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DICRETE HOLDER ESTIMATES
FOR A CERTAIN KIND OF PARAMETRIX. II

A.I. PARFENOV

Abstract. In the first paper of this series we have introduced a certain parametrix and
the associated potential. The parametrix corresponds to a uniformly elliptic second order
differential operator with locally Holder continuous coefficients in the half-space. Here we
show that the potential is an approximate left inverse of the differential operator modulo
hyperplane integrals, with the error estimated in terms of the local Holder norms. As a
corollary, we calculate approximately the potential whose density and differential operator
originate from the straightening of a special Lipschitz domain. This corollary is aimed for
the future derivation of approximate formulae for harmonic functions.

Keywords: cubic discretization, Lipschitz domain, local Hélder norms, parametrix, po-
tential, straightening.

Mathematics Subject Classification: 35A17

1. INTRODUCTION

Let A% be the family of all second order uniformly elliptic operators in the upper half-space
R% (n > 2) with an ellipticity constant A > 1 and locally p-Hélder coefficients, 0 < p < 1. In
work [1] a Z-parametrix E(A; z,y) (shortly: parametrix) was proposed for an operator A € A%
and for the corresponding potential

%@0:/ Jﬂ&%yﬁwﬂ% z € RY,

estimates for local Holder norms || D*®||; (Ja| < 2) and ||Rf||; were established in terms of
the same norms || f||;, where f +— Rf = f — A®; is the error operator.

The parametrix E(A;z,y) and the potential ®; were introduced in order to study a special
harmonic function. Let Q be the overgraph of a Lipschitz function w : R** — R. Lemma 3.7
in [2] and the properties of the Kelvin transform imply the existence and the uniqueness up to
a positive multiplicative constant of a function U with the following properties:

UeC>(Q)nC(Q), AU =0and U > 0 in domain ©, Ulyq =0

Up to the equivalence, the function U determines the behavior of arbitrary positive harmonic
functions vanishing continuously on a part of the boundary of a Lipschitz domain. Indeed,
roughly speaking, each two such functions are comparable by the boundary Harnack principle.
As an example see [3, Thm. 5.1].

Let us outline the plan of studying the function U. Denoting

u=(Uog)y
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for an appropriate straightening diffeomorphism g : R} — € and a cut-off function ¢ €
Cge (]R_ﬁ), by the Laplace equation AU = 0 we obtain the differential equation

Au = LD,u+ L'

for some operator A € A% and functions L, L’ € C*°(R"). Here A and L depend on 2 and g,
but not on U and ¢. If the function w is compactly supported and its Lipschitz constant is
sufficiently small, the Neumann series

oS
k=0

makes sense. The boundary condition u‘aRn = 0 and the boundedness of the support of the
+

function u are preconditions for the validity of the integral representation
u=opr, F=QAu=QWwL+L), v=Du=D,Pp.

For the function x,'(z) = z,;! and a number vy we write

v = X;lq)p{\Dn(DL — X,;lCI)L + :E}+\Dn(I)F—voL — X;lq)p_v0€+ {pn(PL — X;I(I)L/}{E}O — X;I(I)FJ'}

e Ch 02 3
It turns out that © ~ x,D,,(S o g), where

I'(n/2
S(z) = lim {lnr— (252)/ !x—y!_"dy}, x €,
roo m yeR™M\Q: |z—y|<r

and the approximate error is quadratic in approximation numbers b; expressing how close
locally the surface 0f2 is to a hyperplane. We can choose vy so that the term 0, is estimated
quadratically in by, while the expressions ©, and O3 are estimated linearly. This implies that
% ~ D,(S o g) with a quadratic error. Generalizing the arguments and the definition of the
function S to the case of a not necessarily compactly supported function w with an arbitrary
Lipschitz constant, by means of rotations of the coordinate system we obtain the approximate
formula

vU
—— ~ VS, (1)

The integration of this formula gives rise to the exponential asymptotic formula (EAF)
U = Upe®.

For known EAFs for conformal mappings, EAFs for solutions to elliptic systems and asymp-
totics for positive harmonic functions see works [4]-[g].

The present paper is devoted to realizing a part of the outlined plan, namely, to justifying, for
error term in the formula © ~ x, D, (S o g), an estimate quadratic in approximating numbers
of the function w. The paper consists of the introduction and two sections. In Section 2 we find
approximately the potential ®,¢. The main definitions are given in Subsections 2.1 and 2.2.
In Subsection 2.3, the discrete Holder estimates from [I] for the functions D*®; and Rf are
completed by an estimate for the expression D, ®; — x,'®;, which is more precise than the
independent estimates for the functions ®; and D,,®¢. In Subsection 2.4, the derivatives D*® 4¢
and the expression D,,® 47 —x,,'® 4 are found up to the errors majorized by local Holder semi-
norms |A|; of the coefficients of the operator A and by the norms ||D?f||;.

In Section 3, to a pair (w, @), where 6 > ||w/||Lip, We associate the standard set

({,YK}7 w, W7 g,9, Qja Aa )\7 L)

relating to a straightening of the domain (2, after that the formula © =~ x,,D,(S o g) and its
analogue for the derivatives D;;®, are established by a reduction to Subsection 2.4. We observe
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that the formula for the derivatives D;;®; can be used while obtaining an analogue of formula
for the derivatives D;;U.

Convention. The letter ¢ (with a possible subscript or superscript) stands for various positive
constants and always equipped by the brackets with all numerical parameters, on which these
constants depend. For ¢t > 0 and a cube or a ball X C R centered at c¢x and of the edge or
radius of an arbitrary length we let

tX ={cx +t(§ —cx): £ € X}

If ¢ € RY, then || = max; || and (if £ is not a multi-index) [£]? = >, |&|*. For multi-indices
a € Ng, by D*f we denote partial derivatives of a real function f, at that, D;f = D% f and
D;;f = D%* f, where {e;}¢ is the canonical basis in R?. For a semi-norm p and a number
q € Ny we let

p(Df) = maxp(D" f).

For instance, |D f| = maxici<q |Dif| = |V f|so, where V f is the gradient of the function f. By
X and X° we denote the closure and the interior of a set X C R%

2. APPROXIMATE CALCULATIONS WITH POTENTIAL P4/

2.1. Basic information on a dyadic family. Given an integer n > 2, we introduce a
dyadic family D in R"!:

D = U Dy, Dy={I:1=10,2°)""+2%a for some a € Z"'}.
keZ

For the sets I; C R"~! with a bounded non-empty union we let

[]1,—72] = sup |§ - 77|oo-
Enel Ul

We denote I; = [I, ] as I € D (the side-length). For «, 5 € R we let
T\ — 281 g% I,JeD.

The following statements is Theorem 2(a) proved in [9]. Hereinafter, unless otherwise said,
the summation are taken over the set D.

Lemma 1. Ifa >0 and > n —1, then

ZF%’B) <c(n,a,p), 1e€D.
J

For I,J € Dwesay I ®Jifl; =1;and INJ # @. By {I’, J'} we denote a pair of cubes
{H1, Hy} C D with the smallest possible value of Iy, = Iy, and the property

I CH &©HyD J
The cubes I and J can be connected by the chain
[J={HeD:IcHcI'orJcHCcJ}.

We fix u € (0,1). For a function f on a set X C R containing more than one point, we let

|f|C“(X) = sup M’ ||f||Lip — M

z,yeX: x#y |$ - y|ﬂ z,yeX: x#y |$ - y|
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We denote
={z=(d,2,) € R": z, > 0},
I =Tx[1;,2l;], I€D,
¢/’ = (¢7,31;/2) for the center ¢; of the cube I.
Let C = C};.(R?}), that is, C consists of all real functions f on R’} such that |f|cu o) < co for

each I € D. We let
|fle =1 lewamys fllr = I fllzeqmy + [f]r-
The estimate
[flr S nlil|Dfl| ey, | € CHIY) (2)

is obvious.

2.2. We introduce main notations related to the Z-parametrix E(A;x,y) of an arbitrary op-
erator A € AX.
Let §;; be the Kronecker delta, I'(-) be the Euler Gamma function, A be the set of all

differential operators
A= Z aijDij (3)

ij=1
with constant coefficients a;; = a;; € R. For A > 1 we let

Ay = {A €A (V¢eR™) AN ()P < Z aijGi¢ < /\|C|2} .

i,7=1

We denote by 3; the unique vertex of a cube I € D possessing the property 37/(2l;) € Z" 1.
Let

“={¢e3l:|¢— 51l <32} (=1C2ICI*C3I),
1% = I x [31;/4, 311 (=17 c I™).

The symbol A* stands for all operators with real coefficients a;; = aj; € C. Hereafter a;;
always stand for the coefficients of the operator A € A or A € A*. If A € A*, then

|Alr =17 max |aijlonm),

§ @z] 137 Tn > Oa

Afl, = AWl feChm).

We let Ay = {A € A*: Alz] € A, for all z}.

For I € D and k € Ny by I®) we denote the unique cube in D with the properties I ¢ I*)
and [;u) = 2F[;. It is easy to construct the functions ¢y, : R" — [0,1] in the class C* such that
wo=0and, as k > 1,

¢r = 1 on the set Pr = 3T*D x (0, 31;5-1], (4a)
supp o C B = (51%7Y)° x (0, 4l7u-n), (4b)
|D%pr| < c(a )l[(|k)|7 a € INg. (4c)

We also let Q_1 =Py =P = @ and

Qk =3 (k) x (0, 2[1(k)], k > 0. (5)
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It is obvious that

Qi1 CPr C P} C Q5. (6)
It is easy to check the existence of C*°-functions ¢k : R’} — [0, 1] with the properties
3 3, 5
suppvr C =K X |=li,=lx|, K€D, (7a)
2 4 2
D k() =1, 2, >0, (7b)
K
ID*Yx| < (@)™, o€ NI (7¢)

For A € |J,.; Ax and x # 0 we denote

detA = det(aij), (bw) = (CLij) Z bZJIZZE],
i,7=1
1 InQa(x) n=2
47T\/detA A ’ -7
S T O
QA2 (x)a n 2 3

(2 —n)277/2\/det 4
For z,y € RY}, x # y, we let
e = apr{ainer + asnes + -+ anpen },
U=y —umel, Ta=y— 2uyne;,
Ga(z,y) = Ea(xr —y) — Ea(z — ya).

For A € Ay and z,y € RY, = # y, we let

E(A;z,y) = ZGAC (2, 9)0x (Z(2,9)),

where
1 -

Z(x,y) =z + klz —yle,, K=————, = (v, —yn).
(z,y) |z — s/ V )

In [I] the parametrix E(A;x,y) was introduced with the constant ko = 3\”% instead of &.

2.3. Let us write down the potential ®; and discrete Holder estimates for it.

Theorem 1. Let A >1,0< u <1 and A € AY. Then for each function f € VL(0), where
Vo) = { e c: 3rem) Trl ulfly < oo
J

— {f eC: (VI eD) Y T ulIflls < oo},
J

the integral
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converges absolutely and is twice continuously differentiable in x. We have D*®¢ € C (Ja] < 2)
and for each I € D

_ 0,n
@l + 1D < eln, A, ) Zr}] Ll (8)
T Du®s — x5 D], + || D@1 < eln, A, Zr Ot D) 7115, 9)

H:ICHCI/

1

Remark. Here x,! is the function x — !

Proof. All statements of the theorem, except the estimate for the norm || D, ®; —x,,'®;||;, were
checked in [I, Thm. 5] for the parametrix E(A;x,y) defined by the constant kg instead of k.
Due to the property x < kg, the arguments can be extended to our parametrix with minor
changes. This is why it remains to check the inequality:

L IDn®y —x, 0l < e(n, A, p ZFO"H 1£11.- (11)

By , and @ for the function ¢, in . we have

leulls + 11 = @alls <24 2ndy][Der || e g2y < er(n),
lerflls+||(1 =1 f||J <allflls, JeD,
and hence, ¢;f € VL(0) and (1 — ¢;)f € VL(0). In the same way,
e @l < 1, M1z ||q)w1f||l ca ()l | Pl
If [|o1 f]|; # 0, then JY N QS # & in view of ([{b) and (6]), which implies J* C 9 and
LT = 1T ] < ﬁlr%”*”u“% J) < ATy, (12)
By we conclude that
D0 @,y = % Qg llr S U D@y fllr + ol (1@

<
<ol Aty 3T e fll < deres ST

We assume that for each x € I¥ and y € JY \ B (J € D), the functions
CK('I7 y) = GA[c‘I:'(](xv y)¢K (Z(I7 y)): C;((I7 y) = DwnCK<x7 y) - C(Z;ICK(ZL‘, y)

satisfy the inequalities

|Cre(, )| < e, TSI, (13)
| DG (, )| < ela, NI al < 1. (14)

Then by (4al), and the belonging (1 — ¢1)f € VL(0), the formula

D1—pis(@ / y (Z (r(zy ) (1—e1w) f(y)dy

leads us to the formula with an absolutely convergent series

D (Db =% o)) = 2 [ D)1 = () 0)
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which together with (2)), (7a) and the property [,q|f]dy <]/ f|ls yield
_ _ 0O,n+1
I Da®a s =% Pyl < e(m ) Y T3 lf
J

In view of the result in the previous paragraph we obtain (|11J).
Let us check and (14). For z,y € R%, x # y, estimate (23) in [1] is of the form:

’DgGB(:v,y)’ < cla, Nyalz —y 71 (o, B) € NI x A,. (15)
Let z € [Y and y € J¥\ By (J € D). Then
[1,J] < 4|(a',7en) —y|, as0<7<1, (16)

which is implied easily by the inequality ‘(m’ ,TTy) — y‘oo > [;. Hence,

1

0 , .

|GA[CID(](x,y)‘ < ‘/ EGA[C%]((ZE ,Tn),y) dr| < c(n, N[, J]™",
0

which yields . Let a € {0,e3,...,e,_1}. By the Taylor formula,

1
e, y) = o / D% ¢ (2! 72,), ) d, (17a)
1
DG (2, y) = @ / Dy (o 7). ) (17b)
0
Dy, ooy y) = / (rD*n 4 2,7 D% Y e (), 720 ) (17¢)
0

where the derivatives D? are taken w.r.t. the first vector independent variable. By , ,
(7al), and the Leibnitz formula for z = (2, 7x,,) we have

| DIG a2 ()| < e(B, ML T |81 <3, (17d)
| DIk (Z(x,))] < c(B)lz — g1 < (B, 177, (17¢)
|DECk (2, y)| < (B, Ny[L, )P (17f)
Hence,
| D2Ci (@, y)| < calon Mgy 1, )"0 < eyl (1,017, (17g)

<
| D, G (,y)| < es(n, UL )"+ L[ T2} < 205040, )77 (17h)

which coincides with . This completes the proof of inequality and Theorem . O]
2.4. Calculation of ®4¢. The proof of the following lemma is trivial.

Lemma 2. Ifd € N, f € C(R?) and supecga|f(£)]|€]* < oo, then the limit
lim f(&)d¢
"0 S Je—xl<r

either exists for all x € R? or does not exist for all x € R%. In the former case, its value is
independent of ¢.

We say that D*f € VL(0) if f € CE*(R™) and

loc

ZF%’")ZJHszHJ < oo for some I € D.
J

Let P} be the space of all polynomials in R™ of degree at most one. By (z,y) we denote the
scalar product > | x;y; in R™.
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Lemma 3. Let D*f € VL(0). Then
tVF(-,t) =0 in Li (R" ") ast |0, (18)
in L (R"™) there exists the limit f(-,0+). (19)

If f(x) = y(x) for large |z| for some polynomial v € P}, then for each operator A € |y, Ax
and points v € R and r € R"™' we have

f(a) - /  Gale)Af() dy

= e [ Qa (€ 0)F( 01 de (V)

Remark. With no pedantry we write f(-,t) instead of f((-,t)). The first integral in
exists by Theorem |1| since Ga(x,y) = E(A;x,y).

(20)

Proof. The condition D?f € VL(0) implies immediately that

/ 2| D? f ()] dv < o0
=x(0,1)

for each compact set Z C R"!. For 0 < t < 1 we have

DOl SUPIC Dl +t [ [P ] o

<t|Df (- D s g, +/ | D?f ()| dw+\/¥/ | D*f ()] da,
- Ex(t,V1) Ex (V1)
and as t — 0, this proves . As 0 < t; <ty < 1, the relations

56t = el < [ [P

<t Duf (1)1 oy + /x(t”xn\Dmf \dx+t2/ (Do f ()] de
= 1,02 =

=Ex(t2,1)

hold. These relations and the Cauchy convergence criterion give (|19).
Let us prove that if the support supp f is bounded under the assumptions of formula (20)),
then

f@)= [ Gatwmarady=a—n 2 [ Q7P @o)seonds. @

In view of [1l (19)] and the formula

/n Ealy — 2)Ap(y) dy = ¢(z), ¢ € Cg7(R"),

we get
Qule — ) — Qale — Tia) = — 229 — Qu(y — 2) — Quly — Fa), (22)
Qa(r —ya) = Qaly — Ta), (23)
Galz,y) = Galy. x), (24)

/ g Ga(r,y)Ap(y) dy = / ) Galy, x)Ap(y)dy = p(z), ¢ € CP(RY).
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If the function f is concentrated near the point z, by the regularization we have

fa) / Galw)Af(w)dy =

Hence, while checking , we can assume that f = 0 in the vicinity of the point x. In this
case, considering the integrals over the set {y: y, > t} and employing relations |a:0, ,
as well as the boundedness of supp f, we obtain

n

— | Galz.Af(y)dy =Y ay |  Dy,Galz,y)Dy f(y)dy

Yyn >0 ij—l yn>0
= Z azg/ Dy]{DylGA l’ y (y)}dy
i,j=1
- _Zain . DinA<x7 (570)).}0(570_'_) df
i=1 et

In view of we obtain

DinA(xa (57 0)) = CAQ;xnﬂ(x - y>Dyi{QA<:C - ) QA T — yA }‘ —(£0)
4wy /2 ['(n/2)
= C —(&,0 Cp=—"—F"—.
Gt AQA (l' (g )) A 7Tn/2 detA
This implies , that is, formula with v = 0.
As v # 0, we apply formula to the function f — . Thanks to the identity
(@) =y (@) = (Vy, zey)
formula (20]) will be proved if we establish the relation

A — I'(n/2) im /2, _
’7(I ) - n’/Tn/Q\/m Tlﬁoo 6t <r QA ( (gv O))’Y(fa 0) dg (25)
A)/

Expanding (&, 0) into the powers of the variable n = £ — (=
the identities

, we see that we need to check

I'(n/2) —nj2
e —(6,0)dE =1,
TNl L (z —(£,0)) d¢
. w2 A g T
lim Q4" (znet — (1,0))midn =0, i=Tn—1

[n+(@4) —z|<r

The former identity is obtained by substituting the function f = ¢(-/r) into (21)), where
p € C°(R"™) and ¢ = 1 in the vicinity of the origin and by passing then to limit as r — oo
taking into consideration the inequality

|GA(‘Ta y)} < C(TL, /\)xn|l‘ - yll—n
implied by and . The second needed identity are yielded by the relations

(23) >
QA (.'an ( , )) ! QA ((777 ) — ITpe nA> QA(xne + (777 0))
and Lemma . This completes the proof of , and the lemma. O

The next result allows us to find approximately the derivatives D*® 4 of the potential ® 4
and the expression D, ® 45 — x,, 1D 4.
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Theorem 2. Let A >1,0<u<1, Ae A5, D*f € VL(0), I € D and

@ZZF?}’H)ZJ Z |A|H ,FJ<OO,
J HelJulJ

where
E:{HED:[cHCI"&12lH>/elfJ},
[J={HeD:JcHCJ)

Fr=ID*flls+ L7170 D D flla.
He{17}ulJ

Then Af € VL(0) and the integral
Dasle) = / E(A;z,y)Af(y)dy, weRY
Yn >0

converges absolutely. For k € Ny and the functions {¢g} in we denote

= u,  Ar= A, w(@) = fla) + (V)2 — ),
fe=onf + (=0, foy = forr — fr
Then D*f;, € VL(0), the limits
F(n/2) . ,n/g _
ﬂ_nmm TILIEO e < QAk (33' (57 O))f(k) (57 0+) d£

ezist as x € I, the functions F}, belong to C**(IY), the series
F=>F
k=0

converges absolutely in C**(IY), the scalar series

[e.e]

v = Z(V(’Ykﬂ — ) ")

k=0
converges absolutely and the inequalities
IRl + IDRs I < en, A 1), (26a)
HDaRy — xRyl + [D*Ryllr < e(n, A, 1)©” (26b)
hold true, where

Ri=Dur =V, VU=f—9—x,F—7%p,

O =I5 S Al | £
J

HelJuT)
Remark. The limits fu(-,0+) are treated in the sense of . The inequality
0" <0/l

implies the finiteness of ©F.
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Proof. 1t is obvious that Af € C. For each J € D we have
ai; — as; (€)= l|ai — ai;(¢5)|| oo oy +53!%’|Cu 9y < c(n)|Als, (27)
IAfls < ||Af = AlFF, + [|ALSIf]], < em)ALID? fll.s + c(n, D f-

In view of the conditions D?f € VL(0) and © < oo we obtain the belonging Af € VL(0) and
hence, the absolute convergence of the integral ®4¢(z) by Theorem .
Let k > 0 and JY C Q4 (see (f])). Considering Taylor polynomials for the functions f at the

touching points for the cubes in the set {H S HelIkJg }, by the inequalities
||7||L°<>(JD) < ||7||Lo<>(3(HD)) < C(”)”VHLOO(HD)a v € Py,
and the Taylor formula we obtain the estimates

1 = llseey S eln) Do Gl D Fl o,

Helk)

HD(f—%)”Loo Jo < c(n) E lH”szHLOO(HD)‘
(J")
Hel®) ]

In view of relations (2)), |D*y| = 0 and (I*))7 = I®) we conclude that
If = lls <eln) Y D fa,

HeI®) ]
D =w)ll, <eln) D Ll D*fllu,
HeI®
Iy <l & [I,J)<[IW, J]<21M),
Ll =l + G | DG = )|, < e )7 >0 twllD flla (28)

Hel®) g

Let us estimate ||D?(f — fi)||, and [|D*f)ll;. We write
f=Te=QQ=0)(f =), Sy = Jorr = Jo =S = fu} ={f = fuorr}-

If J® € 94\ 9, then Iy < Lo and [0 = {1/} UTJ. By @), (), @) and the Leibnitz
formula, this implies

|| D*(1 = )|, + Lo || DL = @i) ||, + 11— @ells < e(n),  ||D*(f = fu)||, < ca(n)Fy
By , and @,
f—fe=0 on the set Q;_1,
|D?fi] =0 on the set R" \ 9,
|D?fi)] =0 on the set R \ Qf ;.
Therefore,
0, J¥ C Qyq,
| D*(f - fk)”J < aFy, JUC Qe \Qp_, (29)
ID*flls < Fy, J¥CREN QR

E] o

0 otherwise.
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In view of [9, Eq. (25e)], we have [I”7, J] < 3[I, J] and hence, for each o, 3 € R
I < max{1, 32 0oA1@h g eT). (31)
LetaGR,ﬁ>n—1andH€TJUﬁ. Then
(H,J] < [I7, 7] <2y <245y as He1J, [H J] =1y asHelJ,
F%Jﬂ) < c(n, a)Fg?}’ﬁ), a; = max{a, 1}.
By and Lemma , for each H € D we obtain
Z F%’ﬁ)\ (n,a, B)T Zfalﬁ)\ (n,a, B)T aﬁ). (32)

J: HelJjulJ

Hence,

ST 3 D e < 2D e 3D T

He{I7}ulJ H J: HelJulJ
Zr“"“ | D f

0 _Zro%ﬂ ZFO")ZJ]|D2]”HJ<OO.

In view of we conclude that D?(f — fi), D? fi, D? fuy € VL(0).
In what follows we suppose that 2 € I”. Due to (30) we have

| A ol < etn, VAL + DID follss 1Akl < e, VD fo o,
T LA w s + 1Ak falls} < chAzr (Al + 1DFs < ex{0 + 0} < .
J

Hence, Af) € VL(0) and Ay fay € VL(0), so, the potentials
Bule) = [ B(Asn)ASily) dy
yn >0
Py () = / E(A;z,y)Apfi (y) dy,
Yyn >0
¥ = [ Galeg) Aol dy
Yyn >0

are well-defined. In view of , @D, and , the series

o0

@:i@k, @’:icb;, ="y
k=0 k=0

k=0

converge absolutely in C*#(I7), and the potential ® 4(;_y,) tends to zero as k — oo in C%#(I").

Bearing in mind the relation fy = 7o € P}, on I” we get

q— q—1
Pap=Pai-1,) Z = lim (‘I’Af fq)"‘zq)k) = 2.

k=0 k=0

By Lemma 3 the limits Fj(z) exist and

foy — @ = X0 Fi + (VY1 — W) e)x,.
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In particular, F, € C*#(I¥). By the Taylor formula
{V(’Yk—i—l - %)’ < C(”)ZI%){”DQJCHI('C) + ||D2f||1<k‘+1>}a

ZI (st =) en)| < elm, ) DT LIID* Ly < oc,
J

that is, the series 7' converges absolutely. The absolute convergence of the series F' follows the
relation f ‘ ;0 =0 (k > 1) and the absolute convergence of the series " and 4. On the cube
19, the identities

\:[/:f—’yo—Z{f(k)_(I)/k/}:f_/yo_f(o)+(1)//:q)//’ Rf:q)_q)//
k=0

hold true.
It remains to check inequalities (26). If J% C Qp41 \ Qp_,, where k > 0, then 17 = I® or
I7 = I+ 5o that ¢;, € (I7)¥. By analogy with we have

H% aij(cx HJ c(n) Z | A,

He{IJ}UI—j

(A= Afwll, <em) [ >0 [1Aln ) ID*fwll-
He{I7 uTJ

In view of and by Theorem (1| we obtain

@k — Pl + || D(@ — 4], < e(n, A, 1)O,

| Dn(®r — @3) — 1 (P — )|, + || D*(Pr — )|, < eln, A, )0
where
O = 3 Pl > 1Al | Fo
J: JH9CQp41\9Q8 HelJulJ
o; = 3 Tl ST Al | Fo
J:J0CQ,\Q8 HefJUTS
By this and the convergence of the series ® and ® we conclude that
@ — @'l + || D(@ — @], < e(n, A, 1)6, (33a)
7| Dn(@ — @) —x, (@ — )|, + || D*(® — )|, < c(n, A, )" (33b)

We let
Hr ={K € D: ¢ € (I for some j € Ny, k —log,(6/k) < j < k}.
For each (k, K') € Ny x D we shall show that

if Vi (Z(z,y))Axfuy(y) # 0 for some y € R}, then K € H,. (34)
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Suppose the assumption in (34). Then y € Qpy1 \ Q1 by and hence,
lz —y| >z, 21, k=0,
|z — gl = max{|z’ — ¥'|oc, yu} > L), K #0,
(n = D" =I5 + (2n +yn)?
16(n — 1) 20 + (2l + 4lw)* < 620,
I <l + gzm < Z(2,9)n = @0 + 8|z — J] < 201 + Lo < 3Ly
This is why there exists j such that 0 < 7 < k and

Z(x,y) € [I(j) X (lﬂj),?)lﬂj))] M supp Y.
We have .
§l1(k) < Z(m,y)n < 3[1(3-),
and hence, k —log,(6/k) < j. By

3 1

— L
IVNZK+£g & -<-LIZ
2 7& 2

; <2
K

It is easy to confirm that this implies the belonging ¢ € (I0))®. The proof of is complete.
It follows from relations , and that

VEELCEDY | o (Cagi(e0) = Ca o) (Z ) Anfog ) do- - (39)

KeHy
If J9 C Qpyi \ Q5 y, then I7 = I® or [7 = [*+D and therefore,

[cIDcI®cr & Lo > Slw > Ezﬂ & 1V ety

6
for each index 7 in the definition of the set Hjy. This is why
max Ix(réax‘am ) — aii(ex)| < Z Alg,  J¥ C Qe \ Q4 y, (36a)
i,j=1,n
= Hell
1Ak Il < c(n, \)Fy, (36h)

where the second inequality is implied trivially by . By a simple modification of the
constructions in work [1], from and we obtain the estimates
7@, — 4l + || D(®), — F)||, < e(n, A, 1)Oy, (37a)
| D?(@}, — @[, < eln, A, 1)O;. (37h)
In [T, Subsect. 2.1], an estimate for the derivatives of the Green functions was proved (see (15)),
which was applied for estimating the norms of ||[D*®||; in [I, Subsect. 2.2], where the function
® is similar to the potential ®¢. At the same time, in [I, Subsect. 2.1], there was obtained an

estimate for the derivatives of the difference G, — Gp, applied then in [I, Subsect. 2.2] for
estimating the norm || f — A®||; of the error f — A®. These two lines can be easily combined

to obtain inequalities (37). By and ((37al)
1| Dn (@) — @) — %, (@ — @p)]|, < e(n, A, 1)65.
This is why, if we establish the inequality
|| D (@, — @F) — %, (@), — D))||, < e(n, N)O; (k= 1), (38)
then the convergence of the series ® and ®” in C?#(I") and the relation Ry = & — ®” (on 1)
and will imply required estimates .
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Let k > 1, J9 C Qp1 \ Q5 |, 7= (2,72,) for 0 < 7 < 1,y € J\P; and K € H;. By
equation (23’) in [, and (36al) we get

‘DQ(GA[%} (7, y) — GAk(f,y))‘ < (B, Nyalz =y " Al

Hell

< (BN Iy Al (81 <3
Hely
which can be considered as an analogue of inequality (17d)). Reproducing for the functions

6K(a_:7y) = (GA[c‘}:'(](‘fay> - GAk(‘fay>)¢K(Z(j7y))7
6;((1:79) = DwnéK(x7y) - $;15K(I,y)7

we arrive at the estimates

| D265 (2, )| < (B, N[, )10 ALy, (39)
Hell
D203 (2, 9)| < clo, VLT YT (Al a€f{0er, . en}, (40)
Hell
| Do 85 ()| < c(n, VLT Y Al (41)
Hell

In view of ({a)), (35)), and the belonging Ay fu) € VL(0), the formula
D*(Dn(®), — @) — ;' (@), — ¥f)) (2)
_ 3 | DA . ol <1
T JICQ 1\Q9_, and KeHy, ” 7 Vi

holds true, where the series converges absolutely. Hence, in view of ( . - and ( .
we obtain estimate . This completes the proof of (26 . ) and of the theorem.

3. STANDARD SET AND CALCULATIONS WITH THE POTENTIAL ®/,

3.1. Standard set and potential ®4,. To a Lipschitz function w : R"~! — R we associate
its overgraph €2 and the approximation numbers b;:

Q={z=(2,2,) € R": ,, > w(a')},

1/2
_ng1
br=1; * (minl/ \w—7\2d£> , 1eD.
yePY T Js1

We introduce a series of auxiliary notions needed for studying harmonic functions in the
domain €2 by straightening this domain.

Theorem 3. Given K € D, let yx € P}~ be a polynomial with the property

[ o= d = min, [ o= qas
K el J K

For the partition of unity {1k} in we let
= Yk(x)k(@), zeR],
K

Then the function w belongs to C*°(R), is Lipschitz and
w(é04+) =w(§), R (42)
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We choose a constant 6 > ||w||Lip. Then for each I € D
|V71| < ¢(n)b, (43)
< c(n)d, (44)
||D Wl ey < (@)l b, a ¢ {0 e, en ), (45)
| Dl 13y < e@)l;™™0, o #0. (46)
There exists W = c(n,0) such that for the mapping X' : x > '
|w = rllLeen < Wii/3, I €D, (47)
||w—'ylox’HLoo(Im) < Wiy /3, 1eD, (48)

the mapping g : R — R" of the form g(x) = (x’,gn(x)) with the function

gn = w + Wx,

1

is a diffeomorphism of Rl onto 2, while the inverse diffeomorphism g = g~ is represented by

the formula
9(y) = (v, &(y))

with a Lipschitz function & € C*(Q) satisfying the inequalities

[(D*®) 0 g]| . ) < e, )1 br, ] > 1, (49)
[(D*®) 0 g| ) < el ), @ #0. (50)
The operator
n—1
86 2
=1 g
belongs to AN for some A(n,0) > 1 and each 0 < pu < 1. The inequalities
|Al;r < ¢(n, 0)by, (51)
LIl < e(n,0)l;'b;  for L= —(A®)og=—) (D;6)og (52)

i=1
hold true.
We call ({”yK},w, W, g,9,®, A, A, L) the standard set of the pair (w,0).

Proof. 1t is obvious that w € C*°(R}). It is elementary to check (it is sufficient to consider
one-dimensional dyadic intervals) that
T
if ([X)O N §K 7é @ and i € {l[/2,l[,2l[}, then K C 51.

By analogy with [I0, Subsect. 2.7], now one can obtain properties (42)—(46)) and the estimate
|w =il Lo < ci(n,0)l;, IeD.

The Lipschitz property for w is implied by inequalities with |a] = 1.
By and , the function w coincides with the polynomial v;o0x’ in some neighbourhood
of the point (¢;,111;/8) € I®. By , the Taylor formula, the convexity of the parallelepiped

I® and we obtain
10 = 91 0 X sy < cl)labr, (53)
<

|w — 1 0 X' || oo gm0y < c2(n, 0)lr.
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It follows immediately from that || Dpw||zeomrn) < c3(n, ). We let
W(n,0) = 3max{cy, cy, c3}.
Inequalitie and (48)) are trivial. The required properties of the mappings ¢g and g including
49) (0]

estimates (49)) and on & are obtained due to Theorem 2.5 in [10].

The bi-Lipschitz constant of the mapping ¢ is less than some number c¢(n,#) due to
and . Hence, for some A(n,6) > 1, one can easily obtain the uniform ellipticity condition
Alz] € Ay, see [9]. Hence, A € Af.

By inequalities , and we have

| Daj || oo gmy + | Ll| oo 2y + U | DL| poo 1y < c(n, )1 by
Now and are obtained by the analogue of estimate for the set I%. O]

Remark. The operator A and function L are such that each function U harmonic in the
domain € solves the equation A(U o g) = LD, (U o g).

In the rest of the section we restrict ourselves by the functions w € LIP.
Definition 1. The set LIP consists of Lipschitz functions
R — R,

each of which coincides with some polynomial in PY™" on the complement of some compact set.

Let us find out, what Theorem [2| gives once it is applied to the potential ® 4,,.

Lemma 4. Let w € LIP and I € D. Then

0, = ZF%’N)b‘] <00, Og:= ZF%’n)bi < oo, ©OF:= Zl"%’n)b% < 00.
J J J

Given a constant 0 > ||w||Lip, let ({ny},w,VV,g,g,(ﬁ,A, )\,L) be a standard set of the pair

(w,0). As k >0, we denote

/ / /
Ve =V, Tik=D1V oo, Tamik = Dp_17-

Then the inequalities

n+1
Jw — ’Yilc+1HL2(5I<k>) + [lw — VIIcHLQ(E)IU“)) < C(”)lni) by, (54)
ll_(i) H'Vllc+1 - 'Vl/cHLoo(g,I(k)) + ‘v('yl/c-i-l - PVI;)| < c(n)bra (55)

hold true.
For each p € (0,1) and the function f = w all assumptions of Theorem@ hold and in terms
of the notations of this theorem the relations

S} < C(n7 6)627 (56)
0* < ¢(n,0)l;163, (57)
n—1 n—1 9
Tik Tik L4300 Tox

Ay = Dj; — —Din — —Dpi p + ————5—"Dhn,

k 2 { W W } T (58)
Ye(2) = Y (@), (59)

I'(n/2

Fu(z) =W (/2) i woy(€) ¢ (60)

n/2
T / r—00 ‘S_C;ﬁ‘<7‘

(2, ) + W) = (£,74(6))

hold, where
Wiky = Wh1 = Wk Wi = G + (1= @) or(§) = @r(§, 04).
Remark. The limit ),(§) exists thanks to inequality ([Ad).
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Proof. Due to we have by < ¢1(n, ). The definition of the set LIP and the definition of
the numbers b; show that

n+1 n+1 n+1

by <CLW), > < Colw, I, 1,7,
that by Lemma [1] yields

ntl _ ntl n_ 1 -~
by < min{cl,C’QlIQ lJ 2 } < C{L+102n+1l}/2l(]1/27 0, n+1cvn+1 ZF (1/2,n—1/2)

The relations ©, < 00 and O3 < oo are implied by the inequalities b; < ¢; and @1 < 0.
Estimates and are obtained by the embeddings I®) ¢ I*+1) < 5I*) and simple
properties of the polynomlals similarly to |10, Subsect. 2.7].
The conditions A > 1 and A € A} of Theorem I 2| are implied by Theorem I In view of | .
and ( . we have

| D?wll; < ea(n)l5 by, (61)
Zr“’" 1| D*w]|; < 20, < o0,

and hence, D*w € VL(0). By @, and the Cauchy inequality we get
fJ < CQl;le+CQ[I, J]_l Z bH < 202[31 Z bH,

He{IJ}UI_j HelJulJ
2
S A | Fr<emn )it | Y bu | <am oY L
HelJUT) HeJUT) HelJuT)
By we obtain
0,n); ;—3/2 (0,n);—1/2 (0n+1 73/2 1 (ln -1/2
> TEPLEE e, ooyt cs(n)I T2,
J: HelJulj J: HelJulj
Therefore,

<Y | > LG | L < eseiOs,
H \J. HelJulJ

O <y | > TV P < cseslytes.
J: HeTJUTS

We have obtained estimates and , which imply © < oo. Hence, the function f = w
satisfies all assumptions of Theorem [2]
By the function w(x) coincides with 7;(2’) in a “half-neighbourhood” of the point ¢,

while the function &(y) coincides with the function %’/‘(y/) in a “half-neighbourhood” of the
point g(cx). This leads us to and ([59)).
Let us prove identity . In view of (b8) it is easy to confirm that
det A, = w2,

We omit the subscript £ in notation of the numbers 7, ;, and the coefficients a;; 5, of the operator
Ag. Introducing the shorthand notation 7,, = W, we can write as

- R
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The numbers
bij = 51']' — (5m5jn + TZ'T]'
satisfy the identities

Z aijbjq = Z @;5(0jq — Ojndgn + TjTq) = Qig — Qinlgn + (Z aijTJ’) Tqs
=1 j

J

g 1+
Qiqg — améqn = 5@'(1 — dm‘/{; 6qnW (5 (5 Tl
i 1+ >0 72 T,
din I+ Zgzl Ts2 din
;aij’rj =T — W ; ( — + 5m W2 Tn = W?
" 627’1
;aijqu =0iq — mW + = W Tq = 0ig.
Hence, (b;;) = (a;;)~". Letting &, = 0, for £ € R"™! we have
n—1
QAk Z bzy 6]) - Z gz + Z TZTJ g])
2,7=1 =1 1,7=1
= |2/ — &P + (1h(@) = Yh(€) + Tawn — Tubn)
2
= (@ @) + Way) = (694(0)]
which by and leads us to . The proof is complete. O
Under the assumptions of Lemma [4] we denote
={z el xR:z, =y)+2Wi;/3}, H,=IxR ask>1. (62)
We let t = ¢;x). It is obvious that for x € Hj, there exists the limit
I'(n/2) .. -
Foofe) = 22t [ (e — (6hl9)] " ae (63)

n/2
Q "0 Jlg—xl<r

We have g(I”) C Hy, (in view of ([48)) and (2/,7}(2') + Wx,,) € Hy, for z € 1Y, see (60).

,

Lemma 5. Under assumptions of Lemmalf for (z,€) € Hy x R"! we let

=2 Mr8)= {w<k)<s>\x— (6] +wi(€)

Then Fyy € C*(Hy) and for each o € Ny

z — (&, 74(€)

/ _1|D2‘Mk(m,§)} dé < c(a,é’)l;(t;"bl(m, (64a)
D* Fgfa) = ) | Do) e (64)

Proof. We denote
X= (%), E=lr-X+r-¢
Let T (€) be the convex hull of the set {v;(€),w(€), wr+1(£)} C R.
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Let us prove that

if (x,€) € H, x R"™ with t € Tj,(¢), and € ¢ 31%Y for k > 1,

(65)
then ‘x — (f,t)‘ c(n, )= = e(n, 0)l ;).

If the assumption in holds, then ¢ = () for a convex linear combination

¢ = By, + Bow + B3Vji1s
since w41 = @) 1w + (1 — )4 1)7s1- We denote
Z= (@), R=lo—2|+}'— ]

It follows from the inequalities 6 > |lw||Li, and that ||¢]|Lip < ¢(n)0 and this is why by the
triangle with the vertices x, Z and (£, t) = (&,((§)) we get that

|z — (&, 8)| = an,0){|lz — Z|+ |Z — (£,t)|} = aR.

Let us treat the cases £ € 31 and & ¢ 31. If £ € 31, then k = 0 and wi41(£) = w(&) due to (4al)
and hence, 3 = 0 without loss of generality. By x € Hy and we have

—0(z") = 2Wip/3,
z, —w(@') =z, —y(a') — Wi /3 = Wi;/3,
R2 |z —Z] = fi|zn — (")) + Be|z, —w(a')] = Wip/3.
If € ¢ 31, then |2/ —¢&| >l as k=0 and |2/ —&| > [;6-1) as k > 1 and hence,
R > min{W/3,1/2};s for each €.

By , , and we conclude that
‘W($/> - ’Yl/c(x/)‘ < w - 71<k>||Lo<>(1<k>) < Wi /3, }%;H(SUI) - Vé(x/)‘ < c(n, 0)
2= 21 < |6 940) = (@ 3%@))| + k() = <) < eln, Oty
ESKR+|1X—Z|+t—2| <R+ c(n,0)l;0 < ca(n,0)R, ‘:c — (§,t)| > ¢, ' E.

If £ € 31, then k = 0 and ~((z) € To(r) and therefore,
E>lr—-X| > clR‘g > ¢y min{W/3, 1};.

If £ ¢ 31, then [r—¢&| > 3l;/2as k=0, [t —&| > l;6-1 as k > 1 and hence, = > ;4 /2 for each
k. Thus, = > ¢(n, )l for each & and we complete the proof of implication ([65).

If wy(§) # 0, then & ¢ 311 as k > 1 due to and hence, by (65)),
if (,€) € Hy x R"! and either wy(€) # 0, or & ¢ 51,
then ‘Dg“x— {,t)| n‘ < cla, )21 L ela, O)177 o nolelast e Ty (6).
By and the Holder inequality this follows that

W) = Qg1 — Dw —Yoy1) + (1 — @) (W — 1), (67)
[ HLl 5100y K c(n)lfwbrw,

D2 Mio(, )| sy < el O)llwa | sroon Ly < el 015 by (68)
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Let £ € R"\ 510 (= & € R\ 5I™). Then wiy(€) = 7441 (€) — 71.(§) and wiy(€7) =
Vi1 (€°) — 74(€%) due to (D). By and we obtain

Wy (§) +ww) (§7)

S — o 6) = )] < ot (69
“n(8) e ) pala = (6,746 "] < clar O)troobyoaz L,

|wiey (€] < e(n) (Lo + [x =€) by < e(n)]x — E|byw < c(n)Ebse, (70)
‘Dng(x, f)‘ < C(Oz, Q)ZIUC)[)I(/C)E_n_Ia‘ + C(n)EbI(k) |Ya’,

where
Ya=Dile = (€44(6)| " = Defe— (€€
Majorizing each term by , we get
Yol < cla, @)=, (71)
}D”‘Mk x f)} cs3(a, 0) Ly + Z)byim = —n=lef
< %bz(m:l"'a < 75351(@’? — [l "
Relations 2/ € T C I®), X' = € I(k) and ¢ ¢ 5I®) show that
|72’ + 1—7;—5‘ 5 — &l
Tz 4+ (1-7)X = (1) > \/m\zc—ﬂ for each 7 € [0,1] and t € R. (73)

Hence, by the identity ‘% — (&,7,(9)

= ‘% — (5*,7,2(5*))‘ and by we obtain
Yol < e(n)]e — X[|p — 77

Yol < min{c(n)|z — X[jg — &[T, e(n, )=} < e(n, 0)]x — X[=7",
‘Mk(ﬂj, )‘ < (n,@)(ll(k) + |a: — %Db[(k)E_n,

/ (o= %] + e — £) " d < eln) (1o + | — X)),
le—&1251,(x) /2

HM’C(QZ’ ')”Ll(]Rn—l\E)I(k)) < ¢(n, 0)brow.- (74)

Estimate (64a)) as o = 0 is implied by and , while as a # 0, it is due to and
(72). Identity (64b|) as o = 0 is yielded by and the change of variable £ — £*, while as

a # 0 (together with the statement Fiyy € C*°(Hy)) it is implied by differentiating the integral
formula (64bf) that is possible thanks to (72)). O

3.2. Function S and potential ®;. Let us give a “qualitative” analogue of Lemma [5] for
the functions determined by the volume integrals.

Lemma 6. Let wy,w_ € LIP, Q4 = {z € R": z, > wy(2')} and x = x4 — x—, where x4
are the characteristic functions of the sets Q04 and Q2_. We let

e =% Nx<x,5>:/ﬁx<5’t>\x—<f’t>l +2x<f*,t>|x—<f*,t>| "

for (r,x,&) € R"! x (R™\ supp x) x R"™'. Then the following statements hold true.

—-n
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(1) The function N (z,-) belongs to L'(R"™'), there exists the limit
s(z) = lim X(W)lz =yl dy,
7—00 |13—y|<7’
and the identity s(x) = [, Nor(x, &) d§ holds true.
(i) For each (r,z,a) € R"1 x (R" \ supp x) x NI the belonging
D2Ny(z,) € L\(R™) (752)
holds true, the function s is infinitely differentiable in R™ \ supp x and
D%s(x) = DY N (z,€) d€. (75b)
Rn—1

Proof. (i) For w € LIP by x[w] we denote the characteristic function of the overgraph of the
function w, while by v[w] we denote the polynomial in P}~!, with which w coincides in the
vicinity of infinity. As = ¢ supp x, we let

Ve =7ws] & F =71 — (@) + 2,

The functions y, and y_ coincide in the vicinity of 2 and this is why there exist w* € LIP
such that
X+ = X[w"] = x[w™] = x_ in the vicinity of z & 7 = y[w¥].

In view of the representation
x = e = xlw T+ o™ = xlw T} 4+ {xlw™] = x-}
we see that in order to check Statement (i), it is sufficient to check (i) for the pairs (wy,w™),

(wh,w™) and (w™,w_) instead of (w,,w_). Therefore, it is sufficient to check (i) in particular
cases

(a) 7+ — - = const;

(b) 74 (') = 2 = 7 (&),
In Case (a), the function y — x(y)|z — y|™™ belongs to L'(R"), which gives (i) by the Fubini
theorem and the change of variables £ — &* = 22’ — £. In Case (b), the change of variables
y = (£,t) — 2z — y and the Fubini theorem shows that

Ny (z,§) =0 for large |2' — &,
(Fro > 0) (Vr > ro) / X))l —y| " dy = / Ny (z,€) dE.

le—y|<r Rr—1
Thus, the proof of Statement (i) is complete.

(ii) For £ € R™! we let
o X(g*,t)}l’—(g*,t)}_n—x(g*,tﬂl’—(5*,25)‘_71
R
By the identity &* — &* = 22’ — 2 it is easy to get that
sl Elel < 0o, ve LR
3

dt.

and

/Rnl v(€)dE = 0.

This is why properties with a = 0 are implied by Statement (i). The case a # 0 can
be treated similarly to Lemma |5 via checking an analogue of estimate for the function
Ni(z,§). O
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Let w € LIP. To compare Lemmata [4] [5] and [6] we introduce the function

S(x) := Sq(x) := lim {lnr _L/2) / |z —y|™" dy} , x €.
yeERM\Q: |z—y|<r

r—00 7Tn/2

Here the limit exists since the area of the unit sphere S*~! C R" is equal to % The function

S is invariant w.r.t. the shifts and rotations of the domain €2 in the obvious sense.

Lemma 7. Under assumptions of Lemma let Q, = {IB e R": z, > wk(x/)} and S, = Sq, -
Then the inequalities

ID*S — D*Sol o (irmyy < el )Y 1S, o € N, (76)

[D*(Sog—Soog)|, <cla,0)Y 15w, ol <1, (77)
k=0

ID%(S0g—Soog)||, < cla,) Zz (1=lohip Z b0, Jal =2 (78)

hold true. Ife =0 as|a| <1 and 0 <e < 2 as |a| = 2, then the sum F of the series Y ;- , Fy,
satisfies

|D*(F+WSog—WSyog)|, <cle.0,2)7°> 15,002, ol <2. (79)
k=0

Proof. By the embedding g(I®) C Hy (see (62)) and by Lemma [5| we have
1D Fiy |l oo (g < e, )by, o € N (80)
Let us establish the second main inequality
||DaF(k) + DaSk+1 — DaSk||Loo(g(ID )) \ (C\f 9>ll(k) bI(k), o€ INS (81)

For z € g(I”) C Hy, we let ¢, Fiy), &, My, X, Z and Tj to have the same meaning as in
Lemma 5] and in its proof, while the functions x, N, and s are defined by Lemma [f] for the pair
of the functions (wi,w_) = (wWgt1,wk). We let

U§) = Dife = (€ 4(©)]  —Dilr = (wnl®)]
Vi) = Difo = (€wn(@)| " = Defo— (6wl +wi©)|

In view of the belongings 7, (£),wk(§) € Ti(§), the relations (for o + e,), (67), (p4) and
the Holder inequality

U]

<o, 0) |fy,,’C — wi(€ ‘lﬂk) ol =1 s wky(§) # 0,
wiy Ul < e[l = Yl + o = il = il ™™ in R
e Ul s < el 0)1;6560.
In the same way,

’V ‘ c(a, 0) ‘w(k |l1<k) el=1 s wiy(§) #0and 0 <7< 1,

1
w(k)/o V(-,7)dr < (o, G)ZI(k) bI(k)

L1(5I(k))
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Hence, in view of the identity U|Rn71\5l(k) = (0 we obtain

—n

we) (§) {U(E) + /01 V(g T) dT} = we) (§) Dy

4 /R (€ DD2|z — (€| " dt,

2
n “’(k)z(f*) {U(f*) + /01 V() dT} )

@ a “la 1
||Dka($a ) + DIN;(% ')HLl(Rn—l) < c(a, G)ZI(L)|b§(k) + 5”@’|L1(Rn—1\51(k>)a

DMy, ) + DNy, €) = L) {U(f) - /O Vier) dr}

where
1 1
O(£) = wipy(€) / V(E, ) dr + wi () / V(e 7) dr.

Let £ € R™'\ 5/(®). By (66, and we get

! N’
[ vieryin] < SeDlelO] g g

Jx — &[rled

‘@(€)| < +C(n)|}t—f|bl~(k) .

/0 V()= V()] dr

Hence, as a # 0,
101 2 r-rysr00 < ela, )65 b0 (82)
Let o« = 0 and therefore,

-n

V(ET) = wi()r / D,

r = (& wi(é) +ww(§)To)

—n

1
V(e ) = w (€7 / D, io.

Now in view of , and

% C(n)l NI
Vien) —VEe Dl < T gmr

2= (&wr(&) +wi(©p)|  + Da

z — (£, wi(€) +wy(§)70)

Y

+ c(n)fr — &[byw ()rgpfgcl!@(é’, p)

i

(&, p) = Dy,

r = (&, wi(€) +ww(€7)p)

We consider the center X of the corresponding segment:
2X = (&wi(§) +wm(©)p) + (€7, wil(€") +wm(E)p).

By relations ({6)), r = ¢;0, X = (Zﬂ,%'g(% Ve = Y, @), we(§) = %(§), we(§") = 1(£7),
Wrr1(€) = Y1 (§), Wi 1(§") = 7341 (€7), (44) and we obtain

|z — g(cjn)| < e(n,0)]g(x) — | < e(n, )0,
l9(chn) — X| = w(chn) + 3W o /2 — % (x)| < 2Wie,
X =X+ (0, Ve (®) =% @)p), |z —X]<e(n,0)l0.
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Similarly to ([73) we have

Dx, | X — (& wi(§) +W(k)(§)P)‘ + Dx, | X — (£, wi(€") +wm(€)p)| =0,
4
‘TI + (1 — T)X — (5,75)‘ 2 ﬁ’x — 5‘ for all 7 S [O, 1] and ¢ < ]R,
96, p)| < e(n)r — Xle = €772 < e, O)lyw [ — €772,
V()= V(E, )| < e(n, O)lwmbrw|r — &7
‘@( | < c(n, Q)ZI(k)bnk)hi I
This implies as a = 0.
By inequality we get that
HDng( ) + D N ||L1(]Rn S < (aae)l;(‘ko)l%?(k)
We have g(I”) C Hy C Qo and g(I") C (72, € (see (@a))) and hence, the condition x ¢ supp x

of Lemma [6] holds true. This is why

2
Skr1 — Sk = (ng >s in the vicinity of each point = € g(1™),
7-(-7'74

D*(Fay + Stet = S0)(a) = o [ [DEMA(0,€) + DENi(o,€)] e

n/2

due to the definition of the function s(x) and identities (64b)) and (75b)). This leads us to (81]).

By , and we conclude that
|D%Ss1 — D[ poo grmy) < (e, )05 by, @ € N2
(g(I+) I

The series of the right hand sides converges thanks to ©; < oo, this is why the limit limy_, o (S, —
Sp) exists in C'> (g(]m)) and is obviously equal to S — Sy. This yields (76]). Differentiating the
composition and applying , and , we have

HDOC(SOQ - SO Og)HLOO(ID) < C(Q,Q)le_&)b[(k), |Q| = 17
k=0

ID*(S 29 = So 0 9) jouymy < el 0) Zzl '““bjzzm b1, Jaf >

In view of ( . D and (| . we obtain estimates and .
By (60} . and (63]) we have

Fy = WFyoh*
on the cube I¥, where
R (z) = (¢, (2)) + Wa,), x, > 0.
By , and Lemma [5| we get the estimate
(D Fyy) o h*|, < e(a, 0)1 0500, € NG, (83)
For z € IV, by and ,

|9(2) = h*(@)] = [gn(x) — hn(2)] = [w(z) — 7 (a")]

< Jw(@) = (@) + o) = @) < en) Y Linbro.
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The points g(z) and h*(z) belong to the convex set Hy and hence, by Lemma [5| and inequality

(81),

‘DQF(k')lg(m) = D F || < |9(@) = 1 ()] sup [ DFe Fyy | < (o, 0)1, Tiobr Z 27 by,
7=0
K
el e 1y < el 0)105 by > 27, (85)
=0

where
fk,a = (DQF(k)) o hk + (DaSk+1 — DaSk) o

It is obvious that on the cube I“,

Difk,a = Z{ [(DaJrePF(k)) O hk} [Dzhl; — ngp] + fk,a+epDigp}- (86)

p=1

Hence, in view of , , and , for each o € INj} we conclude that

k
| Dig, — Dihl;HI < ¢(n) Z by (by analogy with ), (87a)
”ngpHI HngpHLOO(IE + nZIHD i9p HLoo ™S <c(n,0), (87b)

—la|—1
”Difk,a“LOO(IE‘) < c(oz, 9)l1<|k)‘ b Z brii,

j=0
1 frallr < e, 0);5 by Z 27 by, (87¢)
1Ds frallr < e, )15 ™ by me) (87d)
Let us check the inequality
[ frallr < ‘bnk) ZQ 0-12Db,6,, ol <2, (88)

for the function f; , = D*fro. As a = 0, it is identical to (87¢), while as |a| = 1, it coincides
with estimate (87d) for v = 0. Differentiating formula (86), we get the identity

n

Di]fk,o = Z{ [(D F ) © hk] Di]gp + fk,epDijgp + (D]fk,ep)Digp}
p=1
+ > [(DypgFisy) © B¥][Dshf — Dig,) D,
p,q=1
Applying , and the inequalities

k
1Dygsllr < el br, 1Dl < e(n.8), D 2 by < e(n,6)

Jj=0

implied by (2)) and ([#3)—(47]), we arrive at estimate with |a| = 2.
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For each 6 € R, by and the Cauchy inequality we obtain

1/2

oo 00 k 2

ST fallr < cala, A [ S0 (Zzﬁ’“)“abbm) ,

k=0 k=0 §=0
k 2 k k

(Z 2(j_k)(1‘|a|)b1(j>> < (Z 2—2j5+2(j—k)5) Z 22js+2(j—k)(1—|a\—6)b?(j)’
=0 j=0 j=0

where A = Y772 l;fk)a‘bik). Let 6 = as |a| <1 and § = 0 as o] = 2, so that

k
Z 9~ HEF20=RY  eo(a, €),

§=0

o0 e.9] o 1/2
_etlal )

Z ||fllc,aHI <Cgcé/2ll 2 \L/2 (Z 22](5+1—\a|—§)b§(j) Z 2k(—s+|a|—2+25)>

k=0 j=0 k=j

(89)
e+|

<C4(Oé, 67 8>ZI_ ?

-~ 1/2
a ,
=0

But A < 0o due to ©5 < 0o, and this is why the series

ka,g = Z{F(k) o hk + Sk+1 o0g— Sk @) g}
k=0 k=0

converges absolutely in C%#(I"). By the same convergence of the series F' =Y 2 /W F{;, o h*
(Theorem [2)) and the aforementioned relation C'* (g(I D))-limkﬂoo(Sk —Sp) =8 — Sy we have
the identity

WY fro=F+WSog—WSyoyg.

Together with it proves .0 O]
Let us calculate Sg, when 2 is a half-space. We introduce the distance function
0u(@) = min [z - (§w(E))], zeR™ (90)
Theorem 4. Ifw € P!, then
Szlngw}ﬂ+0n, (91)

where ,
In2+5,2, o, niseven
k=1
O-'I”L = { n—3 1 Qk’ ’ (92)
n=s .
2 k20 ThiT n i odd.

Proof. While checking , we can assume that 2 = R} and = (0,2,). We introduce the
spherical coordinates

Y1 = P COS (o COS @3 . . . COS Py,

Yo = psin ¢y COS @3 . .. COS Py,

Yn—1 = P sin (bnfl COs ¢n7

Tp — Yn = pSin¢n-
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The set {y € R": y1 ... yn—1(zn — yn) # 0} is described as

p>0, |po €(0,71/2)U(n/2,7), 0<|ops|,...,|on] <m/2.

By the formula for the change of variables

- n o [ cosgscos® Py ... cos" T,

O(r) := Aew\m: v~y dy = / ; dpdgs ... don,
|lz—y|<r
where the right integral is taken under the restrictions z,, < psin ¢, and p < r. We have
3 vol S"2 T
coS @3 ...c08" " 1dps...do, 1 = 5 = =7
(= /2m/2)m 2 r (=)
n—2
O(r) = vol §"2 / S 70 1o do
p>0& —7/2<p<m/2: xp<psin p<rsin ¢

The cases n = 2 and n > 2 should be studied independently. If » > x,,, then

w/2 T od
O(r) =volS" 2 / cos" % ¢ de &
arcsin ZT” an”(b Y
w/2 r
=vol S" 2 / <ln — + Insin gb) cos" 2 pdo
arcsin £ T
n—1
:VOIS lnL+O<ﬁlnL>
2 T r T

/2
+ vol §" 2 / (Insin ¢) cos" 2 pdo + O (96—: In L) as r — 00,
0

n

since
/2
/ cos" 2 ¢dp = vol S" !/ vol S" 2.
—7/2
This gives with the constant

2volSn=2 [7/?
—_— In si "2 dg.
o /0 (Insin @) cos" ™= ¢ do

It is easy to see that oo =1In2 and o3 = 1. We integrate by parts:

Op =

w/2 /2 w/2
n / (Insin @) cos™ pdp = (n — 1) / (Insin ¢) cos™ 2 ¢ dep — / cos” ¢ do.
0 0 0
Hence, 0,40 = 0, + %, which proves (92)). ]

The next theorem is the main result of the paper. Together with Theorems [I} 3 [ and
Lemma [7] it is aimed for proving and related formulae.

Theorem 5. Given w € LIP and 6 > ||w||Lip, let ({’yK},w, W.gq,8, @,A,)\,L) be a standard
set of the pair (w,0). Then L € VL(0) and the potential

bi0)= [ E(Ainy)L)dy
Yn>0
and the function S = Sq satisfy the inequality

1Da®s =%, @+ 1 =%,Du(S 0 g)|, < e(n, 0,11) Y TT5"83 (93)
J
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for each I € D. The function o, o g is positive on I (see .) and the estimate
TL 0 /L (1,n) 72
HDU{QL—W " + %, [In 0, 0 g — Sog}H Zr b2 (93b)

holds true.

Proof. Lemma [4] allows us to apply Theorem [2] to the function f = w and to apply Theorem [7]
In this way, the notations f, ©, IJ, I.J, F, ¢, Ak, Vi, Wi, Wy, Fi, F, 7', Ry, ¥, ©F, O4, O,
O3, Vir Tiskr W(k)s Wk Ps Tso0, 2k and Sy make sense. The belonging L € VL(0) is implied by
and the relation ©; < co. The integral ®(x) is well-defined by Theorem [I} The function
0,, © g is positive on I due to the identity 7; = 7} and the belonging ¢(I") C Hy (see the

statement after ).

The function U(z) = x, is harmonic in the domain . Therefore, by the remark after

Theorem |3l and by inequalities , and we have
Aw = Ag, = LD, g, = LD,w+ WL,
|Aw = WLy < | Dawl Il < c(n, )17, J € D.
By inequality @D in Theorem ! 1| we obtain
WD, &, — Wx,'®p — D, ® a0 + X, ' @ 40l|7 < c(n, 0, 1)O5,
|WD;;®p — Dij®awllr < c(n, 8, u)l; 05,
At the same time,
1D ®aw — X, ' ®ppy — DU +x, 10, < c(n, 0, 1)05,
1Dij®aw — Dij¥l[r < c(n, 0, p)l; ' O3
due to estimates and in Theorem [2[ and to Lemma . By ,
D,V —x ' = D,w—x,'w+x, ' — x,D, F, D;;V = D;;w — D;j(x,F).
By inequality in Lemma [7| with ¢ = |a| — 1 € {0, 1} we obtain
|%n D F + %, D, [WS 0 g — WSy og]||, < c(n, 0)03,
HDU(X"F) + D;j(x,[WS 0 g—WSjog] ||I c(n,0)l;'05.
At that, Syo0 g =1Ing,, o g+ 0, on I by Theorem . The identity

o D 4y ® 4 U
{WDn(I>L—W—L—Dn(I>Aw+ A }+{Dn<1>,4w— A _anf+—}

X, X, X, X,
+ Dpw —x,'w + %,y — {XnDnF +x, D, [WSog—WSpo g]}
=W |[D,®r, — x,,'®r, 4+ x,Dp[ln g, 0 g — S o g]]
and the identity
{WD;;j®;, — D;j®uaw}t +{Dij®Paw — Dij¥} + Djjw
—{Dij(xF) + Dyj(x,[WS 0 g—WSyog])} =WD;;[®, +x,[Ino,, 09— Sog]
show that checking inequalities is reduced to checking the estimate
[ullr < ¢(n, 0, )65,

where
u= Dyw —x, 'w+x, 7+ W — Wx,D,[In 0+, © gl
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In view of the formula v; o X' = 7 we write
0y, 09 =Clgn =71 0x] = Clw+Wx, — ], C=C(Vy) >0,
Dyaw+W  Dyaw+W
wH+Wx, —vy 1+ 220

Wx,Dy[ln o, 0 g] = Wx,

Wxn
_ D, W —wEL — Dyw
u = 0 v + an + W — wu—j—_% = o w Xn 0 Wﬁl.
Due to , the Taylor formula, , and we have
—w w — _
o] =] < =l < o
Xn 1 Xn 1
w — 1
L e
Xn Loo([D) 3
1 3 9 |lw— 3 9cib
1 + Wxn, I 2 4 WXn CV‘(ID) 2 4W
ullr < [e1br][erbr + cabrlesW ! < e(n, 0)65.
This completes the proof. O
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