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ON SPECTRAL PROPERTIES OF ONE BOUNDARY VALUE

PROBLEM WITH A SURFACE ENERGY DISSIPATION

O.A. ANDRONOVA, V.I. VOYTITSKY

Abstract. We study a spectral problem in a bounded domain Ω ⊂ R𝑚 depending on a
bounded operator coefficient 𝑄 > 0 and a dissipation parameter 𝛼 > 0. In the general
case we establish sufficient conditions ensuring that the problem has a discrete spectrum
consisting of countably many isolated eigenvalues of finite multiplicity accumulating at
infinity. We also establish the conditions, under which the system of root elements contains
an Abel-Lidskii basis in the space 𝐿2(Ω). In model one- and two-dimensional problems we
establish the localization of the eigenvalues and find critical values of 𝛼.

Keywords: spectral parameter, quadratic operator pencil, localization of eigenvalues, com-
pact operator, Schatten-von-Neumann classes 𝑆𝑝, Abel-Lidskii basis property.

Mathematics Subject Classification: 35P05, 35P10

To the memory of Tomas Yakovlevich Azizov, whose results and lectures helped the authors

in writing this work.

1. Introduction

In this work we study the spectral properties of one linear problem in mathematical physics
depending on the dimension 𝑚 of a domain Ω ⊂ R𝑚 (with a piece-wise smooth boundary 𝜕Ω),
a bounded in 𝐿2(Ω) operator coefficient 𝑄 > 0 and a parameter 𝛼 > 0 modeling the intensity
of the energy dissipation on a part of the boundary Γ. Namely, we study the problem

−∆𝑢 = −𝜆2𝑄𝑢 (in Ω), (1)

𝜕𝑢

𝜕𝑛
= 𝛼𝜆𝑢 (on Γ), (2)

𝑢 = 0 (on 𝑆 := 𝜕Ω ∖ Γ), (3)

for an unknown field 𝑢 = 𝑢(𝑥) (𝑥 ∈ Ω) and a spectral parameter 𝜆 ∈ C.
This spectral problem is generated by the initial boundary value problem arising as a lin-

earization of a nonlinear problem studied before in works by I.D. Chueshov [1]–[3]. Similar
nonlinear problems can be found in the paper by J. Lagnese [4], where there was studied the
damping of solutions to the wave equation in a bounded domain under the presence of a dissi-
pation on the boundary as well as in work by I. Lasiecka и D. Tataru [5] devoted to the studying
of an uniform stabilization of solutions on the boundary of a domain for a semi-linear wave
equation with a nonlinear dissipation on the boundary.
It should be noted that in the one-dimensional case the known Regge problem has the same

form. Such problem arises in the scattering theory. In the paper by A.A. Shkalikov [6], the Regge
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problem was reduced to the quadratic operator pencil with unbounded operator coefficients,
the localization of the spectrum was established, estimates for the resolvent were obtained as
well as the completenetss and the minimality of subsystems of root functions associated with
a “half” of eigenvalues. Such approach seems to be suitable for studying problem (1)–(3).
For instance, it was employed in paper by A.A. Shkalikov and A.V. Shkred [7] for studying a
three-dimensional problem in the elasticity theory.
In this work, by means of the method of auxiliary boundary value problems of S.G. Krein

kind, problem (1)–(3) is reduced to some quadratic operator pencil in a general class described
in the pioneer work by M.G. Krein and H. Langer [8] (see also [9]). However, general properties
of the operator coefficients in this problem do not allow to apply known results on strongly or
weakly damped pencils.
In the case 𝑄 = 𝐼 (the unit operator), this spectral problem as well as the corresponding

initial boundary value problem were studied earlier by O.A. Andronova and N.D. Kopachevskii
in [10], where they proved the discreteness of the spectrum and considered some model examples.
In this work we obtain more general spectral results on existence of countably many isolated
eigenvalues of finite multiplicity and the Abel-Lidskii basis property on the base of the theorems
by T.Ya. Azizov, M.G. Krein–H. Langer, A.G. Kostyuchenko–M.B. Orazov, M.V. Keldysh and
V.B. Lidskii. Moreover, in the work we describe more precisely the properties of a model two-
dimensional problem and establish the dynamics of the eigenvalues variation depending on the
parameter 𝛼 > 0. It turns out that each eigenvalue moves along a continuous curve in the right
complex half-plane starting from the imaginary axis as 𝛼 = 0 and returning back as 𝛼 → +∞.
For some of the eigenvalues we find critical values of 𝛼 corresponding to the beginning of moving
to the imaginary axis.
We also note that the problems with a parameter in boundary conditions were studied earlier

by many authors. In works by E.M. Russakovsky and A.A. Shkalikov (see [11] and [12]) there
was constructed a general theory of ordinary differential equations of arbitrary order with a
spectral parameter in a boundary condition and in the equation and there were established
sufficient conditions for existence of the chains of eigenelements and adjoint elements forming
a basis or a complete minimal system in the spaces of smooth functions. Rather general for-
mulations of elliptic boundary value problems with a parameter linearly involved in boundary
conditions were considered in works by J. Ercolano, M. Schechter, V.V. Barkovsky, A.N. Ko-
marenko (see [13]–[15]). The asymptotics for the eigenvalues of such problems was studied in
works by A.N. Kozhevnikov (see [16], [17]). Such problems arise in applications while studying
hydrodynamical systems with free boundaries (see works by S.G. Krein and N.D. Kopachevsky),
in diffraction theory (see works by M.S. Agranovich and co-authors) and others. In the present
work we employ an abstract approach for studying boundary value problems and transmission
problem in Lipschitz domains developed by S.G. Krein and N.D. Kopachevsky. It is based on
using abstract and generalized Green’s formula adapted for a particular problem (see works
[18]–[23]). In particular, such approach was used in works by the second co-author of the pa-
per (see [21], [24], [25]) in studying some problems with the parameter linearly involved in an
equation and boundary conditions.

2. Reduction of problem to studying quadratic operator pencil

In order to formulate problem (1)–(3) in operator form, we employ a generalized Green’s
formula for the Laplace operator and mixed boundary conditions, which arises as a particular
case of the abstract Green’s formula proved in works by N.D. Kopachevsky with co-authors
[21]–[23]. In the last work the following result was provided.
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Theorem 2.1. Assume that the Lipschitz boundary 𝜕Ω of the domain Ω ⊂ R𝑚 is partitioned
into pieces Γ𝑘 with Lipschitz boundaries 𝜕Γ𝑘, 𝑘 = 1, 𝑞. Then following generalized Green’s
formula holds true for mixed boundary value problems:

(𝜂, 𝑢)𝐻1(Ω) = ⟨𝜂, 𝑢− ∆𝑢⟩𝐿2(Ω) +

𝑞∑︁
𝑘=1

⟨𝛾𝑘𝜂, 𝜕𝑘𝑢⟩𝐿2(Γ𝑘), ∀ 𝜂, 𝑢 ∈ ̂︀𝐻1(Ω).

Here the angle brackets stand for the value of the functionals determined by the elements 𝑢 −
∆𝑢 ∈ ( ̂︀𝐻1(Ω))* and 𝜕𝑘𝑢 :=

(︁
𝜕𝑢
𝜕𝑛

)︁
Γ𝑘

∈ 𝐻−1/2(Γ𝑘). At that, the trace operators 𝛾𝑘𝜂 := 𝜂 |Γ𝑘
maps

boundedly 𝐻1(Ω) into ̃︀𝐻1/2(Γ𝑘).

Remark 2.1. By ̂︀𝐻1(Ω) we denote the subspace of the functions in 𝐻1(Ω) such that each of

the trace operators 𝛾𝑘 maps boundedly them into the corresponding space ̃︀𝐻1/2(Γ𝑘) of function
defined on Γ𝑘 and extended by zero in the class 𝐻1/2(Γ) (see [23]).

If in the Sobolev space 𝐻1(Ω) we introduce the equivalent norm

‖𝑢‖2𝑆 :=

∫︁
Ω

|∇𝑢|2 𝑑Ω +

∫︁
𝑆

|𝑢|2 𝑑𝑆

and assume that 𝑢 ∈ 𝐻1
0,𝑆(Ω) := {𝑢 ∈ 𝐻1(Ω) : 𝑢|𝑆 = 0}, then the trace of such function on

Γ = 𝜕Ω ∖ 𝑆 will be extended by zero in the class 𝐻1/2(𝜕Ω). Hence, in view of Theorem 2.1, we
obtain the following result.

Corollary 2.1. Let the Lipschitz boundary 𝜕Ω of a domain Ω ⊂ R𝑚 is partitioned into two
pieces Γ and 𝑆 with Lipschitz boundaries. Then the generalized Green’s formula

(𝜂, 𝑢)𝐻1
0,𝑆(Ω) = ⟨𝜂,−∆𝑢⟩𝐿2(Ω) + ⟨𝛾𝜂, 𝜕𝑢

𝜕𝑛
⟩𝐿2(Γ), ∀ 𝜂, 𝑢 ∈ 𝐻1

0,𝑆(Ω) (4)

holds true, where 𝛾𝜂 := 𝜂 |Γ: 𝐻1
0,𝑆(Ω) → ̃︀𝐻1/2(Γ) is the operator of trace on Γ.

We shall seek the solutions to auxiliary boundary problems of S.G. Krein basing on formula
(4).
First auxiliary problem (Newton problem for the Poisson equation): given a function 𝑓

defined in Ω, find a solution 𝑣 ∈ 𝐻1
0,𝑆(Ω) to the problem

− ∆𝑣 = 𝑓 (inΩ),
𝜕𝑣

𝜕𝑛
= 0 (onΓ), 𝑣 = 0 (on𝑆). (5)

In accordance with formula (4), the classical solution should satisfy the identity

(𝜂, 𝑣)𝐻1
0,𝑆(Ω) = ⟨𝜂, 𝑓⟩𝐿2(Ω), ∀𝜂 ∈ 𝐻1

0,𝑆(Ω).

As a weak solution of problem (4), we call each element 𝑣 ∈ 𝐻1
0,𝑆(Ω) satisfying this identity for

a fixed function 𝑓 .

Definition 2.1. We shall say (see, for instance, [18, Sect. 3]) that two Hilbert spaces 𝐹 and
𝐸 form a Hilbert pair (we shall employ the notation (𝐹 ;𝐸)) if 𝐹 is a dense linear subset in 𝐸
and there exists a bounded operator of embedding 𝐹 into 𝐸, that is, there exists 𝑎 > 0 such that

‖𝑢‖𝐸 6 𝑎‖𝑢‖𝐹 , ∀𝑢 ∈ 𝐹.

At that, the generating operator of the Hilbert pair (𝐹 ;𝐸) is the operator 𝐴 : 𝐹 → 𝐹 * deter-
mined uniquely by the identity

⟨𝜂, 𝐴𝑣⟩𝐸 = (𝜂, 𝑣)𝐹 , ∀𝜂, 𝑣 ∈ 𝐹.

It has the self-adjoint restriction 𝐴 : 𝒟(𝐴) ⊂ 𝐸 → 𝐸 = ℛ(𝐴) being a positive definite operator.
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Since the spaces 𝐻1
0,𝑆(Ω) and 𝐿2(Ω) form a Hilbert pair of spaces and 𝐻1

0,𝑆(Ω) is compactly
embedded into 𝐿2(Ω), the following statement holds.

Lemma 2.1. For each 𝑓 ∈
(︀
𝐻1

0,𝑆(Ω)
)︀*

there exists a unique weak solution 𝑣 = 𝐴−1𝑓 to

problem (5). At that, the operator 𝐴 is the operator of the Hilbert pair (𝐻1
0,𝑆(Ω);𝐿2(Ω)). The

restriction of this operator possessing the property ℛ(𝐴) = 𝐿2(Ω) is an unbounded positive
definite operator in 𝐿2(Ω). At that, 𝒟(𝐴1/2) = 𝐻1

0,𝑆(Ω) and the identity

⟨𝜂, 𝐴𝑣⟩𝐿2(Ω) = (𝜂, 𝑣)𝐻1
0,𝑆(Ω) =

(︀
𝐴1/2𝜂, 𝐴1/2𝑣

)︀
𝐿2(Ω)

, ∀𝜂, 𝑣 ∈ 𝐻1
0,𝑆(Ω)

holds. The operator 𝐴 : 𝒟(𝐴) ⊂ 𝐿2(Ω) → 𝐿2(Ω) a positive discrete spectrum {𝜆𝑘(𝐴)}∞𝑘=1 with
the accumulation point 𝜆 = +∞ and the asymptotic behavior (see [26])

𝜆𝑘(𝐴) = 𝑐𝐴𝑘
2/𝑚[1 + 𝑜(1)], (𝑘 → ∞), 𝑐𝐴 > 0, 𝑚 > 2. (6)

The inverse operator 𝐴−1 : 𝐿2(Ω) → 𝐿2(Ω) is a compact positive operator.

Second auxiliary problem (the Newton problem for the Laplace equation): given a function
𝜓 defined on Γ, find a solution 𝑤 ∈ 𝐻1

0,𝑆(Ω) to the problem

− ∆𝑤 = 0 (inΩ),
𝜕𝑤

𝜕𝑛
= 𝜓 (onΓ), 𝑤 = 0 (on𝑆). (7)

In accordance with formula (4), a classical solution to this problem should satisfy the identity

(𝜂, 𝑤)𝐻1
0,𝑆(Ω) = ⟨𝛾𝜂, 𝜓⟩𝐿2(Γ)

, ∀𝜂 ∈ 𝐻1
0,𝑆(Ω).

As a weak solution of problem (7), we shall call each element of 𝑤 ∈ 𝐻1
0,𝑆(Ω) satisfying this

identity for a fixed function 𝜓.
Since the trace operator 𝛾 : 𝐻1

0,𝑆(Ω) → ̃︀𝐻1/2(Γ) is bounded (see [27]) for a fixed 𝜓 ∈
( ̃︀𝐻1/2(Γ))* = 𝐻−1/2(Γ), the expression ⟨𝛾𝜂, 𝜓⟩𝐿2(Γ)

is a bounded linear functional on the space

𝐻1
0,𝑆(Ω). Therefore, by the Riesz theorem, there exists a unique element 𝑤 = 𝑇𝜓 ∈ 𝐻1

0,𝑆(Ω)
such that

⟨𝛾𝜂, 𝜓⟩𝐿2(Γ)
= (𝜂, 𝑇𝜓)𝐻1

0,𝑆(Ω), 𝜂 ∈ 𝐻1
0,𝑆(Ω), 𝜓 ∈ 𝐻−1/2(Γ). (8)

Thus, the bounded operator 𝑇 : 𝐻−1/2(Γ) → 𝐻1
0,𝑆(Ω) is well-defined and it is adjoint to the

operator 𝛾 in the sense of identity (8). At that, ℛ(𝑇 ) = 𝐻1
0,𝑆,ℎ(Ω) is a subspace of harmonic

functions in 𝐻1
0,𝑆(Ω). This leads us to the following result.

Lemma 2.2. For each 𝜓 ∈ 𝐻−1/2(Γ) there exists a unique weak solution 𝑤 = 𝑇𝜓 ∈ 𝐻1
0,𝑆,ℎ(Ω)

of problem (7).

The sum 𝑢 = 𝑣 + 𝑤 ∈ 𝐻1
0,𝑆(Ω) of solutions to the first and second auxiliary problems is a

weak solution of the problem

− ∆𝑢 = 𝑓 (inΩ),
𝜕𝑢

𝜕𝑛
= 𝜓 (onΓ), 𝑢 = 0 (on𝑆). (9)

This solution is generalized if 𝑓 ∈ 𝐿2(Ω), 𝜓 ∈ 𝐿2(Γ). The opposite statement holds as well (see
an abstract result in [19]).

Lemma 2.3. Each element 𝑢 ∈ 𝐻1
0,𝑆(Ω) can be uniquely represented as a sum of solutions

to the first and second auxiliary problems, that is, as

𝑢 = 𝑣 + 𝑤 = 𝐴−1𝑓 + 𝑇𝜓, (10)

where 𝑓 = −∆𝑢 ∈
(︀
𝐻1

0,𝑆(Ω)
)︀*
, 𝜓 = 𝜕𝑢/𝜕𝑛 ∈ 𝐻−1/2(Γ).
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This implies that the generalized eigenvalues and eigenfunctions of original problem (1)–(3)
satisfy the operator relation

𝑢 = −𝜆2𝐴−1𝑄𝑢+ 𝛼𝑇𝛾𝑢, 𝑢 ∈ 𝐻1
0,𝑆(Ω). (11)

Making the change 𝜂 = 𝐴1/2𝑢 ∈ 𝐿2(Ω) and applying the operator 𝐴1/2 to the both sides of
(11), we obtain the equivalent spectral problem for the pencil

𝐿𝛼(𝜆)𝜂 := 𝜆2𝐴−1/2𝑄𝐴−1/2𝜂 − 𝜆𝛼(𝐴1/2𝑇 )(𝛾𝐴−1/2)𝜂 + 𝜂 = 0, 𝜂 ∈ 𝐿2(Ω). (12)

By identity (8) and the compact embedding of 𝐻1/2(Γ) into 𝐿2(Γ) one can prove easily that
the operators 𝛾𝐴−1/2 : 𝐿2(Ω) → 𝐿2(Γ) and 𝐴1/2𝑇 : 𝐿2(Γ) → 𝐿2(Ω) are mutually adjoint and
compact. Hence, the operator ℬ := (𝐴1/2𝑇 )(𝛾𝐴−1/2) is a negative compact operator in 𝐿2(Ω)
and it has an infinitely dimensional kernel Kerℬ := {𝜂 ∈ 𝐿2(Ω) : 𝜂 = 𝐴1/2𝑢, 𝑢 ∈ 𝐻1

0 (Ω)}.
If the domain is piece-wise smooth and its dimension satisfies the inequality 𝑚 > 2, then the
asymptotic formula (see [26])

𝜆𝑘(ℬ) = 𝑐ℬ𝑘
−1/(𝑚−1)[1 + 𝑜(1)], (𝑘 → ∞), 𝑐ℬ > 0, (13)

holds true.
The operator 𝒜 := 𝐴−1/2𝑄𝐴−1/2 is obviously compact positive operator in 𝐿2(Ω). Employing

the introduced notations, problem (12) can be rewritten as

𝐿𝛼(𝜆)𝜂 = 𝜆2𝒜𝜂 − 𝜆𝛼ℬ𝜂 + 𝜂 = 0, 𝜂 ∈ 𝐿2(Ω). (14)

3. Simplest properties of solutions to spectral problems

Quadratic self-adjoint pencils of form (14) were studied before by many authors, the first
results were presented in monograph [9]. However, the pencil with particular operators 𝒜 and
ℬ is not in the class of problems described in [9], for which the localization of the eigenvalues
was established and the theorems on completeness were proved.
The general properties of pencil (14) were established before in work [10]. We formulate

them without proving.
10. The number 𝜆 = 0 is not an eigenvalue of the problem.
20. All eigenvalues are located in the right complex half-plane symmetrically w.r.t. the real

axis.
30. The spectrum of the problem can contain only eigenvalues of finite multiplicites

{𝜆𝑘(𝛼)}∞𝑘=1 with the only possible accumulation point 𝜆 = ∞ (that is implied by the theo-
rem by I.C. Gohberg valid for Fredholm operator pencils, see [9, Sect. 1.5]). At that, due to
the compactness of the operator ℬ, the spectrum can contain only finitely many eigenvalues or
no eigenvalues (see an example in [9, Sect. 5.12]).

40. As 𝛼 = 0, the spectrum of the problem is located on the imaginary axis (hyperbolic case)
and consists of infinitely many eigenvalues

{𝜆𝑘}∞𝑘=1, 𝜆𝑘 = ±𝑖𝜆−1/2
𝑘 (𝒜), 𝑘 = 1, 2, . . . . (15)

50. If 𝛼 is formally equal to ∞, that is, we consider the limiting problem

−∆𝑢 = −𝜆2𝑆𝑢 (in Ω), 𝑢 = 0 (on 𝜕Ω),

then the spectrum is located on the imaginary axis and consists of infinitely many eigenvalues

{𝜆𝑘}∞𝑘=1, 𝜆𝑘 = ±𝑖𝜆−1/2
𝑘 (𝒜0), 𝑘 = 1, 2, . . . , (16)

where 𝒜0 := 𝐴
−1/2
0 𝑄𝐴

−1/2
0 is a compact positive operator in 𝐿2(Ω), 𝐴0 is the positive defininte

in 𝐿2(Ω) operator of the Dirichlet problem for the Laplace equation.
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60. As 𝛼 increases from zero, the eigenvalues 𝜆𝑘(𝛼) coinciding with numbers (15) as 𝛼 = 0
shift to the right complex half plane perpendicular to the imaginary axis and as 𝛼 → +∞,
they approach the limiting values (16) on the imaginary axis along perpendicular trajectories.
This implies that for each 𝑘 there exists some critical value 𝛼*

𝑘 > 0, after which 𝜆𝑘(𝛼) starts
moving not from the imaginary axis but to this axis as 𝛼 grows approaching the axis in the
limit 𝛼 = +∞. The considered below model examples will show that the critical values can
be either independent of the eigenvalues or can depend on them but as 𝑘 → ∞, they tend to
certain number. In the general case this fact is not proved.

4. Theorem on discreteness of spectrum

In problem (14) we make the change of the spectral parameter by the formula 𝜆 = 𝜇−1 and
consider instead the problem

𝑀𝛼(𝜇)𝜂 := 𝜇2𝜂 − 𝜇𝛼ℬ𝜂 + 𝒜𝜂 = 0. (17)

In paper [10], there was given a proof for the following theorem by T.Ya. Azizov and this
proof based essentially on a theorem by V.I. Matsaev on properties of non-self-adjoint Volterra
operator, see [9, Sect. 4.11].

Theorem 4.1. Let

Φ(𝜇) := 𝜇2𝐼 + 𝜇𝐵 + 𝐶, 𝐵 = 𝐵* ∈ S∞, 0 6 𝐶 = 𝐶* ∈ S∞. (18)

If at least one of the conditions

𝐵 ∈ S𝑝, 𝐶
1/2 ∈ S𝑞∖S𝑝 (𝑞 > 𝑝 > 1) (19)

or

𝐵 ∈ S𝑝∖S𝑞, 𝐶
1/2 ∈ S𝑞 (1 < 𝑞 < 𝑝), (20)

holds true, then the pencil Φ(𝜇) has countably many non-zero eigenvalues of finite multiplicities
with the accumulation point 𝜆 = 0.

We recall (see [9, Sect. 2.2]) that a compact (completely continuous) operator 𝐴 belongs
to the Neumann-Schatten class S𝑝 (𝑝 > 0) if its 𝑠-numbers, that is, the eigenvalues of the
operators (𝐴*𝐴)1/2 are 𝑝-power summable, that is,

∞∑︁
𝑗=1

(𝑠𝑗(𝐴))𝑝 =
∞∑︁
𝑗=1

(𝜆𝑗
(︀
𝐴*𝐴)1/2

)︀
)
𝑝
<∞.

It is obvious that if 𝐴 ∈ S𝑝, then 𝐴 ∈ S𝑝′ for each 𝑝
′ > 𝑝, and this is why it is reasonable to

introduce the number 𝑝* := inf{𝑝 ∈ R : 𝐴 ∈ S𝑝}.

Remark 4.1. Since the 𝑠-numbers of a compact non-negative operator 𝐴 coincides with its
eigenvalues, the asymptotic formula 𝜆𝑘(𝐴) = 𝑘−𝛽[1 + 𝑜(1)], (𝑘 → ∞) yields that 𝐴 ∈ S𝑝, 𝑝 >
𝑝* = 1/𝛽, 𝐴1/2 ∈ S𝑝, 𝑝 > 𝑝* = 2/𝛽.

It is known that for each bounded operator 𝐵, we have 𝐴𝐵,𝐵𝐴 ∈ S𝑝 if 𝐴 ∈ S𝑝. It was
proved in [28, Sect. 11.6] that under the condition 𝑇𝑖 ∈ S𝑝𝑖 , 0 < 𝑝𝑖 6 ∞, 𝑖 = 1, 2, we have
𝑇1𝑇2 ∈ S𝑝, где 𝑝

−1 = 𝑝−1
1 + 𝑝−1

2 .

Remark 4.2. By the induction one can establish a similar formula for the product of finitely
many operators 𝑇𝑖, in particular, 𝑇1𝑇2𝑇3 ∈ S𝑝, where 𝑝

−1 = 𝑝−1
1 + 𝑝−1

2 + 𝑝−1
3 .

We assume that 𝑚 > 2. On the base of Remark 4.1 and asymptotic formula (13) we obtain
that ℬ ∈ S𝑝, 𝑝 > 𝑝* = 𝑚− 1.
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Lemma 4.1. If the operator 𝑄 > 0 is boundedly invertible, then 𝒜1/2 ∈ S𝑝, 𝑝 > 𝑝* = 𝑚.

Proof. Under the assumption of the lemma, there exist positive constants 𝑐* and 𝑐
* such that

𝑐*𝐼 6 𝑄 6 𝑐*𝐼. Hence,

𝑐*𝐴
−1 6 𝐴−1/2𝑄𝐴−1/2 6 𝑐*𝐴−1,

and therefore,

𝑐*𝜆𝑘(𝐴−1) 6 𝜆𝑘(𝒜) 6 𝑐*𝜆𝑘(𝐴−1).

By asymptotic formula (6) we obtain that 𝐴−1 ∈ S𝑝, 𝑝 > 𝑝* = 𝑚/2. Hence, employing the
comparison tests for scalar series, we conclude that 𝒜 ∈ S𝑝, 𝑝 > 𝑝* = 𝑚/2, and therefore,
𝒜1/2 ∈ S𝑝, 𝑝 > 𝑝* = 𝑚.

Remark 4.3. For an arbitrary bounded 𝑄 > 0 we have 𝒜1/2 ∈ S𝑝, 𝑝 > 𝑚.

Lemma 4.2. If 𝑄 ∈ S𝑟, 𝑟 > 0, then 𝒜1/2 ∈ S𝑝, where 𝑝 ∈
(︂

2𝑟𝑚

2𝑟 +𝑚
; 2𝑟

)︂
.

Proof. By formula (6) we have 𝐴−1/2 ∈ S𝑝′ , 𝑝
′ > 𝑝* = 𝑚. According to Remark 4.2, this implies

that 𝒜 = 𝐴−1/2𝑄𝐴−1/2 ∈ S𝑝 for

𝑝 = ((𝑝′)−1 + 𝑟−1 + (𝑝′)−1)−1 =

(︂
2𝑟 + 𝑝′

𝑟𝑝′

)︂−1

=
𝑟𝑝′

2𝑟 + 𝑝′
.

Therefore, for each 𝑝′ > 𝑚 we have 𝒜1/2 ∈ S𝑝 for 𝑝 = (2𝑟𝑝′)/(2𝑟 + 𝑝′). The image of the
function 𝑓(𝑝′) := (2𝑟𝑝′)/(2𝑟 + 𝑝′) on the set (𝑚; +∞) is the interval ((2𝑟𝑚)/(2𝑟 +𝑚); 2𝑟).

Lemma 4.3. If 𝑄 ∈ S𝑟 for some
𝑚− 1

2
< 𝑟 <

(𝑚− 1)𝑚

2
, then 𝒜1/2 ∈ S𝑚−1.

Proof. The statement is implied immediately from Lemma 4.2 since the assumptions of the

lemma are equivalent to 𝑚− 1 ∈
(︂

2𝑟𝑚

2𝑟 +𝑚
; 2𝑟

)︂
.

Theorem 4.2. If the operator 𝑄 is boundedly invertible and 𝑚 > 2 or 𝑚 = 3 and 𝑆 ∈ S𝑟

for some 𝑟 ∈ (1; 3), then operator pencil (17) has countably many non-zero eigenvalues of finite
multiplicities with the accumulation point 𝜇 = 0.

Proof. We apply Theorem 4.1 with 𝐵 = −𝛼ℬ, 𝐶 = 𝒜 to pencil (17).
If the operator 𝑄 is boundedly invertible, then by Lemma 4.1 we have𝒜1/2 ∈ S𝑝, 𝑝 > 𝑝* = 𝑚.

Since earlier we established that ℬ ∈ S𝑝, 𝑝 > 𝑝* = 𝑚− 1, then for each number 𝑞 ∈ (𝑚− 1;𝑚)
we have ℬ ∈ S𝑞 and at that, 𝒜1/2 ̸∈ S𝑞.
If 𝑚 = 3 and 𝑆 ∈ S𝑟, 𝑟 ∈ (1; 3), then the assumptions of Lemma 4.3 are satisfied and by

this lemma 𝒜1/2 ∈ S𝑚−1. However, by the property ℬ ∈ S𝑝, 𝑝 > 𝑝* = 𝑚 − 1, we obtain that
ℬ ̸∈ S𝑚−1.

Corollary 4.1. Under the assumptions of the theorem, original pencil (14) (and (12)) has
countably many eigenvalues of finite multiplicities with the accumulation point 𝜆 = ∞.

5. Theorems on completeness of root functions

We address now known results in the theory of self-adjoint quadratic operator pencils. One
of the first results in this theory is the following theorem by M.G. Krein and H. Langer, see [8].

Theorem 5.1. Assume that we are given an operator function 𝐿(𝜇) := 𝜇2𝐼+𝜇𝐷+𝐶 acting
in a Hilbert space 𝐻, where 𝐷 = 𝐷* ∈ ℒ(𝐻), 𝐶 > 0, 𝐶 ∈ S∞(𝐻). Assume that its non-real



10 O.A. ANDRONOVA, V.I. VOYTITSKY

spectrum formed by normal eigenvalues located symmetric w.r.t. the real axis is split into two
parts 𝜎0(𝐿) = Λ ∪ Λ (Λ ∩ Λ = ∅). Then the operator equation

𝐿(𝑍) := 𝑍2 + 𝑍𝐷 + 𝐶 = 0

has a solution 𝑍Λ = 𝐾𝐶1/2 ∈ S∞(𝐻), where 𝐾 ∈ ℒ(𝐻) is an angular operator. At that, the
following properties hold:
1) 𝑍*

Λ𝑍Λ 6 𝐶;
2) 𝜎0(𝑍Λ) = Λ;
3) for each 𝜇 ∈ Λ the operator 𝑍Λ and the pencil 𝐿(𝜇) have the same Jordan chains.

The proof is based on applying the theory of operators acting in a space with indefinite
metric. By the same method, A.G. Kostyuchenko and M.B. Orazov in [29] established a relation
between the Jordan chains of the pencil and the operator root in the case of real eigenvalues. It
was proved there that in the general case the entire discrete spectrum of the pencil 𝐿(𝜇) splits
into the four parts

𝜎𝑑(𝐿) = 𝐹1 ∪ Λ ∪ 𝐹2 ∪ Λ, (21)

where the sets 𝐹𝑖 ⊂ R, 𝑖 = 1, 2, can have non-empty intersection and

𝜎𝑑(𝑍Λ) = 𝐹1 ∪ Λ, 𝜎𝑑(𝑍
*
Λ
) = 𝐹2 ∪ Λ (22)

and 𝐿(𝜇) = (𝜇𝐼 − 𝑍Λ)(𝜇𝐼 − 𝑍*
Λ
). There was also described a procedure allowing one to select

the parts of the Jordan chains of the pencil corresponding to 𝜇 ∈ 𝐹1, which are root functions
for the operator 𝑍Λ. These results allows us to describe completely the spectral properties of
the pencil 𝐿(𝜇) via the properties of the operators 𝑍Λ and 𝑍*

Λ
. In particular, the completeness

of the system of root functions of the operator 𝑍Λ implies the completeness of the eigenelements
and the adjoint elements of the pencil 𝐿(𝜇). We note that the completeness and the minimality
of the root elements of the pencil 𝐿(𝜇) can be proved basing on the order and growth rate at the
rays of the meromorphic function 𝐿−1(𝜇), see paper by A.G. Kostyuchenko and A.A. Shkalikov
[30]. However, in the present work this method is not employed.
In what follows we make use of the theorem by M.V. Keldysh and V.B. Lidskii proved in [31],

see also [9]. Let 𝑍 be a linear operator, ̃︁𝑊 (𝑍) be the closure of the set {(𝑍𝑢, 𝑢) : 𝑢 ∈ 𝐻}. It
either coincides with an angle of opening 𝜃𝑍 6 𝜋 (with the vertex at the origin) or ̃︁𝑊 (𝑍) = C.

Theorem 5.2. If for a compact operator 𝑍 the set ̃︁𝑊 (𝑍) is an angle of opening 𝜃𝑍 = 𝜋/𝑝,
where 𝑝 > 1, and 𝑍 ∈ S𝑝(𝐻) (one can assume a weaker condition 𝑠𝑛(𝑍) = 𝑜(𝑛−1/𝑝) (𝑛→ ∞)),
then the system of root elements of the operator 𝑍 is complete in the Hilbert space 𝐻.

In work [32] (se also [33] and [34, Ch. 5]), the following result was established.

Theorem 5.3. If under the assumptions of Theorem 5.2 the set̃︁𝑊 (𝑍) is an angle of openinig
𝜃𝑍 < 𝜋/𝑝, where 𝑝 > 1 и 𝑍 ∈ S𝑝(𝐻), then the system of root element s of the operator 𝑍 form
a Fourier series in 𝐻 summable by the Abel method (in what follows we shall employ the notion
of Abel-Lidskii basis of order 𝛽 > 𝑝).

Remark 5.1. The definition of this summation method was first given by V.B. Lidskii in
paper [32], some explanations can be found in recent works by M.S. Agranovich. For instance,
in [34] the following definition was given. For a compact operator 𝐴 with a zero kernel and an

image ̃︁𝑊 (𝐴) symmetric w.r.t. the number 𝜆0 : |𝜆0| = 1, the property of being an Abel-Lidksii
basis of order 𝛽 > 0 means that there exists a complete and minimal in the space 𝐻 system of
root elements {𝑓𝑗} of the operator 𝐴 such that the formal series

− 1

2𝜋𝑖

∑︁
𝑗

∮︁
𝛾𝑗

𝑒−𝑡𝜆−𝛽
0 𝜆𝛽

𝐴(𝐼 − 𝜆𝐴)−1𝑓 𝑑𝜆,



ON SPECTRAL PROPERTIES OF ONE BOUNDARY VALUE PROBLEM. . . 11

where the contour 𝛾𝑗 envelopes one isolated characteristic number of the operator 𝐴, converges
after some arrangement of brackets independent of the element 𝑓 ∈ 𝐻 to some function 𝑓(𝑡)
and this function converges to 𝑓 as 𝑡→ 0.

It is obvious that the pencil 𝑀𝛼(𝜇) satisfies the assumptions of Theorem 5.1 and at that,
𝑍 = 𝐾𝒜1/2 (where 𝐾 is an angular operator) is contained in the same Neumann-Schatten class
as the operator 𝒜1/2. In the general case, by the spectral properties of the problem, the set̃︁𝑊 (𝑍) is an angle of opening 𝜃0 6 𝜋. Assume that the set ̃︁𝑊 (𝑍) is more narrow.

Theorem 5.4. The system of root functions of the pencil 𝑀𝛼(𝜇) associated with the eigen-
values in the upper (or lower) complex plane as well as a part of root functions associated with

the real eigenvalues form a complete system 𝐿2(Ω) if 𝜃0 <
𝜋

𝑚
or 𝜃0 <

𝜋

𝑚
+

𝜋

2𝑟
and 𝑄 ∈ S𝑟,

𝑟 > 0. At that, in the space 𝐿2(Ω), this system form an Abel-Lidskii basis of order 𝛽 > 𝑚 or

𝛽 > 𝛽0 :=
2𝑟𝑚

2𝑟 +𝑚
, respectively, in the first or second case.

Proof. It is obvious that for each 𝜃0 < 𝜋/𝑚 we can find a small 𝜀 > 0 such that 𝜃0 < 𝜋/(𝑚+𝜀).
At that, it follows from Remark 4.3 that for each bounded 𝑄 > 0 and each 𝜀 > 0 we have
𝑍,𝒜1/2 ∈ S𝑝, 𝑝 = 𝑚 + 𝜀. Then by Theorem 5.3 the root elements of the operator 𝑍 form an
Abel-Lidskii basis of order 𝛽 > 𝑚+ 𝜀. Since 𝜀 is arbitrarily small, we can assume that 𝛽 > 𝑚.
If 𝑄 ∈ S𝑟, 𝑟 > 0, by Lemma 4.2 we have 𝑍,𝒜1/2 ∈ S𝑝, where 𝑝 ∈ (𝛽0; 2𝑟). It follows from the

condition 𝜃0 < 𝜋/𝑚+ 𝜋/(2𝑟) = 𝜋/𝛽0 that we can find a small 𝜀 > 0 such that 𝜃0 < 𝜋/(𝛽0 + 𝜀).
Then by Theorem 5.3, the root elements of the operator 𝑍 form Abel-Lidskii basis of order
𝛽 > 𝛽0 + 𝜀. Since 𝜀 is arbitrarily small, it is sufficient to suppose that 𝛽 > 𝛽0.
Since each eigenelement and each adjoint element of the operator 𝑍 is that for the pencil

𝑀𝛼(𝜇), this completes the proof.

Corollary 5.1. If in addition we know that Re𝑍 > 0 and Im𝑍 > 0 or Im𝑍 6 0, then
𝜃0 6 𝜋/2. It follows that the completeness holds if 𝑚 = 2 and 𝑄 ∈ S𝑟, 𝑟 > 0, or 𝑚 = 3 and
𝑄 ∈ S𝑟, 𝑟 < 3. This property likely holds for the pencil 𝑀𝛼(𝜇) but the authors failed to prove
it rigorously.

Remark 5.2. In Theorem 5.4 the conditions for the location of the image ̃︁𝑊 (𝑍) in the angle
of opening 𝜃0 can be replaced by the condition on the existence of finitely many rays leaving the
origin and partitioning the complex plane into sectors of opening less than 𝜃0, on which the
modified resolvent of the operator 𝑍 obeys the estimate (see [33])

‖𝑍(𝐼 − 𝜆𝑍)−1‖ = 𝑂(|𝜆|−1), 𝜆→ ∞.

On the base of Theorem 5.4 and the fact that the transformation 𝜆 = 1/𝜇 maps an angle
of opening 𝜃 in the upper half-plane into an angle of the same opening in the lower half-plane
(and vice versa), we obtain the following result.

Theorem 5.5 (Main theorem on properties of problem [1]–[3]). Under the assumptions of
Theorem 5.4, the pencil 𝐿𝛼(𝜆) and original problem [1]–[3] has a countable set 𝜎 = Λ ∪ Λ ∪ 𝐹 ,
𝐹 ⊂ R can be empty, Λ ∩ R = ∅), of eigenvalues with the only accumulation point at infinity.
At that, the root functions associated with the eigenvalues in the upper (lower) half-plane and
a part of root functions corresponding to some subset 𝐹1 ⊂ 𝐹 (or 𝐹2 ⊂ 𝐹 ) form a complete
system in 𝐿2(Ω) being an Abel-Lidskii basis in this space.

Remark 5.3. Basing on the results by M.S. Agranovich in [26] (see also [35]), one can
establish that the theorem is still true if in problem (1)–(3), the operator −∆ is replaced by a
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strongly elliptic formally self-adjoint second order differential system

𝐿�⃗� := −
𝑚∑︁

𝑖,𝑗=1

𝜕

𝜕𝑥𝑖

(︂
𝑎𝑖𝑗(𝑥)

𝜕�⃗�

𝜕𝑥𝑗

)︂
+ 𝑐(𝑥)�⃗�,

and the normal derivative is replaced by the derivative along the conormal

𝜕𝜈 �⃗� :=
𝑚∑︁

𝑖,𝑗=1

𝜈𝑖(𝑥)𝑎𝑖𝑗(𝑥)
𝜕�⃗�

𝜕𝑥𝑗
.

Here �⃗� = (𝑢1(𝑥), . . . , 𝑢𝑛(𝑥)) (𝑥 ∈ Ω) is the unknown vector function; 𝑎𝑖𝑗(𝑥) are 𝑛×𝑛 matrices,
whose entries obeys the symmetry condition 𝑎𝑟𝑠𝑖𝑗 (𝑥) = 𝑎𝑠𝑟𝑗𝑖 (𝑥); 𝑐(𝑥) is a symmetric positive def-
inite matrix; 𝜈 = (𝜈1(𝑥), . . . , 𝜈𝑚(𝑥)) is the unit outward normal vector for 𝜕Ω. The principal
symbol of the equations

𝑎(𝑥, 𝜉) :=
𝑚∑︁

𝑖,𝑗=1

𝑎𝑖𝑗(𝑥)𝜉𝑖𝜉𝑗, 𝜉 ∈ R𝑚, |𝜉| = 1,

is a positive definite matrix uniformly in 𝑥 ∈ Ω. Moreover,∑︁
𝑎𝑟𝑠𝑖𝑗 (𝑥)𝜉𝑠𝑗 𝜉

𝑟
𝑖 > 𝑐

∑︁
|𝜉𝑠𝑗 |2, 𝑥 ∈ Γ, 𝜉𝑠𝑗 ∈ R, 𝑐 > 0.

6. Model examples

Let us establish the localization for the eigenvalues of the problem in the case 𝑆 = 𝐼 as 𝑚 = 1
or 𝑚 = 2 and Ω = (0; 𝜋) × (0; 1).
We first consider the one-dimensional problem

𝑢′′(𝑦) − 𝜆2𝑢(𝑦) = 0, 0 < 𝑦 < 1, 𝑢(0) = 0, 𝑢′(1) = 𝛼𝜆𝑢(1). (23)

Earlier it was studied in [10], here we briefly provide their properties.
The corresponding characteristic equation is of the form

coth𝜆 = 𝛼, 0 6 𝛼 <∞. (24)

It is easy to confirm that as 𝛼 = 1, the equation has no finite solutions, that is, the discrete
spectrum is empty. If 𝛼 ∈ (0; 1), we arrive at the sequence

𝜆−𝑝 (𝛼) := 𝑐−(𝛼) + 𝑖𝜋(𝑝− 1/2), 𝑐−(𝛼) :=
1

2
ln

1 + 𝛼

1 − 𝛼
, 𝑝 = ±1,±2, . . . . (25)

As 𝛼 > 1, we have

𝜆 = 𝜆+𝑝 (𝛼) := 𝑐+(𝛼) + 𝑖𝜋𝑝, 𝑐+(𝛼) :=
1

2
ln
𝛼 + 1

𝛼− 1
, 𝑝 = 0,±1,±2, . . . . (26)

For a fixed 𝛼 ̸= 1, the eigenvalues are located at the line Re𝜆 = 𝑐−(𝛼) or at the line Re𝜆 = 𝑐+(𝛼)
parallel to the imaginary axis. As 𝛼 varies, each eigenvalue moves along straight trajectories
parallel the real axis and

𝜆−𝑝 → ∞ (𝛼 → 1 − 0), 𝜆+𝑝 (𝛼) → ∞ (𝛼 → 1 + 0). (27)

Thus, 𝛼 = 1 is the critical value of the parameter for all eigenvalues. As 0 < 𝛼 < 1, all
eigenvalues of problem (23) are non-real, as 𝛼 > 1 there is one positive eigenvalue 𝜆+0 (𝛼), which
moves to the left as 𝛼 grows and tends to zero as 𝛼 → +∞. For 𝑝 ̸= 0, the eigenvalues 𝜆+𝑝 (𝛼)
tend to the numbers 𝜆+𝑝 (+∞) = 𝑖𝜋𝑝 as 𝛼 → +∞ and these numbers are the solutions to the
Dirichlet spectral problem:

𝑢′′(𝑦) − 𝜆2𝑢(𝑦) = 0, 0 < 𝑦 < 1, 𝑢(0) = 𝑢(1) = 0. (28)
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Now we consider the two-dimensional spectral problem

∆𝑢− 𝜆2𝑢 = 0 (in Ω), 𝑢 = 0 (on 𝑆),
𝜕𝑢

𝜕𝑦
− 𝜆𝛼𝑢 = 0 (on Γ), (29)

in the domain Ω = (0; 𝜋) × (0; 1), where Γ := {(𝑥; 1) : 𝑥 ∈ (0; 1)}.
We seek the solutions as

𝑢(𝑥, 𝑦) = 𝑢𝑛(𝑥, 𝑦) = sin(𝑛𝑥)𝑌𝑛(𝑦), 𝑛 = 0, 1, 2, . . . , (30)

and for each 𝑛 we obtain the one-dimensional problem

𝑌 ′′
𝑛 − (𝜆2 + 𝑛2)𝑌𝑛 = 0, 0 < 𝑦 < 1, 𝑌𝑛(0) = 0, 𝑌 ′

𝑛(1) = 𝜆𝛼𝑌𝑛(1). (31)

It has the solution
𝑌𝑛(𝑦) = sinh

(︁
𝑦
√
𝜆2 + 𝑛2

)︁
, (32)

which in view of the last boundary condition implies the series of characteristic equations

coth
√
𝜆2 + 𝑛2 =

𝛼𝜆√
𝜆2 + 𝑛2

, 𝑛 = 1, 2, . . . , Re
√
𝜆2 + 𝑛2 > 0. (33)

We observe that as 𝑛 = 0, we obtain characteristic equation (24) of the one-dimensional spectral
problem but for 𝑛 > 0 its properties differ substantially.
If we make the change 𝑧 = 𝜆2 +𝑛2, by employing formulae for hyperbolic functions we obtain

the equivalent equation

𝑓(𝑧) := cosh(2
√
𝑧)[(𝛼2 − 1)𝑧 − 𝛼2𝑛2] − [(𝛼2 + 1)𝑧 − 𝛼2𝑛2] = 0. (34)

The function 𝑓(𝑧) is entire and by Picard’s little theorem (see, for instance, [36, Sect. 8.8]),
the equation 𝑓(𝑧) = 𝐴 always has infinitely many roots with the accumulation point at infinity
except probably one exceptional value of the constant 𝐴. Since the order of the function
cosh(2

√
𝑧) is equal to 1/2, the function 𝑓(𝑧) has the same order if (𝛼2 − 1)𝑧 − 𝛼2𝑛2 ̸≡ 0. The

latter is possible only if 𝛼 = 1, 𝑛 = 0. Thus, as 𝑛 > 0, the function 𝑓(𝑧) has a fractional
order and therefore, there are no exceptional values of 𝐴 and equation (33) has infinitely many
solutions 𝜆𝑛𝑘. This is confirmed by Theorem 5.4.
For a fixed 𝑛 > 0 and 𝛼 ̸= 1, we have

(𝛼2 + 1)𝑧 − 𝛼2𝑛2

(𝛼2 − 1)𝑧 − 𝛼2𝑛2
→ 𝛼2 + 1

𝛼2 − 1

as 𝑧 → ∞. Therefore, as 𝑧 → ∞, the roots of the equation (33) converge to the roots of the
same equation as 𝑛 = 0, that is, to numbers (25) or (26). A simple analysis shows that as
𝛼 < 1, equation (33) has no real eigenvalues, for 𝛼 > 1 the equation has the unique positive
root converging to zero as 𝛼 → ∞. By Theorem 5.5, as 𝛼 < 1, the system of the root functions
associated with the eigenvalues in the upper or lower half-plane is complete in the space 𝐿2(Ω)
if 𝜃0 < 𝜋/2. As 𝛼 = 1, the completeness seems to be lost since as 𝑛 = 0, infinitely many
eigenvalues 𝜆0𝑘 pass to infinity (in this case it is obvious that 𝜃0 > 𝜋/2).
If 𝛼 = 1, 𝑛 > 0, making the change 𝜁 =

√
𝑧 in equation (33), we obtain

sinh 𝜁 = ±𝑖 𝜁
𝑛
. (35)

For each fixed 𝑛 > 0 this equation has infinitely many solutions

𝜁𝑛𝑘 = 𝑣𝑛𝑘 ± 𝑖𝑤𝑛𝑘 → ∞, 𝑘 → ∞.

It is easy to confirm that in this case we necessarily have 𝑣𝑛𝑘 → +∞. Hence, for large 𝑘 this

equation is close to the equation 𝑒𝜁 = ±2𝑖 𝜁
𝑛
. Therefore, 𝑒2𝑣 =

4

𝑛2
(𝑣2 + 𝑤2) and as 𝑣 → +∞,

we obtain that |𝑤| → 𝑛
2
𝑒𝑣. It is easy to prove that 𝑤𝑛𝑘 = ±𝜋𝑘 + 𝑜(1) (𝑘 → ∞) and therefore,
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𝑣𝑛𝑘 = ln
2𝜋𝑘

𝑛
+ 𝑜(1). Since as 𝑘 → ∞, the eigenvalues satisfy 𝜆𝑛𝑘 =

√︀
𝜁2𝑛𝑘 − 𝑛2 → 𝜁𝑛𝑘, then

𝜆𝑛𝑘 → ln
2𝜋𝑘

𝑛
± 𝑖𝜋𝑘. Therefore, in distinction to 𝛼 ̸= 1, as 𝛼 = 1 and 𝑘 → ∞, the root

converge not along the lines parallel to the imaginary axis but along the exponential curves
𝑓±(𝑥) = ±𝑛

2
𝑒𝑥.

For a fixed 𝑛, as 𝛼 grows, the eigenvalues 𝜆𝑛𝑘 = 𝑥 + 𝑖𝑦 move in the complex plane along
countably many continuous curves, each of them is described by the implicit function

Im

(︃√︀
(𝑥+ 𝑖𝑦)2 + 𝑛2

(𝑥+ 𝑖𝑦)
coth

√︀
(𝑥+ 𝑖𝑦)2 + 𝑛2

)︃
= Im𝛼 = 0. (36)

Each of this curves starts and ends at the imaginary axis attaining the maximal value for some
𝛼*
𝑛𝑘 > 0. The results of numerical calculations (up to 10−4) are presented in the table.

𝑛 = 1 𝑛 = 2
𝑘 𝛼*

𝑛𝑘 𝑥𝑚𝑎𝑥
𝑛𝑘 𝑦𝑛𝑘 𝑘 𝛼*

𝑛𝑘 𝑥𝑚𝑎𝑥
𝑛𝑘 𝑦𝑛𝑘

1 0.9984 1.7545 2.6480 1 0.9360 1.0270 3.2199
2 0.9952 2.6051 5.7417 2 0.9689 1.9301 5.9614
3 0.9962 3.1242 8.7794 3 0.9829 2.4716 8.9615
. . . . . . . . . . . . . . . . . . . . . . . .
10 0.9995 4.7222 30.6147 10 0.9980 4.0925 30.7085

𝑛 = 3 𝑛 = 10
𝑘 𝛼*

𝑛𝑘 𝑥𝑚𝑎𝑥
𝑛𝑘 𝑦𝑛𝑘 𝑘 𝛼*

𝑛𝑘 𝑥𝑚𝑎𝑥
𝑛𝑘 𝑦𝑛𝑘

1 0.8102 0.7154 3.9163 1 0.3271 0.2228 10.3107
2 0.9198 1.5447 6.3354 2 0.5378 0.6095 11.4494
3 0.9570 2.0817 9.1860 3 0.6839 0.9967 13.2420
. . . . . . . . . . . . . . . . . . . . . . . .
10 0.9955 3.7235 30.8129 10 0.9520 2.5985 32.2284

By the table we see that the critical values 𝛼*
𝑛𝑘 depend essentially on the indices 𝑛 and 𝑘.

For a fixed 𝑛 > 0 and 𝑘 → ∞ we likely have 𝛼*
𝑛𝑘 → 1−0 and hence, 𝑥𝑚𝑎𝑥

𝑛𝑘 → ln
2𝜋𝑘

𝑛
, 𝑦𝑛𝑘 → 𝜋𝑘.

For a fixed 𝑘, as 𝑛 grows, the values 𝛼*
𝑛𝑘 and associated 𝑥𝑚𝑎𝑥

𝑛𝑘 decrease monotonically and at
that, 𝑦𝑛𝑘 increase monotonically. For a fixed 𝛼 and 𝑘, the eigenvalues 𝜆𝑛𝑘 behave in the same
way. This is due to the fact that as 𝑛 grows, functions (36) tend to the imaginary axis moving
away from the real axis.
The authors thank N.D. Kopachevsky for useful discussions and advices.
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