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DIRICHLET BOUNDARY VALUE PROBLEM FOR

A THIRD ORDER PARABOLIC-HYPERBOLIC EQUATION

WITH DEGENERATING TYPE AND ORDER IN

THE HYPERBOLICITY DOMAIN

Zh.A. BALKIZOV

Abstract. In the work we study an analogue of Tricomi equation for a third order
parabolic-hyperbolic equation with smaller derivatives having multiple characteristics. Un-
der certain conditions for the given functions and parameters involved in the considered
equation, we prove unique solvability theorem for the studied problem. The uniqueness of
the solution is proved by means of the generalized Tricomi method, while the existence is
proved via the method of integral equations.
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1. Introduction

In the Euclidean plane of independent variables 𝑥 and 𝑦 we consider the equation

0 =

⎧⎨⎩(−𝑦)𝑚 𝑢𝑥𝑥 − 𝑢𝑦𝑦 + 𝑎(−𝑦)(𝑚−2)/2𝑢𝑥, 𝑦 < 0,

𝑢𝑥𝑥𝑥 − 𝑢𝑦 +
2∑︀

𝑖=0

𝑎𝑖(𝑥, 𝑦)𝜕
𝑖𝑢

𝜕𝑥𝑖 , 𝑦 > 0,
(1.1)

where 𝑎𝑖(𝑥, 𝑦), 𝑖 = 0, 2, are given functions; 𝑎, 𝑚 are given numbers and 𝑚 > 0, |𝑎| 6 𝑚/2;
𝑢 = 𝑢(𝑥, 𝑦) is the unknown function.

By Ω we denote the domain as 𝑦 < 0 bounded by the characteristics

𝐴𝐶 : 𝑥− 2

𝑚+ 2
(−𝑦)(𝑚+2)/2 = 0 and 𝐶𝐵 : 𝑥+

2

𝑚+ 2
(−𝑦)(𝑚+2)/2 = 𝑟

of equation (1.1) leaving the points 𝐴 = (0, 0), 𝐵 = (𝑟, 0), intersecting at the point 𝐶 =
(𝑟/2, 𝑦𝑐), 𝑦𝑐 < 0, and as 𝑦 > 0, this domain is the rectangle with the vertices at the points 𝐴,
𝐵, 𝐴0 = (0, ℎ) and 𝐵0 = (𝑟, ℎ), ℎ > 0. We also let Ω1 = Ω ∩ {𝑦 < 0}, Ω2 = Ω ∩ {𝑦 > 0},
Ω = Ω1 ∪ Ω2 ∪ 𝐽 , where 𝐽 = {(𝑥, 0) : 0 < 𝑥 < 𝑟} is the interval 𝐴𝐵 of the line 𝑦 = 0.

As 𝑦 < 0, equation (1.1) coincides with the degenerate hyperbolic equation

(−𝑦)𝑚 𝑢𝑥𝑥 − 𝑢𝑦𝑦 + 𝑎 (−𝑦)(𝑚−2)/2 𝑢𝑥 = 0, (1.2)
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and as 𝑦 > 0, this is the third order equation of the form

𝑢𝑥𝑥𝑥 − 𝑢𝑦 +
2∑︁

𝑖=0

𝑎𝑖(𝑥, 𝑦)
𝜕𝑖𝑢

𝜕𝑥𝑖
= 0. (1.3)

Equation (1.2) is an equation of hyperbolic type with a parabolic degeneration along the line
𝑦 = 0. As 𝑚 = 2, equation (1.2) becomes Bitsadze-Lykov equation [1], [2], [3], and as 𝑎 = 0,
equation (1.2) leads us to the Gellerstedt equation and as it was shown in [4], this equation has
application in the problem on determining the shape of the cut in a weir. A particular case of
equation (1.2) is the Tricomi equation being a theoretical base of transsonic gas dynamic [5],
[6]. Works [7], [8] were devoted to studying the Darboux first and second problem for equation
(1.2). In work [9] there was studied a criterion of the continuity of a solution to the Goursat
problem for a degenerate hyperbolic equation of form (1.2). A rather complete bibliography on
studying various boundary value problems for the degenerate hyperbolic equation was provided
in monographs [10]–[13].

Equation (1.3) called in [14] the third order equation with multiple characteristics is a par-
abolic equation [3]. The study of boundary value problems for equations of form (1.3) was
initiated by the results of work [15], where a boundary value problem nowadays called Cat-
tabriga problem, was studied by means of the methods of the potential theory and by the
integral Laplace transform. By means of the fundamental solutions of equation (1.3) obtained
in [15], in [14] there was constructed the Green function for the Cattabriga problem for equation
(1.3) and there were obtained the estimates for the fundamental solutions and their derivatives
of various orders. Also, by means of the Green function, in [14] there was constructed a solu-
tion of Cattabriga problem for equation (1.3) in a closed form. Works [16–18] were devoted to
studying various local and nonlocal boundary value problems for equation (1.3).

Equation (1) belongs to the class of third order equations of parabolic-hyperbolic type with
a degeneration along the line 𝑦 = 0 of the type changing. The need of considering the problem
on matching parabolic and hyperbolic equations was observed first in work [19]. The problem
on matching parabolic and hyperbolic equations arises in studying electric oscillations in wires.
Such problems also arise in studying the motion of a liquid in channel enveloped by a porous
media, in the theory of electromagnetic waves propagation and in a series of other field in the
physics.

The importance of studying boundary value problems for the high order mixed type equations
was pointed out in work [20] and it was mentioned in work [21] that an order degeneration along
the line of type changing brings new aspects in the theory of mixed type equations. The topi-
cality of studying well-posed boundary value problems for high order mixed type equations is
supported also by numerous publications in this direction by domestic and foreign authors. For
instance, for a model third order parabolic-hyperbolic equation with the Gellerstedt equation
in the hyperbolicity domain, in work [22] there was studied a nonlocal interior boundary value
problem with a shift involving Saigo operator in boundary conditions, while in work [23] there
was studied a similar problem for equation of form (1.1) with 𝑎2(𝑥, 𝑦) ≡ 0. Boundary value
problem for third order parabolic-hyperbolic equations with various degenerating operators in
hyperbolicity domain were studied in [24]–[28].

In view of the said above, there arises a need on finding well-posed boundary value problems
posed simultaneously for degenerating hyperbolic equations and high order equations with mul-
tiple characteristics. In the present work we study an analogue of Tricomi problem for the third
order parabolic-hyperbolic equations with a degeneration of type and order in the hyperbol-
icity domain. Among early works closely related with the present work, we distinguish works
[29, 30], where there was studied the well-posedness of the matching problem for model and
general parabolic and hyperbolic equations in time variable and there were studied structural
and qualitative properties of their solutions.
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2. Formulation of the problem and main results

A regular in the domain Ω solution to equation (1.1) is a function 𝑢 = 𝑢(𝑥, 𝑦) in the class
𝐶(Ω)∩𝐶1(Ω)∩𝐶2(Ω1)∩𝐶3

𝑥(Ω2), 𝑢𝑥(𝑥, 0), 𝑢𝑦(𝑥, 0) ∈ 𝐿1(0, 𝑟), such that substituting this function
into equation (1.1), we get the identity.

In the work we study the following
Problem 1. Find a regular in the domain Ω solution to equation (1.1) satisfying the condi-

tions

𝑢(0, 𝑦) = 𝜙1(𝑦), 𝑢𝑥(0, 𝑦) = 𝜙2(𝑦), 𝑢(𝑟, 𝑦) = 𝜙3(𝑦), 0 6 𝑦 < ℎ (2.1)

𝑢 |𝐶𝐵 = 𝜓(𝑥),
𝑟

2
6 𝑥 6 𝑟, (2.2)

where 𝜙1(𝑦), 𝜙2(𝑦), 𝜙3(𝑦) ∈ 𝐶[0, ℎ], 𝜓(𝑥) ∈ 𝐶1[𝑟/2, 𝑟] are given functions.
The main aim of the present is to prove the theorem on the unique solvability of Problem 1.

3. Uniqueness theorem

We denote

𝛼 =
𝑚− 2𝑎

2(𝑚+ 2)
, 𝛽 =

𝑚+ 2𝑎

2(𝑚+ 2)
, 𝛾1 =

2 Γ(1 − 𝛽) Γ(𝛼 + 𝛽)

Γ(𝛼) Γ(1 − 𝛼− 𝛽) [2(1 − 𝛼− 𝛽)]𝛼+𝛽
.

The following theorem holds true.

Theorem 3.1. Assume that the coefficients 𝑎𝑖(𝑥, 𝑦), 𝑖 = 0, 2, of equation (1.1) satisfy the
conditions:

𝑎𝑖(𝑥, 𝑦) ∈ 𝐶𝑖
(︀
Ω2

)︀
, 𝑖 = 0, 2; (3.1)

𝑎2(𝑥, 0) > 0, 0 6 𝑥 6 𝑟; (3.2)

𝑥1−𝛼−𝛽 [𝑎′′2(𝑥, 0) − 𝑎′1(𝑥, 0) + 2𝑎0(𝑥, 0)] 6
𝛾1

Γ(𝛼 + 𝛽)
, 0 < 𝑥 < 𝑟, (3.3)

𝑎22(𝑥, 0) +

[︂
𝑎′′2(𝑥, 0) − 𝑎′1(𝑥, 0) + 2𝑎0(𝑥, 0) − 𝛾1

Γ(𝛼 + 𝛽)
𝑥𝛼+𝛽−1

]︂2
> 0, 0 < 𝑥 < 𝑟. (3.4)

Then a solution to Problem 1 in the domain Ω is unique.

Proof. To prove the theorem, we introduce the notations:

𝑢(𝑥, 0) = 𝜏(𝑥), 0 6 𝑥 6 𝑟, (3.5)

𝑢𝑦(𝑥, 0) = 𝜈(𝑥), 0 < 𝑥 < 𝑟. (3.6)

Regarding the functions 𝜏(𝑥) and 𝜈(𝑥) as given, let us write the solution to Cauchy problem
(3.5)–(3.6) for equation (1.2).

We suppose first that |𝑎| < 𝑚
2

. In this case a solution to problem (3.5)–(3.6) for equation
(1.2) is written out by the formula [10]:

𝑢(𝑥, 𝑦) =
1

𝐵(𝛼, 𝛽)

1∫︁
0

𝜏

[︂
𝑥+

2

𝑚+ 2
(−𝑦)(𝑚+2)/2(2𝑡− 1)

]︂
𝑡𝛽−1 (1 − 𝑡)𝛼−1 𝑑𝑡

+
𝑦

𝐵(1 − 𝛼, 1 − 𝛽)

1∫︁
0

𝜈

[︂
𝑥+

2

𝑚+ 2
(−𝑦)(𝑚+2)/2(2𝑡− 1)

]︂
𝑡−𝛼 (1 − 𝑡)−𝛽 𝑑𝑡,

(3.7)

where 𝐵(𝑝, 𝑞) is the first kind Euler integral (beta function).
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Substituting (2.2) into satisfy condition (3.7), we find:

𝑢(𝑥, 𝑦)
⃒⃒⃒
𝐶𝐵

=
1

𝐵(𝛼, 𝛽)

1∫︁
0

𝜏 [𝑥+ (𝑟 − 𝑥)(2𝑡− 1)] 𝑡𝛽−1 (1 − 𝑡)𝛼−1 𝑑𝑡

− (1 − 𝛼− 𝛽)𝛼+𝛽−1

𝐵(1 − 𝛼, 1 − 𝛽)
(𝑟 − 𝑥)1−𝛼−𝛽

1∫︁
0

𝜈 [𝑥+ (𝑟 − 𝑥)(2𝑡− 1)] 𝑡−𝛼 (1 − 𝑡)−𝛽 𝑑𝑡

=𝜓(𝑥).

Changing first the integration variable 𝑠 = 2𝑥− 𝑟 + 2𝑟𝑡− 2𝑥𝑡, and then replacing 2𝑥− 𝑟 by 𝑥
in the obtained identity, we rewrite the latter relation as

(𝑟 − 𝑥)1−𝛼−𝛽

𝐵(𝛼, 𝛽)

𝑟∫︁
𝑥

𝜏(𝑡) (𝑟 − 𝑡)𝛼−1 (𝑡− 𝑥)𝛽−1 𝑑𝑡

− [2(1 − 𝛼− 𝛽)]𝛼+𝛽−1

𝐵(1 − 𝛼, 1 − 𝛽)

𝑟∫︁
𝑥

𝜈(𝑡) (𝑟 − 𝑡)−𝛽 (𝑡− 𝑥)−𝛼 𝑑𝑡 = 𝜓

(︂
𝑟 + 𝑥

2

)︂
.

(3.8)

Now we employ the following definition of the fractional integro-differentiation [3]: the operator
of fractional (in the Riemann-Liouville sense) integro-differentiation of order |𝛼| with the origin
at the point 𝑐 ∈ [𝑎, 𝑏] is the operator 𝐷𝛼

𝑐𝑥 acting on an absolutely integrable function 𝜙(𝑡) ∈
𝐿1 (𝑎, 𝑏) by the formula:

𝐷𝛼
𝑐𝑥𝜙(𝑡) =

sgn(𝑥− 𝑐)

Γ(−𝛼)

𝑥∫︁
𝑐

|𝑥− 𝑡|−(𝛼+1) 𝜙(𝑡) 𝑑𝑡, 𝛼 < 0,

𝐷𝛼
𝑐𝑥𝜙(𝑡) = sgn[𝛼]+1(𝑥− 𝑐)

𝑑[𝛼]+1

𝑑𝑥[𝛼]+1
𝐷𝛼−[𝛼]−1

𝑐𝑥 𝜙(𝑡), 𝛼 > 0,

where the symbol sgn(𝑧) stands for the sign of a number 𝑧, Γ(𝑥) is the second kind Euler
integral (Gamma function). A detailed study of the properties of the operator 𝐷𝛼

𝑐𝑥𝜙(𝑡) were
provided in monographs [3], [4], [31].

In view of the above definition of the operator 𝐷𝛼
𝑐𝑥, relation (3.8) is rewritten as

Γ(𝛽)

𝐵(𝛼, 𝛽)
(𝑟 − 𝑥)1−𝛼−𝛽 𝐷−𝛽

𝑟𝑥

[︀
𝜏(𝑡) (𝑟 − 𝑡)𝛼−1

]︀
− Γ(1 − 𝛼) [2(1 − 𝛼− 𝛽)]𝛼+𝛽−1

𝐵(1 − 𝛼, 1 − 𝛽)
𝐷𝛼−1

𝑟𝑥

[︀
(𝑟 − 𝑡)−𝛽𝜈(𝑡)

]︀
= 𝜓

(︂
𝑟 + 𝑥

2

)︂
.

(3.9)

Solving equation (3.9) w.r.t. the function 𝜈(𝑥), we find

𝜈(𝑥) = 𝛾1𝐷
1−𝛼−𝛽
𝑟𝑥 𝜏(𝑡) − 𝛾2(𝑟 − 𝑥)𝛽𝐷1−𝛼

𝑟𝑥

[︂
𝜓

(︂
𝑡+ 𝑟

2

)︂]︂
, (3.10)

where

𝛾2 =
2 Γ(1 − 𝛽)

Γ(1 − 𝛼− 𝛽) [2(1 − 𝛼− 𝛽)]𝛼+𝛽
.

Since 𝜏(𝑥), 𝜓
(︀
𝑟+𝑥
2

)︀
∈ 𝐶[0, 𝑟], and 𝜏 ′(𝑥), 𝜓′ (︀ 𝑟+𝑥

2

)︀
∈ 𝐿1(0, 𝑟), then employing the following

property of the fractional integro-differentiation operator of order 0 < 𝛼 6 1 [31]

𝐷𝛼
𝑟𝑥𝜙(𝑡) =

𝜙(𝑟)

Γ(1 − 𝛼)
(𝑟 − 𝑥)−𝛼 −𝐷𝛼−1

𝑟𝑥 𝜙′(𝑡), (3.11)
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we can rewrite expression (3.10) as

𝜈(𝑥) = −𝛾1𝐷−(𝛼+𝛽)
𝑟𝑥 𝜏 ′(𝑡) +

𝛾2
2

(𝑟 − 𝑥)𝛽 𝐷−𝛼
𝑟𝑥 𝜓

′
(︂
𝑟 + 𝑡

2

)︂
. (3.12)

Relation (3.12) is a fundamental one for the sought functions 𝜏(𝑥) and 𝜈(𝑥) moved from the
domain Ω1 on the line 𝑦 = 0 in the case |𝑎| < 𝑚

2
.

If 𝑎 = −𝑚
2

, then 𝛼 = 𝑚
𝑚+2

, 𝛽 = 0 and a solution to problem (3.5)–(3.6) for equation (1.2) is
of the form [10]:

𝑢(𝑥, 𝑦) =𝜏

[︂
𝑥+

2

𝑚+ 2
(−𝑦)(𝑚+2)/2

]︂

+
2𝑦

𝑚+ 2

1∫︁
0

𝜈

[︂
𝑥+

2

𝑚+ 2
(−𝑦)(𝑚+2)/2 (2𝑡− 1)

]︂
(1 − 𝑡)−𝛼 𝑑𝑡.

(3.13)

By representation (3.13) and in view of condition (2.2), we arrive at a fundamental relation for
the functions 𝜏(𝑥) and 𝜈(𝑥):

𝜈(𝑥) = −𝛾1
2

[︂
2𝐷−𝛼

𝑟𝑥 𝜏
′(𝑡) −𝐷−𝛼

𝑟𝑥 𝜓
′
(︂
𝑟 + 𝑡

2

)︂]︂
. (3.14)

If 𝑎 = 𝑚
2

, then 𝛼 = 0, 𝛽 = 𝑚
𝑚+2

. In this case a solution to problem (3.5), (3.6) for equation
(1.2) is of the form [10]:

𝑢(𝑥, 𝑦) =𝜏

[︂
𝑥− 2

𝑚+ 2
(−𝑦)(𝑚+2)/2

]︂

+
2𝑦

𝑚+ 2

1∫︁
0

𝜈

[︂
𝑥− 2

𝑚+ 2
(−𝑦)(𝑚+2)/2 (2𝑡− 1)

]︂
(1 − 𝑡)−𝛽 𝑑𝑡.

(3.15)

Satisfying boundary condition (2.2) on the characteristics 𝐶𝐵 for (3.15), we arrive at the
identity

𝜈(𝑥) = (2 − 2𝛽)−𝛽 (𝑟 − 𝑥)𝛽 𝜓′
(︂
𝑟 + 𝑥

2

)︂
. (3.16)

We proceed to proving the uniqueness of solution to Problem 1. For the homogeneous problem
corresponding to Problem 1 we consider the integral

𝐽* =

𝑟∫︁
0

𝜏(𝑥)𝜈(𝑥)𝑑𝑥.

As 𝜓(𝑥) ≡ 0 (𝜏(𝑟) = 𝜓(𝑟) = 0), by relations (3.12), (3.14), (3.16) for different values of 𝑎 we
obtain the corresponding identities:

𝜈(𝑥) = −𝛾1𝐷−(𝛼+𝛽)
𝑟𝑥 𝜏 ′(𝑡) = 𝛾1𝐷

1−𝛼−𝛽
𝑟𝑥 𝜏(𝑡), |𝑎| < 𝑚

2
; (3.17)

𝜈(𝑥) = −𝛾1𝐷−𝛼
𝑟𝑥 𝜏

′(𝑡) = 𝛾1𝐷
1−𝛼
𝑟𝑥 𝜏(𝑡), 𝑎 = −𝑚

2
; (3.18)

𝜈(𝑥) ≡ 0, 𝑎 =
𝑚

2
. (3.19)

We employ the following property of the operator 𝐷𝛼
𝑟𝑥𝜙(𝑡) of a fractional integro-

differentiation (in the Riemann-Liouville sense).
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Lemma 3.1. For an absolutely continuous on the segment [0, 𝑟] function 𝜙 = 𝜙(𝑥) satisfying
the condition 𝜙(𝑟) = 0 the inequality

𝜙(𝑥)𝐷𝛼
𝑟𝑥𝜙(𝑡) >

1

2
𝐷𝛼

𝑟𝑥𝜙
2(𝑡), 0 < 𝛼 6 1, (3.20)

holds true.

Proof. Indeed, if 𝜙(𝑟) = 0, by Formula (3.11) we find

𝐷𝛼
𝑟𝑥𝜙(𝑡) = − 1

Γ(1 − 𝛼)

𝑟∫︁
𝑥

𝜙′(𝑡)

(𝑡− 𝑥)𝛼
𝑑𝑡.

In the same way,

𝐷𝛼
𝑟𝑥𝜙

2(𝑡) = − 1

Γ(1 − 𝛼)

𝑟∫︁
𝑥

2𝜙(𝑡)𝜙′(𝑡)

(𝑡− 𝑥)𝛼
𝑑𝑡.

Employing the above identities, we find

𝜙(𝑥)𝐷𝛼
𝑟𝑥𝜙(𝑡) − 1

2
𝐷𝛼

𝑟𝑥𝜙
2(𝑡) =

1

Γ(1 − 𝛼)

𝑟∫︁
𝑥

𝜙′(𝑡)[𝜙(𝑡) − 𝜙(𝑥)]

(𝑡− 𝑥)𝛼
𝑑𝑡

=
1

Γ(1 − 𝛼)

𝑟∫︁
𝑥

𝜙′(𝑡)

(𝑡− 𝑥)𝛼

⎛⎝ 𝑡∫︁
𝑥

𝜙′(𝑠)𝑑𝑠

⎞⎠ 𝑑𝑡

=
1

Γ(1 − 𝛼)

𝑟∫︁
𝑥

⎛⎝ 𝑟∫︁
𝑠

𝜙′(𝑡)𝜙′(𝑠)

(𝑡− 𝑥)𝛼
𝑑𝑡

⎞⎠ 𝑑𝑠

=
1

Γ(1 − 𝛼)

𝑟∫︁
𝑥

(𝑠− 𝑥)𝛼
𝜙′(𝑠)

(𝑠− 𝑥)𝛼

⎛⎝ 𝑟∫︁
𝑠

𝜙′(𝑡)

(𝑡− 𝑥)𝛼
𝑑𝑡

⎞⎠ 𝑑𝑠

= − 1

2 Γ(1 − 𝛼)

𝑟∫︁
𝑥

(𝑠− 𝑥)𝛼
𝜕

𝜕𝑠

⎡⎣⎛⎝ 𝑟∫︁
𝑠

𝜙′(𝑡)

(𝑡− 𝑥)𝛼
𝑑𝑡

⎞⎠2⎤⎦ 𝑑𝑠

=
𝛼

2 Γ(1 − 𝛼)

𝑟∫︁
𝑥

(𝑠− 𝑥)𝛼−1

⎛⎝ 𝑟∫︁
𝑠

𝜙′(𝑡)

(𝑡− 𝑥)𝛼
𝑑𝑡

⎞⎠2

𝑑𝑠 > 0,

that implies inequality (3.20). The proof is complete.

We note that the proven Lemma 3.1 is an analogue of Lemma 1 in work [32].
As |𝑎| < 𝑚

2
, by (3.17) and (3.20) we arrive at the inequality

𝐽* = 𝛾1

𝑟∫︁
0

𝜏(𝑥)𝐷1−𝛼−𝛽
𝑟𝑥 𝜏(𝑡) 𝑑𝑥 >

𝛾1
2 Γ(𝛼 + 𝛽)

𝑟∫︁
0

𝑡𝛼+𝛽−1𝜏 2(𝑡) 𝑑𝑡. (3.21)

We arrive at a similar inequality as 𝑎 = −𝑚
2

(𝛼 = 𝑚
𝑚+2

, 𝛽 = 0), while as 𝑎 = 𝑚
2

by identity
(3.19) we obtain that 𝐽* ≡ 0.

Passing then to the limit as 𝑦 → +0 in equation (1.1), in view of boundary conditions (2.1)
we obtain a fundamental relation for the functions 𝜏(𝑥) and 𝜈(𝑥) moved from the parabolic
part Ω2 of the domain Ω on the line 𝑦 = 0:

𝜈(𝑥) = 𝜏 ′′′(𝑥) + 𝑎2(𝑥, 0)𝜏 ′′(𝑥) + 𝑎1(𝑥, 0)𝜏 ′(𝑥) + 𝑎0(𝑥, 0)𝜏(𝑥), 0 < 𝑥 < 𝑟, (3.22)
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𝜏(0) = 𝜙1(0), 𝜏 ′(0) = 𝜙2(0), 𝜏(𝑟) = 𝜙3(0). (3.23)

Lemma 3.2. Assume that conditions (3.1). Then by (3.22)–(3.23) we have the identity

𝐽* = −𝜏
′2(𝑟)

2
−

𝑟∫︁
0

𝑎2(𝑥, 0)𝜏 ′2(𝑥)𝑑𝑥+
1

2

𝑟∫︁
0

[𝑎′′2(𝑥, 0) − 𝑎′1(𝑥, 0) + 2𝑎0(𝑥, 0)] 𝜏 2(𝑥)𝑑𝑥. (3.24)

For homogeneous boundary conditions corresponding to conditions (3.23) (𝜙𝑗(0) = 0, 𝑗 =
1, 3) identity (3.24) can be obtained easily by multiplying both sides of relation (3.22) by the
function 𝜏(𝑥) and integrating then the obtained identity w.r.t. 𝑥 from 0 to 𝑟.

In view of (3.24), inequality (3.21) can be rewritten as

𝜏 ′2(𝑟) + 2

𝑟∫︁
0

𝑎2(𝑥, 0)𝜏 ′2(𝑥)𝑑𝑥

−
𝑟∫︁

0

[︂
𝑎′′2(𝑥, 0) − 𝑎′1(𝑥, 0) + 2𝑎0(𝑥, 0) − 𝛾1

Γ(𝛼 + 𝛽)
𝑥𝛼+𝛽−1

]︂
𝜏 2(𝑥)𝑑𝑥 6 0.

(3.25)

It is easy to see that under assumptions (3.2)–(3.4) of Theorem 3.1 for the coefficients
𝑎𝑖(𝑥, 𝑦), 𝑖 = 0, 2 of equation (1.1), inequality (3.25) can hold if and only if 𝜏(𝑥) ≡ 0. Then by
relations (3.17), (3.18), (3.19) we find that 𝜈(𝑥) ≡ 0 for all |𝑎| 6 𝑚

2
. At that, formulae (3.7),

(3.13), (3.15) imply immediately that 𝑢(𝑥, 𝑦) ≡ 0 in Ω1.
Let us show that under the assumptions of Theorem 3.1, the problem on finding a regular

in the domain Ω2 solution of equation (1.3) satisfying homogeneous boundary conditions cor-
responding conditions (2.1) and the homogeneous initial condition 𝑢 (𝑥, 0) = 0 can have only
the trivial solution.

Indeed, assume that the homogeneous problem

𝑢𝑥𝑥𝑥 − 𝑢𝑦 +
2∑︁

𝑖=0

𝑎𝑖(𝑥, 𝑦)
𝜕𝑖𝑢

𝜕𝑥𝑖
= 0, (𝑥, 𝑦) ∈ Ω2, (3.26)

𝑢 (0, 𝑦) = 0, 𝑢𝑥 (0, 𝑦) = 0, 𝑢 (𝑟, 𝑦) = 0, 0 < 𝑦 < ℎ, (3.27)

𝑢 (𝑥, 0) = 0, 0 6 𝑥 6 𝑟, (3.28)

has a non-trivial solution 𝑢 = 𝑢 (𝑥, 𝑦) ̸≡ 0. Following works [16], [33], in equation (3.26) we let

𝑢 (𝑥, 𝑦) = 𝜐 (𝑥, 𝑦) exp (𝜇1𝑥+ 𝜇2𝑦) . (3.29)

Then for the function 𝜐 = 𝜐 (𝑥, 𝑦) we obtain the equation

𝐿𝜇1, 𝜇2𝜐 =𝜐𝑥𝑥𝑥 − 𝜐𝑦 + [3𝜇1 + 𝑎2(𝑥, 𝑦)] 𝜐𝑥𝑥 +
[︀
3𝜇2

1 + 2𝜇1 𝑎2(𝑥, 𝑦) + 𝑎1(𝑥, 𝑦)
]︀
𝜐𝑥

+
[︀
𝜇3
1 + 𝜇2

1 𝑎2(𝑥, 𝑦) + 𝜇1 𝑎1(𝑥, 𝑦) + 𝑎0(𝑥, 𝑦) − 𝜇2

]︀
𝜐 = 0

(3.30)

subject to the initial and boundary conditions

𝜐 (𝑥, 0) = 0, 0 6 𝑥 6 𝑟, (3.31)

𝜐 (0, 𝑦) = 0, 𝜐𝑥 (0, 𝑦) = 0, 𝜐 (𝑟, 𝑦) = 0, 0 < 𝑦 < ℎ. (3.32)

Since by the assumption the function 𝑢 (𝑥, 𝑦) is a non-trivial solution of problem (3.26)–(3.28),
as it follows from (3.29), problem (3.30)–(3.32) also has a non-trivial solution 𝜐 = 𝜐 (𝑥, 𝑦) ̸= 0.

We introduce an auxiliary domain Ω2𝜀 by the inequalities

Ω2𝜀 = {(𝑥, 𝑦) : 𝜀 < 𝑥 < 𝑟 − 𝜀, 𝜀 < 𝑦 < ℎ− 𝜀, 𝜀 > 0} .
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In the domain Ω2𝜀, the identity

2 (𝜐, 𝐿𝜇1, 𝜇2𝜐)0 =

∫︁
Ω2𝜀

2 𝜐 𝐿𝜇1, 𝜇2𝜐 𝑑Ω2𝜀

=

∫︁
Ω2𝜀

{︂
𝜕

𝜕𝑥

[︀
2 𝜐 𝜐𝑥𝑥 − 𝜐2𝑥 + 2 (3𝜇1 + 𝑎2(𝑥, 𝑦))𝜐 𝜐𝑥

+
(︀
3𝜇2

1 + 2𝜇1 𝑎2(𝑥, 𝑦) − 𝑎2𝑥(𝑥, 𝑦) + 𝑎1(𝑥, 𝑦)
)︀
𝜐2
]︀
− 𝜕

𝜕𝑦

[︀
𝜐2
]︀}︂

𝑑Ω2𝜀

+

∫︁
Ω2𝜀

[︀
2𝜇3

1 + 2𝜇2
1 𝑎2(𝑥, 𝑦) + 2𝜇1 𝑎1(𝑥, 𝑦) + 𝑎2𝑥𝑥(𝑥, 𝑦)

− 𝑎1𝑥(𝑥, 𝑦) + 2 𝑎0(𝑥, 𝑦) − 2𝜇2

]︀
𝜐2 𝑑Ω2𝜀

− 2

∫︁
Ω2𝜀

[3𝜇1 + 𝑎2(𝑥, 𝑦)] 𝜐2𝑥 𝑑Ω2𝜀 = 0

(3.33)

Applying Green formula to identity (3.33), we obtain

2 (𝜐, 𝐿𝜇1, 𝜇2𝜐)0 =

∫︁
Γ2𝜀

𝜐2𝑑𝑥+
[︀
2𝜐 𝜐𝑥𝑥 − 𝜐2𝑥 + 2

(︀
3𝜇1 + 𝑎2(𝑥, 𝑦)

)︀
𝜐 𝜐𝑥

+
(︀
3𝜇2

1 + 2𝜇1 𝑎2(𝑥, 𝑦) − 𝑎2𝑥(𝑥, 𝑦) + 𝑎1(𝑥, 𝑦)
)︀
𝜐2
]︀
𝑑𝑦

+

∫︁
Ω2𝜀

[︀
2𝜇3

1 + 2𝜇2
1𝑎2(𝑥, 𝑦) + 2𝜇1 𝑎1(𝑥, 𝑦) + 𝑎2𝑥𝑥(𝑥, 𝑦)

− 𝑎1𝑥(𝑥, 𝑦) + 2 𝑎0(𝑥, 𝑦) − 2𝜇2

]︀
𝜐2𝑑Ω2𝜀

− 2

∫︁
Ω2𝜀

[3𝜇1 + 𝑎2(𝑥, 𝑦)] 𝜐2𝑥 𝑑Ω2𝜀 = 0,

(3.34)

where Γ2𝜀 is the boundary of the auxiliary domain Ω2𝜀. Passing to the limit as 𝜀 → 0 in
identity (3.34), in view of homogeneous initial boundary conditions (3.31)–(3.32), we arrive at
the identity

ℎ∫︁
0

𝜐2𝑥(𝑟, 𝑦)𝑑𝑦 +

𝑟∫︁
0

𝜐2(𝑥, ℎ) 𝑑𝑥+ 2

∫︁
Ω2

[3𝜇1 + 𝑎2(𝑥, 𝑦)] 𝜐2𝑥 𝑑Ω2

−
∫︁
Ω2

[︀
2𝜇3

1 + 2𝜇2
1𝑎2(𝑥, 𝑦) − 2𝜇1 (𝑎2𝑥(𝑥, 𝑦) − 𝑎1(𝑥, 𝑦))

+ 𝑎2𝑥𝑥(𝑥, 𝑦) − 𝑎1𝑥(𝑥, 𝑦) + 2 𝑎0(𝑥, 𝑦) − 2𝜇2

]︀
𝜐2 𝑑Ω2 = 0.

(3.35)

Bearing in mind conditions (3.1), we choose the parameters 𝜇1 and 𝜇2 in identity (3.35) so
that

𝜇1 >
1

3
max

(𝑥,𝑦)∈Ω2

(|𝑎2(𝑥, 𝑦)|),

𝜇2 >
1

2
max

(𝑥,𝑦)∈Ω2

[︀
2𝜇3

1 + 2𝜇2
1 |𝑎2(𝑥, 𝑦)| + 2𝜇1 (|𝑎2𝑥(𝑥, 𝑦)| + |𝑎1(𝑥, 𝑦)|)

+ |𝑎2𝑥𝑥(𝑥, 𝑦)| + |𝑎1𝑥(𝑥, 𝑦)| + 2|𝑎0(𝑥, 𝑦)|
]︀
.
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It is easy to observe that under such choice of the parameters 𝜇1 and 𝜇2, identity (3.35) can
hold if and only if 𝜐 (𝑥, 𝑦) ≡ 0 in each point of the closure Ω̄2 that contradicts the assumption
that 𝜐 (𝑥, 𝑦) ̸= 0. The obtained contradiction shows that 𝑢 (𝑥, 𝑦) ≡ 0 everywhere in Ω̄2. That
is, under assumptions (3.1)–(3.4), the solutions to Problem 1 for equation (1.1) is unique in the
required class. The proof is complete.

4. Theorem on solvability of Problem 1

Theorem 4.1. Under assumptions (3.1)–(3.4), Problem 1 is solvable.

Proof. Indeed, by the above obtained fundamental relations (3.10) and (3.22), we arrive at the
following system of equations for the functions 𝜏(𝑥) and 𝜈(𝑥):⎧⎨⎩𝜈(𝑥) = 𝛾1𝐷

1−(𝛼+𝛽)
𝑟𝑥 𝜏(𝑡) − 𝛾2 (𝑟 − 𝑥)𝛽 𝐷1−𝛼

𝑟𝑥 𝜓

(︂
𝑟 + 𝑡

2

)︂
,

𝜈(𝑥) = 𝜏 ′′′(𝑥) + 𝑎2(𝑥, 0)𝜏 ′′(𝑥) + 𝑎1(𝑥, 0)𝜏 ′(𝑥) + 𝑎0(𝑥, 0)𝜏(𝑥),

(4.1)

and hence, for the function 𝜏(𝑥), we arrive at the problem on finding a regular solution for the
equation

𝜏 ′′′(𝑥) + 𝑎2(𝑥, 0)𝜏 ′′(𝑥) + 𝑎1(𝑥, 0)𝜏 ′(𝑥) − 𝛾1𝐷
1−𝛼−𝛽
𝑟𝑥 𝜏(𝑡) + 𝑎0(𝑥, 0)𝜏(𝑥)

= −𝛾2 (𝑟 − 𝑥)𝛽 𝐷1−𝛼
𝑟𝑥 𝜓

(︂
𝑟 + 𝑡

2

)︂
(4.2)

satisfying conditions (3.23).
Solving problem (3.23) for equation (4.2) is equivalent to solving the integral equation

𝜏(𝑥) = − 1

2𝑟2

{︃
2

𝑟∫︁
0

𝐾(𝑥, 𝑡)𝜏(𝑡) 𝑑𝑡− 2 (𝑟 − 𝑥) [𝑟 + 𝑥+ 𝑟 𝑥 𝑎2(0, 0)]𝜙1(0)

− 2 𝑟 𝑥 (𝑟 − 𝑥)𝜙2(0) − 2𝑥2 𝜙3(0) + 𝑥2
𝑟∫︁

𝑥

(𝑟 − 𝑡)2𝑓(𝑡)𝑑𝑡

− (𝑟 − 𝑥)

𝑥∫︁
0

𝑡 (𝑟𝑡+ 𝑥𝑡− 2𝑟𝑥) 𝑓(𝑡)𝑑𝑡

}︃
,

(4.3)

where

𝐾(𝑥, 𝑡) =

{︃
(𝑟 − 𝑥)[(𝑟 + 𝑥)𝐿(0, 𝑡) + 𝑟 𝑥𝐿𝑥(0, 𝑡)] − 𝑟2 𝐿(𝑥, 𝑡), 0 6 𝑥 < 𝑡,

(𝑟 − 𝑥)[(𝑟 + 𝑥)𝐿(0, 𝑡) + 𝑟 𝑥𝐿𝑥(0, 𝑡)], 𝑡 < 𝑥 6 𝑟,

𝐿(𝑥, 𝑡) =𝑎2(𝑡, 0) + (𝑡− 𝑥)
[︀
2𝑎′2(𝑡, 0) − 𝑎1(𝑡, 0)

]︀
+

(𝑡− 𝑥)2

2

[︀
𝑎′′2(𝑡, 0) − 𝑎′1(𝑡, 0) + 𝑎0(𝑡, 0)

]︀
− 𝛾1

Γ(𝛼 + 𝛽 + 2)
(𝑡− 𝑥)𝛼+𝛽+2.

Due to properties (3.1) of given coefficients 𝑎𝑖(𝑥, 𝑦), 𝑖 = 0, 2, in equation (1.1), as well as due
to the properties of the given functions 𝜙1(𝑦), 𝜙2(𝑦), 𝜙3(𝑦), 𝜓(𝑥), we conclude that equation
(4.3) is the second kind integral Fredholm equation with a kernel 𝐾(𝑥, 𝑡) ∈ 𝐿2([0, 𝑟] × [0, 𝑟])
and the right hand side in 𝐶1[0, 𝑟]. The unique solvability of equation (4.3) is implied by the
uniqueness of solution to Problem 1. In accordance with the general theory of Fredholm integral
equation, the solution 𝜏 = 𝜏(𝑥) to equation (4.3) is written out in terms of the resolvent 𝑅(𝑥, 𝑡)
of the kernel 𝐾(𝑥, 𝑡) and the resolvent 𝑅(𝑥, 𝑡), as well as the kernel 𝐾(𝑥, 𝑡), belong to the class
𝐿2([0, 𝑟] × [0, 𝑟]). The solution 𝜏 = 𝜏(𝑥) to equation (4.3) belongs to the class 𝐶[0, 𝑟] ∪𝐶3]0, 𝑟[
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since the right hand side of equation (4.3) belongs to 𝐶1[0, 𝑟]. By the found function 𝜏(𝑥) we
can find also the function 𝜈(𝑥) via fundamental relations (3.12), (3.14), (3.16), (3.22).

As the coefficients 𝑎𝑖(𝑥, 0), 𝑖 = 0, 2, of equation (4.2) are real constant, the solution to
problem (3.23), (4.2), and hence, to integral equation (4.3), is written out explicitly.

Indeed, let us find the solution to problem (3.23) for equation (4.2) in the case when 𝑎𝑖(𝑥, 0) =
𝑎𝑖 = const, 𝑖 = 0, 2. In order to do it, we replace the variable 𝑥 by 𝑟 − 𝑥 in equation (4.2). At
that, for the function 𝜏(𝑟 − 𝑥) we obtain the problem:

−𝜏 ′′′(𝑟 − 𝑥) + 𝑎2𝜏
′′(𝑟 − 𝑥) − 𝑎1𝜏

′(𝑟 − 𝑥) − 𝛾1𝐷
1−𝛼−𝛽
0𝑥 𝜏(𝑟 − 𝑡) + 𝑎0𝜏(𝑟 − 𝑥)

= −𝛾2 𝑥𝛽 𝐷1−𝛼
0𝑥 𝜓

(︂
2𝑟 − 𝑡

2

)︂
,

(4.4)

𝜏(𝑟 − 𝑥) |𝑥=𝑟 = 𝜙1(0), 𝜏 ′(𝑟 − 𝑥) |𝑥=𝑟 = −𝜙2(0), 𝜏(𝑟 − 𝑥) |𝑥=0 = 𝜙3(0). (4.5)

Denoting 𝜏(𝑟 − 𝑥) = 𝑔(𝑥), by (4.4) we arrive at the equation for 𝑔(𝑥):

𝑔′′′(𝑥) − 𝑎2𝑔
′′(𝑥) + 𝑎1𝑔

′(𝑥) + 𝛾1𝐷
1−𝛼−𝛽
0𝑥 𝑔(𝑡) − 𝑎0𝑔(𝑥) = 𝑓(𝑥), (4.6)

where 𝑓(𝑥) = 𝛾2 𝑥
𝛽 𝐷1−𝛼

0𝑥 𝜓
(︀
2𝑟−𝑡
2

)︀
.

Applying the operator 𝐷−3
0𝑥 to the both sides of equation (4.6), we arrive at an integral

equation equivalent to equation (4.6)

𝑔(𝑥) −
𝑥∫︁

0

[︂
𝑎2 − 𝑎1(𝑥− 𝑡) +

𝑎0
2

(𝑥− 𝑡)2 − 𝛾1
Γ(𝛼 + 𝛽 + 2)

(𝑥− 𝑡)𝛼+𝛽+1

]︂
𝑔(𝑡)𝑑𝑡

= 𝑐1𝑥
2 + 𝑐2𝑥+ 𝑐3 +

1

2

𝑥∫︁
0

(𝑥− 𝑡)2𝑓(𝑡)𝑑𝑡,

(4.7)

where 𝑐1, 𝑐2, 𝑐3 are unknown constants.
Equation (4.7) belongs to the class of second kind Volterra equation of convolution type.

Employing the definition of the convolution of two functions, we rewrite equation (4.7) as

𝑔(𝑥) − 𝑎2(1 * 𝑔(𝑥)) + 𝑎1(𝑥 * 𝑔(𝑥)) − 𝑎0
2

(𝑥2 * 𝑔(𝑥)) +
𝛾1

Γ(𝛼 + 𝛽 + 2)
(𝑥𝛼+𝛽+1 * 𝑔(𝑥))

=
𝛾2
2

(𝑥2 * 𝑓(𝑥)) + 𝑐1𝑥
2 + 𝑐2𝑥+ 𝑐3,

(4.8)

where

𝑔1(𝑥) * 𝑔2(𝑥) =

𝑥∫︁
0

𝑔1(𝑥− 𝑡)𝑔2(𝑡)𝑑𝑡 =

𝑥∫︁
0

𝑔1(𝑡)𝑔2(𝑥− 𝑡)𝑑𝑡

is the convolution of functions 𝑔1(𝑥) and 𝑔2(𝑥).
Let 𝐺(𝑝) and 𝐹 (𝑝) in equation (4.8) be the images of the functions 𝑔(𝑥) and 𝑓(𝑥), respectively,

that is,
𝑔(𝑥) : 𝐺(𝑝), 𝑓(𝑥) : 𝐹 (𝑝).

Then, applying the Laplace transform to equation (4.8), using the linearity and the multipli-
cation theorem, we arrive at the following equation for 𝐺(𝑝)

𝐺(𝑝)

[︂
1 − 𝑎2

𝑝
+
𝑎1
𝑝2

− 𝑎0
𝑝3

+
𝛾1

𝑝𝛼+𝛽+2

]︂
=
𝐹 (𝑝)

𝑝3
+

2𝑐1
𝑝3

+
𝑐2
𝑝2

+
𝑐3
𝑝
,

which implies

𝐺(𝑝) =
𝐹 (𝑝) + 2𝑐1 + 𝑐2𝑝+ 𝑐3𝑝

2

𝑝3 ∆(𝑝)
, (4.9)

where ∆(𝑝) = 1 − 𝑎2𝑝
−1 + 𝑎1𝑝

−2 + 𝛾1𝑝
−𝛼−𝛽−2 − 𝑎0𝑝

−3.
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For sufficiently large values of the parameter 𝑝 the identity
∞∫︁
0

𝑒−Δ(𝑝)𝑠𝑑𝑠 =
1

∆(𝑝)

holds true. Hence, we can rewrite (4.9) as

𝐺(𝑝) =

∞∫︁
0

𝑒−Δ(𝑝)𝑠
[︀
𝐹 (𝑝) 𝑝−3 + 2𝑐1 𝑝

−3 + 𝑐2 𝑝
−2 + 𝑐3 𝑝

−1
]︀
𝑑𝑠. (4.10)

Let us find the inverse Laplace transform. First of all we observe that

𝑝−𝜇𝑒𝑧𝑝
−𝛽

; 𝑥𝜇−1𝜑(𝛽, 𝜇; 𝑧𝑥𝛽),

where 𝜑(𝜉, 𝜂; 𝑧) =
∞∑︀
𝑛=0

𝑧𝑛

𝑛!Γ(𝑛𝜉+𝜂)
is the Wright function [34].

Employing the formula 𝑔1(𝑝)𝑔2(𝑝) ; 𝑞1(𝑥) * 𝑞2(𝑥), by (4.10) we find

𝑔(𝑥) =

∞∫︁
0

𝑒−𝑠
{︀
𝑓(𝑥) *

[︀
𝑥−1/4𝜑(1, 3/4; 𝑎2𝑥𝑠)

]︀
*
[︀
𝑥−1/4𝜑(2, 3/4; −𝑎1𝑥2𝑠)

]︀
*
[︀
𝑥−1/4𝜑(𝛼 + 𝛽 + 2, 3/4; −𝛾1𝑥𝛼+𝛽+2𝑠)

]︀
*
[︀
𝑥−1/4𝜑(3, 3/4; 𝑎0𝑥

3𝑠)
]︀}︀
𝑑𝑠

+ 2𝑐1

∞∫︁
0

𝑒−𝑠
{︀[︀
𝑥−1/4𝜑(1, 3/4; 𝑎2𝑥𝑠)

]︀
*
[︀
𝑥−1/4𝜑(2, 3/4; −𝑎1𝑥2𝑠)

]︀
*
[︀
𝑥−1/4𝜑(𝛼 + 𝛽 + 2, 3/4; −𝛾1𝑥𝛼+𝛽+2𝑠)

]︀
*
[︀
𝑥−1/4𝜑(3, 3/4; 𝑎0𝑥

3𝑠)
]︀}︀
𝑑𝑠

+ 𝑐2

∞∫︁
0

𝑒−𝑠
{︀[︀
𝑥−1/2𝜑(1, 1/2; 𝑎2𝑥𝑠)

]︀
*
[︀
𝑥−1/2𝜑(2, 1/2; −𝑎1𝑥2𝑠)

]︀
*
[︀
𝑥−1/2𝜑(𝛼 + 𝛽 + 2, 1/2; −𝛾1𝑥𝛼+𝛽+2𝑠)

]︀
*
[︀
𝑥−1/2𝜑(3, 1/2; 𝑎0𝑥

3𝑠)
]︀}︀
𝑑𝑠

+ 𝑐3

∞∫︁
0

𝑒−𝑠
{︀[︀
𝑥−3/4𝜑(1, 1/4; 𝑎2𝑥𝑠)

]︀
*
[︀
𝑥−3/4𝜑(2, 1/4; −𝑎1𝑥2𝑠)

]︀
*
[︀
𝑥−3/4𝜑(𝛼 + 𝛽 + 2, 1/4; −𝛾1𝑥𝛼+𝛽+2𝑠)

]︀
*
[︀
𝑥−3/4𝜑(3, 1/4; 𝑎0𝑥

3𝑠)
]︀}︀
𝑑𝑠.

(4.11)

We employ the following notations [35]:

𝑆𝜇
𝑚(𝑥; 𝑧1, . . . , 𝑧𝑚; 𝛽1, . . . , 𝛽𝑚) = ℎ1(𝑥) * ℎ2(𝑥) * . . . * ℎ𝑚(𝑥)

𝐺𝜇
𝑚(𝑥;𝜆; 𝛽) ≡ 𝐺𝜇

𝑚(𝑥; 𝜆1, . . . , 𝜆𝑚; 𝛽1, . . . , 𝛽𝑚) =

∞∫︁
0

𝑒−𝑠𝑆𝜇
𝑚(𝑥; 𝜆1𝑠, . . . , 𝜆𝑚𝑠; 𝛽1, . . . , 𝛽𝑚)𝑑𝑠,

where ℎ𝑘(𝑥) = 𝑥𝜇𝑘−1𝜑
(︀
𝛽𝑘, 𝜇𝑘; 𝑧𝑘𝑥

𝛽𝑘
)︀
, 𝑘 = 1,𝑚; 𝜇 =

𝑚∑︀
𝑘=1

𝜇𝑘. In terms of the above notations,

representation (4.11) can be rewritten as

𝑔(𝑥) =

∞∫︁
0

𝑒−𝑠
[︀
𝑓(𝑥) * 𝑆3

4(𝑥; 𝑎2𝑠,−𝑎1𝑠,−𝛾1𝑠, 𝑎0𝑠; 1, 2, 𝛼 + 𝛽 + 2, 3)
]︀
𝑑𝑠

+ 2𝑐1

∞∫︁
0

𝑒−𝑠𝑆3
4(𝑥; 𝑎2𝑠,−𝑎1𝑠,−𝛾1𝑠, 𝑎0𝑠; 1, 2, 𝛼 + 𝛽 + 2, 3)𝑑𝑠
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+ 𝑐2

∞∫︁
0

𝑒−𝑠𝑆2
4(𝑥; 𝑎2𝑠,−𝑎1𝑠,−𝛾1𝑠, 𝑎0𝑠; 1, 2, 𝛼 + 𝛽 + 2, 3)𝑑𝑠

+ 𝑐3

∞∫︁
0

𝑒−𝑠𝑆1
4(𝑥; 𝑎2𝑠,−𝑎1𝑠,−𝛾1𝑠, 𝑎0𝑠; 1, 2, 𝛼 + 𝛽 + 2, 3)𝑑𝑠,

which implies

𝑔(𝑥) =2 𝑐1 𝐺
3
4(𝑥; 𝑎2,−𝑎1,−𝛾1, 𝑎0; 1, 2, 𝛼 + 𝛽 + 2, 3)

+ 𝑐2 𝐺
2
4(𝑥; 𝑎2,−𝑎1,−𝛾1, 𝑎0; 1, 2, 𝛼 + 𝛽 + 2, 3)

+ 𝑐3 𝐺
1
4(𝑥; 𝑎2,−𝑎1,−𝛾1, 𝑎0; 1, 2, 𝛼 + 𝛽 + 2, 3)

+

𝑥∫︁
0

𝑓(𝑡)𝐺3
4(𝑥− 𝑡; 𝑎2,−𝑎1,−𝛾1, 𝑎0; 1, 2, 𝛼 + 𝛽 + 2, 3) 𝑑𝑡.

Thus,

𝜏(𝑟 − 𝑥) = 2 𝑐1𝐺
3
4(𝑥; a; b) + 𝑐2𝐺

2
4(𝑥; a; b) + 𝑐3𝐺

1
4(𝑥; a; b) +

𝑥∫︁
0

𝑓(𝑡)𝐺3
4(𝑥− 𝑡; a; b) 𝑑𝑡,

where a = (𝑎2,−𝑎1,−𝛾1, 𝑎0), b = (1, 2, 𝛼+𝛽+2, 3). Redenoting 𝑟−𝑥 by 𝑥 in the last identity
and changing the variable 𝑠 = 𝑟 − 𝑡 in the integral, we obtain

𝜏(𝑥) =2 𝑐1𝐺
3
4(𝑟 − 𝑥; a; b) + 𝑐2𝐺

2
4(𝑟 − 𝑥; a; b) + 𝑐3𝐺

1
4(𝑟 − 𝑥; a; b)

+

𝑟∫︁
𝑥

𝑓(𝑟 − 𝑠)𝐺3
4(𝑠− 𝑥; a; b) 𝑑𝑠.

(4.12)

The function 𝐺𝜇
𝑚(𝑥) possesses the properties [35]:

𝐷𝜈
0𝑥𝐺

𝜇
𝑚(𝑡; a; b) = 𝐺𝜇−𝜈

𝑚 (𝑡; a; b), 𝜇 > 𝜈; (4.13)

𝐺𝜇
𝑚(𝑥; a; b) =

𝑥𝜇−1

Γ(𝜇)
+

𝑚𝑗∑︁
𝑖=1

𝜆𝑖𝐷
−𝛽𝑖
0𝑥 𝐺𝜇

𝑚(𝑡; a; b). (4.14)

Employing properties (4.13), (4.14) of the function 𝐺𝜇
𝑚(𝑥; a; b), by representation (4.12) we

find

𝜏 ′(𝑥) = − 𝑐3
[︀
𝑎2𝐺

1
4(𝑟 − 𝑥; a; b) − 𝑎1𝐺

2
4(𝑟 − 𝑥; a; b) − 𝛾1𝐺

𝛼+𝛽+2
4 (𝑟 − 𝑥; a; b)

+ 𝑎0𝐺
3
4(𝑟 − 𝑥; a; b)

]︀
− 2𝑐1𝐺

2
4(𝑟 − 𝑥; a; b) − 𝑐2𝐺

1
4(𝑟 − 𝑥; a; b)

−
𝑟∫︁

𝑥

𝑓(𝑟 − 𝑠)𝐺2
4(𝑠− 𝑥; a; b) 𝑑𝑠.

(4.15)

Let us find the unknown constants 𝑐1, 𝑐2, 𝑐3 involved in (4.12). Substituting (4.12) into the
latter condition in (3.23), we immediately find

𝜏(𝑟) = 𝑐3 = 𝜙3(0).
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Substituting then (4.12) into first two conditions in (3.23), we arrive at the following system of
linear algebraic equations:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2 𝑐1𝐺
3
4(𝑟; a; b) + 𝑐2𝐺

2
4(𝑟; a; b) =𝜙1(0) − 𝜙3(0)𝐺1

4(𝑟; a; b)

−
𝑟∫︁

0

𝑓(𝑟 − 𝑠)𝐺3
4(𝑠; a; b)𝑑𝑠,

2 𝑐1𝐺
2
4(𝑟; a; b) + 𝑐2𝐺

1
4(𝑟; a; b) =𝜙2(0) − 𝜙3(0)

[︀
𝑎2𝐺

1
4(𝑟; a; b) − 𝑎1𝐺

2
4(𝑟; a; b)

− 𝛾1𝐺
𝛼+𝛽+2
4 (𝑟; a; b) + 𝑎0𝐺

3
4(𝑟; a; b)

]︀
−

𝑟∫︁
0

𝑓(𝑟 − 𝑠)𝐺2
4(𝑠; a; b) 𝑑𝑠.

(4.16)

Solving system (4.16), we find

𝑐1 =
∆1

∆
, 𝑐2 =

∆2

∆
, (4.17)

where

∆ =2
[︁
𝐺1

4(𝑟; a; b)𝐺3
4(𝑟; a; b) −

(︀
𝐺2

4(𝑟; a; b)
)︀2]︁

,

∆1 =

𝑟∫︁
0

𝑓(𝑟 − 𝑠)
[︀
𝐺2

4(𝑟; a; b)𝐺2
4(𝑠; a; b) −𝐺1

4(𝑟; a; b)𝐺3
4(𝑠; a; b)

]︀
𝑑𝑠

+𝐺1
4(𝑟; a; b)

[︀
𝜙1(0) − 𝜙3(0)𝐺1

4(𝑟; a; b)
]︀

−𝐺2
4(𝑟; a; b) ·

[︀
𝜙2(0) − 𝜙3(0)

(︀
𝑎2𝐺

1
4(𝑟; a; b) − 𝑎1𝐺

2
4(𝑟; a; b)

− 𝛾1𝐺
𝛼+𝛽+2
4 (𝑟; a; b) + 𝑎0𝐺

3
4(𝑟; a; b)

)︀]︀
,

∆2 =2

𝑟∫︁
0

𝑓(𝑟 − 𝑠)
[︀
𝐺3

4(𝑠; a; b)𝐺3
4(𝑠; a; b) −𝐺3

4(𝑠; a; b)𝐺3
4(𝑠; a; b)

]︀
𝑑𝑠

− 2𝐺2
4(𝑟; a; b)

[︀
𝜙1(0) − 𝜙3(0)𝐺1

4(𝑟; a; b)
]︀

+ 2𝐺3
4(𝑟; a; b)

·
[︁
𝜙2(0) − 𝜙3(0)

(︁
𝑎2𝐺

1
4(𝑟; a; b) − 𝑎1𝐺

2
4(𝑟; a; b) − 𝛾1𝐺

𝛼+𝛽+2
4 (𝑟; a; b) + 𝑎0𝐺

3
4(𝑟; a; b)

)︁]︁
.

It follows from the above proven theorem on the uniqueness of solution to Problem 1 that
the determinant

∆ = 2
[︁
𝐺1

4(𝑟; a; b)𝐺3
4(𝑟; a; b) −

(︀
𝐺2

4(𝑟; a; b)
)︀2]︁

of system (4.16) is non-zero and therefore, formula (4.12), where the constants 𝑐1, 𝑐2 are cal-
culated by formulae (4.17), 𝑐3 = 𝜙3(0), gives the representation for the unique solution to
problem (3.23) for equation (4.2) as the coefficients 𝑎0, 𝑎1, 𝑎2 of equation (4.2) are constant
and −𝑚/2 6 𝑎 < 𝑚/2.

If 𝑎 = 𝑚/2, as the coefficients 𝑎0, 𝑎1, 𝑎2 are constant, by relations (3.16) and (3.22) we arrive
at the following problem for the sought function 𝜏 = 𝜏(𝑥)

𝜏 ′′′(𝑥) + 𝑎2𝜏
′′(𝑥) + 𝑎1𝜏

′(𝑥) + 𝑎0𝜏(𝑥) = (2 − 2𝛽)−𝛽 (𝑟 − 𝑥)𝛽 𝜓′
(︂
𝑟 + 𝑥

2

)︂
, (4.18)

𝜏(0) = 𝜙1(0), 𝜏 ′(0) = 𝜙2(0), 𝜏(𝑟) = 𝜙3(0). (4.19)
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The solution to problem (4.18), (4.19) is written out explicitly by the formula

𝜏(𝑥) =

𝑟∫︁
0

𝐺(𝑥, 𝑡)𝐹 (𝑡)𝑑𝑡+
𝑥2

𝑟2
[𝜙3(0) − 𝑟𝜙2(0) − 𝜙1(0)] + 𝜙2(0)𝑥+ 𝜙1(0),

where

𝐹 (𝑥) =(2 − 2𝛽)−𝛽 (𝑟 − 𝑥)𝛽 𝜓′
(︂
𝑟 + 𝑥

2

)︂
− 𝑎0𝜙1(0) − (𝑎0𝑥+ 𝑎1)𝜙2(0)

− 𝜙3(0) − 𝑟𝜙2(0) − 𝜙1(0)

𝑟2
(2𝑎2 + 2𝑎1𝑥+ 𝑎0) ,

𝐺(𝑥, 𝑡) is the Green function of problem (4.18), (4.19) constructed in work [25].
Once the functions 𝜏 = 𝜏(𝑥) and 𝜈 = 𝜈(𝑥) are found, the solutions to Problem 1 in the

domain Ω1 is determined as the solution to Cauchy problem (3.5), (3.6) for equation (1.2) and
is written out by one of formulae (3.7), (3.13) or (3.15), while in the domain Ω2 we arrive
at the problem on finding a regular solution to equation (1.3) satisfying conditions (2.1) and
𝑢(𝑥, 0) = 𝜏(𝑥); this problem was studied in works [14], [15].

BIBLIOGRAPHY

1. A.V. Bitsadze. Mixed type equations. Izd-vo AN SSSR, Moscow (1949). (in Russian).
2. A.V. Lykov. Application of methods of irreversible processes thermodynamics to studying the heat

and mass exchange // Inzhenerno-fizicheskii zhurn. 9:3, 287–304 (1955). (in Russian).
3. A.M. Nakhushev. Equations of mathematical biology. Vysshaya shkola, Moscow (1995). (in Rus-

sian).
4. A.M. Nakhushev. Fractional calculus and its applications. Fizmatlit, Moscow (2003). (in Russian).
5. L. Bers. Mathematical aspects of subsonic and transonic gas dynamics. John Wiley & Sons, New

York (1958).
6. F.I. Frankl. Selected works on gas dynamics. Nauka, Moscow (1973). (in Russian).
7. T.S. Kal’menov. A criterion for the continuity of a solution of Goursat’s problem for a degenerate

equation // Differ. Uravn. 7:1, 178–181 (1971). (in Russian).
8. T.S. Kal’menov. Darboux’s problem for a degenerate equation // Differ. Uravn. 10:1, 59–68 (1974).

[Diff. Equat. 10:1, 41–47 (1975).]
9. T.S. Kal’menov. A criterion for the continuity of a solution of Goursat’s problem for a degenerate

equation // Differ. Uravn. 8:1, 41–55 (1972). (in Russian).
10. M.M. Smirnov. Degenerate hyperbolic equations. Vyshejshaya shkola, Minsk (1977). (in Russian).
11. O.A. Repin. Boundary value problems with a shift for hyperbolic and mixed type equations. Izd-vo

Saratov. Univ., Saratov (1992). (in Russian).
12. A.M. Nakhushev. Problems with shifts for partial differential equations. Nauka, Moscow (2006).

(in Russian).
13. T.Sh. Kal’menov. To the theory of initial boundary value problems for differential equations. Series

of scientific works by T.Sh. Kal’menov. Inst. Math. Math. Model., Almaty (2013). (in Russian).
14. T.D. Dzhuraev. Boundary value problems for equations of mixed and mixed-composite types. FAN,

Tashkent (1979). (in Russian).
15. L. Cattabriga. Un Problema al contorno per una equazione parabolica di ordine dispari // Ann.

del. Scu. Norm. Super. Pisa. 13:2, 163–203 (1959).
16. Yu. Irgashev. Some boundary value problems for third order equations with multiple characteristics

// in Collection of scientific works “Boundary value problems for differential equations and their
applications”. FAN, Tashkent, 17–31 (1976). (in Russian).

17. T.D. Dzhuraev, S. Abdinazarov. Boundary value problems of Bitsadze-Samarsky problem type for
third order equations with multiple characteristics // Izv. AN Uzbek. SSR. 1, 8-11 (1981). (in
Russian).



DIRICHLET BOUNDARY VALUE PROBLEM . . . 39

18. S. Abdinazarov. General boundary value problems for an equation of third order with multiple
characteristics. // Differ. Uravn. 17:1, 3–12 (1981). [Differ. Equat. 17:1, 1–8 (1981).]

19. I.M. Gel’fand. Some questions of analysis and differential equations // Uspekhi Matem. Nauk.
14:3(87), 3–19 (1959). (in Russian).

20. A.V. Bitsadze. Mixed type equations. Izd-vo AN SSSR, Moscow (1959). (in Russian).
21. A.V. Bitsadze. To the theory of one class of mixed type equations // in book “Some problems of

mathematics and mechanics”, Nauka, Leningrad, 112–119 (1970). (in Russian).
22. O.A. Repin, S.K. Kumykova. Problem with shift for the third-order equation with discontinuous

coefficients // Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki. 4(29), 17–25 (2012). (in
Russian).

23. O.A. Repin, S.K. Kumykova. Nonlocal problem for a equation of mixed type of third order with
generalized operators of fractional integro-differentiation of arbitrary order // Vestn. Samar. Gos.
Tekhn. Univ. Ser. Fiz.-Mat. Nauki. 4(25), 25–36 (2011). (in Russian).

24. V.A. Eleev, S.K. Kumykova. Interior boundary value problem for mixed type third order equation
with multiple characteristics // Izv. Kabardino-Balkar Scientific Center of RAS. 5, 5–14 (2010).
(in Russian).

25. Zh.A. Balkizov. Local and nonlocal value boundary problems for a third-order mixed-type equation
equipped with Tricomi operator in its hyperbolic part // Vestn. Samar. Gos. Tekhn. Univ. Ser.
Fiz.-Mat. Nauki. 2(17), 21–28 (2008). (in Russian).

26. Zh.A. Balkizov. Boundary value problems for a mixed type third order equations with Gellerst-
edt operator in the hyperbolic part // Izv. Kabardino-Balkar. Gos. Univ. 1:1, 21–33 (2011). (in
Russian).

27. Zh.A. Balkizov. Analouge of Tricomi problem for a third order parabolic-hyperbolic equation with
Gellerstedt operator in the hyperbolicity domain // Dokl. Adygskoi (Cherkesskoi) Mezhdunar.
Akad. Nauk. 16:2, 20–27 (2014). (in Russian).

28. Zh.A. Balkizov. Nonlocal boundary value problem for a model third order parabolic-hyperbolic equa-
tion // Dokl. Adygskoi (Cherkesskoi) Mezhdunar. Akad. Nauk. 17:4, 9–20 (2015). (in Russian).

29. L.A. Zolina. On a boundary value problem for a model equation of hyperbolo-parabolic type //
Zhurn. Vychisl. Matem. Matem. Fiz. 6:6, 991–1001 (1966). (in Russian).

30. H.G. Bzkikhatlov, A.M. Nakhushev. A boundary value problem for a mixed equation of parabolic-
hyperbolic type // Dokl. Akad. Nauk SSSR. 183:2, 261-264 (1968). [Sov. Math., Dokl. 9, 1349-1352
(1968).]

31. S.G. Samko, A.A. Kilbas, O.I. Marichev. Fractional integrals and derivatives: theory and appli-
cations. Nauka i Tekhnika, Minsk (1987). [Gordon and Breach, New York (1993).]

32. A.A. Alikhanov. A priori estimates for solutions of boundary value problems for fractional-order
equations // Differ. Uravn. 46:5, 658–664 (2010). [Diff. Equat. 46:5, 660–666 (2010).]

33. A.M. Nakhushev. A contribution to the theory of linear boundary-value problems for second-order
mixed hyperbolic-parabolic equations // Differ. Uravn. 14:1, 56–73 (1978). [Diff. Equat. 14:1,
46–51 (1978).]

34. E.M. Wright. The generalized Bessel function of order greater than one // Quart. J. Math. Oxford
Ser. 11:1, 36–48 (1940).

35. A.V. Pskhu. Initial-value problem for a linear ordinary differential equation of noninteger order
// Matem. Sborn. 202:4, 111–122 (2011). [Sb. Math. 202:4, 571–582 (2011).]

Zhiraslan Anatol’evich Balkizov,
Institute of Applied Mathematics and Automation,
Kabardino-Balkar Scientific Center, RAS,
Shortanova str. 89-a,
360005, Nalchik, Russia
E-mail: Giraslan@yandex.ru


