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ON MULTI-DIMENSIONAL PARTIAL DIFFERENTIAL

EQUATIONS WITH POWER NONLINEARITIES

IN FIRST DERIVATIVES

I.V. RAKHMELEVICH

Abstract. We consider a class of multi-dimensional partial differential equations involv-
ing a linear differential operator of arbitrary order and a power nonlinearity in the first
derivatives. Under some additional assumptions for this operator, we study the solutions
of multi-dimensional travelling waves that depend on some linear combinations of the orig-
inal variables. The original equation is transformed to a reduced one, which can be solved
by the separation of variables. Solutions of the reduced equation are found for the cases of
additive, multiplicative and combined separation of variables.
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Introduction

An important direction in the modern mathematical physics is the study of multi-dimensional
nonlinear partial differential equations and finding their exact solutions [1–12]. One of the most
effective and widely used method of solving such equations is the separation of variables (SV).
In known handbooks and textbooks [1–3] the classical scheme of the method is described as well
as its modern versions, generalized and functional SV [4]. In works [5–9] by the method of SV,
there were studied partial differential equations with power nonlinearities in the derivatives as
well as equations involving homogeneous and multi-homogeneous functions of the derivatives;
such equations are reduced to the equations with power nonlinearities for certain classes of
solutions. The present work is devoted to continuing these studies. We consider a multi-
dimensional partial differential equation involving a linear differential operator of arbitrary
order with constant coefficients and power nonlinearities in first derivatives. By means of the
reduction method and the method of separation of variables we find the solutions of multi-
dimensional travelling waves type for this equation.

1. Formulation of the problem

We consider the following class of multidimensional partial differential equations for an un-
known function 𝑢(𝑥1, 𝑥2, . . . , 𝑥𝑁) involving power nonlinearities in the first derivatives:

𝐿̂𝑢(𝑥1, 𝑥2, . . . , 𝑥𝑁) = 𝑏
𝑁∏︁

𝑛=1

(︂
𝜕𝑢

𝜕𝑥𝑛

)︂𝛽𝑛

. (1)

Here 𝐿̂ is a linear differential operator with constant coefficients in variables 𝑥1, 𝑥2, . . . , 𝑥𝑁 .

I.V. Rakhmelevich, On multi-dimensional partial differential equations with power nonlin-
earities in first derivatives.

c○ Rakhmelevich I.V. 2017.
Submitted October 30, 2015.

98

http://dx.doi.org/10.13108/2017-9-1-98


ON MULTI-DIMENSIONAL PARTIAL DIFFERENTIAL EQUATIONS. . . 99

We represent the set of the values 𝐼 = {1, . . . , 𝑁} of the index 𝑛 indexing independent
variables as the union of 𝐾 disjoint subsets 𝐼𝑘, (𝑘 = 1, . . . , 𝐾). Then the set of the variables
𝑋 = {𝑥1, 𝑥2, . . . , 𝑥𝑁} can be partitioned into 𝐾 disjoint subsets 𝑋𝑘 = {𝑥𝑛}𝑛∈𝐼𝑘 . Hereinafter
we denote by Ω = {1, . . . , 𝐾} the set of the values of the index 𝑘. In what follows we assume

that the operator 𝐿̂ can be represented as

𝐿̂ =
𝐾∑︁
𝑘=1

𝐿̂𝑋𝑘
, (2)

where 𝐿̂𝑋𝑘
is a linear differential operator with constant coefficients in the variables 𝑋𝑘. Rela-

tion (2) means that the operator 𝐿̂ involves no mixed derivatives w.r.t. the variables in different

subsets 𝑋𝑘. In its turn, the operator 𝐿̂𝑋𝑘
can be represented as a sum of linear homogeneous

differential operators of various orders in the variables 𝑋𝑘:

𝐿̂𝑋𝑘
=

𝑀𝑘∑︁
𝑚=1

𝐿̂
(𝑚)
𝑋𝑘

. (3)

By the said above, the operator 𝐿̂
(𝑚)
𝑋𝑘

can be written as

𝐿̂
(𝑚)
𝑋𝑘

=
∑︁
𝜎
(𝑚)
𝑘

𝑎
𝜎
(𝑚)
𝑘

∏︁
𝑛∈𝐼𝑘

(︂
𝜕

𝜕𝑥𝑛

)︂𝑚𝑛

. (4)

Here we have introduced the multi-index 𝜎
(𝑚)
𝑘 = {𝑚𝑛}𝑛∈𝐼𝑘 , and 𝑚𝑛 > 0 for all 𝑛 ∈ 𝐼𝑘 and∑︀

𝑛∈𝐼𝑘
𝑚𝑛 = 𝑚. In the present work we seek the solutions to equation (1), which depend on the

variables 𝑧𝑘 and which are linear combinations of the original variables 𝑥𝑛:

𝑧𝑘 =
∑︁
𝑛∈𝐼𝑘

𝑐𝑛𝑥𝑛. (5)

In view of relations (2), (3), (4), (5), for the solutions 𝑢 = 𝑈(𝑧1, . . . , 𝑧𝐾) of the mentioned type,
equation (1) can be easily reduced to the form:

𝐾∑︁
𝑘=1

𝐿̂𝑘𝑈(𝑧1, . . . , 𝑧𝐾) = 𝐵

𝐾∏︁
𝑘=1

(︂
𝜕𝑈

𝜕𝑧𝑘

)︂𝑟𝑘

. (6)

Here 𝑟𝑘 =
∑︀
𝑛∈𝐼𝑘

𝛽𝑛, 𝐵 = 𝑏
𝑁∏︀

𝑛=1

𝑐𝛽𝑛
𝑛 . The linear differential operator 𝐿̂𝑘 of order 𝑀𝑘 acting in the

variable 𝑧𝑘 is of the form

𝐿̂𝑘 =

𝑀𝑘∑︁
𝑚=1

𝐴
(𝑚)
𝑘

𝜕𝑚

𝜕𝑧𝑚𝑘
, (7)

where the coefficients of the operator are 𝐴
(𝑚)
𝑘 =

∑︀
𝜎
(𝑚)
𝑘

𝑎
𝜎
(𝑚)
𝑘

∏︀
𝑛∈𝐼𝑘

𝑐𝑚𝑛
𝑛 .

Thus, original equation (1) is transformed to the reduced equation (6) for the solutions
depending on the variables 𝑧𝑘 and determined by expression (5).



100 I.V. RAKHMELEVICH

2. Auxiliary functional differential equation

For further analysis of the solutions to equations (6) we consider an auxiliary functional
differential equation (FDE) for unknown functions 𝑈𝑘(𝑧𝑘) (𝑘 = 1, . . . , 𝐾):

𝐾∑︁
𝑘=1

𝑃𝑘𝑈𝑘(𝑧𝑘) = 𝐵

𝐾∏︁
𝑘=1

𝑁̂𝑘𝑈𝑘(𝑧𝑘), (8)

where 𝑃𝑘, 𝑁̂𝑘 are differential operators in the variable 𝑧𝑘.

Lemma 1. Equation (8) is satisfied by the functions 𝑈𝑘(𝑧𝑘), which are solutions of the fol-
lowing ordinary differential equations:

1) Under one of the conditions 𝐵 = 0 or 𝑁̂𝑙𝑈𝑙(𝑧𝑙) ≡ 0 for some 𝑙 ∈ Ω,

𝑃𝑘𝑈𝑘(𝑧𝑘) = 𝜇𝑘, (9)

for all 𝑘 ∈ Ω, here the constants 𝜇𝑘 should obey the condition

𝐾∑︁
𝑘=1

𝜇𝑘 = 0. (10)

2) As 𝐵 ̸= 0, for each fixed 𝑙 ∈ Ω,

𝑃𝑙𝑈𝑙(𝑧𝑙) + 𝜇̃𝑙 = 𝐵𝜈𝑙𝑁̂𝑙𝑈𝑙(𝑧𝑙), (11)

and for all 𝑘 ∈ Ω, 𝑘 ̸= 𝑙, the functions 𝑈𝑘(𝑧𝑘) solve the systems

𝑃𝑘𝑈𝑘(𝑧𝑘) = 𝜇𝑘, 𝑁̂𝑘𝑈𝑘(𝑧𝑘) = 𝜈𝑘. (12)

Here

𝜇̃𝑙 =
𝐾∑︁

𝑘=1,𝑘 ̸=𝑙

𝜇𝑘, 𝜈𝑙 =
𝐾∏︁

𝑘=1,𝑘 ̸=𝑙

𝜈𝑘, (13)

𝜇𝑘, 𝜈𝑘 are some constants (𝜈𝑘 ̸= 0). In particular, equation (8) is satisfied by the functions
𝑈𝑘(𝑧𝑘) solving equations(12) for all 𝑘 ∈ Ω if the constants 𝜇𝑘, 𝜈𝑘 obey the condition

𝐾∑︁
𝑘=1

𝜇𝑘 = 𝐵

𝐾∏︁
𝑘=1

𝜈𝑘. (14)

Proof. 1. If one of the conditions 𝐵 = 0 or 𝑁̂𝑙𝑈𝑙(𝑧𝑙) ≡ 0 for some 𝑙 ∈ Ω is satisfied, then
equation (8) is reduced to the following one:

𝐾∑︁
𝑘=1

𝑃𝑘𝑈𝑘(𝑧𝑘) = 0. (15)

Since the left hand side of equation (15) is a sum of functions of different variables 𝑧𝑘, then
the functions 𝑈𝑘(𝑧𝑘) should satisfy equation (9), while the constants 𝜇𝑘 should obey condition
(10).

2. Assume that the right hand side in (8) is not identically zero and consider the case, when
all the factors in the right hand side of (8) are non-zero constants. In this case the functions
𝑈𝑘(𝑧𝑘) satisfy the second of equations (12), for all 𝑘 ∈ Ω we have 𝜈𝑘 ̸= 0, and equation (8) is
reduced to the following one:

𝐾∑︁
𝑘=1

𝑃𝑘𝑈𝑘(𝑧𝑘) = 𝐵
𝐾∏︁
𝑘=1

𝜈𝑘. (16)

Arguing for equation (16) as above, we obtain that the functions 𝑈𝑘(𝑧𝑘) should satisfy the first
of equations (12), while the constants 𝜇𝑘, 𝜈𝑘 should obey condition (14). At that, equation (8)
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is satisfied if and only if systems (12) are compatible for all 𝑘 ∈ Ω. Let 𝑙 ∈ Ω be some fixed
value 𝑘, for which the condition

𝑁̂𝑙𝑈𝑙(𝑧𝑙) ̸= 𝑐𝑜𝑛𝑠𝑡 (17)

holds. We differentiate equation (8) term by term w.r.t. 𝑧𝑙 and in view of (17), we write it as

(𝜕/𝜕𝑧𝑙)𝑃𝑙𝑈𝑙(𝑧𝑙)

(𝜕/𝜕𝑧𝑙)𝑁̂𝑙𝑈𝑙(𝑧𝑙)
= 𝐵

𝐾∏︁
𝑘=1,𝑘 ̸=𝑙

𝑁̂𝑘𝑈𝑘(𝑧𝑘). (18)

The left hand side of relation (18) depends only on 𝑧𝑙, while the right hand side depends only
on 𝑧𝑘, 𝑘 ̸= 𝑙. Hence, it is satisfied only in the case, when all functions 𝑈𝑘(𝑧𝑘) solve the second
equation in (12) for all 𝑘 ̸= 𝑙. Then equation (8) can be reduced to the form:

𝐾∑︁
𝑘=1

𝑃𝑘𝑈𝑘(𝑧𝑘) = 𝐵𝜈𝑙𝑁̂𝑙𝑈𝑙(𝑧𝑙), (19)

where 𝜈𝑙 is determined by the second identity in (13). Since the right hand side in (19) depends
only on 𝑧𝑙, this equation can be satisfied only in the case, when the left hand side depends
only on this variable. This implies that for all 𝑘 ̸= 𝑙 the functions 𝑈𝑘(𝑧𝑘) should satisfy the
first equation in (12). Then equation (8) is satisfied if 𝑈𝑙(𝑧𝑙) solves equation (11), where the
constants 𝜈𝑙, 𝜇̃𝑙 are determined by expressions (13). Thus, for each 𝑙 ∈ Ω, for which condition
(17) is satisfied, the function 𝑈𝑙(𝑧𝑙) is determined by solving equation (11) and the functions
𝑈𝑘(𝑧𝑘) for 𝑘 ̸= 𝑙 are solutions to system (12). The considered solution exists if and only if these
systems are compatible for all 𝑘 ̸= 𝑙. The proof is complete.

3. Analysis of reduced equation

In this section we analyse the solutions to equation (6). First we consider simplest particular
cases.

I. The right hand side in (6) is identically zero.
1) 𝐵 = 0. In this case (6) is reduced to the linear homogeneous equation:

𝐾∑︁
𝑘=1

𝐿̂𝑘𝑈(𝑧1, . . . , 𝑧𝐾) = 0. (20)

In particular, if the parameters of the problem are such that together with the condition 𝐵 = 0,

the conditions 𝐴
(𝑚)
𝑘 = 0 are satisfied for all 𝑘 ∈ Ω, 1 6 𝑚 6 𝑀𝑘, then equation (20), and

therefore, equation (6) holds for an arbitrary function 𝑈(𝑧1, . . . , 𝑧𝐾) differentiable sufficiently
many times in all variables.

2) If for some 𝑙 ∈ Ω the condition 𝑟𝑙 > 0 holds, then equation (6) is satisfied by each solution
to the following linear homogeneous equation

𝐾∑︁
𝑘=1,𝑘 ̸=𝑙

𝐿̂𝑘𝑈(𝑧1, . . . , 𝑧𝑙−1, 𝑧𝑙+1, . . . , 𝑧𝐾) = 0. (21)

Similar to Case 1), if for all 𝑘 ∈ Ω, 𝑘 ̸= 𝑙, 1 6 𝑚 6 𝑀𝑘 the conditions 𝐴
(𝑚)
𝑘 =

0 hold, then equation (21), and therefore, equation (6), holds for an arbitrary function
𝑈(𝑧1, . . . , 𝑧𝑙−1, 𝑧𝑙+1, . . . , 𝑧𝐾) differentiable sufficiently many times in all variables.

II. General case.
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Theorem 1. (On additive separation of variables). Equation (6) has the following family of
solutions represented by the sum of the functions of one of the variables 𝑧1, . . . , 𝑧𝐾:

𝑈(𝑧1, . . . , 𝑧𝐾) = 𝑈𝑙(𝑧𝑙) +
𝐾∑︁

𝑘=1,𝑘 ̸=𝑙

𝜈
1/𝑟𝑘
𝑘 𝑧𝑘 + 𝑈0. (22)

At that, the function 𝑈𝑙(𝑧𝑙) solves the following ordinary differential equation:

𝐿̂𝑙𝑈𝑙(𝑧𝑙) + 𝜇̃𝑙 = 𝐵𝜈𝑙[𝑈
′
𝑙 (𝑧𝑙)]

𝑟𝑙 . (23)

Here 𝑈0, 𝜈𝑘 are arbitrary constants; 𝜇̃𝑙, 𝜈𝑙 are determined by the expressions:

𝜈𝑙 =
𝐾∏︁

𝑘=1,𝑘 ̸=𝑙

𝜈𝑘, 𝜇̃𝑙 =
𝐾∑︁

𝑘=1,𝑘 ̸=𝑙

𝜈
1/𝑟𝑘
𝑘 𝐴

(1)
𝑘 . (24)

Hereinafter the operator 𝐿̂𝑙 is determined by the expression (7). Solution (22) exists for all
𝑙 ∈ Ω.

Proof. According to the known scheme of the additive separation of variables [2], we seek the
solution to equation (6) as

𝑈(𝑧1, . . . , 𝑧𝐾) =
𝐾∑︁
𝑘=1

𝑈𝑘(𝑧𝑘). (25)

Substituting (25) into equation (6), we obtain the following:

𝐾∑︁
𝑘=1

𝐿̂𝑘𝑈𝑘(𝑧𝑘) = 𝐵
𝐾∏︁
𝑘=1

[𝑈 ′
𝑘(𝑧𝑘)]𝑟𝑘 . (26)

Relation (26) is a FDE of form (8); at that,

𝑁̂𝑘𝑈𝑘(𝑧𝑘) = [𝑈 ′
𝑘(𝑧𝑘)]𝑟𝑘 . (27)

In accordance with the said above, in the cases, when the right hand side of equation (6) is
identically zero, it is reduced to linear equations (20) or (21). This is why we assume that the
right hand side in (6) is not identically zero.

Assume we are given some 𝑙 ∈ Ω. Then by Lemma 1, equation (26) is satisfied by the function
𝑈𝑙(𝑧𝑙) solving equation (23) and by the functions 𝑈𝑘(𝑧𝑘), 𝑘 ̸= 𝑙, solving the following systems:

𝐿̂𝑘𝑈𝑘(𝑧𝑘) = 𝜇𝑘, [𝑈 ′
𝑘(𝑧𝑘)]𝑟𝑘 = 𝜈𝑘. (28)

Solving (28) and taking into consideration expression (7), we find:

𝑈𝑘(𝑧𝑘) = 𝜈
1/𝑟𝑘
𝑘 𝑧𝑘 + 𝑈𝑘0, (29)

where 𝑈𝑘0 is an arbitrary constant. At that, system (28) is compatible if and only if the
constants 𝜇𝑘, 𝜈𝑘 satisfy the relation

𝜇𝑘 = 𝜈
1/𝑟𝑘
𝑘 𝐴

(1)
𝑘 , (30)

where 𝐴
(1)
𝑘 is the coefficient at the first derivative in expression (7). By (30) and (13) we obtain

expression (24) for the constant 𝜇̃𝑙. Then, substituting (29) into (25) and summing additive
constants 𝑈𝑘0, we obtain solution (22). The proof is complete.

Theorem 2. (On multiplicative separation of variables). Equation (6) has the following
families of solutions represented as the product of the functions on one variables 𝑧1, . . . , 𝑧𝐾:



ON MULTI-DIMENSIONAL PARTIAL DIFFERENTIAL EQUATIONS. . . 103

1) in the case 𝑟Σ ̸= 1:

𝑈(𝑧1, . . . , 𝑧𝐾) = 𝜈
1

𝑟Σ−1

𝑙 𝑈𝑙(𝑧𝑙)
𝐾∏︁

𝑘=1,𝑘 ̸=𝑙

𝜌−𝜌𝑘
𝑘 (𝑧𝑘 − 𝑧𝑘0)

𝜌𝑘 , (31)

where 𝜌𝑘, 𝑟Σ are determined by the expressions

𝜌𝑘 =
𝑟𝑘

𝑟Σ − 1
, 𝑟Σ =

𝐾∑︁
𝑘=1

𝑟𝑘, (32)

and function 𝑈𝑙(𝑧𝑙) solve the ordinary differential equation

𝐿̂𝑙𝑈𝑙(𝑧𝑙) = 𝐵𝜈𝑙[𝑈
′
𝑙 (𝑧𝑙)]

𝑟𝑙 [𝑈𝑙(𝑧𝑙)]
𝑟Σ−𝑟𝑙 . (33)

Solution (31) exists if for all 𝑘 ̸= 𝑙, 𝑘 ∈ Ω, for each 1 6 𝑚 6 𝑀𝑘, at least one of the following
conditions holds:

𝐴
(𝑚)
𝑘 = 0, (34)

𝑟𝑘 = (𝑟Σ − 1)𝑚̃𝑘 (35)

for some integer 𝑚̃𝑘 such that 1 6 𝑚̃𝑘 6 𝑚− 1.
2) in the case 𝑟Σ = 1:

𝑈(𝑧1, . . . , 𝑧𝐾) = 𝐶0𝑈𝑙(𝑧𝑙) exp

(︃
𝐾∑︁

𝑘=1,𝑘 ̸=𝑙

𝜆𝑘𝑧𝑘

)︃
. (36)

Here 𝐶0, 𝜆𝑘 are arbitrary constants and the function 𝑈𝑙(𝑧𝑙) is the solution of the ordinary
differential equation

𝐿̂𝑙𝑈𝑙(𝑧𝑙) + 𝜇̃𝑙𝑈𝑙(𝑧𝑙) = 𝐵𝜈𝑙[𝑈
′
𝑙 (𝑧𝑙)]

𝑟𝑙 [𝑈𝑙(𝑧𝑙)]
1−𝑟𝑙 . (37)

The coefficients 𝜇̃𝑙, 𝜈𝑙 involved in (37) are determined by the expressions:

𝜈𝑙 =
𝐾∏︁

𝑘=1,𝑘 ̸=𝑙

𝜆𝑟𝑘
𝑘 , 𝜇̃𝑙 =

𝐾∑︁
𝑘=1,𝑘 ̸=𝑙

𝑀𝑘∑︁
𝑚=1

𝜆𝑚
𝑘 𝐴

(𝑚)
𝑘 . (38)

Proof. We seek a solution to equation (6) as

𝑈(𝑧1, . . . , 𝑧𝐾) =
𝐾∏︁
𝑘=1

𝑈𝑘(𝑧𝑘). (39)

We substitute (39) into equation (6) and after some transformations we obtain

𝐾∑︁
𝑘=1

𝐿̂𝑘𝑈𝑘(𝑧𝑘)

𝑈𝑘(𝑧𝑘)
= 𝐵

𝐾∏︁
𝑘=1

{[𝑈 ′
𝑘(𝑧𝑘)]𝑟𝑘 [𝑈𝑘(𝑧𝑘)]𝑟Σ−𝑟𝑘−1}. (40)

Equation (40), as the above considered equation (26), is a FDE of form (8). The operators
involved in this FDE are of the form:

𝑃𝑘𝑈𝑘(𝑧𝑘) =
𝐿̂𝑘𝑈𝑘(𝑧𝑘)

𝑈𝑘(𝑧𝑘)
; 𝑁̂𝑘𝑈𝑘(𝑧𝑘) = [𝑈 ′

𝑘(𝑧𝑘)]𝑟𝑘 [𝑈𝑘(𝑧𝑘)]𝑟Σ−𝑟𝑘−1. (41)

Now we consider the cases listed in the formulation of the theorem.
1. Case 𝑟Σ ̸= 1. If 𝑙 ∈ Ω is some fixed value of the index 𝑘, by the second equation in system

(12) we find that for all 𝑘 ̸= 𝑙, 𝑈𝑘(𝑧𝑘) is determined by the expression:

𝑈𝑘(𝑧𝑘) = 𝑈𝑘0(𝑧𝑘 − 𝑧𝑘0)
𝜌𝑘 , 𝑈𝑘0 =

(︂
𝜆𝑘

𝜌𝑘

)︂𝜌𝑘

, (42)
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where 𝜌𝑘 is determined by the expression (32), 𝜆𝑘 = 𝜈
1/𝑟𝑘
𝑘 . We substitute (42) into the first

equation in system (12) and take into consideration (41). Then after some elementary trans-
formations we obtain:

𝑀𝑘∑︁
𝑚=1

𝑄
(𝑚)
𝑘 (𝜌𝑘)𝐴

(𝑚)
𝑘 (𝑧𝑘 − 𝑧𝑘0)

𝜌𝑘−𝑚 = 𝜇𝑘(𝑧𝑘 − 𝑧𝑘0)
𝜌𝑘 , (43)

where

𝑄
(𝑚)
𝑘 (𝜌𝑘) = 𝜌𝑘(𝜌𝑘 − 1) . . . (𝜌𝑘 −𝑚 + 1). (44)

Equation (43) can be satisfied only if the conditions

𝑄
(𝑚)
𝑘 (𝜌𝑘)𝐴

(𝑚)
𝑘 = 0, 𝜇𝑘 = 0 (45)

hold for each 𝑘 ̸= 𝑙, 𝑘 ∈ Ω and all 𝑚 = 1, . . . ,𝑀𝑘. In view of expression (44), it is obvious that

for each given 𝑚 the first of conditions (45) is satisfied if either 𝐴
(𝑚)
𝑘 = 0 or 𝜌𝑘 = 𝑚̃𝑘 for some

1 6 𝑚̃𝑘 6 𝑚− 1. This implies that the considered solution exists if and only if at least one of
conditions (34), (35) holds true. Employing Lemma 1 and equation (11), in view of (13) and
the second condition in (45), we arrive at equation (33) for the function 𝑈𝑙(𝑧𝑙). Substituting
expression (42) into (39), we obtain the solution of form (31).

2. Case 𝑟Σ = 1. In this case the second equation in system (12) is of the form(︂
𝑈 ′
𝑘(𝑧𝑘)

𝑈𝑘(𝑧𝑘)

)︂𝑟𝑘

= 𝜈𝑘,

and this implies that for all 𝑘 ̸= 𝑙

𝑈𝑘(𝑧𝑘) = 𝑈𝑘0 exp(𝜆𝑘𝑧𝑘), (46)

where 𝜆𝑘 = 𝜈
1/𝑟𝑘
𝑘 as in the previous case.

Substituting (46) into the first equation of system (12), in view of the first relation in (41)
we obtain:

𝑀𝑘∑︁
𝑚=1

𝐴
(𝑚)
𝑘 𝜆𝑚

𝑘 = 𝜇𝑘. (47)

Then due to (47) and (13) by equation (11) we find that the function 𝑈𝑙(𝑧𝑙) should solve
equation (37), in which 𝜈𝑙, 𝜇̃𝑙 are determined by expressions (38). Substituting expression (46)
into (39), we obtain the solution in form (36). The proof is complete.

Let the set Ω be represented as the union 𝑆 of disjoint subsets Ω𝑠, 𝑠 = 1, . . . , 𝑆. In what
follows we employ the expression:

𝑟Σ𝑠 =
∑︁
𝑘∈Ω𝑠

𝑟𝑘.

We also introduce Λ0 as the set of the values of the index 𝑠, for which 𝑟Σ𝑠 = 0. Hereafter we
assume that 𝑙, 𝑡 are some fixed values of the indices 𝑘, 𝑠 and 𝑙 ∈ Ω𝑡.

Theorem 3. (on combined separation of variables) For each partition of the set Ω into the
subsets Ω𝑠, 𝑠 = 1, . . . , 𝑆, equation (6) has the following family of solutions:
a) as 𝑟Σ𝑡 = 1:

𝑈(𝑧1, . . . , 𝑧𝐾) =
∑︁

𝑠∈Λ0,𝑠 ̸=𝑡

𝐷𝑠 exp

(︃∑︁
𝑘∈Ω𝑠

𝜆𝑘𝑧𝑘

)︃

+
∑︁

𝑠/∈Λ0,𝑠 ̸=𝑡

𝐸𝑠

∏︁
𝑘∈Ω𝑠

(𝑧𝑘 − 𝑧𝑘0)
𝜎𝑘 + 𝐷𝑡 exp

(︃ ∑︁
𝑘∈Ω𝑡,𝑘 ̸=𝑙

𝜆𝑘𝑧𝑘

)︃
𝑈𝑙(𝑧𝑙).

(48)
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At that, 𝑈𝑙(𝑧𝑙) solves the ordinary differential equation:

𝐿̂𝑙𝑈𝑙(𝑧𝑙) + 𝜇𝑙𝑈𝑙(𝑧𝑙) = 𝐹𝑙[𝑈
′
𝑙 (𝑧𝑙)]

𝑟𝑙 [𝑈𝑙(𝑧𝑙)]
1−𝑟𝑙 , (49)

where

𝜇𝑙 =
∑︁

𝑘∈Ω𝑡,𝑘 ̸=𝑙

𝑀𝑘∑︁
𝑚=1

𝐴
(𝑚)
𝑘 𝜆𝑚

𝑘 , 𝐹𝑙 = 𝐵

𝐾∏︁
𝑘∈Ω𝑡,𝑘 ̸=𝑙

𝜆𝑟𝑘
𝑘

∏︁
𝑠∈Λ0,𝑠 ̸=𝑡

∏︁
𝑘∈Ω𝑠

𝜆𝑟𝑘
𝑘

∏︁
𝑠/∈Λ0,𝑠 ̸=𝑡

∏︁
𝑘∈Ω𝑠

𝜎𝑟𝑘
𝑘

∏︁
𝑠/∈Λ0,𝑠 ̸=𝑡

𝐸𝑟Σ𝑠
𝑠 .

Solution (48) exists under the following conditions:∑︁
𝑘∈Ω𝑠

𝑀𝑘∑︁
𝑚=1

𝐴
(𝑚)
𝑘 𝜆𝑚

𝑘 = 0 (50)

for all 𝑠 ∈ Λ0, 𝑠 ̸= 𝑡;

𝐴
(𝑚)
𝑘 𝑄

(𝑚)
𝑘 (𝜎𝑘) = 0 (51)

for all 𝑘 ∈ Ω𝑠, 1 6 𝑚 6 𝑀𝑘, 𝑠 /∈ Λ0, 𝑠 ̸= 𝑡;
b) as 𝑟Σ𝑡 ̸= 1:

𝑈(𝑧1, . . . , 𝑧𝐾) =
∑︁

𝑠∈Λ0,𝑠 ̸=𝑡

𝐷𝑠 exp

(︃∑︁
𝑘∈Ω𝑠

𝜆𝑘𝑧𝑘

)︃
+

∑︁
𝑠/∈Λ0,𝑠 ̸=𝑡

𝐸𝑠

∏︁
𝑘∈Ω𝑠

(𝑧𝑘 − 𝑧𝑘0)
𝜎𝑘 + 𝐸𝑡𝑈𝑙(𝑧𝑙)

∏︁
𝑘∈Ω𝑡,𝑘 ̸=𝑙

(𝑧𝑘 − 𝑧𝑘0)
𝜌𝑘 .

(52)

At that, 𝑈𝑙(𝑧𝑙) solves the ordinary differential equation:

𝐿̂𝑙𝑈𝑙(𝑧𝑙) = 𝐺𝑙[𝑈
′
𝑙 (𝑧𝑙)]

𝑟𝑙 [𝑈𝑙(𝑧𝑙)]
𝑟Σ𝑡−𝑟𝑙 , (53)

where

𝐺𝑙 = 𝐵𝐸𝑟Σ𝑡−1
𝑡

𝐾∏︁
𝑘∈Ω𝑡,𝑘 ̸=𝑙

𝜌𝑟𝑘𝑘
∏︁

𝑠∈Λ0,𝑠 ̸=𝑡

∏︁
𝑘∈Ω𝑠

𝜆𝑟𝑘
𝑘

∏︁
𝑠/∈Λ0,𝑠 ̸=𝑡

∏︁
𝑘∈Ω𝑠

𝜎𝑟𝑘
𝑘

∏︁
𝑠/∈Λ0,𝑠 ̸=𝑡

𝐸𝑟Σ𝑠
𝑠 .

Solution (52) exists under conditions (50), (51) and the following additional condition:

𝐴
(𝑚)
𝑘 𝑄

(𝑚)
𝑘 (𝜌𝑘) = 0 (54)

for all 𝑘 ∈ Ω𝑡, 𝑘 ̸= 𝑙, 1 6 𝑚 6 𝑀𝑘. In formulae (48)–(54), the symbols 𝐷𝑠, 𝐸𝑠, 𝜆𝑘, 𝑧𝑘0 stand
for arbitrary constants, while 𝜌𝑘, 𝜎𝑘 are determined by the expressions:

𝜌𝑘 =
𝑟𝑘

𝑟Σ𝑡 − 1
(𝑘 ∈ Ω𝑡), (55)

𝜎𝑘 =
𝑟𝑘
𝑟Σ𝑠

(𝑘 ∈ Ω𝑠). (56)

Proof. We seek solutions to equation (6) as

𝑈(𝑧1, . . . , 𝑧𝐾) =
𝑆∑︁

𝑠=1

∏︁
𝑘∈Ω𝑠

𝑈𝑘(𝑧𝑘). (57)

Substituting (57) into equation (6) and taking into consideration expression (7), we reduce
equation (6) to the form:

𝑆∑︁
𝑠=1

∑︁
𝑘∈Ω𝑠

𝑃𝑘𝑈𝑘(𝑧𝑘)
∏︁
𝑘∈Ω𝑠

𝑈𝑘(𝑧𝑘) = 𝐵

𝑆∏︁
𝑠=1

∏︁
𝑘∈Ω𝑠

{[𝑈 ′
𝑘(𝑧𝑘)]𝑟𝑘 [𝑈𝑘(𝑧𝑘)]𝑟Σ𝑠−𝑟𝑘}, (58)
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where 𝑃𝑘[𝑈𝑘(𝑧𝑘)] is determined by the first identity in (41). We differentiate equation (58) term
by term in 𝑧𝑙 to obtain:

𝜕

𝜕𝑧𝑙
{
∑︁
𝑘∈Ω𝑡

𝑃𝑘𝑈𝑘(𝑧𝑘)
∏︁
𝑘∈Ω𝑡

𝑈𝑘(𝑧𝑘)} = 𝐵
∏︁

𝑘∈Ω,𝑘 ̸=𝑙

{[𝑈 ′
𝑘(𝑧𝑘)]𝑟𝑘 [𝑈𝑘(𝑧𝑘)]𝑟Σ𝑠−𝑟𝑘} 𝜕

𝜕𝑧𝑙
{[𝑈 ′

𝑙 (𝑧𝑙)]
𝑟𝑙 [𝑈𝑙(𝑧𝑙)]

𝑟Σ𝑡−𝑟𝑙}.

(59)
The left hand side in (59) depends only on 𝑧𝑘(𝑘 ∈ Ω𝑡) and this is why for all 𝑘 ∈ Ω𝑠, 𝑠 ̸= 𝑡 the
functions 𝑈𝑘(𝑧𝑘) should satisfy the equation:

[𝑈 ′
𝑘(𝑧𝑘)]𝑟𝑘 [𝑈𝑘(𝑧𝑘)]𝑟Σ𝑠−𝑟𝑘 = 𝜆𝑟𝑘

𝑘 , (60)

where 𝜆𝑘 are some constants. We consider particular cases for equation (60).
1) 𝑟Σ𝑠 = 0. In this case, the solution to equation (60) is the exponential function:

𝑈𝑘(𝑧𝑘)] = 𝑈𝑘0 exp(𝜆𝑘𝑧𝑘); (61)

2) 𝑟Σ𝑠 ̸= 0. In this case the solution to equation (60) is of the form:

𝑈𝑘(𝑧𝑘)] =

(︂
𝜆𝑘

𝜎𝑘

)︂𝜎𝑘

(𝑧𝑘 − 𝑧𝑘0)
𝜎𝑘 , (62)

where 𝜎𝑘 is determined by expression (56). Employing expressions (61), (62), we can write the
terms in the left hand side of equation (58) corresponding to particular values 𝑠 ̸= 𝑡 as:

1) For 𝑟Σ𝑠 = 0:

∑︁
𝑘∈Ω𝑠

𝑃𝑘[𝑈𝑘(𝑧𝑘)]
∏︁
𝑘∈Ω𝑠

𝑈𝑘(𝑧𝑘) = 𝐷𝑠 exp

(︃∑︁
𝑘∈Ω𝑠

𝜆𝑘𝑧𝑘

)︃∑︁
𝑘∈Ω𝑠

𝑀𝑘∑︁
𝑚=1

𝐴
(𝑚)
𝑘 𝜆𝑚

𝑘 , (63)

where

𝐷𝑠 =
∏︁
𝑘∈Ω𝑠

𝑈𝑘0;

2) For 𝑟Σ𝑠 ̸= 0:

∑︁
𝑘∈Ω𝑠

𝑃𝑘[𝑈𝑘(𝑧𝑘)]
∏︁
𝑘∈Ω𝑠

𝑈𝑘(𝑧𝑘) = 𝐸𝑠

∏︁
𝑘∈Ω𝑠

(𝑧𝑘 − 𝑧𝑘0)
𝜎𝑘

∑︁
𝑘∈Ω𝑠

𝑀𝑘∑︁
𝑚=1

𝐴
(𝑚)
𝑘 𝑄

(𝑚)
𝑘 (𝜎𝑘)(𝑧𝑘 − 𝑧𝑘0)

−𝑚, (64)

where 𝑄
(𝑚)
𝑘 is determined by expression (44),

𝐸𝑠 =
∏︁
𝑘∈Ω𝑠

(︂
𝜆𝑘

𝜎𝑘

)︂𝜎𝑘

.

As it was mentioned above, the functions 𝑈𝑘(𝑧𝑘) satisfy equation (60) for all 𝑘 ∈ Ω𝑠, 𝑠 ̸= 𝑡.
This is why both the right hand side and left hand side of equation (58) can depend only of the
variables 𝑧𝑘, 𝑘 ∈ Ω𝑡. In view of expressions (63), (64), this is possible only under conditions
(50), (51). Then equation (58) becomes:∑︁

𝑘∈Ω𝑡

𝑃𝑘𝑈𝑘(𝑧𝑘) = 𝐵̃𝑡

∏︁
𝑘∈Ω𝑡

{[𝑈 ′
𝑘(𝑧𝑘)]𝑟𝑘 [𝑈𝑘(𝑧𝑘)]𝑟Σ𝑡−𝑟𝑘−1}, (65)

where

𝐵̃𝑡 = 𝐵
𝑆∏︁

𝑠=1,𝑠 ̸=𝑡

∏︁
𝑘∈Ω𝑠

𝜆𝑟𝑘
𝑘 .
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Arguing as in the proof of (59), we differentiate equation (65) term by term w.r.t. 𝑧𝑙 and as a
result we obtain

𝜕

𝜕𝑧𝑙
{𝑃𝑙𝑈𝑙(𝑧𝑙)} = 𝐵̃𝑡

∏︁
𝑘∈Ω𝑡,𝑘 ̸=𝑙

{[𝑈 ′
𝑘(𝑧𝑘)]𝑟𝑘 [𝑈𝑘(𝑧𝑘)]𝑟Σ𝑠−𝑟𝑘−1} 𝜕

𝜕𝑧𝑙
{[𝑈 ′

𝑙 (𝑧𝑙)]
𝑟𝑙 [𝑈𝑙(𝑧𝑙)]

𝑟Σ𝑡−𝑟𝑙−1}. (66)

Since the left hand side of equation (66) depends only on 𝑧𝑙, the right hand side can depend
only on this variable and this is why the functions 𝑈𝑘(𝑧𝑘) should satisfy the equation

[𝑈 ′
𝑘(𝑧𝑘)]𝑟𝑘 [𝑈𝑘(𝑧𝑘)]𝑟Σ𝑡−𝑟𝑘−1 = 𝜆𝑟𝑘

𝑘 (67)

for all 𝑘 ∈ Ω𝑡, 𝑘 ̸= 𝑙.
Equation (67) has the form similar to equation (60) up to the change 𝑟Σ𝑠 → 𝑟Σ𝑡 − 1 and this

is why, as in the analysis of equation (60), we consider the particular cases:
1) 𝑟Σ𝑡 = 1. In this case function (61) solves equation (67). Substituting expression (61)

into equation (65), we obtain that the function 𝑈𝑙(𝑧𝑙) should satisfy equation (49). Employing
expressions (61), (62), (57), we obtain equation in the form (48).

2) 𝑟Σ𝑡 ̸= 1. In this case equation (67) is of the form:

𝑈𝑘(𝑧𝑘) =

(︂
𝜆𝑘

𝜌𝑘

)︂𝜌𝑘

(𝑧𝑘 − 𝑧𝑘0)
𝜌𝑘 , (68)

where 𝜌𝑘 is determined by expression (55).
Substituting expression (68) into equation (65), we obtain:

𝑃𝑙𝑈𝑙(𝑧𝑙) +
∑︁

𝑘∈Ω𝑡,𝑘 ̸=𝑙

𝑀𝑘∑︁
𝑚=1

𝐴
(𝑚)
𝑘 𝑄

(𝑚)
𝑘 (𝜌𝑘)(𝑧𝑘 − 𝑧𝑘0)

−𝑚 = 𝐺𝑙[𝑈
′
𝑙 (𝑧𝑙)]

𝑟𝑙 [𝑈𝑙(𝑧𝑙)]
𝑟Σ𝑡−𝑟𝑙−1. (69)

If condition (54) is satisfied for all 𝑘 ∈ Ω𝑡, 𝑘 ̸= 𝑙, 1 6 𝑚 6 𝑀𝑘, then equation (69) is reduced
to ordinary differential equation (53) for the function 𝑈𝑙(𝑧𝑙). Substituting expressions (61),
(62), (68) into (57), we obtain the solution to equation (6) in the form (52). The proof is
complete.

4. Conclusion

Thus, in the present work we studied multidimensional partial differential equation (1) involv-
ing linear differential operator of arbitrary order and power nonlinearities in the first derivatives.
For solutions of multi-dimensional travelling waves type depending on some linear combinations
of original variables, equation (1) is transformed to the reduced equation (6). In order to solve
this equation, we apply the separation of variables. At that we first analyse the auxiliary func-
tional differential equation arising while applying this method to the reduced equation. We
obtain solutions of the reduced equations for additive, multiplicative and combined separation
of variables.
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