5 and 3.6, we arrive at the following corollary.

Corollary 1. If 𝑓 ∈ ̃︂𝑅𝑇 (𝛼)(0 6 𝛼 6 1) and 𝑓−1(𝑤) = 𝑤 +
∞∑︀
𝑛=2

𝑡𝑛𝑤
𝑛 near 𝑤 = 0 is the

inverse function of 𝑓 then

|𝐻3(1)| =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1 − 𝛼)2

1080

[︃
5(𝛼2 − 3𝛼 + 2)(128𝛼2 − 176𝛼 + 137)

𝛼2 − 2𝛼 + 2

+
120(2𝛼2 − 12𝛼 + 13)√

𝛼2 − 2𝛼 + 4

(︁13 − 4𝛼

6

)︁ 3
2

+ 48(−2𝛼3 − 28𝛼2 − 79𝛼 + 59)

]︃
, for 0 6 𝛼 <

3

8
,

(1 − 𝛼)2

135

[︃
40(𝛼2 − 3𝛼 + 2) +

15√
𝛼2 − 2𝛼 + 4

(︁13 − 4𝛼

6

)︁ 3
2

+ 6(−2𝛼3 − 28𝛼2 − 79𝛼 + 59)

]︃
, for

3

8
6 𝛼 6 1.

Remark 3.3. If we choose 𝛼 = 0 in the above expressions, we obtain |𝐻3(1)| 6 0.742. These
inequalities are sharp and coincide with the results by Vamshee Krishna et al. [14] and also by
Venkateswarlu et al. [15]. We observe that the upper bound for the third Hankel determinant
of a function whose derivative has a positive real part [14] and a function whose reciprocal
derivative has a positive real part is the same.

The authors thank D. Vamshee Krishna for discussing particular aspects of the work.
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