doi:10.13108/2017-9-2-62

UDC 517.518.1

DICRETE HÖLDER ESTIMATES FOR A CERTAIN KIND OF PARAMETRIX. II

A.I. PARFENOV

Abstract. In the first paper of this series we have introduced a certain parametrix and the associated potential. The parametrix corresponds to a uniformly elliptic second order differential operator with locally Hölder continuous coefficients in the half-space. Here we show that the potential is an approximate left inverse of the differential operator modulo hyperplane integrals, with the error estimated in terms of the local Hölder norms. As a corollary, we calculate approximately the potential whose density and differential operator originate from the straightening of a special Lipschitz domain. This corollary is aimed for the future derivation of approximate formulae for harmonic functions.

Keywords: cubic discretization, Lipschitz domain, local Hölder norms, parametrix, potential, straightening.

Mathematics Subject Classification: 35A17

1. Introduction

Let $\mathcal{A}^{\mu}_{\lambda}$ be the family of all second order uniformly elliptic operators in the upper half-space \mathbb{R}^n_+ $(n \geqslant 2)$ with an ellipticity constant $\lambda \geqslant 1$ and locally μ -Hölder coefficients, $0 < \mu < 1$. In work [1] a Z-parametrix E(A; x, y) (shortly: parametrix) was proposed for an operator $A \in \mathcal{A}^{\mu}_{\lambda}$ and for the corresponding potential

$$\Phi_f(x) = \int_{y_n > 0} E(A; x, y) f(y) \, dy, \quad x \in \mathbb{R}^n_+,$$

estimates for local Hölder norms $||D^{\alpha}\Phi_f||_I$ ($|\alpha| \leq 2$) and $||Rf||_I$ were established in terms of the same norms $||f||_J$, where $f \mapsto Rf = f - A\Phi_f$ is the error operator.

The parametrix E(A; x, y) and the potential Φ_f were introduced in order to study a special harmonic function. Let Ω be the overgraph of a Lipschitz function $\omega : \mathbb{R}^{n-1} \to \mathbb{R}$. Lemma 3.7 in [2] and the properties of the Kelvin transform imply the existence and the uniqueness up to a positive multiplicative constant of a function U with the following properties:

$$U \in C^{\infty}(\Omega) \cap C(\overline{\Omega}), \quad \Delta U = 0 \text{ and } U > 0 \text{ in domain } \Omega, \quad U|_{\partial\Omega} = 0.$$

Up to the equivalence, the function U determines the behavior of arbitrary positive harmonic functions vanishing continuously on a part of the boundary of a Lipschitz domain. Indeed, roughly speaking, each two such functions are comparable by the boundary Harnack principle. As an example see [3, Thm. 5.1].

Let us outline the plan of studying the function U. Denoting

$$u=(U\circ g)\varphi$$

A.I. PARFENOV, DICRETE HÖLDER ESTIMATES FOR A CERTAIN KIND OF PARAMETRIX. II.

[©] Parfenov A.I. 2017.

Submitted March 15, 2016.

for an appropriate straightening diffeomorphism $g: \mathbb{R}^n_+ \to \Omega$ and a cut-off function $\varphi \in C_0^{\infty}(\overline{\mathbb{R}^n_+})$, by the Laplace equation $\Delta U = 0$ we obtain the differential equation

$$Au = LD_n u + L'$$

for some operator $A \in \mathcal{A}^{\mu}_{\lambda}$ and functions $L, L' \in C^{\infty}(\mathbb{R}^n_+)$. Here A and L depend on Ω and g, but not on U and φ . If the function ω is compactly supported and its Lipschitz constant is sufficiently small, the Neumann series

$$Q = \sum_{k=0}^{\infty} R^k$$

makes sense. The boundary condition $u|_{\partial \mathbb{R}^n_+} = 0$ and the boundedness of the support of the function u are preconditions for the validity of the integral representation

$$u = \Phi_F$$
, $F = QAu = Q(vL + L')$, $v = D_n u = D_n \Phi_F$.

For the function $\mathbf{x}_n^{-1}(x) = x_n^{-1}$ and a number v_0 we write

$$v = \mathbf{x}_n^{-1} \Phi_F \{ \underbrace{D_n \Phi_L - \mathbf{x}_n^{-1} \Phi_L + 1}_{\Theta} \} + \underbrace{D_n \Phi_{F-v_0 L} - \mathbf{x}_n^{-1} \Phi_{F-v_0 L}}_{\Theta_1} + \{ \underbrace{D_n \Phi_L - \mathbf{x}_n^{-1} \Phi_L}_{\Theta_2} \} \{ \underbrace{v_0 - \mathbf{x}_n^{-1} \Phi_F}_{\Theta_2} \}.$$

It turns out that $\Theta \approx \mathbf{x}_n D_n(S \circ g)$, where

$$S(x) = \lim_{r \to \infty} \left\{ \ln r - \frac{\Gamma(n/2)}{\pi^{n/2}} \int_{y \in \mathbb{R}^n \setminus \Omega: |x-y| \le r} |x-y|^{-n} \, dy \right\}, \quad x \in \Omega,$$

and the approximate error is quadratic in approximation numbers b_I expressing how close locally the surface $\partial\Omega$ is to a hyperplane. We can choose v_0 so that the term Θ_1 is estimated quadratically in b_I , while the expressions Θ_2 and Θ_3 are estimated linearly. This implies that $\frac{D_n u}{u} \approx D_n(S \circ g)$ with a quadratic error. Generalizing the arguments and the definition of the function S to the case of a not necessarily compactly supported function ω with an arbitrary Lipschitz constant, by means of rotations of the coordinate system we obtain the approximate formula

$$\frac{\nabla U}{U} \approx \nabla S. \tag{1}$$

The integration of this formula gives rise to the exponential asymptotic formula (EAF)

$$U \approx U_0 e^S$$
.

For known EAFs for conformal mappings, EAFs for solutions to elliptic systems and asymptotics for positive harmonic functions see works [4]–[8].

The present paper is devoted to realizing a part of the outlined plan, namely, to justifying, for error term in the formula $\Theta \approx \mathbf{x}_n D_n(S \circ g)$, an estimate quadratic in approximating numbers of the function ω . The paper consists of the introduction and two sections. In Section 2 we find approximately the potential Φ_{Af} . The main definitions are given in Subsections 2.1 and 2.2. In Subsection 2.3, the discrete Hölder estimates from [1] for the functions $D^{\alpha}\Phi_f$ and Rf are completed by an estimate for the expression $D_n\Phi_f - \mathbf{x}_n^{-1}\Phi_f$, which is more precise than the independent estimates for the functions Φ_f and $D_n\Phi_f$. In Subsection 2.4, the derivatives $D^{\alpha}\Phi_{Af}$ and the expression $D_n\Phi_{Af} - \mathbf{x}_n^{-1}\Phi_{Af}$ are found up to the errors majorized by local Hölder seminorms $|A|_J$ of the coefficients of the operator A and by the norms $|D^2f|_J$.

In Section 3, to a pair (ω, θ) , where $\theta \ge \|\omega\|_{\text{Lip}}$, we associate the standard set

$$(\{\gamma_K\}, w, W, g, \mathfrak{g}, \mathfrak{G}, A, \lambda, L)$$

relating to a straightening of the domain Ω , after that the formula $\Theta \approx \mathbf{x}_n D_n(S \circ g)$ and its analogue for the derivatives $D_{ij}\Phi_L$ are established by a reduction to Subsection 2.4. We observe

that the formula for the derivatives $D_{ij}\Phi_L$ can be used while obtaining an analogue of formula (1) for the derivatives $D_{ij}U$.

Convention. The letter c (with a possible subscript or superscript) stands for various positive constants and always equipped by the brackets with all numerical parameters, on which these constants depend. For t > 0 and a cube or a ball $X \subset \mathbb{R}^d$ centered at \mathfrak{c}_X and of the edge or radius of an arbitrary length we let

$$tX = \{ \mathfrak{c}_X + t(\xi - \mathfrak{c}_X) \colon \xi \in X \}.$$

If $\xi \in \mathbb{R}^d$, then $|\xi|_{\infty} = \max_i |\xi_i|$ and (if ξ is not a multi-index) $|\xi|^2 = \sum_i |\xi_i|^2$. For multi-indices $\alpha \in \mathbb{N}_0^d$, by $D^{\alpha}f$ we denote partial derivatives of a real function f, at that, $D_i f \equiv D^{e_i} f$ and $D_{ij} f \equiv D^{e_i + e_j} f$, where $\{e_i\}_1^d$ is the canonical basis in \mathbb{R}^d . For a semi-norm p and a number $q \in \mathbb{N}_0$ we let

$$p(D^q f) = \max_{|\alpha|=q} p(D^{\alpha} f).$$

For instance, $|Df| = \max_{1 \leq i \leq d} |D_i f| = |\nabla f|_{\infty}$, where ∇f is the gradient of the function f. By \overline{X} and X° we denote the closure and the interior of a set $X \subset \mathbb{R}^d$.

2. Approximate calculations with potential Φ_{Af}

2.1. Basic information on a dyadic family. Given an integer $n \ge 2$, we introduce a dyadic family \mathcal{D} in \mathbb{R}^{n-1} :

$$\mathcal{D} = \bigcup_{k \in \mathbb{Z}} \mathcal{D}_k, \quad \mathcal{D}_k = \left\{ I \colon I = [0, 2^k)^{n-1} + 2^k a \text{ for some } a \in \mathbb{Z}^{n-1} \right\}.$$

For the sets $I_i \subset \mathbb{R}^{n-1}$ with a bounded non-empty union we let

$$[I_1, I_2] = \sup_{\xi, \eta \in I_1 \cup I_2} |\xi - \eta|_{\infty}.$$

We denote $l_I = [I, \varnothing]$ as $I \in \mathcal{D}$ (the side-length). For $\alpha, \beta \in \mathbb{R}$ we let

$$\Gamma_{IJ}^{(\alpha,\beta)} = l_I^{\alpha} l_J^{\beta} [I,J]^{-\alpha-\beta}, \quad I,J \in \mathcal{D}.$$

The following statements is Theorem 2(a) proved in [9]. Hereinafter, unless otherwise said, the summation are taken over the set \mathcal{D} .

Lemma 1. If $\alpha > 0$ and $\beta > n - 1$, then

$$\sum_{I} \Gamma_{IJ}^{(\alpha,\beta)} \leqslant c(n,\alpha,\beta), \quad I \in \mathcal{D}.$$

For $I, J \in \mathcal{D}$ we say $I \odot J$ if $l_I = l_J$ and $\overline{I} \cap \overline{J} \neq \emptyset$. By $\{I^J, J^I\}$ we denote a pair of cubes $\{H_1, H_2\} \subset \mathcal{D}$ with the smallest possible value of $l_{H_1} = l_{H_2}$ and the property

$$I \subset H_1 \odot H_2 \supset J$$
.

The cubes I and J can be connected by the chain

$$\widehat{IJ} = \{ H \in \mathcal{D} \colon I \subset H \subset I^J \text{ or } J \subset H \subset J^I \}.$$

We fix $\mu \in (0,1)$. For a function f on a set $X \subset \mathbb{R}^d$ containing more than one point, we let

$$|f|_{C^{\mu}(X)} = \sup_{x,y \in X: x \neq y} \frac{|f(x) - f(y)|}{|x - y|^{\mu}}, \quad ||f||_{\text{Lip}} = \sup_{x,y \in X: x \neq y} \frac{|f(x) - f(y)|}{|x - y|}.$$

We denote

$$\mathbb{R}_{+}^{n} = \left\{ x = (x', x_{n}) \in \mathbb{R}^{n} : x_{n} > 0 \right\},
I^{\square} = \overline{I} \times [l_{I}, 2l_{I}], \quad I \in \mathcal{D},
\mathfrak{c}_{I}^{\square} = (\mathfrak{c}_{I}, 3l_{I}/2) \quad \text{for the center } \mathfrak{c}_{I} \text{ of the cube } I.$$

Let $C = C^{\mu}_{loc}(\mathbb{R}^n_+)$, that is, C consists of all real functions f on \mathbb{R}^n_+ such that $|f|_{C^{\mu}(I^{\square})} < \infty$ for each $I \in \mathcal{D}$. We let

$$|f|_I = l_I^{\mu} |f|_{C^{\mu}(I^{\square})}, \quad ||f||_I = ||f||_{L^{\infty}(I^{\square})} + |f|_I.$$

The estimate

$$|f|_I \leqslant nl_I ||Df||_{L^{\infty}(I^{\square})}, \quad f \in C^1(I^{\square})$$
 (2)

is obvious.

2.2. We introduce main notations related to the Z-parametrix E(A; x, y) of an arbitrary operator $A \in \mathcal{A}^{\mu}_{\lambda}$.

Let δ_{ij} be the Kronecker delta, $\Gamma(\cdot)$ be the Euler Gamma function, \mathcal{A} be the set of all differential operators

$$A = \sum_{i,j=1}^{n} a_{ij} D_{ij} \tag{3}$$

with constant coefficients $a_{ij} = a_{ji} \in \mathbb{R}$. For $\lambda \geqslant 1$ we let

$$\mathcal{A}_{\lambda} = \left\{ A \in \mathcal{A} \colon (\forall \zeta \in \mathbb{R}^n) \ \lambda^{-1} |\zeta|^2 \leqslant \sum_{i,j=1}^n a_{ij} \zeta_i \zeta_j \leqslant \lambda |\zeta|^2 \right\}.$$

We denote by \mathfrak{z}_I the unique vertex of a cube $I \in \mathcal{D}$ possessing the property $\mathfrak{z}_I/(2l_I) \in \mathbb{Z}^{n-1}$. Let

$$I^{\times} = \left\{ \xi \in \overline{3I} \colon |\xi - \mathfrak{z}_I|_{\infty} \leqslant 3l_I/2 \right\} \quad (\Rightarrow I \subset \overline{2I} \subset I^{\times} \subset \overline{3I}),$$
$$I^{\boxtimes} = I^{\times} \times [3l_I/4, 3l_I] \qquad (\Rightarrow I^{\square} \subset I^{\boxtimes}).$$

The symbol \mathcal{A}^{μ} stands for all operators (3) with real coefficients $a_{ij} = a_{ji} \in \mathcal{C}$. Hereafter a_{ij} always stand for the coefficients of the operator $A \in \mathcal{A}$ or $A \in \mathcal{A}^{\mu}$. If $A \in \mathcal{A}^{\mu}$, then

$$|A|_{I} = l_{I}^{\mu} \max_{i,j} |a_{ij}|_{C^{\mu}(I^{\boxtimes})},$$

$$A[x] = \sum_{i,j=1}^{n} a_{ij}(x) D_{ij}, \quad x_{n} > 0,$$

$$Af|_{x} = A[x]f|_{x}, \quad f \in C^{2}(\mathbb{R}^{n}_{+}).$$

We let $\mathcal{A}^{\mu}_{\lambda} = \{ A \in \mathcal{A}^{\mu} \colon A[x] \in \mathcal{A}_{\lambda} \text{ for all } x \}.$

For $I \in \mathcal{D}$ and $k \in \mathbb{N}_0$ by $I^{(k)}$ we denote the unique cube in \mathcal{D} with the properties $I \subset I^{(k)}$ and $l_{I^{(k)}} = 2^k l_I$. It is easy to construct the functions $\varphi_k : \mathbb{R}^n_+ \to [0,1]$ in the class C^{∞} such that $\varphi_0 \equiv 0$ and, as $k \geqslant 1$,

$$\varphi_k \equiv 1 \text{ on the set } \mathfrak{P}_k \equiv \overline{3I^{(k-1)}} \times (0, 3l_{I^{(k-1)}}],$$
 (4a)

$$\operatorname{supp} \varphi_k \subset \mathfrak{P}_k^* \equiv (5I^{(k-1)})^\circ \times (0, 4l_{I^{(k-1)}}), \tag{4b}$$

$$|D^{\alpha}\varphi_{k}| \leqslant c(\alpha)l_{I^{(k)}}^{-|\alpha|}, \quad \alpha \in \mathbb{N}_{0}^{n}. \tag{4c}$$

We also let $\mathfrak{Q}_{-1} = \mathfrak{P}_0 = \mathfrak{P}_0^* = \emptyset$ and

$$\mathfrak{Q}_k = \overline{3I^{(k)}} \times (0, 2l_{I^{(k)}}], \quad k \geqslant 0. \tag{5}$$

It is obvious that

$$\mathfrak{Q}_{k-1} \subset \mathfrak{P}_k \subset \mathfrak{P}_k^* \subset \mathfrak{Q}_k^{\circ}. \tag{6}$$

It is easy to check the existence of C^{∞} -functions $\psi_K \colon \mathbb{R}^n_+ \to [0,1]$ with the properties

$$\operatorname{supp} \psi_K \subset \frac{\overline{3}}{2}K \times \left[\frac{3}{4} l_K, \frac{5}{2} l_K \right], \quad K \in \mathcal{D}, \tag{7a}$$

$$\sum_{K} \psi_K(x) = 1, \quad x_n > 0, \tag{7b}$$

$$|D^{\alpha}\psi_K| \leqslant c(\alpha)l_K^{-|\alpha|}, \quad \alpha \in \mathbb{N}_0^n.$$
 (7c)

For $A \in \bigcup_{\lambda \geqslant 1} \mathcal{A}_{\lambda}$ and $x \neq 0$ we denote

$$\det_{A} = \det(a_{ij}), \quad (b_{ij}) = (a_{ij})^{-1}, \quad Q_{A}(x) = \sum_{i,j=1}^{n} b_{ij} x_{i} x_{j},$$

$$E_{A}(x) = \begin{cases} \frac{1}{4\pi\sqrt{\det_{A}}} \ln Q_{A}(x), & n = 2, \\ \frac{\Gamma(n/2)}{(2-n)2\pi^{n/2}\sqrt{\det_{A}}} Q_{A}^{\frac{2-n}{2}}(x), & n \geqslant 3. \end{cases}$$

For $x, y \in \mathbb{R}^n_+$, $x \neq y$, we let

$$e_n^A = a_{nn}^{-1} \{ a_{1n}e_1 + a_{2n}e_2 + \dots + a_{nn}e_n \},$$

 $\widetilde{y}^A = y - y_n e_n^A, \quad \widetilde{y}_A = y - 2y_n e_n^A,$
 $G_A(x, y) = E_A(x - y) - E_A(x - \widetilde{y}_A).$

For $A \in \mathcal{A}^{\mu}_{\lambda}$ and $x, y \in \mathbb{R}^n_+$, $x \neq y$, we let

$$E(A;x,y) = \sum_K G_{A[\mathfrak{c}_K^{\square}]}(x,y) \psi_K \big(Z(x,y)\big),$$

where

$$Z(x,y) = x + \kappa |x - \widetilde{y}| e_n, \quad \kappa = \frac{1}{3\sqrt{4n+9}}, \quad \widetilde{y} = (y', -y_n).$$

In [1] the parametrix E(A; x, y) was introduced with the constant $\kappa_0 = \frac{1}{3\sqrt{n+15}}$ instead of κ .

2.3. Let us write down the potential Φ_f and discrete Hölder estimates for it.

Theorem 1. Let $\lambda \geqslant 1$, $0 < \mu < 1$ and $A \in \mathcal{A}^{\mu}_{\lambda}$. Then for each function $f \in VL(0)$, where

$$VL(0) = \left\{ f \in \mathcal{C} : (\exists I \in \mathcal{D}) \sum_{J} \Gamma_{IJ}^{(0,n)} l_{J} || f ||_{J} < \infty \right\}$$
$$= \left\{ f \in \mathcal{C} : (\forall I \in \mathcal{D}) \sum_{J} \Gamma_{IJ}^{(0,n)} l_{J} || f ||_{J} < \infty \right\},$$

the integral

$$\Phi_f(x) = \int_{y_0 > 0} E(A; x, y) f(y) \, dy$$

converges absolutely and is twice continuously differentiable in x. We have $D^{\alpha}\Phi_f \in \mathcal{C}$ ($|\alpha| \leq 2$) and for each $I \in \mathcal{D}$

$$l_I^{-1} \|\Phi_f\|_I + \|D\Phi_f\|_I \leqslant c(n, \lambda, \mu) \sum_J \Gamma_{IJ}^{(0,n)} l_J \|f\|_J, \tag{8}$$

$$l_I^{-1} \| D_n \Phi_f - \mathbf{x}_n^{-1} \Phi_f \|_I + \| D^2 \Phi_f \|_I \leqslant c(n, \lambda, \mu) \sum_J \Gamma_{IJ}^{(0, n+1)} \| f \|_J, \tag{9}$$

$$||f - A\Phi_f||_I \leqslant c(n, \lambda, \mu) \sum_J \Gamma_{IJ}^{(0, n+1)} ||f||_J \min \left\{ 1 + |A|_I, \sum_{H: I \subset H \subset I^J} |A|_H \right\}.$$
 (10)

Remark. Here \mathbf{x}_n^{-1} is the function $x \mapsto x_n^{-1}$.

Proof. All statements of the theorem, except the estimate for the norm $||D_n\Phi_f - \mathbf{x}_n^{-1}\Phi_f||_I$, were checked in [1, Thm. 5] for the parametrix E(A; x, y) defined by the constant κ_0 instead of κ . Due to the property $\kappa \leqslant \kappa_0$, the arguments can be extended to our parametrix with minor changes. This is why it remains to check the inequality:

$$l_I^{-1} \| D_n \Phi_f - \mathbf{x}_n^{-1} \Phi_f \|_I \leqslant c(n, \lambda, \mu) \sum_J \Gamma_{IJ}^{(0, n+1)} \| f \|_J.$$
 (11)

By (2), (4b) and (4c), for the function φ_1 in (4) we have

$$\|\varphi_1\|_J + \|1 - \varphi_1\|_J \leqslant 2 + 2nl_J \|D\varphi_1\|_{L^{\infty}(J^{\square})} \leqslant c_1(n),$$

$$\|\varphi_1 f\|_J + \|(1 - \varphi_1) f\|_J \leqslant c_1 \|f\|_J, \quad J \in \mathcal{D},$$

and hence, $\varphi_1 f \in VL(0)$ and $(1 - \varphi_1) f \in VL(0)$. In the same way,

$$\|\mathbf{x}_n^{-1}\Phi_{\varphi_1 f}\|_I \leqslant \|\mathbf{x}_n^{-1}\|_I \|\Phi_{\varphi_1 f}\|_I \leqslant c_2(n)l_I^{-1} \|\Phi_{\varphi_1 f}\|_I.$$

If $\|\varphi_1 f\|_J \neq 0$, then $J^{\square} \cap \mathfrak{Q}_1^{\circ} \neq \emptyset$ in view of (4b) and (6), which implies $J^{\square} \subset \mathfrak{Q}_1$ and

$$l_I^{-1}\Gamma_{IJ}^{(0,n)}l_J = l_I^{-1}\Gamma_{IJ}^{(0,n+1)}[I,J] \leqslant l_I^{-1}\Gamma_{IJ}^{(0,n+1)}[I^{(1)},J] \leqslant 4\Gamma_{IJ}^{(0,n+1)}.$$
 (12)

By (8) we conclude that

$$\begin{aligned} l_I^{-1} \| D_n \Phi_{\varphi_1 f} - \mathbf{x}_n^{-1} \Phi_{\varphi_1 f} \|_I &\leq l_I^{-1} \| D_n \Phi_{\varphi_1 f} \|_I + c_2 l_I^{-2} \| \Phi_{\varphi_1 f} \|_I \\ &\leq c_3(n, \lambda, \mu) l_I^{-1} \sum_I \Gamma_{IJ}^{(0, n)} l_J \| \varphi_1 f \|_J &\leq 4c_1 c_3 \sum_I \Gamma_{IJ}^{(0, n+1)} \| f \|_J. \end{aligned}$$

We assume that for each $x \in I^{\square}$ and $y \in J^{\square} \setminus \mathfrak{P}_1$ $(J \in \mathcal{D})$, the functions

$$\zeta_K(x,y) = G_{A[\mathfrak{c}_K^{\square}]}(x,y)\psi_K(Z(x,y)), \quad \zeta_K^*(x,y) = D_{x_n}\zeta_K(x,y) - x_n^{-1}\zeta_K(x,y)$$

satisfy the inequalities

$$\left|\zeta_K(x,y)\right| \leqslant c(n,\lambda)l_I \Gamma_{IJ}^{(0,n)} l_J^{1-n},\tag{13}$$

$$\left| D_x^{\alpha} \zeta_K^*(x, y) \right| \leqslant c(\alpha, \lambda) l_I^{1 - |\alpha|} \Gamma_{IJ}^{(0, n+1)} l_J^{-n}, \quad |\alpha| \leqslant 1.$$
 (14)

Then by (4a), (7a) and the belonging $(1 - \varphi_1)f \in VL(0)$, the formula

$$\Phi_{(1-\varphi_1)f}(x) = \int_{y_n > 0} \left(\sum_K \zeta_K(x, y) \right) \left(1 - \varphi_1(y) \right) f(y) \, dy$$

leads us to the formula with an absolutely convergent series

$$D^{\alpha}(D_n \Phi_{(1-\varphi_1)f} - \mathbf{x}_n^{-1} \Phi_{(1-\varphi_1)f})(x) = \sum_{J,K} \int_{J^{\square}} D_x^{\alpha} \zeta_K^*(x,y) (1 - \varphi_1(y)) f(y) \, dy,$$

which together with (2), (7a) and the property $\int_{J^{\square}} |f| dy \leq l_J^n ||f||_J$ yield

$$l_I^{-1} \| D_n \Phi_{(1-\varphi_1)f} - \mathbf{x}_n^{-1} \Phi_{(1-\varphi_1)f} \|_I \leqslant c(n,\lambda) \sum_I \Gamma_{IJ}^{(0,n+1)} \| f \|_J.$$

In view of the result in the previous paragraph we obtain (11).

Let us check (13) and (14). For $x, y \in \mathbb{R}^n_+$, $x \neq y$, estimate (23) in [1] is of the form:

$$\left| D_x^{\alpha} G_B(x, y) \right| \leqslant c(\alpha, \lambda) y_n |x - y|^{1 - n - |\alpha|}, \quad (\alpha, B) \in \mathbb{N}_0^n \times \mathcal{A}_{\lambda}. \tag{15}$$

Let $x \in I^{\square}$ and $y \in J^{\square} \setminus \mathfrak{P}_1$ $(J \in \mathcal{D})$. Then

$$[I, J] \leqslant 4 |(x', \tau x_n) - y|_{\infty} \quad \text{as } 0 < \tau \leqslant 1, \tag{16}$$

which is implied easily by the inequality $|(x', \tau x_n) - y|_{\infty} > l_I$. Hence,

$$\left| G_{A[\mathfrak{c}_K^{\square}]}(x,y) \right| \leqslant \left| \int_0^1 \frac{\partial}{\partial \tau} G_{A[\mathfrak{c}_K^{\square}]} \left((x',\tau x_n), y \right) d\tau \right| \leqslant c(n,\lambda) l_I l_J [I,J]^{-n},$$

which yields (13). Let $\alpha \in \{0, e_1, \dots, e_{n-1}\}$. By the Taylor formula,

$$\zeta_K^*(x,y) = x_n \int_0^1 \tau D^{2e_n} \zeta_K((x', \tau x_n), y) d\tau,$$
 (17a)

$$D_x^{\alpha} \zeta_K^*(x, y) = x_n \int_0^1 \tau D^{\alpha + 2e_n} \zeta_K((x', \tau x_n), y) d\tau, \tag{17b}$$

$$D_{x_n}\zeta_K^*(x,y) = \int_0^1 \{\tau D^{2e_n} + x_n \tau^2 D^{3e_n}\} \zeta_K((x',\tau x_n), y) d\tau,$$
 (17c)

where the derivatives D^{β} are taken w.r.t. the first vector independent variable. By (15), (16), (7a), (7c) and the Leibnitz formula for $\bar{x} = (x', \tau x_n)$ we have

$$\left| D_{\bar{x}}^{\beta} G_{A[c_{\bar{x}}^{\square}]}(\bar{x}, y) \right| \leqslant c(\beta, \lambda) l_J[I, J]^{1 - n - |\beta|}, \quad |\beta| \leqslant 3, \tag{17d}$$

$$\left| D_{\bar{x}}^{\beta} \psi_K(Z(\bar{x}, y)) \right| \leqslant c(\beta) |\bar{x} - \widetilde{y}|^{-|\beta|} \leqslant c(\beta) [I, J]^{-|\beta|}, \tag{17e}$$

$$\left| D_{\bar{x}}^{\beta} \zeta_K(\bar{x}, y) \right| \leqslant c(\beta, \lambda) l_J[I, J]^{1 - n - |\beta|}. \tag{17f}$$

Hence,

$$|D_x^{\alpha} \zeta_K^*(x,y)| \leqslant c_4(\alpha,\lambda) l_I l_J [I,J]^{-n-1-|\alpha|} \leqslant c_4 l_I^{1-|\alpha|} l_J [I,J]^{-n-1}, \tag{17g}$$

$$|D_{x_n}\zeta_K^*(x,y)| \le c_5(n,\lambda)\{l_J[I,J]^{-n-1} + l_Il_J[I,J]^{-n-2}\} \le 2c_5l_J[I,J]^{-n-1}, \tag{17h}$$

which coincides with (14). This completes the proof of inequality (11) and Theorem 1.

2.4. Calculation of Φ_{Af} . The proof of the following lemma is trivial.

Lemma 2. If $d \in \mathbb{N}$, $f \in C(\mathbb{R}^d)$ and $\sup_{\xi \in \mathbb{R}^d} |f(\xi)| |\xi|^d < \infty$, then the limit

$$\lim_{r \to \infty} \int_{|\xi - \mathfrak{x}| < r} f(\xi) \, d\xi$$

either exists for all $\mathfrak{x} \in \mathbb{R}^d$ or does not exist for all $\mathfrak{x} \in \mathbb{R}^d$. In the former case, its value is independent of \mathfrak{x} .

We say that $D^2 f \in VL(0)$ if $f \in C^{2,\mu}_{loc}(\mathbb{R}^n_+)$ and

$$\sum_{I} \Gamma_{IJ}^{(0,n)} l_J ||D^2 f||_J < \infty \text{ for some } I \in \mathcal{D}.$$

Let \mathbb{P}_1^n be the space of all polynomials in \mathbb{R}^n of degree at most one. By $\langle x, y \rangle$ we denote the scalar product $\sum_{i=1}^n x_i y_i$ in \mathbb{R}^n .

Lemma 3. Let $D^2 f \in VL(0)$. Then

$$t\nabla f(\cdot,t) \to 0 \text{ in } L^1_{loc}(\mathbb{R}^{n-1}) \text{ as } t \downarrow 0,$$
 (18)

in
$$L^1_{loc}(\mathbb{R}^{n-1})$$
 there exists the limit $f(\cdot, 0+)$. (19)

If $f(x) = \gamma(x)$ for large |x| for some polynomial $\gamma \in \mathbb{P}_1^n$, then for each operator $A \in \bigcup_{\lambda \geqslant 1} \mathcal{A}_{\lambda}$ and points $x \in \mathbb{R}_+^n$ and $\mathfrak{x} \in \mathbb{R}^{n-1}$ we have

$$f(x) - \int_{y_n>0} G_A(x,y)Af(y) dy$$

$$= x_n \frac{\Gamma(n/2)}{\pi^{n/2}\sqrt{\det_A}} \lim_{r \to \infty} \int_{|\xi-\mathbf{r}| < r} Q_A^{-n/2} (x - (\xi,0)) f(\xi,0+) d\xi + \langle \nabla \gamma, e_n^A \rangle x_n.$$
(20)

Remark. With no pedantry we write $f(\cdot,t)$ instead of $f(\cdot,t)$. The first integral in (20) exists by Theorem 1 since $G_A(x,y) = E(A;x,y)$.

Proof. The condition $D^2 f \in VL(0)$ implies immediately that

$$\int_{\Xi \times (0,1)} x_n |D^2 f(x)| \, dx < \infty$$

for each compact set $\Xi \subset \mathbb{R}^{n-1}$. For 0 < t < 1 we have

$$t \|Df(\cdot,t)\|_{L^{1}(\Xi)} \leq t \|Df(\cdot,1)\|_{L^{1}(\Xi)} + t \int_{\Xi \times (t,1)} |D^{2}f(x)| dx$$

$$\leq t \|Df(\cdot,1)\|_{L^{1}(\Xi)} + \int_{\Xi \times (t,\sqrt{t})} x_{n} |D^{2}f(x)| dx + \sqrt{t} \int_{\Xi \times (\sqrt{t},1)} x_{n} |D^{2}f(x)| dx,$$

and as $t \to 0$, this proves (18). As $0 < t_1 < t_2 < 1$, the relations

$$||f(\cdot,t_1) - f(\cdot,t_2)||_{L^1(\Xi)} \le \int_{\Xi \times (t_1,t_2)} |D_n f(x)| dx$$

$$\le t_2 ||D_n f(\cdot,1)||_{L^1(\Xi)} + \int_{\Xi \times (t_1,t_2)} x_n |D_{nn} f(x)| dx + t_2 \int_{\Xi \times (t_2,1)} |D_{nn} f(x)| dx$$

hold. These relations and the Cauchy convergence criterion give (19).

Let us prove that if the support supp f is bounded under the assumptions of formula (20), then

$$f(x) - \int_{y_n > 0} G_A(x, y) A f(y) \, dy = x_n \frac{\Gamma(n/2)}{\pi^{n/2} \sqrt{\det_A}} \int_{\mathbb{R}^{n-1}} Q_A^{-n/2} (x - (\xi, 0)) f(\xi, 0+) \, d\xi. \tag{21}$$

In view of [1, (19)] and the formula

$$\int_{\mathbb{R}^n} E_A(y-z)A\varphi(y)\,dy = \varphi(z), \quad \varphi \in C_0^{\infty}(\mathbb{R}^n),$$

we get

$$Q_A(x-y) - Q_A(x-\tilde{y}_A) = -\frac{4x_n y_n}{q_{mn}} = Q_A(y-x) - Q_A(y-\tilde{x}_A),$$
 (22)

$$Q_A(x - \widetilde{y}_A) = Q_A(y - \widetilde{x}_A), \tag{23}$$

$$G_A(x,y) = G_A(y,x), (24)$$

$$\int_{y_n>0} G_A(x,y) A\varphi(y) \, dy = \int_{y_n>0} G_A(y,x) A\varphi(y) \, dy = \varphi(x), \quad \varphi \in C_0^\infty(\mathbb{R}^n_+).$$

If the function f is concentrated near the point x, by the regularization we have

$$f(x) - \int_{u_n > 0} G_A(x, y) A f(y) dy = 0.$$

Hence, while checking (21), we can assume that $f \equiv 0$ in the vicinity of the point x. In this case, considering the integrals over the set $\{y \colon y_n > t\}$ and employing relations (15) $\big|_{\alpha=0}$, (18), (19) as well as the boundedness of supp f, we obtain

$$-\int_{y_n>0} G_A(x,y)Af(y) dy = \sum_{i,j=1}^n a_{ij} \int_{y_n>0} D_{y_i}G_A(x,y)D_{y_j}f(y) dy$$

$$= \sum_{i,j=1}^n a_{ij} \int_{y_n>0} D_{y_j} \{D_{y_i}G_A(x,y)f(y)\} dy$$

$$= -\sum_{i=1}^n a_{in} \int_{\mathbb{R}^{n-1}} D_{y_i}G_A(x,(\xi,0))f(\xi,0+) d\xi.$$

In view of (22) we obtain

$$D_{y_i}G_A(x,(\xi,0)) = C_A Q_A^{-n/2}(x-y) D_{y_i} \left\{ Q_A(x-y) - Q_A(x-\widetilde{y}_A) \right\} \Big|_{y=(\xi,0)}$$
$$= -\frac{4x_n \delta_{in}}{a_{nn}} C_A Q_A^{-n/2} (x-(\xi,0)), \quad C_A = \frac{\Gamma(n/2)}{4\pi^{n/2} \sqrt{\det_A}}.$$

This implies (21), that is, formula (20) with $\gamma = 0$.

As $\gamma \neq 0$, we apply formula (21) to the function $f - \gamma$. Thanks to the identity

$$\gamma(x) - \gamma(\widetilde{x}^A) = \langle \nabla \gamma, x_n e_n^A \rangle$$

formula (20) will be proved if we establish the relation

$$\gamma(\widetilde{x}^A) = x_n \frac{\Gamma(n/2)}{\pi^{n/2} \sqrt{\det_A}} \lim_{r \to \infty} \int_{|\xi - \mathfrak{x}| < r} Q_A^{-n/2} (x - (\xi, 0)) \gamma(\xi, 0) d\xi.$$
 (25)

Expanding $\gamma(\xi,0)$ into the powers of the variable $\eta \equiv \xi - (\tilde{x}^A)'$, we see that we need to check the identities

$$x_{n} \frac{\Gamma(n/2)}{\pi^{n/2} \sqrt{\det_{A}}} \int_{\mathbb{R}^{n-1}} Q_{A}^{-n/2} (x - (\xi, 0)) d\xi = 1,$$

$$\lim_{r \to \infty} \int_{|\eta + (\widetilde{x}^{A})' - \mathfrak{x}| < r} Q_{A}^{-n/2} (x_{n} e_{n}^{A} - (\eta, 0)) \eta_{i} d\eta = 0, \quad i = \overline{1, n - 1}.$$

The former identity is obtained by substituting the function $f = \varphi(\cdot/r)$ into (21), where $\varphi \in C_0^{\infty}(\mathbb{R}^n)$ and $\varphi \equiv 1$ in the vicinity of the origin and by passing then to limit as $r \to \infty$ taking into consideration the inequality

$$|G_A(x,y)| \le c(n,\lambda)x_n|x-y|^{1-n}$$

implied by (15) and (24). The second needed identity are yielded by the relations

$$Q_A(x_n e_n^A - (\eta, 0)) \stackrel{(23)}{=} Q_A((\eta, 0) - x_n \widetilde{e_n^A}) = Q_A(x_n e_n^A + (\eta, 0))$$

and Lemma 2. This completes the proof of (25), (20) and the lemma.

The next result allows us to find approximately the derivatives $D^{\alpha}\Phi_{Af}$ of the potential Φ_{Af} and the expression $D_n\Phi_{Af} - \mathbf{x}_n^{-1}\Phi_{Af}$.

Theorem 2. Let $\lambda \geqslant 1$, $0 < \mu < 1$, $A \in \mathcal{A}^{\mu}_{\lambda}$, $D^2 f \in VL(0)$, $I \in \mathcal{D}$ and

$$\Theta = \sum_{J} \Gamma_{IJ}^{(0,n)} l_{J} \left(\sum_{H \in \overleftarrow{IJ} \cup \overrightarrow{IJ}} |A|_{H} \right) \mathcal{F}_{J} < \infty,$$

where

$$\overleftarrow{IJ} = \left\{ H \in \mathcal{D} \colon I \subset H \subset I^J \& 12l_H > \kappa l_{I^J} \right\},$$

$$\overrightarrow{IJ} = \left\{ H \in \mathcal{D} \colon J \subset H \subset J^I \right\},$$

$$\mathcal{F}_J = \|D^2 f\|_J + [I, J]^{-1} \sum_{H \in \{I^J\} \cup \overrightarrow{IJ}} l_H \|D^2 f\|_H.$$

Then $Af \in VL(0)$ and the integral

$$\Phi_{Af}(x) = \int_{y_n > 0} E(A; x, y) Af(y) \, dy, \quad x \in \mathbb{R}^n_+$$

converges absolutely. For $k \in \mathbb{N}_0$ and the functions $\{\varphi_k\}$ in (4) we denote

$$\mathfrak{c}_k = \mathfrak{c}_{I^{(k)}}^{\square}, \quad A_k = A[\mathfrak{c}_k], \quad \gamma_k(x) = f(\mathfrak{c}_k) + \langle \nabla f(\mathfrak{c}_k), x - \mathfrak{c}_k \rangle,
f_k = \varphi_k f + (1 - \varphi_k) \gamma_k, \quad f_{(k)} = f_{k+1} - f_k.$$

Then $D^2 f_k \in VL(0)$, the limits

$$F_k(x) = \frac{\Gamma(n/2)}{\pi^{n/2} \sqrt{\det_{A_k}}} \lim_{r \to \infty} \int_{|\xi - \mathfrak{c}_k'| < r} Q_{A_k}^{-n/2} (x - (\xi, 0)) f_{(k)}(\xi, 0+) d\xi$$

exist as $x \in I^{\square}$, the functions F_k belong to $C^{2,\mu}(I^{\square})$, the series

$$F = \sum_{k=0}^{\infty} F_k$$

converges absolutely in $C^{2,\mu}(I^{\boxdot})$, the scalar series

$$\gamma' = \sum_{k=0}^{\infty} \langle \nabla(\gamma_{k+1} - \gamma_k), e_n^{A_k} \rangle$$

converges absolutely and the inequalities

$$l_I^{-1} \| \mathcal{R}_f \|_I + \| D \mathcal{R}_f \|_I \leqslant c(n, \lambda, \mu) \Theta, \tag{26a}$$

$$l_I^{-1} || D_n \mathcal{R}_f - \mathbf{x}_n^{-1} \mathcal{R}_f ||_I + || D^2 \mathcal{R}_f ||_I \le c(n, \lambda, \mu) \Theta^*$$
 (26b)

hold true, where

$$\mathcal{R}_{f} = \Phi_{Af} - \Psi, \quad \Psi = f - \gamma_{0} - \mathbf{x}_{n}F - \gamma'\mathbf{x}_{n},$$

$$\Theta^{*} = \sum_{J} \Gamma_{IJ}^{(0,n+1)} \left(\sum_{H \in \overleftarrow{IJ} \cup \overrightarrow{IJ}} |A|_{H} \right) \mathcal{F}_{J}.$$

Remark. The limits $f_{(k)}(\cdot,0+)$ are treated in the sense of (19). The inequality

$$\Theta^* \leqslant \Theta/l_I$$

implies the finiteness of Θ^* .

Proof. It is obvious that $Af \in \mathcal{C}$. For each $J \in \mathcal{D}$ we have

$$\|a_{ij} - a_{ij}(\mathfrak{c}_J^{\square})\|_J = \|a_{ij} - a_{ij}(\mathfrak{c}_J^{\square})\|_{L^{\infty}(J^{\square})} + l_J^{\mu}|a_{ij}|_{C^{\mu}(J^{\square})} \leqslant c(n)|A|_J,$$

$$\|Af\|_J \leqslant \|Af - A[\mathfrak{c}_J^{\square}]f\|_J + \|A[\mathfrak{c}_J^{\square}]f\|_J \leqslant c(n)|A|_J\|D^2f\|_J + c(n,\lambda)\|D^2f\|_J.$$

$$(27)$$

In view of the conditions $D^2 f \in VL(0)$ and $\Theta < \infty$ we obtain the belonging $Af \in VL(0)$ and hence, the absolute convergence of the integral $\Phi_{Af}(x)$ by Theorem 1.

Let $k \ge 0$ and $J^{\square} \subset \mathfrak{Q}_k$ (see (5)). Considering Taylor polynomials for the functions f at the touching points for the cubes in the set $\{H^{\square}: H \in \widehat{I^{(k)}J}\}$, by the inequalities

$$\|\gamma\|_{L^{\infty}(J^{\square})} \leqslant \|\gamma\|_{L^{\infty}(3(H^{\square}))} \leqslant c(n)\|\gamma\|_{L^{\infty}(H^{\square})}, \quad \gamma \in \mathbb{P}_{1}^{n},$$

and the Taylor formula we obtain the estimates

$$||f - \gamma_k||_{L^{\infty}(J^{\square})} \leq c(n) \sum_{H \in \widehat{I^{(k)}J}} l_H^2 ||D^2 f||_{L^{\infty}(H^{\square})},$$

$$||D(f - \gamma_k)||_{L^{\infty}(J^{\square})} \leq c(n) \sum_{H \in \widehat{I^{(k)}J}} l_H ||D^2 f||_{L^{\infty}(H^{\square})}.$$

In view of relations (2), $|D^2\gamma_k| \equiv 0$ and $(I^{(k)})^J = I^{(k)}$ we conclude that

$$||f - \gamma_{k}||_{J} \leqslant c(n) \sum_{H \in \widehat{I^{(k)}J}} l_{H}^{2} ||D^{2}f||_{H},$$

$$||D(f - \gamma_{k})||_{J} \leqslant c(n) \sum_{H \in \widehat{I^{(k)}J}} l_{H} ||D^{2}f||_{H},$$

$$l_{H} \leqslant l_{I^{(k)}} \& [I, J] \leqslant [I^{(k)}, J] \leqslant 2l_{I^{(k)}},$$

$$l_{I^{(k)}} ||f - \gamma_{k}||_{J} + l_{I^{(k)}}^{-1} ||D(f - \gamma_{k})||_{J} \leqslant c(n)[I, J]^{-1} \sum_{H \in \widehat{I^{(k)}J}} l_{H} ||D^{2}f||_{H}.$$
(28)

Let us estimate $||D^2(f-f_k)||_J$ and $||D^2f_{(k)}||_J$. We write

$$f - f_k = (1 - \varphi_k)(f - \gamma_k), \quad f_{(k)} = f_{k+1} - f_k = \{f - f_k\} - \{f - f_{k+1}\}.$$

If $J^{\square} \subset \mathfrak{Q}_k \setminus \mathfrak{Q}_{k-1}^{\circ}$, then $l_J \leqslant l_{I^{(k)}}$ and $\widehat{I^{(k)}J} = \{I^J\} \cup \overrightarrow{IJ}$. By (2), (4c), (28) and the Leibnitz formula, this implies

$$l_{I^{(k)}}^2 \|D^2(1-\varphi_k)\|_J + l_{I^{(k)}} \|D(1-\varphi_k)\|_J + \|1-\varphi_k\|_J \leqslant c(n), \quad \|D^2(f-f_k)\|_J \leqslant c_1(n)\mathcal{F}_J.$$

By (4a), (4b) and (6),

$$f - f_k \equiv 0$$
 on the set \mathfrak{Q}_{k-1} ,
 $|D^2 f_k| \equiv 0$ on the set $\mathbb{R}^n_+ \setminus \mathfrak{Q}^{\circ}_k$,
 $|D^2 f_{(k)}| \equiv 0$ on the set $\mathbb{R}^n_+ \setminus \mathfrak{Q}^{\circ}_{k+1}$.

Therefore,

$$\|D^{2}(f - f_{k})\|_{J} \leqslant \begin{cases} 0, & J^{\square} \subset \mathfrak{Q}_{k-1}, \\ c_{1}\mathcal{F}_{J}, & J^{\square} \subset \mathfrak{Q}_{k} \setminus \mathfrak{Q}_{k-1}^{\circ}, \\ \|D^{2}f\|_{J} \leqslant \mathcal{F}_{J}, & J^{\square} \subset \mathbb{R}_{+}^{n} \setminus \mathfrak{Q}_{k}^{\circ}, \end{cases}$$
(29)

$$||D^2 f_{(k)}||_J \leqslant \begin{cases} (c_1 + 1)\mathcal{F}_J, & J^{\square} \subset \mathfrak{Q}_{k+1} \setminus \mathfrak{Q}_{k-1}^{\circ}, \\ 0 & \text{otherwise.} \end{cases}$$
(30)

In view of [9, Eq. (25e)], we have $[I^J, J] \leq 3[I, J]$ and hence, for each $\alpha, \beta \in \mathbb{R}$

$$\Gamma_{IJ}^{(\alpha,\beta)} \leqslant \max\{1,3^{\alpha+\beta}\}\Gamma_{IH}^{(\alpha,\beta)}\Gamma_{HJ}^{(\alpha,\beta)}, \quad H \in \widehat{IJ}.$$
 (31)

Let $\alpha \in \mathbb{R}$, $\beta > n-1$ and $H \in \overrightarrow{IJ} \cup \overrightarrow{IJ}$. Then

$$[H, J] \leqslant [I^J, J^I] \leqslant 2l_{IJ} < 24\kappa^{-1}l_H \text{ as } H \in \overleftarrow{IJ}, \quad [H, J] = l_H \text{ as } H \in \overrightarrow{IJ},$$

 $\Gamma_{HJ}^{(\alpha,\beta)} \leqslant c(n,\alpha)\Gamma_{HJ}^{(\alpha_1,\beta)}, \quad \alpha_1 = \max\{\alpha, 1\}.$

By (31) and Lemma 1, for each $H \in \mathcal{D}$ we obtain

$$\sum_{J: H \in \overleftarrow{IJ} \cup \overrightarrow{IJ}} \Gamma_{IJ}^{(\alpha,\beta)} \leqslant c(n,\alpha,\beta) \Gamma_{IH}^{(\alpha,\beta)} \sum_{J} \Gamma_{HJ}^{(\alpha_1,\beta)} \leqslant c(n,\alpha,\beta) \Gamma_{IH}^{(\alpha,\beta)}. \tag{32}$$

Hence,

$$\sum_{J} \Gamma_{IJ}^{(0,n)} l_{J} [I,J]^{-1} \sum_{H \in \{I^{J}\} \cup \overrightarrow{IJ}} l_{H} \|D^{2} f\|_{H} \leqslant \sum_{H} l_{H} \|D^{2} f\|_{H} \sum_{J: H \in \overleftarrow{IJ} \cup \overrightarrow{IJ}} \Gamma_{IJ}^{(0,n+1)}$$

$$\leqslant c(n) \sum_{H} \Gamma_{IH}^{(0,n+1)} l_{H} \|D^{2} f\|_{H},$$

$$\theta := \sum_{I} \Gamma_{IJ}^{(0,n)} l_{J} \mathcal{F}_{J} \leqslant c(n) \sum_{I} \Gamma_{IJ}^{(0,n)} l_{J} \|D^{2} f\|_{J} < \infty.$$

In view of (29) we conclude that $D^2(f - f_k), D^2 f_k, D^2 f_{(k)} \in VL(0)$. In what follows we suppose that $x \in I^{\square}$. Due to (30) we have

$$||Af_{(k)}||_{J} \leqslant c(n,\lambda)(|A|_{J}+1)||D^{2}f_{(k)}||_{J}, \quad ||A_{k}f_{(k)}||_{J} \leqslant c(n,\lambda)||D^{2}f_{(k)}||_{J},$$

$$\sum_{J} \Gamma_{IJ}^{(0,n)} l_{J} \{||Af_{(k)}||_{J} + ||A_{k}f_{(k)}||_{J}\} \leqslant c_{2}(n,\lambda) \sum_{J} \Gamma_{IJ}^{(0,n)} l_{J}(|A|_{J}+1)\mathcal{F}_{J} \leqslant c_{2}\{\Theta+\theta\} < \infty.$$

Hence, $Af_{(k)} \in VL(0)$ and $A_k f_{(k)} \in VL(0)$, so, the potentials

$$\Phi_k(x) = \int_{y_n > 0} E(A; x, y) A f_{(k)}(y) \, dy,$$

$$\Phi'_k(x) = \int_{y_n > 0} E(A; x, y) A_k f_{(k)}(y) \, dy,$$

$$\Phi''_k(x) = \int_{y_n > 0} G_{A_k}(x, y) A_k f_{(k)}(y) \, dy$$

are well-defined. In view of (8), (9), (29) and (30), the series

$$\Phi = \sum_{k=0}^{\infty} \Phi_k, \qquad \Phi' = \sum_{k=0}^{\infty} \Phi'_k, \qquad \Phi'' = \sum_{k=0}^{\infty} \Phi''_k$$

converge absolutely in $C^{2,\mu}(I^{\square})$, and the potential $\Phi_{A(f-f_k)}$ tends to zero as $k \to \infty$ in $C^{2,\mu}(I^{\square})$. Bearing in mind the relation $f_0 = \gamma_0 \in \mathbb{P}_1^n$, on I^{\square} we get

$$\Phi_{Af} = \Phi_{A(f - f_q)} + \sum_{k=0}^{q-1} \Phi_k = \lim_{q \to \infty} \left(\Phi_{A(f - f_q)} + \sum_{k=0}^{q-1} \Phi_k \right) = \Phi.$$

By Lemma 3, the limits $F_k(x)$ exist and

$$f_{(k)} - \Phi_k'' = \mathbf{x}_n F_k + \langle \nabla (\gamma_{k+1} - \gamma_k), e_n^{A_k} \rangle \mathbf{x}_n.$$

In particular, $F_k \in C^{2,\mu}(I^{\odot})$. By the Taylor formula

$$\left| \nabla (\gamma_{k+1} - \gamma_k) \right| \leqslant c(n) l_{I^{(k)}} \left\{ \| D^2 f \|_{I^{(k)}} + \| D^2 f \|_{I^{(k+1)}} \right\},$$

$$\sum_{k=0}^{\infty} \left| \langle \nabla (\gamma_{k+1} - \gamma_k), e_n^{A_k} \rangle \right| \leqslant c(n, \lambda) \sum_{J} \Gamma_{IJ}^{(0,n)} l_J \| D^2 f \|_J < \infty,$$

that is, the series γ' converges absolutely. The absolute convergence of the series F follows the relation $f_{(k)}|_{I^{\square}} \equiv 0 \ (k \geqslant 1)$ and the absolute convergence of the series Φ'' and γ' . On the cube I^{\square} , the identities

$$\Psi = f - \gamma_0 - \sum_{k=0}^{\infty} \{ f_{(k)} - \Phi_k'' \} = f - \gamma_0 - f_{(0)} + \Phi'' = \Phi'', \quad \mathcal{R}_f = \Phi - \Phi''$$

hold true.

It remains to check inequalities (26). If $J^{\square} \subset \mathfrak{Q}_{k+1} \setminus \mathfrak{Q}_{k-1}^{\circ}$, where $k \geq 0$, then $I^{J} = I^{(k)}$ or $I^{J} = I^{(k+1)}$, so that $\mathfrak{c}_{k} \in (I^{J})^{\boxtimes}$. By analogy with (27) we have

$$\|a_{ij} - a_{ij}(\mathfrak{c}_k)\|_{J} \leqslant c(n) \sum_{H \in \{I^J\} \cup \overrightarrow{IJ}} |A|_{H},$$

$$\|(A - A_k) f_{(k)}\|_{J} \leqslant c(n) \left(\sum_{H \in \{I^J\} \cup \overrightarrow{IJ}} |A|_{H} \right) \|D^2 f_{(k)}\|_{J}.$$

In view of (30) and by Theorem 1 we obtain

$$\begin{aligned} & l_I^{-1} \| \Phi_k - \Phi_k' \|_I + \left\| D(\Phi_k - \Phi_k') \right\|_I \leqslant c(n, \lambda, \mu) \Theta_k, \\ & l_I^{-1} \left\| D_n(\Phi_k - \Phi_k') - \mathbf{x}_n^{-1} (\Phi_k - \Phi_k') \right\|_I + \left\| D^2(\Phi_k - \Phi_k') \right\|_I \leqslant c(n, \lambda, \mu) \Theta_k^*, \end{aligned}$$

where

$$\Theta_{k} = \sum_{J: J^{\square} \subset \Omega_{k+1} \setminus \Omega_{k-1}^{\circ}} \Gamma_{IJ}^{(0,n)} l_{J} \left(\sum_{H \in \overrightarrow{IJ} \cup \overrightarrow{IJ}} |A|_{H} \right) \mathcal{F}_{J},$$

$$\Theta_{k}^{*} = \sum_{J: J^{\square} \subset \Omega_{k+1} \setminus \Omega_{k-1}^{\circ}} \Gamma_{IJ}^{(0,n+1)} \left(\sum_{H \in \overrightarrow{IJ} \cup \overrightarrow{IJ}} |A|_{H} \right) \mathcal{F}_{J}.$$

By this and the convergence of the series Φ and Φ' we conclude that

$$l_I^{-1} \| \Phi - \Phi' \|_I + \| D(\Phi - \Phi') \|_I \leqslant c(n, \lambda, \mu) \Theta,$$
 (33a)

$$l_I^{-1} \| D_n(\Phi - \Phi') - \mathbf{x}_n^{-1}(\Phi - \Phi') \|_I + \| D^2(\Phi - \Phi') \|_I \leqslant c(n, \lambda, \mu) \Theta^*.$$
 (33b)

We let

$$\mathcal{H}_k = \{ K \in \mathcal{D} : \mathfrak{c}_K^{\square} \in (I^{(j)})^{\boxtimes} \text{ for some } j \in \mathbb{N}_0, \ k - \log_2(6/\kappa) < j \leqslant k \}.$$

For each $(k, K) \in \mathbb{N}_0 \times \mathcal{D}$ we shall show that

if
$$\psi_K(Z(x,y))A_k f_{(k)}(y) \neq 0$$
 for some $y \in \mathbb{R}^n_+$, then $K \in \mathcal{H}_k$. (34)

Suppose the assumption in (34). Then $y \in \mathfrak{Q}_{k+1} \setminus \mathfrak{Q}_{k-1}$ by (30) and hence,

$$|x - \widetilde{y}| > x_n \geqslant l_I, \qquad k = 0,$$

$$|x - \widetilde{y}| \geqslant \max\{|x' - y'|_{\infty}, y_n\} > l_{I^{(k-1)}}, \quad k \neq 0,$$

$$|x - \widetilde{y}|^2 \leqslant (n - 1)|x' - y'|_{\infty}^2 + (x_n + y_n)^2$$

$$\leqslant 16(n - 1)l_{I^{(k)}}^2 + (2l_I + 4l_{I^{(k)}})^2 < \kappa^{-2}l_{I^{(k)}}^2,$$

$$l_I < l_I + \frac{\kappa}{2}l_{I^{(k)}} < Z(x, y)_n = x_n + \kappa|x - \widetilde{y}| < 2l_I + l_{I^{(k)}} \leqslant 3l_{I^{(k)}}.$$

This is why there exists j such that $0 \le j \le k$ and

$$Z(x,y) \in \left[\overline{I^{(j)}} \times (l_{I^{(j)}}, 3l_{I^{(j)}})\right] \cap \operatorname{supp} \psi_K.$$

We have

$$\frac{\kappa}{2}l_{I^{(k)}} < Z(x,y)_n < 3l_{I^{(j)}},$$

and hence, $k - \log_2(6/\kappa) < j$. By (7a)

$$\overline{I^{(j)}} \cap \overline{\frac{3}{2}K} \neq \varnothing \quad \& \quad \frac{1}{2} \leqslant \frac{l_{I^{(j)}}}{l_K} \leqslant 2.$$

It is easy to confirm that this implies the belonging $\mathfrak{c}_K^{\square} \in (I^{(j)})^{\boxtimes}$. The proof of (34) is complete. It follows from relations (7b), (30) and (34) that

$$\Phi'_{k}(x) - \Phi''_{k}(x) = \sum_{K \in \mathcal{H}_{k}} \int_{\mathfrak{Q}_{k+1} \setminus \mathfrak{Q}_{k-1}^{\circ}} \left(G_{A[\mathfrak{c}_{K}^{\square}]}(x,y) - G_{A_{k}}(x,y) \right) \psi_{K}(Z(x,y)) A_{k} f_{(k)}(y) \, dy. \tag{35}$$

If $J^{\odot} \subset \mathfrak{Q}_{k+1} \setminus \mathfrak{Q}_{k-1}^{\circ}$, then $I^{J} = I^{(k)}$ or $I^{J} = I^{(k+1)}$ and therefore,

$$I \subset I^{(j)} \subset I^{(k)} \subset I^J \quad \& \quad l_{I^{(j)}} > \frac{\kappa}{6} l_{I^{(k)}} \geqslant \frac{\kappa}{12} l_{I^J} \quad \& \quad I^{(j)} \in \overleftarrow{IJ}$$

for each index j in the definition of the set \mathcal{H}_k . This is why

$$\max_{i,j=\overline{1,n}} \max_{K \in \mathcal{H}_k} \left| a_{ij}(\mathfrak{c}_K^{\square}) - a_{ij}(\mathfrak{c}_k) \right| \leqslant c(n) \sum_{H \in \overline{LJ}} |A|_H, \quad J^{\square} \subset \mathfrak{Q}_{k+1} \setminus \mathfrak{Q}_{k-1}^{\circ}, \tag{36a}$$

$$||A_k f_{(k)}||_J \leqslant c(n, \lambda) \mathcal{F}_J, \tag{36b}$$

where the second inequality is implied trivially by (30). By a simple modification of the constructions in work [1], from (35) and (36) we obtain the estimates

$$l_I^{-1} \| \Phi_k' - \Phi_k'' \|_I + \| D(\Phi_k' - \Phi_k'') \|_I \leqslant c(n, \lambda, \mu) \Theta_k, \tag{37a}$$

$$\left\| D^2(\Phi_k' - \Phi_k'') \right\|_I \leqslant c(n, \lambda, \mu) \Theta_k^*. \tag{37b}$$

In [1, Subsect. 2.1], an estimate for the derivatives of the Green functions was proved (see (15)), which was applied for estimating the norms of $||D^{\alpha}\Phi||_{I}$ in [1, Subsect. 2.2], where the function Φ is similar to the potential Φ_f . At the same time, in [1, Subsect. 2.1], there was obtained an estimate for the derivatives of the difference $G_{B_1} - G_{B_2}$ applied then in [1, Subsect. 2.2] for estimating the norm $||f - A\Phi||_{I}$ of the error $f - A\Phi$. These two lines can be easily combined to obtain inequalities (37). By (12) and (37a)

$$|I_I^{-1}| |D_n(\Phi_0' - \Phi_0'') - \mathbf{x}_n^{-1}(\Phi_0' - \Phi_0'')||_I \leqslant c(n, \lambda, \mu)\Theta_0^*.$$

This is why, if we establish the inequality

$$l_I^{-1} \| D_n(\Phi_k' - \Phi_k'') - \mathbf{x}_n^{-1}(\Phi_k' - \Phi_k'') \|_I \leqslant c(n, \lambda) \Theta_k^* \quad (k \geqslant 1),$$
(38)

then the convergence of the series Φ' and Φ'' in $C^{2,\mu}(I^{\square})$ and the relation $\mathcal{R}_f = \Phi - \Phi''$ (on I^{\square}) and (33) will imply required estimates (26).

Let $k \geqslant 1$, $J^{\square} \subset \mathfrak{Q}_{k+1} \setminus \mathfrak{Q}_{k-1}^{\circ}$, $\bar{x} = (x', \tau x_n)$ for $0 < \tau \leqslant 1$, $y \in J^{\square} \setminus \mathfrak{P}_1$ and $K \in \mathcal{H}_k$. By equation (23') in [1], (16) and (36a) we get

$$\left| D_{\bar{x}}^{\beta} \left(G_{A[\mathfrak{c}_{K}^{\square}]}(\bar{x}, y) - G_{A_{k}}(\bar{x}, y) \right) \right| \leqslant c(\beta, \lambda) y_{n} |\bar{x} - y|^{1 - n - |\beta|} \sum_{H \in \overline{IJ}} |A|_{H}$$

$$\leqslant c(\beta, \lambda) l_{J}[I, J]^{1 - n - |\beta|} \sum_{H \in \overline{IJ}} |A|_{H}, \quad |\beta| \leqslant 3,$$

which can be considered as an analogue of inequality (17d). Reproducing (17) for the functions

$$\delta_K(\bar{x}, y) = \left(G_{A[\mathfrak{c}_K^{\square}]}(\bar{x}, y) - G_{A_k}(\bar{x}, y)\right)\psi_K(Z(\bar{x}, y)),$$

$$\delta_K^*(x, y) = D_{x_n}\delta_K(x, y) - x_n^{-1}\delta_K(x, y),$$

we arrive at the estimates

$$\left| D_{\bar{x}}^{\beta} \delta_K(\bar{x}, y) \right| \leqslant c(\beta, \lambda) l_J[I, J]^{1 - n - |\beta|} \sum_{H \in \widehat{IJ}} |A|_H, \tag{39}$$

$$\left| D_x^{\alpha} \delta_K^*(x, y) \right| \leqslant c(\alpha, \lambda) l_I^{1 - |\alpha|} l_J[I, J]^{-n - 1} \sum_{H \in \overline{IJ}} |A|_H, \quad \alpha \in \{0, e_1, \dots, e_{n - 1}\}, \tag{40}$$

$$\left| D_{x_n} \delta_K^*(x, y) \right| \leqslant c(n, \lambda) l_J[I, J]^{-n-1} \sum_{H \in \overline{LJ}} |A|_H. \tag{41}$$

In view of (4a), (35), (39) and the belonging $A_k f_{(k)} \in VL(0)$, the formula

$$D^{\alpha} \left(D_{n} (\Phi'_{k} - \Phi''_{k}) - \mathbf{x}_{n}^{-1} (\Phi'_{k} - \Phi''_{k}) \right) (x)$$

$$= \sum_{J,K: J^{\square} \subset \Omega_{k+1} \setminus \Omega^{\circ}_{k-1} \text{ and } K \in \mathcal{H}_{k}} \int_{J^{\square} \setminus \mathfrak{P}_{1}} D_{x}^{\alpha} \delta_{K}^{*}(x,y) A_{k} f_{(k)}(y) \, dy, \quad |\alpha| \leqslant 1$$

holds true, where the series converges absolutely. Hence, in view of (2), (36b), (40) and (41) we obtain estimate (38). This completes the proof of (26) and of the theorem.

- 3. Standard set and calculations with the potential Φ_L
- **3.1.** Standard set and potential Φ_{Aw} . To a Lipschitz function $\omega : \mathbb{R}^{n-1} \to \mathbb{R}$ we associate its overgraph Ω and the approximation numbers b_I :

$$\Omega = \left\{ x = (x', x_n) \in \mathbb{R}^n \colon x_n > \omega(x') \right\},$$

$$b_I = l_I^{-\frac{n+1}{2}} \left(\min_{\gamma \in \mathbb{P}_1^{n-1}} \int_{5I} |\omega - \gamma|^2 d\xi \right)^{1/2}, \quad I \in \mathcal{D}.$$

We introduce a series of auxiliary notions needed for studying harmonic functions in the domain Ω by straightening this domain.

Theorem 3. Given $K \in \mathcal{D}$, let $\gamma_K \in \mathbb{P}_1^{n-1}$ be a polynomial with the property

$$\int_{K} |\omega - \gamma_K|^2 d\xi = \min_{\gamma \in \mathbb{P}_1^{n-1}} \int_{K} |\omega - \gamma|^2 d\xi.$$

For the partition of unity $\{\psi_K\}$ in (7) we let

$$w(x) = \sum_{K} \psi_K(x) \gamma_K(x'), \quad x \in \mathbb{R}^n_+.$$

Then the function w belongs to $C^{\infty}(\mathbb{R}^n_+)$, is Lipschitz and

$$w(\xi, 0+) = \omega(\xi), \quad \xi \in \mathbb{R}^{n-1}. \tag{42}$$

We choose a constant $\theta \geqslant \|\omega\|_{\text{Lip}}$. Then for each $I \in \mathcal{D}$

$$|\nabla \gamma_I| \leqslant c(n)\theta,\tag{43}$$

$$b_I \leqslant c(n)\theta,\tag{44}$$

$$||D^{\alpha}w||_{L^{\infty}(I^{\boxtimes})} \leqslant c(\alpha)l_I^{1-|\alpha|}b_I, \quad \alpha \notin \{0, e_1, \dots, e_{n-1}\},\tag{45}$$

$$||D^{\alpha}w||_{L^{\infty}(I^{\boxtimes})} \leqslant c(\alpha)l_I^{1-|\alpha|}\theta, \quad \alpha \neq 0.$$
(46)

There exists $W = c(n, \theta)$ such that for the mapping $\mathbf{x}' : x \mapsto x'$

$$\|\omega - \gamma_I\|_{L^{\infty}(5I)} \leqslant W l_I / 3, \qquad I \in \mathcal{D}, \tag{47}$$

$$\|w - \gamma_I \circ \mathbf{x}'\|_{L^{\infty}(I^{\boxtimes})} \leqslant W l_I / 3, \quad I \in \mathcal{D},$$
 (48)

the mapping $g: \mathbb{R}^n_+ \to \mathbb{R}^n$ of the form $g(x) = (x', g_n(x))$ with the function

$$q_n = w + W\mathbf{x}_n$$

is a diffeomorphism of \mathbb{R}^n_+ onto Ω , while the inverse diffeomorphism $\mathfrak{g}=g^{-1}$ is represented by the formula

$$g(y) = (y', \mathfrak{G}(y))$$

with a Lipschitz function $\mathfrak{G} \in C^{\infty}(\Omega)$ satisfying the inequalities

$$\|(D^{\alpha}\mathfrak{G}) \circ g\|_{L^{\infty}(I^{\boxtimes})} \leqslant c(\alpha, \theta) l_I^{1-|\alpha|} b_I, \quad |\alpha| > 1, \tag{49}$$

$$\left\| (D^{\alpha}\mathfrak{G}) \circ g \right\|_{L^{\infty}(I^{\boxtimes})} \leqslant c(\alpha, \theta) l_I^{1-|\alpha|}, \quad \alpha \neq 0.$$
 (50)

The operator

$$A = \sum_{i=1}^{n-1} \left\{ D_{ii} + \frac{\partial \mathfrak{G}}{\partial y_i}(g) D_{in} + \frac{\partial \mathfrak{G}}{\partial y_i}(g) D_{ni} \right\} + \left| \nabla \mathfrak{G}(g) \right|^2 D_{nn}$$

belongs to $\mathcal{A}^{\mu}_{\lambda}$ for some $\lambda(n,\theta) \geqslant 1$ and each $0 < \mu < 1$. The inequalities

$$|A|_I \leqslant c(n,\theta)b_I,\tag{51}$$

$$||L||_{I} \leqslant c(n,\theta)l_{I}^{-1}b_{I} \quad for \ L = -(\Delta\mathfrak{G}) \circ g = -\sum_{i=1}^{n} (D_{ii}\mathfrak{G}) \circ g \tag{52}$$

hold true.

We call $(\{\gamma_K\}, w, W, g, \mathfrak{g}, \mathfrak{G}, A, \lambda, L)$ the standard set of the pair (ω, θ) .

Proof. It is obvious that $w \in C^{\infty}(\mathbb{R}^n_+)$. It is elementary to check (it is sufficient to consider one-dimensional dyadic intervals) that

if
$$(I^{\times})^{\circ} \cap \frac{\overline{3}}{2}K \neq \emptyset$$
 and $l_K \in \{l_I/2, l_I, 2l_I\}$, then $K \subset 5I$.

By analogy with [10, Subsect. 2.7], now one can obtain properties (42)–(46) and the estimate

$$\|\omega - \gamma_I\|_{L^{\infty}(5I)} \leqslant c_1(n,\theta)l_I, \quad I \in \mathcal{D}.$$

The Lipschitz property for w is implied by inequalities (46) with $|\alpha| = 1$.

By (7a) and (7b), the function w coincides with the polynomial $\gamma_I \circ \mathbf{x}'$ in some neighbourhood of the point $(\mathfrak{c}_I, 11l_I/8) \in I^{\boxtimes}$. By (45), the Taylor formula, the convexity of the parallelepiped I^{\boxtimes} and (44) we obtain

$$\|w - \gamma_I \circ \mathbf{x}'\|_{L^{\infty}(I^{\boxtimes})} \leqslant c(n)l_I b_I,$$

$$\|w - \gamma_I \circ \mathbf{x}'\|_{L^{\infty}(I^{\boxtimes})} \leqslant c_2(n, \theta) l_I.$$
(53)

It follows immediately from (46) that $||D_n w||_{L^{\infty}(\mathbb{R}^n_+)} \leq c_3(n,\theta)$. We let

$$W(n, \theta) = 3 \max\{c_1, c_2, c_3\}.$$

Inequalities (47) and (48) are trivial. The required properties of the mappings g and \mathfrak{g} including estimates (49) and (50) on \mathfrak{G} are obtained due to Theorem 2.5 in [10].

The bi-Lipschitz constant of the mapping g is less than some number $c(n,\theta)$ due to (46) and (50). Hence, for some $\lambda(n,\theta) \geqslant 1$, one can easily obtain the uniform ellipticity condition $A[x] \in \mathcal{A}_{\lambda}$, see [9]. Hence, $A \in \mathcal{A}_{\lambda}^{\mu}$.

By inequalities (46), (49) and (50) we have

$$||Da_{ij}||_{L^{\infty}(I^{\boxtimes})} + ||L||_{L^{\infty}(I^{\boxtimes})} + l_I ||DL||_{L^{\infty}(I^{\boxtimes})} \leqslant c(n,\theta)l_I^{-1}b_I.$$

Now (51) and (52) are obtained by the analogue of estimate (2) for the set I^{\boxtimes} .

Remark. The operator A and function L are such that each function U harmonic in the domain Ω solves the equation $A(U \circ g) = LD_n(U \circ g)$.

In the rest of the section we restrict ourselves by the functions $\omega \in LI\mathbb{P}$.

Definition 1. The set LIP consists of Lipschitz functions

$$\mathbb{R}^{n-1} \to \mathbb{R}$$
.

each of which coincides with some polynomial in \mathbb{P}_1^{n-1} on the complement of some compact set.

Let us find out, what Theorem 2 gives once it is applied to the potential Φ_{Aw} .

Lemma 4. Let $\omega \in LIP$ and $I \in \mathcal{D}$. Then

$$\Theta_1 := \sum_{I} \Gamma_{IJ}^{(0,n)} b_J < \infty, \quad \Theta_2 := \sum_{I} \Gamma_{IJ}^{(0,n)} b_J^2 < \infty, \quad \Theta_2^* := \sum_{I} \Gamma_{IJ}^{(1,n)} b_J^2 < \infty.$$

Given a constant $\theta \ge \|\omega\|_{\text{Lip}}$, let $(\{\gamma_K\}, w, W, g, \mathfrak{g}, \mathfrak{G}, A, \lambda, L)$ be a standard set of the pair (ω, θ) . As $k \ge 0$, we denote

$$\gamma'_k = \gamma_{I^{(k)}}, \quad \tau_{1,k} = D_1 \gamma'_k, \quad \dots, \quad \tau_{n-1,k} = D_{n-1} \gamma'_k.$$

Then the inequalities

$$\|\omega - \gamma_{k+1}'\|_{L^2(5I^{(k)})} + \|\omega - \gamma_k'\|_{L^2(5I^{(k)})} \leqslant c(n) l_{I^{(k)}}^{\frac{n+1}{2}} b_{I^{(k)}}, \tag{54}$$

$$|I_{I^{(k)}}^{-1}||\gamma'_{k+1} - \gamma'_{k}||_{L^{\infty}(5I^{(k)})} + |\nabla(\gamma'_{k+1} - \gamma'_{k})| \le c(n)b_{I^{(k)}}$$
(55)

hold true.

For each $\mu \in (0,1)$ and the function f=w all assumptions of Theorem 2 hold and in terms of the notations of this theorem the relations

$$\Theta \leqslant c(n,\theta)\Theta_2,\tag{56}$$

$$\Theta^* \leqslant c(n,\theta)l_I^{-1}\Theta_2^*,\tag{57}$$

$$A_k = \sum_{i=1}^{n-1} \left\{ D_{ii} - \frac{\tau_{i,k}}{W} D_{in} - \frac{\tau_{i,k}}{W} D_{ni} \right\} + \frac{1 + \sum_{s=1}^{n-1} \tau_{s,k}^2}{W^2} D_{nn}, \tag{58}$$

$$\gamma_k(x) = \gamma_k'(x'),\tag{59}$$

$$F_k(x) = W \frac{\Gamma(n/2)}{\pi^{n/2}} \lim_{r \to \infty} \int_{|\xi - \mathfrak{c}_k'| < r} \frac{\omega_{(k)}(\xi)}{\left| \left(x', \gamma_k'(x') + W x_n \right) - \left(\xi, \gamma_k'(\xi) \right) \right|^n} d\xi \tag{60}$$

hold, where

$$\omega_{(k)} = \omega_{k+1} - \omega_k, \quad \omega_k = \varphi_k' \omega + (1 - \varphi_k') \gamma_k', \quad \varphi_k'(\xi) = \varphi_k(\xi, 0+).$$

Remark. The limit $\varphi'_k(\xi)$ exists thanks to inequality (4c).

Proof. Due to (44) we have $b_J \leq c_1(n,\theta)$. The definition of the set LIP and the definition of the numbers b_J show that

$$b_J \leqslant C_1(\omega) l_J^{-\frac{n+1}{2}} \leqslant C_2(\omega, l_I) l_I^{\frac{n+1}{2}} l_J^{-\frac{n+1}{2}},$$

that by Lemma 1 yields

$$b_J\leqslant \min\left\{c_1,C_2l_I^{\frac{n+1}{2}}l_J^{-\frac{n+1}{2}}\right\}\leqslant c_1^{\frac{n}{n+1}}C_2^{\frac{1}{n+1}}l_I^{1/2}l_J^{-1/2},\quad \Theta_1\leqslant c_1^{\frac{n}{n+1}}C_2^{\frac{1}{n+1}}\sum_I\Gamma_{IJ}^{(1/2,n-1/2)}<\infty.$$

The relations $\Theta_2 < \infty$ and $\Theta_2^* < \infty$ are implied by the inequalities $b_J \leqslant c_1$ and $\Theta_1 < \infty$. Estimates (54) and (55) are obtained by the embeddings $I^{(k)} \subset I^{(k+1)} \subset 5I^{(k)}$ and simple properties of the polynomials similarly to [10, Subsect. 2.7].

The conditions $\lambda \geqslant 1$ and $A \in \mathcal{A}^{\mu}_{\lambda}$ of Theorem 2 are implied by Theorem 3. In view of (2) and (45) we have

$$||D^{2}w||_{J} \leq c_{2}(n)l_{J}^{-1}b_{J},$$

$$\sum_{J} \Gamma_{IJ}^{(0,n)} l_{J} ||D^{2}w||_{J} \leq c_{2}\Theta_{1} < \infty,$$
(61)

and hence, $D^2w \in VL(0)$. By (51), (61) and the Cauchy inequality we get

$$\mathcal{F}_{J} \leqslant c_{2}l_{J}^{-1}b_{J} + c_{2}[I,J]^{-1} \sum_{H \in \{I^{J}\} \cup \overrightarrow{IJ}} b_{H} \leqslant 2c_{2}l_{J}^{-1} \sum_{H \in \overleftarrow{IJ} \cup \overrightarrow{IJ}} b_{H},$$

$$\left(\sum_{H \in \overleftarrow{IJ} \cup \overrightarrow{IJ}} |A|_{H}\right) \mathcal{F}_{J} \leqslant c(n,\theta)l_{J}^{-1} \left(\sum_{H \in \overleftarrow{IJ} \cup \overrightarrow{IJ}} b_{H}\right)^{2} \leqslant c_{3}(n,\theta)l_{J}^{-3/2} \sum_{H \in \overleftarrow{IJ} \cup \overrightarrow{IJ}} l_{H}^{1/2} b_{H}^{2}.$$

By (32) we obtain

$$\sum_{J:\ H\in \overleftarrow{IJ}\cup \overrightarrow{IJ}} \Gamma_{IJ}^{(0,n)} l_J l_J^{-3/2} \leqslant c_4(n) \Gamma_{IH}^{(0,n)} l_H^{-1/2}, \quad \sum_{J:\ H\in \overleftarrow{IJ}\cup \overrightarrow{IJ}} \Gamma_{IJ}^{(0,n+1)} l_J^{-3/2} \leqslant c_5(n) l_I^{-1} \Gamma_{IH}^{(1,n)} l_H^{-1/2}.$$

Therefore,

$$\Theta \leqslant c_3 \sum_{H} \left(\sum_{J: H \in \overleftarrow{IJ} \cup \overrightarrow{IJ}} \Gamma_{IJ}^{(0,n)} l_J l_J^{-3/2} \right) l_H^{1/2} b_H^2 \leqslant c_3 c_4 \Theta_2,$$

$$\Theta^* \leqslant c_3 \sum_{H} \left(\sum_{J: H \in \overleftarrow{IJ} \cup \overrightarrow{IJ}} \Gamma_{IJ}^{(0,n+1)} l_J^{-3/2} \right) l_H^{1/2} b_H^2 \leqslant c_3 c_5 l_I^{-1} \Theta_2^*.$$

We have obtained estimates (56) and (57), which imply $\Theta < \infty$. Hence, the function f = wsatisfies all assumptions of Theorem 2.

By (7a) the function w(x) coincides with $\gamma'_k(x')$ in a "half-neighbourhood" of the point \mathfrak{c}_k , while the function $\mathfrak{G}(y)$ coincides with the function $\frac{y_n - \gamma_k'(y')}{W}$ in a "half-neighbourhood" of the point $g(\mathfrak{c}_k)$. This leads us to (58) and (59).

Let us prove identity (60). In view of (58) it is easy to confirm that

$$\det_{A_k} = W^{-2}.$$

We omit the subscript k in notation of the numbers $\tau_{i,k}$ and the coefficients $a_{ij,k}$ of the operator A_k . Introducing the shorthand notation $\tau_n = W$, we can write (58) as

$$a_{ij} = \delta_{ij} - \delta_{in} \frac{\tau_j}{W} - \delta_{jn} \frac{\tau_i}{W} + \delta_{in} \delta_{jn} \frac{1 + \sum_{s=1}^n \tau_s^2}{W^2}.$$

The numbers

$$b_{ij} = \delta_{ij} - \delta_{in}\delta_{jn} + \tau_i\tau_j$$

satisfy the identities

$$\sum_{j=1}^{n} a_{ij}b_{jq} = \sum_{j} a_{ij}(\delta_{jq} - \delta_{jn}\delta_{qn} + \tau_{j}\tau_{q}) = a_{iq} - a_{in}\delta_{qn} + \left(\sum_{j} a_{ij}\tau_{j}\right)\tau_{q},$$

$$a_{iq} - a_{in}\delta_{qn} = \delta_{iq} - \delta_{in}\frac{\tau_{q}}{W} - \delta_{qn}\frac{\tau_{i}}{W} + \delta_{in}\delta_{qn}\frac{1 + \sum_{s=1}^{n}\tau_{s}^{2}}{W^{2}}$$

$$-\left(\delta_{in} - \delta_{in} - \frac{\tau_{i}}{W} + \delta_{in}\frac{1 + \sum_{s=1}^{n}\tau_{s}^{2}}{W^{2}}\right)\delta_{qn} = \delta_{iq} - \delta_{in}\frac{\tau_{q}}{W},$$

$$\sum_{j} a_{ij}\tau_{j} = \tau_{i} - \frac{\delta_{in}}{W}\sum_{j}\tau_{j}^{2} + \left(-\frac{\tau_{i}}{W} + \delta_{in}\frac{1 + \sum_{s=1}^{n}\tau_{s}^{2}}{W^{2}}\right)\tau_{n} = \frac{\delta_{in}}{W},$$

$$\sum_{j=1}^{n} a_{ij}b_{jq} = \delta_{iq} - \delta_{in}\frac{\tau_{q}}{W} + \frac{\delta_{in}}{W}\tau_{q} = \delta_{iq}.$$

Hence, $(b_{ij}) = (a_{ij})^{-1}$. Letting $\xi_n = 0$, for $\xi \in \mathbb{R}^{n-1}$ we have

$$Q_{A_k}(x - (\xi, 0)) = \sum_{i,j=1}^n b_{ij}(x_i - \xi_i)(x_j - \xi_j) = \sum_{i=1}^{n-1} (x_i - \xi_i)^2 + \sum_{i,j=1}^n \tau_i \tau_j (x_i - \xi_i)(x_j - \xi_j)$$

$$= |x' - \xi|^2 + (\gamma'_k(x') - \gamma'_k(\xi) + \tau_n x_n - \tau_n \xi_n)^2$$

$$= |(x', \gamma'_k(x') + Wx_n) - (\xi, \gamma'_k(\xi))|^2,$$

which by (42) and (59) leads us to (60). The proof is complete.

Under the assumptions of Lemma 4 we denote

$$H_0 = \left\{ x \in \overline{I} \times \mathbb{R} \colon x_n \geqslant \gamma_0'(x') + 2Wl_I/3 \right\}, \quad H_k = \overline{I} \times \mathbb{R} \quad \text{as } k \geqslant 1.$$
 (62)

We let $\mathfrak{x} = \mathfrak{c}_{I^{(k)}}$. It is obvious that for $x \in H_k$ there exists the limit

$$F_{(k)}(x) = \frac{\Gamma(n/2)}{\pi^{n/2}} \lim_{r \to \infty} \int_{|\xi - \mathbf{r}| \le r} \omega_{(k)}(\xi) \left| x - \left(\xi, \gamma_k'(\xi) \right) \right|^{-n} d\xi. \tag{63}$$

We have $g(I^{\square}) \subset H_k$ (in view of (48)) and $(x', \gamma'_k(x') + Wx_n) \in H_k$ for $x \in I^{\square}$, see (60).

Lemma 5. Under assumptions of Lemma 4 for $(x, \xi) \in H_k \times \mathbb{R}^{n-1}$ we let

$$\xi^* = 2\mathfrak{x} - \xi, \quad M_k(x,\xi) = \frac{1}{2} \left\{ \omega_{(k)}(\xi) \Big| x - (\xi, \gamma_k'(\xi)) \Big|^{-n} + \omega_{(k)}(\xi^*) \Big| x - (\xi^*, \gamma_k'(\xi^*)) \Big|^{-n} \right\}.$$

Then $F_{(k)} \in C^{\infty}(H_k)$ and for each $\alpha \in \mathbb{N}_0^n$

$$\int_{\mathbb{R}^{n-1}} \left| D_x^{\alpha} M_k(x,\xi) \right| d\xi \leqslant c(\alpha,\theta) l_{I^{(k)}}^{-|\alpha|} b_{I^{(k)}}, \tag{64a}$$

$$D^{\alpha}F_{(k)}(x) = \frac{\Gamma(n/2)}{\pi^{n/2}} \int_{\mathbb{R}^{n-1}} D_x^{\alpha} M_k(x,\xi) \, d\xi.$$
 (64b)

Proof. We denote

$$\mathfrak{X} = (\mathfrak{x}, \gamma_k'(\mathfrak{x})), \quad \Xi = |x - \mathfrak{X}| + |\mathfrak{x} - \xi|.$$

Let $T_k(\xi)$ be the convex hull of the set $\{\gamma'_k(\xi), \omega(\xi), \omega_{k+1}(\xi)\} \subset \mathbb{R}$.

Let us prove that

if
$$(x,\xi) \in H_k \times \mathbb{R}^{n-1}$$
 with $t \in T_k(\xi)$, and $\xi \notin 3I^{(k-1)}$ for $k \geqslant 1$,
then $|x - (\xi,t)| \geqslant c(n,\theta)\Xi \geqslant c(n,\theta)l_{I^{(k)}}$. (65)

If the assumption in (65) holds, then $t = \zeta(\xi)$ for a convex linear combination

$$\zeta = \beta_1 \gamma_k' + \beta_2 \omega + \beta_3 \gamma_{k+1}',$$

since $\omega_{k+1} = \varphi'_{k+1}\omega + (1 - \varphi'_{k+1})\gamma'_{k+1}$. We denote

$$Z = (x', \zeta(x')), \quad R = |x - Z| + |x' - \xi|.$$

It follows from the inequalities $\theta \ge \|\omega\|_{\text{Lip}}$ and (43) that $\|\zeta\|_{\text{Lip}} \le c(n)\theta$ and this is why by the triangle with the vertices x, Z and $(\xi, t) = (\xi, \zeta(\xi))$ we get that

$$|x - (\xi, t)| \ge c_1(n, \theta) \{|x - Z| + |Z - (\xi, t)|\} \ge c_1 R.$$

Let us treat the cases $\xi \in 3I$ and $\xi \notin 3I$. If $\xi \in 3I$, then k = 0 and $\omega_{k+1}(\xi) = \omega(\xi)$ due to (4a) and hence, $\beta_3 = 0$ without loss of generality. By $x \in H_0$ and (47) we have

$$x_n - \gamma_0'(x') \geqslant 2Wl_I/3,$$

$$x_n - \omega(x') \geqslant x_n - \gamma_0'(x') - Wl_I/3 \geqslant Wl_I/3,$$

$$R \geqslant |x - Z| = \beta_1 \left[x_n - \gamma_0'(x') \right] + \beta_2 \left[x_n - \omega(x') \right] \geqslant Wl_I/3.$$

If $\xi \notin 3I$, then $|x' - \xi| \geqslant l_I$ as k = 0 and $|x' - \xi| \geqslant l_{I^{(k-1)}}$ as $k \geqslant 1$ and hence,

$$R \geqslant \min\{W/3, 1/2\}l_{I^{(k)}}$$
 for each ξ .

By (43), (44), (47) and (55) we conclude that

$$\begin{aligned} \left| \omega(x') - \gamma_k'(x') \right| &\leq \|\omega - \gamma_{I^{(k)}}\|_{L^{\infty}(I^{(k)})} \leq W l_{I^{(k)}}/3, \quad \left| \gamma_{k+1}'(x') - \gamma_k'(x') \right| \leq c(n, \theta) l_{I^{(k)}}, \\ \left| \mathfrak{X} - Z \right| &\leq \left| \left(\mathfrak{x}, \gamma_k'(\mathfrak{x}) \right) - \left(x', \gamma_k'(x') \right) \right| + \left| \gamma_k'(x') - \zeta(x') \right| \leq c(n, \theta) l_{I^{(k)}}, \\ \Xi &\leq R + \left| \mathfrak{X} - Z \right| + \left| \mathfrak{x} - x' \right| \leq R + c(n, \theta) l_{I^{(k)}} \leq c_2(n, \theta) R, \quad \left| x - (\xi, t) \right| \geqslant c_1 c_2^{-1} \Xi. \end{aligned}$$

If $\xi \in 3I$, then k = 0 and $\gamma'_0(\mathfrak{x}) \in T_0(\mathfrak{x})$ and therefore,

$$\Xi \geqslant |x - \mathfrak{X}| \geqslant c_1 R|_{\xi=\mathfrak{x}} \geqslant c_1 \min\{W/3, 1\} l_I.$$

If $\xi \notin 3I$, then $|\mathfrak{x} - \xi| \geqslant 3l_I/2$ as k = 0, $|\mathfrak{x} - \xi| \geqslant l_{I^{(k-1)}}$ as $k \geqslant 1$ and hence, $\Xi \geqslant l_{I^{(k)}}/2$ for each k. Thus, $\Xi \geqslant c(n,\theta)l_{I^{(k)}}$ for each ξ and we complete the proof of implication (65). If $\omega_{(k)}(\xi) \neq 0$, then $\xi \notin 3I^{(k-1)}$ as $k \geqslant 1$ due to (4a) and hence, by (65),

if
$$(x,\xi) \in H_k \times \mathbb{R}^{n-1}$$
 and either $\omega_{(k)}(\xi) \neq 0$, or $\xi \notin 5I^{(k)}$,

then
$$\left| D_x^{\alpha} | x - (\xi, t) \right|^{-n} \leqslant c(\alpha, \theta) \Xi^{-n - |\alpha|} \leqslant c(\alpha, \theta) l_{I^{(k)}}^{-n - |\alpha|} \quad \text{as } t \in T_k(\xi).$$
 (66)

By (54) and the Hölder inequality this follows that

$$\omega_{(k)} = (\varphi'_{k+1} - 1)(\omega - \gamma'_{k+1}) + (1 - \varphi'_{k})(\omega - \gamma'_{k}),$$

$$\|\omega_{(k)}\|_{L^{1}(5I^{(k)})} \le c(n)l^{n}_{I(k)}b_{I^{(k)}},$$
(67)

$$||D_x^{\alpha} M_k(x,\cdot)||_{L^1(5I^{(k)})} \leqslant c(\alpha,\theta) ||\omega_{(k)}||_{L^1(5I^{(k)})} l_{I^{(k)}}^{-n-|\alpha|} \leqslant c(\alpha,\theta) l_{I^{(k)}}^{-|\alpha|} b_{I^{(k)}}.$$
(68)

Let $\xi \in \mathbb{R}^{n-1} \setminus \overline{5I^{(k)}} \ (\Rightarrow \xi^* \in \mathbb{R}^{n-1} \setminus 5I^{(k)})$. Then $\omega_{(k)}(\xi) = \gamma'_{k+1}(\xi) - \gamma'_k(\xi)$ and $\omega_{(k)}(\xi^*) = \gamma'_{k+1}(\xi^*) - \gamma'_k(\xi^*)$ due to (4b). By (55) and (66) we obtain

$$\left| \frac{\omega_{(k)}(\xi) + \omega_{(k)}(\xi^*)}{2} \right| = \left| \gamma'_{k+1}(\mathfrak{x}) - \gamma'_{k}(\mathfrak{x}) \right| \leqslant c(n) l_{I^{(k)}} b_{I^{(k)}},$$

$$\left| \frac{\omega_{(k)}(\xi) + \omega_{(k)}(\xi^*)}{2} D_x^{\alpha} \right| x - \left(\xi, \gamma'_{k}(\xi) \right) \right|^{-n} \leqslant c(\alpha, \theta) l_{I^{(k)}} b_{I^{(k)}} \Xi^{-n-|\alpha|},$$
(69)

$$\left| \omega_{(k)}(\xi^*) \right| \leqslant c(n) \left(l_{I^{(k)}} + |\mathfrak{x} - \xi^*| \right) b_{I^{(k)}} \leqslant c(n) |\mathfrak{x} - \xi| b_{I^{(k)}} \leqslant c(n) \Xi b_{I^{(k)}},$$

$$\left| D_x^{\alpha} M_k(x, \xi) \right| \leqslant c(\alpha, \theta) l_{I^{(k)}} b_{I^{(k)}} \Xi^{-n - |\alpha|} + c(n) \Xi b_{I^{(k)}} |Y_{\alpha}|,$$
(70)

where

$$Y_{\alpha} = D_x^{\alpha} | x - (\xi, \gamma_k'(\xi)) |^{-n} - D_x^{\alpha} | x - (\xi^*, \gamma_k'(\xi^*)) |^{-n}.$$

Majorizing each term by (66), we get

$$|Y_{\alpha}| \leqslant c(\alpha, \theta) \Xi^{-n-|\alpha|},$$
 (71)

$$\left| D_x^{\alpha} M_k(x,\xi) \right| \leqslant c_3(\alpha,\theta) (l_{I^{(k)}} + \Xi) b_{I^{(k)}} \Xi^{-n-|\alpha|}
\leqslant \frac{7c_3}{5} b_{I^{(k)}} \Xi^{1-n-|\alpha|} \leqslant \frac{7c_3}{5} b_{I^{(k)}} |\mathfrak{x} - \xi|^{1-n-|\alpha|}.$$
(72)

Relations $x' \in \overline{I} \subset \overline{I^{(k)}}$, $\mathfrak{X}' = \mathfrak{x} \in I^{(k)}$ and $\xi \notin 5I^{(k)}$ show that

$$\left|\tau x' + (1 - \tau)\mathfrak{x} - \xi\right|_{\infty} \geqslant \frac{4}{5}|\mathfrak{x} - \xi|_{\infty},$$

$$\left|\tau x + (1 - \tau)\mathfrak{X} - (\xi, t)\right| \geqslant \frac{4}{5\sqrt{n - 1}}|\mathfrak{x} - \xi| \quad \text{for each } \tau \in [0, 1] \text{ and } t \in \mathbb{R}.$$

$$(73)$$

Hence, by the identity $\left|\mathfrak{X}-\left(\xi,\gamma_k'(\xi)\right)\right|=\left|\mathfrak{X}-\left(\xi^*,\gamma_k'(\xi^*)\right)\right|$ and by (71) we obtain

$$|Y_0| \leqslant c(n)|x - \mathfrak{X}||\mathfrak{x} - \xi|^{-n-1},$$

$$|Y_0| \leqslant \min\{c(n)|x - \mathfrak{X}||\mathfrak{x} - \xi|^{-n-1}, c(n,\theta)\Xi^{-n}\} \leqslant c(n,\theta)|x - \mathfrak{X}|\Xi^{-n-1},$$

$$|M_k(x,\xi)| \leqslant c(n,\theta) (l_{I^{(k)}} + |x - \mathfrak{X}|) b_{I^{(k)}}\Xi^{-n},$$

$$\int_{|\mathfrak{x}-\xi| \ge 5l_{I(k)}/2} (|x-\mathfrak{X}| + |\mathfrak{x}-\xi|)^{-n} d\xi \le c(n) (l_{I(k)} + |x-\mathfrak{X}|)^{-1},
\|M_k(x,\cdot)\|_{L^1(\mathbb{R}^{n-1} \setminus 5I^{(k)})} \le c(n,\theta) b_{I(k)}.$$
(74)

Estimate (64a) as $\alpha = 0$ is implied by (68) and (74), while as $\alpha \neq 0$, it is due to (68) and (72). Identity (64b) as $\alpha = 0$ is yielded by (63) and the change of variable $\xi \to \xi^*$, while as $\alpha \neq 0$ (together with the statement $F_{(k)} \in C^{\infty}(H_k)$) it is implied by differentiating the integral formula (64b) that is possible thanks to (72).

3.2. Function S and potential Φ_L . Let us give a "qualitative" analogue of Lemma 5 for the functions determined by the volume integrals.

Lemma 6. Let $\omega_+, \omega_- \in \text{LIP}$, $\Omega_{\pm} = \{x \in \mathbb{R}^n : x_n > \omega_{\pm}(x')\}$ and $\chi = \chi_+ - \chi_-$, where χ_{\pm} are the characteristic functions of the sets Ω_+ and Ω_- . We let

$$\xi^* = 2\mathfrak{x} - \xi, \quad N_{\mathfrak{x}}(x,\xi) = \int_{\mathbb{R}} \frac{\chi(\xi,t) \big| x - (\xi,t) \big|^{-n} + \chi(\xi^*,t) \big| x - (\xi^*,t) \big|^{-n}}{2} \, dt$$

for $(\mathfrak{x}, x, \xi) \in \mathbb{R}^{n-1} \times (\mathbb{R}^n \setminus \text{supp } \chi) \times \mathbb{R}^{n-1}$. Then the following statements hold true.

(i) The function $N_{x'}(x,\cdot)$ belongs to $L^1(\mathbb{R}^{n-1})$, there exists the limit

$$s(x) = \lim_{r \to \infty} \int_{|x-y| < r} \chi(y) |x-y|^{-n} dy,$$

and the identity $s(x) = \int_{\mathbb{R}^{n-1}} N_{x'}(x,\xi) d\xi$ holds true.

(ii) For each $(\mathfrak{x}, x, \alpha) \in \mathbb{R}^{n-1} \times (\mathbb{R}^n \setminus \operatorname{supp} \chi) \times \mathbb{N}_0^n$ the belonging

$$D_x^{\alpha} N_{\mathfrak{r}}(x, \cdot) \in L^1(\mathbb{R}^{n-1}) \tag{75a}$$

holds true, the function s is infinitely differentiable in $\mathbb{R}^n \setminus \text{supp } \chi$ and

$$D^{\alpha}s(x) = \int_{\mathbb{R}^{n-1}} D_x^{\alpha} N_{\mathfrak{x}}(x,\xi) \, d\xi. \tag{75b}$$

Proof. (i) For $\omega \in \text{LIP}$ by $\chi[\omega]$ we denote the characteristic function of the overgraph of the function ω , while by $\gamma[\omega]$ we denote the polynomial in \mathbb{P}_1^{n-1} , with which ω coincides in the vicinity of infinity. As $x \notin \text{supp } \chi$, we let

$$\gamma_{\pm} = \gamma[\omega_{\pm}]$$
 & $\gamma^{\pm} = \gamma_{\pm} - \gamma_{\pm}(x') + x_n$.

The functions χ_+ and χ_- coincide in the vicinity of x and this is why there exist $\omega^{\pm} \in LIP$ such that

$$\chi_+ = \chi[\omega^+] = \chi[\omega^-] = \chi_-$$
 in the vicinity of x & $\gamma^{\pm} = \gamma[\omega^{\pm}]$.

In view of the representation

$$\chi = \{\chi_{+} - \chi[\omega^{+}]\} + \{\chi[\omega^{+}] - \chi[\omega^{-}]\} + \{\chi[\omega^{-}] - \chi_{-}\}$$

we see that in order to check Statement (i), it is sufficient to check (i) for the pairs (ω_+, ω^+) , (ω^+, ω^-) and (ω^-, ω_-) instead of (ω_+, ω_-) . Therefore, it is sufficient to check (i) in particular cases

- (a) $\gamma_+ \gamma_- = \text{const};$
- (b) $\gamma_{+}(x') = x_n = \gamma_{-}(x')$.

In Case (a), the function $y \mapsto \chi(y)|x-y|^{-n}$ belongs to $L^1(\mathbb{R}^n)$, which gives (i) by the Fubini theorem and the change of variables $\xi \to \xi^* = 2x' - \xi$. In Case (b), the change of variables $y = (\xi, t) \to 2x - y$ and the Fubini theorem shows that

$$N_{x'}(x,\xi) = 0$$
 for large $|x' - \xi|$,

$$(\exists r_0 > 0) \ (\forall r > r_0) \quad \int_{|x-y| < r} \chi(y) |x-y|^{-n} \, dy = \int_{\mathbb{R}^{n-1}} N_{x'}(x,\xi) \, d\xi.$$

Thus, the proof of Statement (i) is complete.

(ii) For $\xi \in \mathbb{R}^{n-1}$ we let

$$\nu(\xi) = \int_{\mathbb{R}} \frac{\chi(\xi^*, t) |x - (\xi^*, t)|^{-n} - \chi(\xi^*, t) |x - (\xi^*, t)|^{-n}}{2} dt.$$

By the identity $\xi^* - \xi^* = 2x' - 2\mathfrak{x}$ it is easy to get that

$$\sup_{\xi} \big| \nu(\xi) \big| |\xi|^n < \infty, \qquad \nu \in L^1(\mathbb{R}^{n-1})$$

and

$$\int_{\mathbb{R}^{n-1}} \nu(\xi) \, d\xi = 0.$$

This is why properties (75) with $\alpha = 0$ are implied by Statement (i). The case $\alpha \neq 0$ can be treated similarly to Lemma 5, via checking an analogue of estimate (72) for the function $N_{\rm r}(x,\xi)$.

Let $\omega \in LIP$. To compare Lemmata 4, 5 and 6, we introduce the function

$$S(x) := S_{\Omega}(x) := \lim_{r \to \infty} \left\{ \ln r - \frac{\Gamma(n/2)}{\pi^{n/2}} \int_{y \in \mathbb{R}^n \setminus \Omega: |x-y| < r} |x-y|^{-n} \, dy \right\}, \quad x \in \Omega.$$

Here the limit exists since the area of the unit sphere $\mathbb{S}^{n-1} \subset \mathbb{R}^n$ is equal to $\frac{2\pi^{n/2}}{\Gamma(n/2)}$. The function S is invariant w.r.t. the shifts and rotations of the domain Ω in the obvious sense.

Lemma 7. Under assumptions of Lemma 4 let $\Omega_k = \{x \in \mathbb{R}^n : x_n > \omega_k(x')\}$ and $S_k = S_{\Omega_k}$. Then the inequalities

$$||D^{\alpha}S - D^{\alpha}S_0||_{L^{\infty}(g(I^{\square}))} \leqslant c(\alpha, \theta) \sum_{k=0}^{\infty} l_{I^{(k)}}^{-|\alpha|} b_{I^{(k)}}, \quad \alpha \in \mathbb{N}_0^n,$$

$$(76)$$

$$\left\| D^{\alpha}(S \circ g - S_0 \circ g) \right\|_{I} \leqslant c(\alpha, \theta) \sum_{k=0}^{\infty} l_{I^{(k)}}^{-|\alpha|} b_{I^{(k)}}, \quad |\alpha| \leqslant 1,$$

$$(77)$$

$$\|D^{\alpha}(S \circ g - S_0 \circ g)\|_{I} \leqslant c(\alpha, \theta) \sum_{j=0}^{1} l_I^{(1-|\alpha|)j} b_I^j \sum_{k=0}^{\infty} l_{I^{(k)}}^{(j-1)|\alpha|-j} b_{I^{(k)}}, \quad |\alpha| \geqslant 2$$
 (78)

hold true. If $\varepsilon = 0$ as $|\alpha| \le 1$ and $0 < \varepsilon \le 2$ as $|\alpha| = 2$, then the sum F of the series $\sum_{k=0}^{\infty} F_k$ satisfies

$$\left\| D^{\alpha}(F + WS \circ g - WS_0 \circ g) \right\|_I \leqslant c(\alpha, \theta, \varepsilon) l_I^{-\varepsilon} \sum_{k=0}^{\infty} l_{I^{(k)}}^{\varepsilon - |\alpha|} b_{I^{(k)}}^2, \quad |\alpha| \leqslant 2.$$
 (79)

Proof. By the embedding $g(I^{\square}) \subset H_k$ (see (62)) and by Lemma 5 we have

$$||D^{\alpha}F_{(k)}||_{L^{\infty}(g(I^{\square}))} \leqslant c(\alpha, \theta)l_{I^{(k)}}^{-|\alpha|}b_{I^{(k)}}, \quad \alpha \in \mathbb{N}_0^n.$$
(80)

Let us establish the second main inequality

$$||D^{\alpha}F_{(k)} + D^{\alpha}S_{k+1} - D^{\alpha}S_{k}||_{L^{\infty}(g(I^{\square}))} \leqslant c(\alpha, \theta)l_{I^{(k)}}^{-|\alpha|}b_{I^{(k)}}^{2}, \quad \alpha \in \mathbb{N}_{0}^{n}.$$
(81)

For $x \in g(I^{\square}) \subset H_k$ we let \mathfrak{x} , $F_{(k)}$, ξ^* , M_k , \mathfrak{X} , Ξ and T_k to have the same meaning as in Lemma 5 and in its proof, while the functions χ , $N_{\mathfrak{x}}$ and s are defined by Lemma 6 for the pair of the functions $(\omega_+, \omega_-) = (\omega_{k+1}, \omega_k)$. We let

$$U(\xi) = D_x^{\alpha} \Big| x - \left(\xi, \gamma_k'(\xi) \right) \Big|^{-n} - D_x^{\alpha} \Big| x - \left(\xi, \omega_k(\xi) \right) \Big|^{-n},$$

$$V(\xi, \tau) = D_x^{\alpha} \Big| x - \left(\xi, \omega_k(\xi) \right) \Big|^{-n} - D_x^{\alpha} \Big| x - \left(\xi, \omega_k(\xi) + \omega_{(k)}(\xi) \tau \right) \Big|^{-n}.$$

In view of the belongings $\gamma'_k(\xi)$, $\omega_k(\xi) \in T_k(\xi)$, the relations (66) (for $\alpha + e_n$), (67), (54) and the Hölder inequality

$$\begin{aligned} & |U(\xi)| \leqslant c_1(\alpha, \theta) |\gamma_k'(\xi) - \omega_k(\xi)| l_{I^{(k)}}^{-n-|\alpha|-1} \quad \text{as } \omega_{(k)}(\xi) \neq 0, \\ & |\omega_{(k)}U| \leqslant c_1 [|\omega - \gamma_{k+1}'| + |\omega - \gamma_k'|] |\omega - \gamma_k'| l_{I^{(k)}}^{-n-|\alpha|-1} \quad \text{in } \mathbb{R}^{n-1}, \\ & \|\omega_{(k)}U\|_{L^1(5I^{(k)})} \leqslant c(\alpha, \theta) l_{I^{(k)}}^{-|\alpha|} b_{I^{(k)}}^2. \end{aligned}$$

In the same way,

$$\begin{aligned} & \left| V(\xi,\tau) \right| \leqslant c(\alpha,\theta) \left| \omega_{(k)}(\xi) \right| l_{I^{(k)}}^{-n-|\alpha|-1} \quad \text{as } \omega_{(k)}(\xi) \neq 0 \text{ and } 0 \leqslant \tau \leqslant 1, \\ & \left\| \omega_{(k)} \int_0^1 V(\cdot,\tau) \, d\tau \right\|_{L^1(5I^{(k)})} \leqslant c(\alpha,\theta) l_{I^{(k)}}^{-|\alpha|} b_{I^{(k)}}^2. \end{aligned}$$

Hence, in view of the identity $U|_{\mathbb{R}^{n-1}\setminus 5I^{(k)}}\equiv 0$ we obtain

$$\begin{split} \omega_{(k)}(\xi) \left\{ U(\xi) + \int_0^1 V(\xi,\tau) \, d\tau \right\} &= \omega_{(k)}(\xi) D_x^\alpha \Big| x - \left(\xi, \gamma_k'(\xi) \right) \Big|^{-n} \\ &+ \int_{\mathbb{R}} \chi(\xi,t) D_x^\alpha \Big| x - (\xi,t) \Big|^{-n} \, dt, \\ D_x^\alpha M_k(x,\xi) + D_x^\alpha N_{\mathfrak{x}}(x,\xi) &= \frac{\omega_{(k)}(\xi)}{2} \left\{ U(\xi) + \int_0^1 V(\xi,\tau) \, d\tau \right\} \\ &+ \frac{\omega_{(k)}(\xi^*)}{2} \left\{ U(\xi^*) + \int_0^1 V(\xi^*,\tau) \, d\tau \right\}, \\ \left\| D_x^\alpha M_k(x,\cdot) + D_x^\alpha N_{\mathfrak{x}}(x,\cdot) \right\|_{L^1(\mathbb{R}^{n-1})} \leqslant c(\alpha,\theta) l_{I^{(k)}}^{-|\alpha|} b_{I^{(k)}}^2 + \frac{1}{2} \|\Theta\|_{L^1(\mathbb{R}^{n-1}\setminus 5I^{(k)})}, \end{split}$$

where

$$\Theta(\xi) = \omega_{(k)}(\xi) \int_0^1 V(\xi, \tau) \, d\tau + \omega_{(k)}(\xi^*) \int_0^1 V(\xi^*, \tau) \, d\tau.$$

Let $\xi \in \mathbb{R}^{n-1} \setminus \overline{5I^{(k)}}$. By (66), (69) and (70) we get

$$\left| \int_0^1 V(\xi,\tau) \, d\tau \right| \leqslant \frac{c(\alpha,\theta) \left| \omega_{(k)}(\xi) \right|}{|\mathfrak{x} - \xi|^{n+|\alpha|+1}} \leqslant c(\alpha,\theta) b_{I^{(k)}} |\mathfrak{x} - \xi|^{-n-|\alpha|},$$

$$\left| \Theta(\xi) \right| \leqslant \frac{c(\alpha,\theta) l_{I^{(k)}} b_{I^{(k)}}^2}{|\mathfrak{x} - \xi|^{n+|\alpha|}} + c(n) |\mathfrak{x} - \xi| b_{I^{(k)}} \left| \int_0^1 \left[V(\xi^*,\tau) - V(\xi,\tau) \right] d\tau \right|.$$

Hence, as $\alpha \neq 0$,

$$\|\Theta\|_{L^{1}(\mathbb{R}^{n-1}\setminus 5I^{(k)})} \leqslant c(\alpha,\theta)l_{I^{(k)}}^{-|\alpha|}b_{I^{(k)}}^{2}.$$
(82)

Let $\alpha = 0$ and therefore,

$$V(\xi,\tau) = \omega_{(k)}(\xi)\tau \int_0^1 D_{x_n} \left| x - \left(\xi, \omega_k(\xi) + \omega_{(k)}(\xi)\tau\sigma \right) \right|^{-n} d\sigma,$$

$$V(\xi^*,\tau) = \omega_{(k)}(\xi^*)\tau \int_0^1 D_{x_n} \left| x - \left(\xi^*, \omega_k(\xi^*) + \omega_{(k)}(\xi^*)\tau\sigma \right) \right|^{-n} d\sigma.$$

Now in view of (69), (70) and (73)

$$\begin{aligned}
& |V(\xi,\tau) - V(\xi^*,\tau)| \leqslant \frac{c(n)l_{I^{(k)}}b_{I^{(k)}}}{|\mathfrak{x} - \xi|^{n+1}} + c(n)|\mathfrak{x} - \xi|b_{I^{(k)}} \max_{0 \leqslant \rho \leqslant 1} |\Theta(\xi,\rho)|, \\
& \Theta(\xi,\rho) \equiv D_{x_n} |x - (\xi,\omega_k(\xi) + \omega_{(k)}(\xi)\rho)|^{-n} + D_{x_n} |x - (\xi^*,\omega_k(\xi^*) + \omega_{(k)}(\xi^*)\rho)|^{-n}.
\end{aligned}$$

We consider the center X of the corresponding segment:

$$2X = (\xi, \omega_k(\xi) + \omega_{(k)}(\xi)\rho) + (\xi^*, \omega_k(\xi^*) + \omega_{(k)}(\xi^*)\rho)$$

By relations (46), $\mathfrak{x} = \mathfrak{c}_{I^{(k)}}$, $\mathfrak{X} = (\mathfrak{x}, \gamma'_k(\mathfrak{x}))$, $\gamma'_k = \gamma_{I^{(k)}}$, (48), $\omega_k(\xi) = \gamma'_k(\xi)$, $\omega_k(\xi^*) = \gamma'_k(\xi^*)$, $\omega_{k+1}(\xi) = \gamma'_{k+1}(\xi)$, $\omega_{k+1}(\xi^*) = \gamma'_{k+1}(\xi^*)$, (44) and (55) we obtain

$$\begin{split} &\left|x-g(\mathfrak{c}_{I^{(k)}}^{\boxdot})\right|\leqslant c(n,\theta)\left|\mathfrak{g}(x)-\mathfrak{c}_{I^{(k)}}^{\boxdot}\right|\leqslant c(n,\theta)l_{I^{(k)}},\\ &\left|g(\mathfrak{c}_{I^{(k)}}^{\boxdot})-\mathfrak{X}\right|=\left|w(\mathfrak{c}_{I^{(k)}}^{\boxdot})+3Wl_{I^{(k)}}/2-\gamma_k'(\mathfrak{x})\right|<2Wl_{I^{(k)}},\\ &X=\mathfrak{X}+\left(0,(\gamma_{k+1}'(\mathfrak{x})-\gamma_k'(\mathfrak{x}))\rho\right),\quad |x-X|\leqslant c(n,\theta)l_{I^{(k)}}. \end{split}$$

Similarly to (73) we have

$$D_{X_{n}} \Big| X - \big(\xi, \omega_{k}(\xi) + \omega_{(k)}(\xi)\rho\big) \Big|^{-n} + D_{X_{n}} \Big| X - \big(\xi^{*}, \omega_{k}(\xi^{*}) + \omega_{(k)}(\xi^{*})\rho\big) \Big|^{-n} = 0,$$

$$|\tau x + (1 - \tau)X - (\xi, t)| \geqslant \frac{4}{5\sqrt{n - 1}} |\mathfrak{x} - \xi| \quad \text{for all } \tau \in [0, 1] \text{ and } t \in \mathbb{R},$$

$$|\Theta(\xi, \rho)| \leqslant c(n)|x - X||\mathfrak{x} - \xi|^{-n - 2} \leqslant c(n, \theta) l_{I^{(k)}} |\mathfrak{x} - \xi|^{-n - 2},$$

$$|V(\xi, \tau) - V(\xi^{*}, \tau)| \leqslant c(n, \theta) l_{I^{(k)}} b_{I^{(k)}} |\mathfrak{x} - \xi|^{-n - 1},$$

$$|\Theta(\xi)| \leqslant c(n, \theta) l_{I^{(k)}} b_{I^{(k)}}^{2} |\mathfrak{x} - \xi|^{-n}.$$

This implies (82) as $\alpha = 0$.

By inequality (82) we get that

$$\left\| D_x^{\alpha} M_k(x,\cdot) + D_x^{\alpha} N_{\mathfrak{r}}(x,\cdot) \right\|_{L^1(\mathbb{R}^{n-1})} \leqslant c(\alpha,\theta) l_{I^{(k)}}^{-|\alpha|} b_{I^{(k)}}^2.$$

We have $g(I^{\square}) \subset H_0 \subset \Omega_0$ and $g(I^{\square}) \subset \bigcap_{j=1}^{\infty} \Omega_j$ (see (4a)) and hence, the condition $x \notin \text{supp } \chi$ of Lemma 6 holds true. This is why

$$S_{k+1} - S_k = \frac{\Gamma(n/2)}{\pi^{n/2}} s \quad \text{in the vicinity of each point } x \in g(I^{\square}),$$

$$D^{\alpha}(F_{(k)} + S_{k+1} - S_k)(x) = \frac{\Gamma(n/2)}{\pi^{n/2}} \int_{\mathbb{R}^{n-1}} \left[D_x^{\alpha} M_k(x, \xi) + D_x^{\alpha} N_{\mathfrak{x}}(x, \xi) \right] d\xi$$

due to the definition of the function s(x) and identities (64b) and (75b). This leads us to (81). By (44), (80) and (81) we conclude that

$$||D^{\alpha}S_{k+1} - D^{\alpha}S_k||_{L^{\infty}(q(I^{\square}))} \leqslant c(\alpha, \theta)l_{I(k)}^{-|\alpha|}b_{I(k)}, \quad \alpha \in \mathbb{N}_0^n.$$

The series of the right hand sides converges thanks to $\Theta_1 < \infty$, this is why the limit $\lim_{k\to\infty} (S_k - S_0)$ exists in $C^{\infty}(g(I^{\square}))$ and is obviously equal to $S - S_0$. This yields (76). Differentiating the composition and applying (45), (46) and (76), we have

$$\begin{split} & \left\| D^{\alpha}(S \circ g - S_0 \circ g) \right\|_{L^{\infty}(I^{\square})} \leqslant c(\alpha, \theta) \sum_{k=0}^{\infty} l_{I^{(k)}}^{-1} b_{I^{(k)}}, \quad |\alpha| = 1, \\ & \left\| D^{\alpha}(S \circ g - S_0 \circ g) \right\|_{L^{\infty}(I^{\square})} \leqslant c(\alpha, \theta) \sum_{j=0}^{1} l_{I}^{(1-|\alpha|)j} b_{I}^{j} \sum_{k=0}^{\infty} l_{I^{(k)}}^{(j-1)|\alpha|-j} b_{I^{(k)}}, \quad |\alpha| \geqslant 2. \end{split}$$

In view of (2), (44) and (76), we obtain estimates (77) and (78).

By (60) and (63) we have

$$F_k = WF_{(k)} \circ h^k$$

on the cube I^{\odot} , where

$$h^{k}(x) = (x', \gamma'_{k}(x') + Wx_{n}), \quad x_{n} > 0.$$

By (2), (43) and Lemma 5 we get the estimate

$$\left\| (D^{\alpha} F_{(k)}) \circ h^{k} \right\|_{I} \leqslant c(\alpha, \theta) l_{I^{(k)}}^{-|\alpha|} b_{I^{(k)}}, \quad \alpha \in \mathbb{N}_{0}^{n}.$$

$$(83)$$

For $x \in I^{\square}$, by (53) and (55),

$$|g(x) - h^{k}(x)| = |g_{n}(x) - h_{n}^{k}(x)| = |w(x) - \gamma_{k}'(x')|$$

$$\leq |w(x) - \gamma_{0}'(x')| + |\gamma_{0}'(x') - \gamma_{k}'(x')| \leq c(n) \sum_{i=0}^{k} l_{I^{(i)}} b_{I^{(i)}}.$$
(84)

The points g(x) and $h^k(x)$ belong to the convex set H_k and hence, by Lemma 5 and inequality (81),

$$\left| D^{\alpha} F_{(k)} \right|_{g(x)} - D^{\alpha} F_{(k)} \Big|_{h^{k}(x)} \right| \leq \left| g(x) - h^{k}(x) \right| \sup \left| D^{\alpha + e_{n}} F_{(k)} \right| \leq c(\alpha, \theta) l_{I^{(k)}}^{-|\alpha|} b_{I^{(k)}} \sum_{j=0}^{k} 2^{j-k} b_{I^{(j)}},$$

$$||f_{k,\alpha}||_{L^{\infty}(I^{\square})} \leqslant c(\alpha,\theta) l_{I^{(k)}}^{-|\alpha|} b_{I^{(k)}} \sum_{j=0}^{k} 2^{j-k} b_{I^{(j)}}, \tag{85}$$

where

$$f_{k,\alpha} = (D^{\alpha}F_{(k)}) \circ h^k + (D^{\alpha}S_{k+1} - D^{\alpha}S_k) \circ g.$$

It is obvious that on the cube I^{\odot} ,

$$D_{i}f_{k,\alpha} = \sum_{p=1}^{n} \left\{ \left[(D^{\alpha+e_{p}}F_{(k)}) \circ h^{k} \right] \left[D_{i}h_{p}^{k} - D_{i}g_{p} \right] + f_{k,\alpha+e_{p}}D_{i}g_{p} \right\}.$$
 (86)

Hence, in view of (2), (46), (83) and (85), for each $\alpha \in \mathbb{N}_0^n$ we conclude that

$$||D_i g_p - D_i h_p^k||_I \le c(n) \sum_{j=0}^k b_{I^{(j)}}$$
 (by analogy with (84)), (87a)

$$||D_i g_p||_I \le ||D_i g_p||_{L^{\infty}(I^{\square})} + n l_I ||D(D_i g_p)||_{L^{\infty}(I^{\square})} \le c(n, \theta),$$
 (87b)

$$||D_i f_{k,\alpha}||_{L^{\infty}(I^{\square})} \leqslant c(\alpha,\theta) l_{I^{(k)}}^{-|\alpha|-1} b_{I^{(k)}} \sum_{j=0}^{k} b_{I^{(j)}},$$

$$||f_{k,\alpha}||_I \leqslant c(\alpha,\theta) l_{I^{(k)}}^{-|\alpha|} b_{I^{(k)}} \sum_{j=0}^k 2^{j-k} b_{I^{(j)}},$$
 (87c)

$$||D_i f_{k,\alpha}||_I \leqslant c(\alpha, \theta) l_{I^{(k)}}^{-|\alpha|-1} b_{I^{(k)}} \sum_{j=0}^k b_{I^{(j)}}.$$
(87d)

Let us check the inequality

$$||f'_{k,\alpha}||_{I} \leqslant c(\alpha,\theta) l_{I^{(k)}}^{-|\alpha|} b_{I^{(k)}} \sum_{j=0}^{k} 2^{(j-k)(1-|\alpha|)} b_{I^{(j)}}, \quad |\alpha| \leqslant 2,$$
(88)

for the function $f'_{k,\alpha} = D^{\alpha} f_{k,0}$. As $\alpha = 0$, it is identical to (87c), while as $|\alpha| = 1$, it coincides with estimate (87d) for $\alpha = 0$. Differentiating formula (86), we get the identity

$$D_{ij}f_{k,0} = \sum_{p=1}^{n} \left\{ -\left[(D_{p}F_{(k)}) \circ h^{k} \right] D_{ij}g_{p} + f_{k,e_{p}}D_{ij}g_{p} + (D_{j}f_{k,e_{p}})D_{i}g_{p} \right\} + \sum_{p,q=1}^{n} \left[(D_{pq}F_{(k)}) \circ h^{k} \right] \left[D_{i}h_{p}^{k} - D_{i}g_{p} \right] D_{j}h_{q}^{k}.$$

Applying (83), (87) and the inequalities

$$||D_{ij}g_p||_I \leqslant c(n)l_I^{-1}b_I, \quad ||D_jh_q^k||_I \leqslant c(n,\theta), \quad \sum_{j=0}^k 2^{j-k}b_{I^{(j)}} \leqslant c(n,\theta)$$

implied by (2) and (43)–(45), we arrive at estimate (88) with $|\alpha|=2$.

For each $\delta \in \mathbb{R}$, by (88) and the Cauchy inequality we obtain

$$\sum_{k=0}^{\infty} \|f'_{k,\alpha}\|_{I} \leqslant c_{2}(\alpha,\theta) \Lambda^{1/2} \left(\sum_{k=0}^{\infty} l_{I^{(k)}}^{-\varepsilon-|\alpha|} \left(\sum_{j=0}^{k} 2^{(j-k)(1-|\alpha|)} b_{I^{(j)}} \right)^{2} \right)^{1/2},$$

$$\left(\sum_{j=0}^{k} 2^{(j-k)(1-|\alpha|)} b_{I^{(j)}} \right)^{2} \leqslant \left(\sum_{j=0}^{k} 2^{-2j\varepsilon+2(j-k)\delta} \right) \sum_{j=0}^{k} 2^{2j\varepsilon+2(j-k)(1-|\alpha|-\delta)} b_{I^{(j)}}^{2},$$

where $\Lambda = \sum_{k=0}^{\infty} l_{I^{(k)}}^{\varepsilon - |\alpha|} b_{I^{(k)}}^2$. Let $\delta = \frac{1}{4}$ as $|\alpha| \leq 1$ and $\delta = 0$ as $|\alpha| = 2$, so that

$$\sum_{j=0}^{k} 2^{-2j\varepsilon+2(j-k)\delta} \leqslant c_3(\alpha,\varepsilon),$$

$$\sum_{k=0}^{\infty} \|f'_{k,\alpha}\|_{I} \leqslant c_{2} c_{3}^{1/2} l_{I}^{-\frac{\varepsilon+|\alpha|}{2}} \Lambda^{1/2} \left(\sum_{j=0}^{\infty} 2^{2j(\varepsilon+1-|\alpha|-\delta)} b_{I(j)}^{2} \sum_{k=j}^{\infty} 2^{k(-\varepsilon+|\alpha|-2+2\delta)} \right)^{1/2}
\leqslant c_{4}(\alpha, \theta, \varepsilon) l_{I}^{-\frac{\varepsilon+|\alpha|}{2}} \Lambda^{1/2} \left(\sum_{j=0}^{\infty} 2^{j(\varepsilon-|\alpha|)} b_{I(j)}^{2} \right)^{1/2} = c_{4} l_{I}^{-\varepsilon} \Lambda.$$
(89)

But $\Lambda < \infty$ due to $\Theta_2 < \infty$, and this is why the series

$$\sum_{k=0}^{\infty} f_{k,0} = \sum_{k=0}^{\infty} \{ F_{(k)} \circ h^k + S_{k+1} \circ g - S_k \circ g \}$$

converges absolutely in $C^{2,\mu}(I^{\square})$. By the same convergence of the series $F = \sum_{k=0}^{\infty} WF_{(k)} \circ h^k$ (Theorem 2) and the aforementioned relation $C^{\infty}(g(I^{\square}))$ - $\lim_{k\to\infty}(S_k - S_0) = S - S_0$ we have the identity

$$W\sum_{k=0}^{\infty} f_{k,0} = F + WS \circ g - WS_0 \circ g.$$

Together with (89) it proves (79).

Let us calculate S_{Ω} , when Ω is a half-space. We introduce the distance function

$$\varrho_{\omega}(x) = \min_{\xi \in \mathbb{R}^{n-1}} |x - (\xi, \omega(\xi))|, \quad x \in \mathbb{R}^n.$$
(90)

Theorem 4. If $\omega \in \mathbb{P}_1^{n-1}$, then

$$S \equiv \ln \varrho_{\omega} \big|_{\Omega} + \sigma_n, \tag{91}$$

where

$$\sigma_n = \begin{cases} \ln 2 + \sum_{k=1}^{\frac{n-2}{2}} \frac{1}{2k}, & n \text{ is even,} \\ \sum_{k=0}^{\frac{n-3}{2}} \frac{1}{2k+1}, & n \text{ is odd.} \end{cases}$$
(92)

Proof. While checking (91), we can assume that $\Omega = \mathbb{R}^n_+$ and $x = (0, x_n)$. We introduce the spherical coordinates

$$y_1 = \rho \cos \phi_2 \cos \phi_3 \dots \cos \phi_n,$$

$$y_2 = \rho \sin \phi_2 \cos \phi_3 \dots \cos \phi_n,$$

$$\dots$$

$$y_{n-1} = \rho \sin \phi_{n-1} \cos \phi_n,$$

$$x_n - y_n = \rho \sin \phi_n.$$

The set $\{y \in \mathbb{R}^n : y_1 \dots y_{n-1}(x_n - y_n) \neq 0\}$ is described as

$$\rho > 0$$
, $|\phi_2| \in (0, \pi/2) \cup (\pi/2, \pi)$, $0 < |\phi_3|, \dots, |\phi_n| < \pi/2$.

By the formula for the change of variables

$$\Theta(r) := \int_{\substack{y \in \mathbb{R}^n \setminus \mathbb{R}_+^n : |x-y| < r}} |x-y|^{-n} \, dy = \int \frac{\cos \phi_3 \cos^2 \phi_4 \dots \cos^{n-2} \phi_n}{\rho} \, d\rho \, d\phi_2 \dots d\phi_n,$$

where the right integral is taken under the restrictions $x_n \leq \rho \sin \phi_n$ and $\rho < r$. We have

$$\int_{(-\pi/2,\pi/2)^{n-2}} \cos \phi_3 \dots \cos^{n-3} \phi_{n-1} \, d\phi_2 \dots d\phi_{n-1} = \frac{\text{vol } \mathbb{S}^{n-2}}{2} = \frac{\pi^{\frac{n-1}{2}}}{\Gamma\left(\frac{n-1}{2}\right)},$$

$$\Theta(r) = \text{vol } \mathbb{S}^{n-2} \int_{\rho > 0 \, \& \, -\pi/2 < \phi < \pi/2 \colon x_n \leqslant \rho \sin \phi < r \sin \phi} \frac{\cos^{n-2} \phi}{\rho} \, d\rho \, d\phi.$$

The cases n=2 and n>2 should be studied independently. If $r>x_n$, then

$$\begin{split} \Theta(r) &= \operatorname{vol} \mathbb{S}^{n-2} \int_{\arcsin \frac{x_n}{r}}^{\pi/2} \cos^{n-2} \phi \, d\phi \int_{\frac{x_n}{\sin \phi}}^{r} \frac{d\rho}{\rho} \\ &= \operatorname{vol} \mathbb{S}^{n-2} \int_{\arcsin \frac{x_n}{r}}^{\pi/2} \left(\ln \frac{r}{x_n} + \ln \sin \phi \right) \cos^{n-2} \phi \, d\phi \\ &= \frac{\operatorname{vol} \mathbb{S}^{n-1}}{2} \ln \frac{r}{x_n} + O\left(\frac{x_n}{r} \ln \frac{r}{x_n} \right) \\ &+ \operatorname{vol} \mathbb{S}^{n-2} \int_{0}^{\pi/2} (\ln \sin \phi) \cos^{n-2} \phi \, d\phi + O\left(\frac{x_n}{r} \ln \frac{r}{x_n} \right) \quad \text{as } r \to \infty, \end{split}$$

since

$$\int_{-\pi/2}^{\pi/2} \cos^{n-2} \phi \, d\phi = \operatorname{vol} \mathbb{S}^{n-1} / \operatorname{vol} \mathbb{S}^{n-2}.$$

This gives (91) with the constant

$$\sigma_n = -\frac{2\operatorname{vol}\mathbb{S}^{n-2}}{\operatorname{vol}\mathbb{S}^{n-1}} \int_0^{\pi/2} (\ln\sin\phi)\cos^{n-2}\phi \,d\phi.$$

It is easy to see that $\sigma_2 = \ln 2$ and $\sigma_3 = 1$. We integrate by parts:

$$n \int_0^{\pi/2} (\ln \sin \phi) \cos^n \phi \, d\phi = (n-1) \int_0^{\pi/2} (\ln \sin \phi) \cos^{n-2} \phi \, d\phi - \int_0^{\pi/2} \cos^n \phi \, d\phi.$$

Hence, $\sigma_{n+2} = \sigma_n + \frac{1}{n}$, which proves (92).

The next theorem is the main result of the paper. Together with Theorems 1, 3, 4 and Lemma 7 it is aimed for proving (1) and related formulae.

Theorem 5. Given $\omega \in \text{LIP}$ and $\theta \geqslant \|\omega\|_{\text{Lip}}$, let $(\{\gamma_K\}, w, W, g, \mathfrak{g}, \mathfrak{G}, A, \lambda, L)$ be a standard set of the pair (ω, θ) . Then $L \in \text{VL}(0)$ and the potential

$$\Phi_L(x) = \int_{y_n > 0} E(A; x, y) L(y) \, dy$$

and the function $S \equiv S_{\Omega}$ satisfy the inequality

$$\left\| D_n \Phi_L - \mathbf{x}_n^{-1} \Phi_L + 1 - \mathbf{x}_n D_n(S \circ g) \right\|_I \leqslant c(n, \theta, \mu) \sum_I \Gamma_{IJ}^{(1,n)} b_J^2$$
(93a)

for each $I \in \mathcal{D}$. The function $\varrho_{\gamma_I} \circ g$ is positive on I^{\square} (see (90)) and the estimate

$$\left\| D_{ij} \left\{ \Phi_L - W^{-1} w + \mathbf{x}_n \left[\ln \varrho_{\gamma_I} \circ g - S \circ g \right] \right\} \right\|_I \leqslant \frac{c(n, \theta, \mu)}{l_I} \sum_J \Gamma_{IJ}^{(1,n)} b_J^2$$
 (93b)

holds true.

Proof. Lemma 4 allows us to apply Theorem 2 to the function f = w and to apply Theorem 7. In this way, the notations f, Θ , \overline{IJ} , \overline{IJ} , \mathcal{F}_J , \mathfrak{c}_k , A_k , γ_k , w_k , $w_{(k)}$, F_k , F, γ' , \mathcal{R}_w , Ψ , Θ^* , Θ_1 , Θ_2 , Θ_2^* , γ'_k , $\tau_{i,k}$, $\omega_{(k)}$, ω_k , φ'_k , $\tau_{s,\infty}$, Ω_k and S_k make sense. The belonging $L \in \mathrm{VL}(0)$ is implied by (52) and the relation $\Theta_1 < \infty$. The integral $\Phi_L(x)$ is well-defined by Theorem 1. The function $\varrho_{\gamma_I} \circ g$ is positive on I^{\square} due to the identity $\gamma_I = \gamma'_0$ and the belonging $g(I^{\square}) \subset H_0$ (see the statement after (63)).

The function $U(x) = x_n$ is harmonic in the domain Ω . Therefore, by the remark after Theorem 3 and by inequalities (2), (45) and (52) we have

$$Aw = Ag_n = LD_n g_n = LD_n w + WL,$$

$$||Aw - WL||_J \le ||D_n w||_J ||L||_J \le c(n, \theta) l_J^{-1} b_J^2, \quad J \in \mathcal{D}.$$

By inequality (9) in Theorem 1 we obtain

$$||WD_n\Phi_L - W\mathbf{x}_n^{-1}\Phi_L - D_n\Phi_{Aw} + \mathbf{x}_n^{-1}\Phi_{Aw}||_I \leqslant c(n,\theta,\mu)\Theta_2^*,$$

$$||WD_{ij}\Phi_L - D_{ij}\Phi_{Aw}||_I \leqslant c(n,\theta,\mu)l_I^{-1}\Theta_2^*.$$

At the same time,

$$||D_n \Phi_{Aw} - \mathbf{x}_n^{-1} \Phi_{Aw} - D_n \Psi + \mathbf{x}_n^{-1} \Psi||_I \leqslant c(n, \theta, \mu) \Theta_2^*,$$

$$||D_{ij} \Phi_{Aw} - D_{ij} \Psi||_I \leqslant c(n, \theta, \mu) l_I^{-1} \Theta_2^*$$

due to estimates (26b) and (57) in Theorem 2 and to Lemma 4. By (59),

$$D_n\Psi - \mathbf{x}_n^{-1}\Psi = D_nw - \mathbf{x}_n^{-1}w + \mathbf{x}_n^{-1}\gamma_0 - \mathbf{x}_nD_nF, \quad D_{ij}\Psi = D_{ij}w - D_{ij}(\mathbf{x}_nF).$$

By inequality (79) in Lemma 7 with $\varepsilon = |\alpha| - 1 \in \{0, 1\}$ we obtain

$$\|\mathbf{x}_n D_n F + \mathbf{x}_n D_n [WS \circ g - WS_0 \circ g]\|_I \leqslant c(n, \theta) \Theta_2^*,$$

$$\|D_{ij}(\mathbf{x}_n F) + D_{ij}(\mathbf{x}_n [WS \circ g - WS_0 \circ g])\|_I \leqslant c(n, \theta) l_I^{-1} \Theta_2^*.$$

At that, $S_0 \circ g = \ln \varrho_{\gamma_I} \circ g + \sigma_n$ on I^{\square} by Theorem 4. The identity

$$\left\{ WD_n \Phi_L - W \frac{\Phi_L}{\mathbf{x}_n} - D_n \Phi_{Aw} + \frac{\Phi_{Aw}}{\mathbf{x}_n} \right\} + \left\{ D_n \Phi_{Aw} - \frac{\Phi_{Aw}}{\mathbf{x}_n} - D_n \Psi + \frac{\Psi}{\mathbf{x}_n} \right\}
+ D_n w - \mathbf{x}_n^{-1} w + \mathbf{x}_n^{-1} \gamma_0 - \left\{ \mathbf{x}_n D_n F + \mathbf{x}_n D_n [WS \circ g - WS_0 \circ g] \right\}
= W \left[D_n \Phi_L - \mathbf{x}_n^{-1} \Phi_L + \mathbf{x}_n D_n [\ln \varrho_{\gamma_I} \circ g - S \circ g] \right]$$

and the identity

$$\{WD_{ij}\Phi_L - D_{ij}\Phi_{Aw}\} + \{D_{ij}\Phi_{Aw} - D_{ij}\Psi\} + D_{ij}w$$
$$-\{D_{ij}(\mathbf{x}_n F) + D_{ij}(\mathbf{x}_n [WS \circ g - WS_0 \circ g])\} = WD_{ij}[\Phi_L + \mathbf{x}_n[\ln \varrho_{\gamma_I} \circ g - S \circ g]]$$

show that checking inequalities (93) is reduced to checking the estimate

$$||u||_I \leqslant c(n, \theta, \mu)\Theta_2^*,$$

where

$$u = D_n w - \mathbf{x}_n^{-1} w + \mathbf{x}_n^{-1} \gamma_0 + W - W \mathbf{x}_n D_n [\ln \varrho_{\gamma_I} \circ g].$$

In view of the formula $\gamma_I \circ \mathbf{x}' = \gamma_0$ we write

$$\varrho_{\gamma_{I}} \circ g = C[g_{n} - \gamma_{I} \circ \mathbf{x}'] = C[w + W\mathbf{x}_{n} - \gamma_{0}], \quad C = C(\nabla\gamma_{I}) > 0,
W\mathbf{x}_{n}D_{n}[\ln \varrho_{\gamma_{I}} \circ g] = W\mathbf{x}_{n}\frac{D_{n}w + W}{w + W\mathbf{x}_{n} - \gamma_{0}} = \frac{D_{n}w + W}{1 + \frac{w - \gamma_{0}}{W\mathbf{x}_{n}}},
u = \frac{\gamma_{0} - w}{\mathbf{x}_{n}} + D_{n}w + W - \frac{D_{n}w + W}{1 + \frac{w - \gamma_{0}}{W\mathbf{x}_{n}}} = \frac{\gamma_{0} - w}{\mathbf{x}_{n}}\frac{\frac{w - \gamma_{0}}{w\mathbf{x}_{n}} - D_{n}w}{1 + \frac{w - \gamma_{0}}{W\mathbf{x}_{n}}}W^{-1}.$$

Due to (2), the Taylor formula, (45), (48) and (44) we have

$$\left\| \frac{\gamma_0 - w}{\mathbf{x}_n} \right\|_{I} = \left\| \frac{w - \gamma_0}{\mathbf{x}_n} \right\|_{I} \leqslant \|w - \gamma_0\|_{I} \|\mathbf{x}_n^{-1}\|_{I} \leqslant c_1(n)b_{I},$$

$$\|D_n w\|_{I} \leqslant c_2(n)b_{I}, \quad \left\| \frac{w - \gamma_0}{W\mathbf{x}_n} \right\|_{L^{\infty}(I^{\square})} \leqslant \frac{1}{3},$$

$$\left\| \frac{1}{1 + \frac{w - \gamma_0}{W\mathbf{x}_n}} \right\|_{I} \leqslant \frac{3}{2} + l_{I}^{\mu} \frac{9}{4} \left| \frac{w - \gamma_0}{W\mathbf{x}_n} \right|_{C^{\mu}(I^{\square})} \leqslant \frac{3}{2} + \frac{9c_1b_I}{4W} \leqslant c_3(n, \theta),$$

$$\|u\|_{I} \leqslant [c_1b_I][c_1b_I + c_2b_I]c_3W^{-1} \leqslant c(n, \theta)\Theta_2^*.$$

This completes the proof.

BIBLIOGRAPHY

- 1. A.I. Parfenov. Discrete Hölder estimates for a parametrix variation // Matem. Trudy. 17:1, 175–201 (2014). [Siber. Adv. Math. 25:3, 209–229 (2015).]
- 2. R.A. Hunt, R.L. Wheeden. *Positive harmonic functions on Lipschitz domains* // Trans. Amer. Math. Soc. **147**:2, 507–527 (1970).
- 3. D.S. Jerison, C.E. Kenig. Boundary behavior of harmonic functions in non-tangentially accessible domains // Adv. Math. 46:1, 80–147 (1982).
- 4. S.E. Warschawski. On conformal mapping of infinite strips // Trans. Amer. Math. Soc. **51**:2, 280–335 (1942).
- 5. V. Kozlov, V. Maz'ya. Asymptotic formula for solutions to elliptic equations near the Lipschitz boundary // Ann. Mat. Pura Appl. (4). **184**:2, 185–213 (2005).
- 6. V. Kozlov. Asymptotic representation of solutions to the Dirichlet problem for elliptic systems with discontinuous coefficients near the boundary // Electron. J. Diff. Equ. **2006**:10, 1–46 (2006).
- 7. V. Kozlov. Behavior of solutions to the Dirichlet problem for elliptic systems in convex domains // Comm. Partial Diff. Equ. **34**:1, 24–51 (2009).
- 8. K. Ramachandran. Asymptotic behavior of positive harmonic functions in certain unbounded domains // Potential Anal. 41:2, 383–405 (2014).
- 9. A.I. Parfenov. Weighted a priori estimate in straightenable domains of local Lyapunov-Dini type // Sibir. Electr. Matem. Izv. 9, 65–150 (2012). (in Russian).
- 10. A.I. Parfenov. A criterion for straightening a Lipschitz surface in the Lizorkin-Triebel sense. III // Matem. Trudy. 13:2, 139–178 (2010). [Siber. Adv. Math. 21:2, 100–129 (2011).]

Anton Igorevich Parfenov,

Sobolev Institute of Mathematics, SB RAS,

Akademik Koptyug av. 4,

630090, Novosibirsk, Russia

E-mail: parfenov@math.nsc.ru