LOWER BOUNDS FOR THE AREA OF THE IMAGE OF A CIRCLE

B.A. KLISHCHUK, R.R. SALIMOV

Abstract. In the work we consider \(Q \)-homeomorphisms w.r.t \(p \)-modulus on the complex plane as \(p > 2 \). We obtain a lower bound for the area of the image of a circle under such mappings. We solve the extremal problem on minimizing the functional of the area of the image of a circle.

Keywords: \(p \)-modulus of a family of curves, \(p \)-capacity of condenser, quasiconformal mappings, \(Q \)-homeomorphisms w.r.t. \(p \)-modulus.

Mathematics Subject Classification: 3065

1. Introduction

The problem on area deformations under quasi-conformal mappings originates from work by B. Bojarskii [1]. A series of results in this direction were obtained in works [2]–[4].

First an upper bound for the area of the image of a circle under quasi-conformal mappings was provided in monograph by M.A. Lavrent’ev, see [5]. In [6, Prop. 3.7], the Lavrentiev’s inequality was specified in terms of the angular dilatation. Also earlier in works [7]–[8] there were obtained the upper bounds for the area deformation for annular and lower and \(Q \)-homeomorphisms. In the present work we obtain lower bounds for the area of the image of a circle under \(Q \)-homeomorphisms w.r.t. \(p \)-modulus as \(p > 2 \).

To simplify the presentation, we restrict ourselves by the planar case. We recall some definitions. Assume that we are given a family \(\Gamma \) of curves \(\gamma \) in the complex plane \(\mathbb{C} \). A Borel function \(\varrho : \mathbb{C} \to [0, \infty) \) is called admissible for \(\Gamma \), which is written as \(\varrho \in \text{adm} \Gamma \), if

\[
\int_{\gamma} \varrho(z) \, |dz| \geq 1 \quad \forall \, \gamma \in \Gamma.
\]

(1)

Let \(p \in (1, \infty) \). Then a \(p \)-modulus of the family \(\Gamma \) is the quantity

\[
\mathcal{M}_p(\Gamma) = \inf_{\varrho \in \text{adm} \Gamma} \int_{\mathbb{C}} \varrho^p(z) \, dm(z).
\]

(2)

Assume that \(D \) is a domain in the complex plane \(\mathbb{C} \), that is, an open connected subset \(\mathbb{C} \) and \(Q : D \to [0, \infty] \) is a measurable function. A homeomorphism \(f : D \to \mathbb{C} \) is called a \(Q \)-homeomorphism w.r.t. \(p \)-modulus if

\[
\mathcal{M}_p(f\Gamma) \leq \int_D Q(z) \, \varrho^p(z) \, dm(z)
\]

(3)

for each family \(\Gamma \) of curves in \(D \) and each admissible function \(\varrho \) for \(\Gamma \).

We also note that if the function \(Q \) in (3) is bounded almost everywhere by some constant \(K \in [1, \infty) \) and \(p = 2 \), then we arrive at classical quasi-conformal mappings introduced originally in works by Grötzsch, Lavrentiev and Morrey.

Let \(Q : D \to [0, \infty] \) be a measurable function. For each number \(r > 0 \) we denote by

\[
q_{z_0}(r) = \frac{1}{2\pi} \int_{S(z_0,r)} Q(z) \left| dz \right|
\]

the integral mean of the function \(Q \) over the circle \(S(z_0, r) = \{ z \in \mathbb{C} : |z - z_0| = r \} \).

Theorem 1. Let \(D \) and \(D' \) be bounded domains in \(\mathbb{C} \) and \(f : D \to D' \) be a \(Q \) \-homeomorphism w.r.t. \(p \)-modulus, \(p > 2 \), \(Q \in L^1_{\text{loc}}(D \setminus \{ z_0 \}) \). Then for all \(r \in (0, \delta_0) \), \(\delta_0 = \text{dist}(z_0, \partial D) \) the estimate

\[
|fB(z_0,r)| \geq \pi \left(\frac{p-2}{p-1} \right)^{\frac{2(p-1)}{p-2}} \left(\int_0^r \frac{dt}{t^{\frac{1}{p-1}} q_{z_0}^{\frac{1}{p-2}}(t)} \right)^{\frac{2(p-1)}{p-2}}
\]

(4)

holds true, where \(B(z_0,r) = \{ z \in \mathbb{C} : |z - z_0| \leq r \} \).

We note that as \(p > 2 \) and \(Q(z) \leq K \), by Theorem 1 we arrive to the result for a circle in [12 Lm. 7].

2. **Proof of main theorem**

We provide some auxiliary information about the capacity of a condenser. Following work [13], the pair \(\mathcal{E} = (A, C) \), where \(A \subset \mathbb{C} \) is an open set and \(C \) is a non-empty compact set contained in \(A \) is called **condenser**. A condenser \(\mathcal{E} \) is called an **annular condenser** if \(\mathcal{R} = A \setminus C \) is an annulus, that is, if \(\mathcal{R} \) is a domain whose complement \(\overline{\mathbb{C}} \setminus \mathcal{R} \) consists exactly of two components. A condenser \(\mathcal{E} \) is called a **bounded condenser** if the set \(A \) is bounded. We also say that a condenser \(\mathcal{E} = (A, C) \) lies in the domain \(D \) if \(A \subset D \). It is obvious that if \(f : D \to \mathbb{C} \) is a continuous open mapping and \(\mathcal{E} = (A, C) \) is a condenser in \(D \), then \((fA, fC)\) is also a condenser in \(fD \). We also have \(f\mathcal{E} = (fA, fC) \).

Let \(\mathcal{E} = (A, C) \) be a condenser. By \(\mathcal{C}_0(A) \) we denote the set of continuous compactly supported functions \(u : A \to \mathbb{R}^1 \), by \(\mathcal{W}_0(\mathcal{E}) = \mathcal{W}_0(A, C) \) we denote the family of non-negative functions \(u : A \to \mathbb{R}^1 \) such that

1) \(u \in \mathcal{C}_0(A) \),
2) \(u(x) \geq 1 \) for \(x \in C \),
3) \(u \) belongs to the class ACL.

As \(p \geq 1 \), the quantity

\[
\text{cap}_p \mathcal{E} = \text{cap}_p (A, C) = \inf_{u \in \mathcal{W}_0(\mathcal{E})} \int_A |\nabla u|^p \, dm(z),
\]

(5)

where

\[
|\nabla u| = \sqrt{\left(\frac{\partial u}{\partial x} \right)^2 + \left(\frac{\partial u}{\partial y} \right)^2}
\]

(6)
is called a p-capacity of the condenser \mathcal{E}. In what follows we shall make use the identity
\[\text{cap}_p \mathcal{E} = \mathcal{M}_p(\Delta(\partial A, \partial C; A \setminus C)) \] (7)
eq

established in work [14], where for the sets \mathcal{F}_1, \mathcal{F}_2 and \mathcal{F} in C, the symbol $\Delta(\mathcal{F}_1, \mathcal{F}_2; \mathcal{F})$ stands for the family of all continuous curves connecting \mathcal{F}_1 and \mathcal{F}_2 in \mathcal{F}.

It is known [15, Prop. 5] that as $p \geq 1$,
\[\text{cap}_p \mathcal{E} \geq \left[\inf l(\sigma) \right]^p_{|A \setminus C|^{p-1}}. \] (8)

Here $l(\sigma)$ is the length of a smooth (infinitely differentiable) curve σ being the boundary $\sigma = \partial U$ of a bounded open set U containing C and contained together with its closure \overline{U} in A and the infimum is taken over all such σ.

Proof of Theorem 1. Let $\mathcal{E} = (A, C)$ be a condenser, where $A = \{ z \in D : |z - z_0| < t + \Delta t \}$, $C = \{ z \in D : |z - z_0| \leq t \}$, $t + \Delta t < d_0$. Then $f\mathcal{E} = (fA, fC)$ is an annular condenser in D' and according to (7) we have the identity
\[\text{cap}_p f\mathcal{E} = \mathcal{M}_p(\Delta(\partial fA, \partial fC; f(A \setminus C))). \] (9)

By inequality (8) we obtain
\[\text{cap}_p f\mathcal{E} \geq \left[\inf l(\sigma) \right]^p_{|fA \setminus fC|^{p-1}}. \] (10)

Here $l(\sigma)$ is the length of a smooth (infinitely differentiable) curve σ being the boundary $\sigma = \partial U$ of a bounded open set U containing C and contained together with its closure \overline{U} in A and the infimum is taken over all such σ.

On the other hand, by the definition of Q-homeomorphism w.r.t. p-modulus we have
\[\text{cap}_p f\mathcal{E} \leq \int_D Q(z) \varphi^p(z) \, dm(z) \] (11)
for each $\varphi \in \text{adm} \Delta(\partial A, \partial C; A \setminus C)$.

It is easy to check that the function
\[\varphi(z) = \begin{cases} \frac{1}{|z - z_0| \ln \frac{t + \Delta t}{t}}, & z \in A \setminus C \\ 0, & z \notin A \setminus C \end{cases} \]
is admissible for the family $\Delta(\partial A, \partial C; A \setminus C)$ and hence,
\[\text{cap}_p f\mathcal{E} \leq \frac{1}{\ln^p \left(\frac{t + \Delta t}{t} \right)} \int_R \frac{Q(z)}{|z - z_0|^p} \, dm(z), \] (12)
where $R = \{ z \in D : t \leq |z - z_0| \leq t + \Delta t \}$.

Combining inequalities (10) and (12), we get
\[\frac{[\inf l(\sigma)]^p}{|fA \setminus fC|^{p-1}} \leq \frac{1}{\ln^p \left(\frac{t + \Delta t}{t} \right)} \int_R \frac{Q(z)}{|z - z_0|^p} \, dm(z). \] (13)

By the Fubini theorem we have
\[\int_R \frac{Q(z)}{|z - z_0|^p} \, dm(z) = \int_t^{t + \Delta t} \frac{1}{\tau^p} \int_{S(z_0, \tau)} Q(z) \, |dz| = 2\pi \int_t^{t + \Delta t} \tau^{1-p} q_{z_0}(\tau) \, d\tau, \] (14)
where \(q_{z_0}(\tau) = \frac{1}{2\pi^2} \int_{S(z_0, \tau)} Q(z) |dz| \) and \(S(z_0, \tau) = \{ z \in \mathbb{C} : |z - z_0| = \tau \} \). Thus,

\[
\inf \ l(\sigma) \leq (2\pi)^\frac{1}{p} \left| \frac{|fA \setminus fC|}{\ln(t + \Delta t)} \right|^{\frac{p-1}{p}} \left[\int_t^{t+\Delta t} \tau^{-p} q_{z_0}(\tau) \, d\tau \right]^{\frac{1}{p}}. \tag{15}
\]

Employing the isoperimetric inequality

\[
\inf \ l(\sigma) \geq 2\sqrt{\pi |fC|}, \tag{16}
\]

we obtain

\[
2\sqrt{\pi} |fC| \leq (2\pi)^\frac{1}{p} \left| \frac{|fA \setminus fC|}{\ln(t + \Delta t)} \right|^{\frac{p-1}{p}} \left[\int_t^{t+\Delta t} \tau^{-p} q_{z_0}(\tau) \, d\tau \right]^{\frac{1}{p}}. \tag{17}
\]

We introduce a function \(\Phi(t) \) for this homeomorphism \(f \) as follows:

\[
\Phi(t) = |fB(z_0, t)|, \tag{18}
\]

where \(B(z_0, t) = \{ z \in \mathbb{C} : |z - z_0| \leq t \} \). Then it follows from (17) that

\[
2\sqrt{\pi} \frac{\Phi(t)}{t^{\frac{1}{p-1}} q_{z_0}^{-\frac{1}{p}}(t)} \leq \frac{2\pi |fC|}{t^{\frac{1}{p-1}} q_{z_0}^{-\frac{1}{p}}(t)}. \tag{19}
\]

Letting \(\Delta t \to 0 \) in inequality (19) and taking into consideration a monotonous increasing of the function \(\Phi \) in \(t \in (0, d_0) \), for almost all \(t \) we have:

\[
\frac{2\pi |fC|}{t^{\frac{1}{p-1}} q_{z_0}^{-\frac{1}{p}}(t)} \leq \frac{\Phi(t)}{t^{\frac{1}{p-1}} q_{z_0}^{-\frac{1}{p}}(t)}. \tag{20}
\]

This implies easily the following inequality:

\[
\frac{2\pi |fC|}{t^{\frac{1}{p-1}} q_{z_0}^{-\frac{1}{p}}(t)} \leq \left(\frac{\Phi(t)}{t^{\frac{1}{p-1}} q_{z_0}^{-\frac{1}{p}}(t)} \right)'. \tag{21}
\]

Since \(p > 2 \), the function

\[
g(t) = \frac{\Phi(t)}{t^{\frac{1}{p-1}} q_{z_0}^{-\frac{1}{p}}(t)}
\]

is non-decreasing on \((0, d_0) \), where \(d_0 = \text{dist}(z_0, \partial D) \). Integrating both sides of the inequality in \(t \in [\varepsilon, r] \) and taking into consideration that

\[
\int_{\varepsilon}^{r} \left(\frac{\Phi(t)}{t^{\frac{1}{p-1}} q_{z_0}^{-\frac{1}{p}}(t)} \right)' \, dt = \int_{\varepsilon}^{r} g'(t) \, dt \leq g(r) - g(\varepsilon) \leq \frac{\Phi^{p-2}(r)}{2(p-1)} - \frac{\Phi^{p-2}(\varepsilon)}{2(p-1)}, \tag{22}
\]

see, for instance, [16] Thm. IV.7.4], we obtain

\[
2\pi |fC| \int_{\varepsilon}^{r} \frac{dt}{t^{\frac{1}{p-1}} q_{z_0}^{-\frac{1}{p}}(t)} \leq \frac{\Phi^{p-2}(r)}{2(p-1)} - \frac{\Phi^{p-2}(\varepsilon)}{2(p-1)}. \tag{23}
\]

Letting \(\varepsilon \to 0 \) in inequality (23), we arrive at the estimate

\[
\Phi(r) \geq \pi \left(\frac{p - 2}{p - 1} \right)^{\frac{2(p-1)}{p-2}} \left(\int_{0}^{r} \frac{dt}{t^{\frac{1}{p-1}} q_{z_0}^{-\frac{1}{p}}(t)} \right)^{\frac{2(p-1)}{p-2}}. \tag{24}
\]
Finally, denoting $\Phi(r) = |fB(z_0, r)|$ in the latter inequality, we get

$$|fB(z_0, r)| \geq \pi \left(\frac{p - 2}{p - 1} \right)^\frac{2(p-1)}{p-2} \left(\int_0^r \frac{1}{t^{p-1} q_0^{\frac{p}{p-2}}(t)} \right)^{\frac{2(p-1)}{p-2}}$$

and this completes the proof of Theorem 1.

$$\square$$

3. Corollaries of Theorem 1

Theorem 1 implies the following statements.

Employing the condition $q_{z_0}(t) \leq q_0 t^{-\alpha}$, we estimate the right hand side of inequality (4) and after elementary transformations we arrive at the following result.

Corollary 1. Let D and D' be bounded domains in \mathbb{C} and $f : D \to D'$ be a Q-homeomorphism w.r.t. p-modulus as $p > 2$. Assume that the function Q satisfies the condition

$$q_{z_0}(t) \leq q_0 t^{-\alpha}, \quad q_0 \in (0, \infty), \quad \alpha \in [0, \infty)$$

for $z_0 \in D$ and almost all $t \in (0, d_0)$, $d_0 = \text{dist}(z_0, \partial D)$. Then for each $r \in (0, d_0)$ the estimate

$$|fB(z_0, r)| \geq \pi^{-\frac{\alpha}{p-2}} \left(\frac{p - 2}{\alpha + p - 2} \right)^{\frac{2(p-1)}{p-2}} q_0^{2-p} |B(z_0, r)|^{1+\frac{\alpha}{p-2}}$$

holds true.

In particular, letting here $\alpha = 0$, we obtain the following conclusion.

Corollary 2. Let D and D' be bounded domains in \mathbb{C} and $f : D \to D'$ be a Q-homeomorphism w.r.t. p-modulus as $p > 2$ and $q_{z_0}(t) \leq q_0 < \infty$ for almost each $t \in (0, d_0)$, $d_0 = \text{dist}(z_0, \partial D)$. Then the estimate

$$|fB(z_0, r)| \geq q_0^{2-p} |B(z_0, r)|$$

holds true for each $r \in (0, d_0)$.

Corollary 3. Suppose that the assumptions of Theorem 1 are satisfied and $Q(z) \leq K < \infty$ for almost each $z \in D$. Then the estimate

$$|fB(z_0, r)| \geq K^{\frac{2}{p-2}} |B(z_0, r)|$$

holds true for each $r \in (0, d_0)$.

Remark 1. Corollary 3 is a particular result by Gehring for $E = B(z_0, r)$, see [12] Lm. 7.

Corollary 4. Let $f : \mathbb{B} \to \mathbb{B}$ be a Q-homeomorphism w.r.t. p-modulus as $p > 2$. Assume that the function $Q(z)$ satisfies the condition

$$q(t) \leq \frac{q_0}{t \ln^{p-1} t}, \quad q_0 \in (0, \infty),$$

for almost each $t \in (0, 1)$, where $q(t) = \frac{1}{2\pi t} \int_{S_t} Q(z) |dz|$ is the integral mean over the circumference $S_t = \{ z \in \mathbb{C} : |z| = t \}$. Then for each $r \in (0, 1)$ the estimate

$$|fB_r| \geq \pi \left(\frac{p - 2}{p - 1} \right)^{\frac{2(p-1)}{p-2}} q_0^{2-p} \left(r \ln \frac{e}{r} \right)^{\frac{2(p-1)}{p-2}}$$

holds true, where $B_r = \{ z \in \mathbb{C} : |z| \leq r \}$.
4. Extremal problems for area functional

Let $Q : \mathbb{B} \to [0, \infty]$ be a measurable function satisfying the condition

$$q(t) \leq q_0, \quad q_0 \in (0, \infty)$$

(32)

for almost each $t \in (0, 1)$, where $q(t) = \frac{1}{2\pi t} \int_{S_t} Q(z) |dz|$ is the integral mean over the circumference $S_t = \{z \in \mathbb{C} : |z| = t\}$.

Let $\mathcal{H} = \mathcal{H}(q_0, p, \mathbb{B})$ be the set of all Q-homeomorphisms $f : \mathbb{B} \to \mathbb{C}$ w.r.t. p-modulus as $p > 2$ obeying condition (32). On the class \mathcal{H} we consider the area functional

$$S_r(f) = |fB_r|.$$

(33)

Theorem 2. For each $r \in [0, 1]$ the identity

$$\min_{f \in \mathcal{H}} S_r(f) = \pi q_0^{\frac{2}{2-p}} r^2$$

(34)

holds true.

Proof. Corollary 2 implies immediately the estimate

$$S_r(f) \geq \pi q_0^{\frac{2}{2-p}} r^2.$$

(35)

Let us specify a homeomorphism $f \in \mathcal{H}$, at which the minimum of the functional $S_r(f)$ is attained. Let $f_0 : \mathbb{B} \to \mathbb{C}$, where

$$f_0(z) = q_0^{\frac{1}{2-p}} z.$$

(36)

It is obvious that (35) becomes the identity at the mapping f_0. It remains to show that the mapping defined in such way is a Q-homeomorphism w.r.t. p-modulus with $Q(z) = q_0$. Indeed,

$$l(z, f_0) = L(z, f_0) = q_0^{\frac{1}{2-p}} , \quad J(z, f_0) = q_0^{\frac{2}{2-p}}$$

(37)

and

$$K_{l,p}(z, f_0) = \frac{J(z, f_0)}{l^p(z, f_0)} = q_0.$$

(38)

By Theorem 1.1 in work [17], the mapping f_0 is a Q-homeomorphism w.r.t. p-modulus with $Q(z) = K_{l,p}(z, f_0) = q_0$. \hfill \Box

BIBLIOGRAPHY

Bogdan Anatol’evich Klishchuk,
Institute of Mathematics,
National Academy of Sciences of Ukraine,
Tereschenkovska str. 3,
01601, Kiev, Ukraine
E-mail: bogdanklishchuk@mail.ru

Ruslan Radikovich Salimov,
Institute of Mathematics,
National Academy of Sciences of Ukraine,
Tereschenkovska str. 3,
01601, Kiev, Ukraine
E-mail: ruslan623@yandex.ru