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SHARP HARDY TYPE INEQUALITIES WITH WEIGHTS

DEPENDING ON BESSEL FUNCTION

R.G. NASIBULLIN

Abstract. We prove exact Hardy type inequalities with the weights depending on a Bessel
function. We obtain one-dimensional 𝐿𝑝-inequalities and provide an example of extending
these inequalities for the case of convex domains with a finite inner radius. The proved
statements are generalization for the case of arbitrary 𝑝 > 2 of the corresponding inequality
proved by F.G. Avkhadiev and K.-J. Wirths for 𝑝 = 2.
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1. Introduction

Hardy type inequalities relate a function and its derivative in an integral relation and these
inequalities are a tool for solving some problems of the mathematics and mathematical physics.
Hardy inequalities with arbitrary weights were studied systematically in works by B. Levin
[1], P.R. Beesack [2], G. Talenti [3], G. Tomaselli [4], B. Muckenhoupt [5], G. Sinnamon and
V.D. Stepanov [6] and by other mathematicians. For instance, G. Talenti and G. Tomaselli
obtained necessary and sufficient conditions for the weight functions, for which the correspond-
ing inequalities hold true. We also mention work [7] by F.G. Avkhadiev and K.-J. Wirths, in
which they established Hardy type inequalities with weight functions depending of the Bessel
function of order 𝜈:

𝐽𝜈(𝑥) =
∞∑︁
𝑘=0

(−1)𝑘𝑥2𝑘+𝜈

22𝑘+𝜈𝑘!Γ(𝑘 + 1 + 𝜈)
, 𝑥 > 0, 𝜈 > 0.

Let us formulate this result.

Theorem A. Let 𝑠 ∈ (0,+∞), 𝜈 ∈ (0,+∞), 𝑞 > 0, Φ𝜈,𝑞(𝑡) :=
√
𝑥𝐽𝜈(𝜆(2/𝑞)𝑡𝑞/2) and

𝑢 : [0, 1] → R be an absolutely continuous function such that 𝑢(0) = 0 and 𝑢′/𝑡(𝑠−1)(1+𝑞𝜈)/4 ∈
𝐿2[0, 1]. Then

1∫︁
0

𝑢′2 𝑑𝑡

Φ𝑠−1
𝑞,𝜈 (𝑡)

> 𝑠

1∫︁
0

𝑢2(𝑡)

𝑡2

(︂
1 − 𝜈2𝑞2

4
+

𝑞2𝜆2
𝜈(2/𝑞)

4𝑡−𝑞

)︂
𝑑𝑡

Φ𝑠−1
𝑞,𝜈 (𝑡)

. (1)

The inequality is sharp if 𝑓 ̸≡ 0 and 𝑠 6 1−𝜈𝑞
1+𝜈𝑞

. If 𝑠 > 1−𝜈𝑞
1+𝜈𝑞

, then the inequality becomes the

identity if and only if 𝑢(𝑡) = 𝐶Φ𝑠
𝜈,𝑞(𝑡), where 𝐶 is some constant.
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We note that in paper [7] there were also obtained the analogues of inequality (1) in arbitrary
convex domains with a finite inner radius.

Following papers [7] and [8], we call the quantity 𝜆𝜈(𝑟) defined as a positive root of the
equation

𝑟𝐽𝜈(𝑧) + 2𝑧𝐽 ′
𝜈(𝑧) = 0,

𝑟 > 0, 𝜈 > 0, the Lamb constant.
Inequality (1) is a logical developing, on one hand, of Hardy type inequalities with weights,

and on the other hand, of the inequalities with an additional term. The formulation of problem
on obtaining Hardy type inequalities with additional terms is due to H. Brezis and M. Marcus
[9]. Brezis and Marcus inequalities were widely developed, for instance, in works [7], [8], [10]–
[16].

This paper is devoted to obtaining an 𝐿𝑝-analogue of inequality (1). The feature of the
obtained inequalities are sharp constants (see, for instance, [7], [8], [10]–[13], [17], [18]) and
kernels depending on the Bessel function. It should be noted that by means of the approach by
F.G. Avkhadiev (see, for instance, [17], [22]–[24]) each obtained in this paper one-dimensional
integral Hardy type inequality can be extended for an arbitrary convex domain Ω with a finite
inner radius

𝛿0 = 𝛿0(Ω) = sup
𝑥∈Ω

𝛿,

where 𝛿 = dist(𝑥, 𝜕Ω). In order to confirm this possibility, in the paper we provide the following
inequality in the spatial case, which can be regarded as one of the main results of the paper.

Let 𝐶1
0(Ω) be a family of continuously differentiable functions 𝑓 with compact supports in

Ω. The following theorem holds.

Theorem 1. Let Ω be a 𝑛-dimensional convex domain in the Euclidean space R𝑛, 𝛿0 =
𝛿0(Ω) < ∞. If 𝑠 ∈ (0,+∞), 𝜈 ∈ (0,+∞), 𝑝 ∈ [2,+∞), then for an arbitrary function
𝑓 ∈ 𝐶1

0(Ω) the following Hardy type inequality∫︁
Ω

|∇𝑓(𝑥)|𝑝

sin𝑠−1( 𝜋𝛿
2𝛿0

)
𝑑𝑥 >

(𝑝 + 𝑠− 2)𝑝−1

(𝑝− 1)𝑝−2

𝜋2

(2𝛿0)𝑝

∫︁
Ω

|𝑓(𝑥)|𝑝

sin𝑠−1( 𝜋𝛿
2𝛿0

)

(︂
cot

𝜋𝛿

2𝛿0

)︂𝑝−2

𝑑𝑥

holds true, where 𝑗𝜈−1 is the first positive zero of the Bessel function 𝐽𝜈−1(𝑥).

Particular cases of this result are related with Poincaré inequality proved by J. Hersch in [19]
and by L.E. Payne and I. Stakgold in [20].

2. Auxiliary results

We shall need some properties of the Bessel function. In paper [7] the authors introduced
the function

𝐹𝜈,𝑟,𝑞(𝑡) = 𝑡𝑟/2𝐽𝜈
(︀
𝜆𝜈(2𝑟/𝑞)𝑡𝑞/2

)︀
, 𝑡 ∈ [0, 1],

where 𝐽𝜈 stands for the Bessel function.
It is known [8] that the Lamb constant 𝜆𝜈 is related with the first positive root 𝑗𝜈 of the

Bessel function 𝐽𝜈 of order 𝜈 as follows

𝜆𝜈(2𝜈) = 𝑗𝜈−1. (2)

We observe that the function 𝑦 = 𝐹𝜈,𝑟,𝑞(𝑡) is the solution to the following differential equation

𝑡2𝑦′′ + (1 − 𝑟)𝑡𝑦′ +

(︂
𝑟2 − 𝜈2𝑞2

4
+

𝑞2𝜆2
𝜈(2𝑟/𝑞)

4𝑡−𝑞

)︂
𝑦 = 0. (3)

Let
𝐹𝜈(𝑡) := 𝐹𝜈,1,𝑞(𝑡) as 𝜈 = 1/𝑞.



SHARP HARDY TYPE INEQUALITIES WITH WEIGHTS . . . 91

Employing relation (2) and the behavior of the Bessel function at zero, namely,

𝐽𝜈(𝑡) =
1

Γ(1 + 𝜈)

(︂
𝑡

2

)︂𝜈

+ 𝑜(𝑡), as 𝑡 → 0,

we obtain easily that

𝐹𝜈(𝑡) =
√
𝑡𝐽𝜈
(︀
𝑗𝜈−1𝑡

1/(2𝜈)
)︀

=
𝑗𝜈𝜈−1

2𝜈Γ(1 + 𝜈)
𝑡 + 𝑜(𝑡), 𝑡 → 0 + . (4)

In paper [10] there were provided the following properties of the function 𝐹𝜈 :

𝐹 ′
𝜈(1) = 0, 𝐹𝜈(𝑡) > 0, 𝑥 ∈ (0, 1] and 𝐹 ′

𝜈(𝑡) > 0, 𝑡 ∈ (0, 1).

For an absolutely continuous function 𝑢 such that 𝑢(0) = 0 and 𝑡(1−𝑠)/𝑝𝑢′ ∈ 𝐿𝑝(0, 1), by the

inequality |𝑢(𝑥)| 6
𝑥∫︀
0

|𝑢(𝑡)|𝑑𝑡 and by the Hölder inequality we get

|𝑢(𝑥)|𝑝 6

⎛⎝ 𝑥∫︁
0

|𝑢′(𝑡)|𝑑𝑡

⎞⎠𝑝

=

⎛⎝ 𝑥∫︁
0

𝑡
𝑠−1
𝑝−1𝑑𝑡

⎞⎠𝑝−1 𝑥∫︁
0

|𝑢′(𝑡)|𝑝

𝑡𝑠−1
𝑑𝑡

=

(︂
𝑝− 1

𝑠 + 𝑝− 2

)︂𝑝−1

𝑥𝑠+𝑝−2

𝑥∫︁
0

|𝑢′(𝑡)|𝑝

𝑡𝑠−1
𝑑𝑡.

It is easy to show that

lim
𝑡→0

𝑢𝑝(𝑡)𝐹 ′𝑝−1
𝜈 (𝑡)

𝐹 𝑠+𝑝−2
𝜈 (𝑡)

= 0 =
𝑢𝑝(1)𝐹 ′𝑝−1

𝜈 (1)

𝐹 𝑠+𝑝−2
𝜈 (1)

.

We shall obtain one-dimensional inequalities as corollaries of D.T. Shum lemma [21], which is
formulated as follows.

Lemma B. Let 𝑢(𝑡) be an absolutely continuous function on [𝑎, 𝑏] such that 𝑢′(𝑡) > 0 almost
everywhere, 𝑄(𝑡) be a positive continuous function on (𝑎, 𝑏), 𝐺(𝑢, 𝑡) be a continuously differ-
entiable function as 𝑡 ∈ [𝑎, 𝑏] and 𝑢 is in the range of the function 𝑢(𝑡), 𝐺𝑢(𝑢, 𝑡) > 0. If the
integral is well-defined, then

𝑏∫︁
𝑎

(︃
𝑄𝑢′𝑝 +

(︂
𝑐

𝑝

)︂𝑝/(𝑝−1)

(𝑝− 1)𝐺𝑝/(𝑝−1)
𝑢 𝑄−1/(𝑝−1) + 𝑐𝐺𝑡

)︃
𝑑𝑡 > 𝑐{𝐺(𝑢(𝑏), 𝑏) −𝐺(𝑢(𝑎), 𝑎)},

where 𝑐 is an arbitrary positive number, 𝑝 > 1 and

𝐺𝑢 = (𝜕/𝜕𝑢)𝐺(𝑢, 𝑥), 𝐺𝑥 = (𝜕/𝜕𝑥)𝐺(𝑢, 𝑥).

This inequality becomes the identity if and only if the following differential equation

𝑢′ =

(︂
𝑐

𝑝

)︂1/(𝑝−1)(︂
𝐺𝑢

𝑄

)︂1/(𝑝−1)

is satisfied.

Remark 1. It should be mentioned that the statement of Lemma B implies immediately the
inequalities only for monotone functions. The following arguing show that the corresponding
Hardy inequality for monotone functions implies the result for arbitrary functions.

Assume that a monotone positive function 𝑔 and positive weight functions 𝑤 and 𝑣 satisfy
the following inequality:

𝑏∫︁
𝑎

𝑔𝑝(𝑥)𝑤(𝑥)𝑑𝑥 6 𝐶1

𝑏∫︁
𝑎

𝑔′𝑝(𝑥)𝑣(𝑥)𝑑𝑥. (5)
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We let

𝑔(𝑥) =

∫︁ 𝑥

0

|𝑓 ′(𝑡)|𝑑𝑡 and 𝑓(𝑥) =

∫︁ 𝑥

0

𝑓 ′(𝑡)𝑑𝑡.

Then

|𝑓(𝑥)| 6
∫︁ 𝑥

0

|𝑓 ′(𝑡)|𝑑𝑡 = 𝑔(𝑥), 𝑔′(𝑥) = |𝑓 ′(𝑥)|.

This implies that

𝑏∫︁
𝑎

|𝑓(𝑥)|𝑝𝑤(𝑥)𝑑𝑥 6

𝑏∫︁
𝑎

𝑔𝑝(𝑥)𝑤(𝑥)𝑑𝑥 6 𝐶1

𝑏∫︁
𝑎

(︀
𝑔′(𝑥)

)︀𝑝
𝑣(𝑥)𝑑𝑥 = 𝐶1

𝑏∫︁
𝑎

|𝑓 ′(𝑥)|𝑝𝑣(𝑥)𝑑𝑥.

Thus, we obtain the inequality for an absolutely continuous function.

It is clear that if at some function 𝑔0 inequality (5) becomes the identity, then in the class of
absolutely continuous functions the constant in the inequality is sharp.

3. Main results on one-dimensional integrals

We succeeded to find particular cases of the functions 𝐺 and 𝑄, for which by means of the
properties of the Bessel function and Lemma B we can obtain the following statement.

Theorem 2. Let 𝑠 ∈ (0,+∞), 𝜈 ∈ (0,+∞), 𝑝 ∈ [2,+∞) and 𝐹𝜈(𝑡) =
√
𝑡𝐽𝜈(𝑗𝜈−1𝑡

1/(2𝜈)). If a
function 𝑢 : [0, 1] → R is absolutely continuous, 𝑢(0) = 0 and 𝑢′/𝑡(𝑠−1)/𝑝 ∈ 𝐿𝑝(0, 1), then

1∫︁
0

|𝑢′(𝑡)|𝑝 𝑑𝑡

𝐹 𝑠−1
𝜈 (𝑡)

>
(𝑝 + 𝑠− 2)𝑝−1

(𝑝− 1)𝑝−2

𝑗2𝜈−1

4𝜈2

1∫︁
0

|𝑢(𝑡)|𝑝

𝑡2−
1
𝜈

(︂
𝐹 ′
𝜈(𝑡)

𝐹𝜈(𝑡)

)︂𝑝−2
𝑑𝑡

𝐹 𝑠−1
𝜈 (𝑡)

. (6)

The inequality becomes the identity if and only if

𝑢(𝑡) = 𝐶𝐹
𝑝+𝑠−2
𝑝−1

𝜈 (𝑡),

where 𝐶 is some constant.

Proof of Theorem 2. Without loss of generality, it is sufficient to prove the theorem for positive
and monotone functions, since for arbitrary functions the inequalities are implied as corollaries.

In Lemma B we let 𝑎 = 𝜀, 𝑏 = 1 and

𝑐 =

(︂
𝑝 + 𝑠− 2

𝑝− 1

)︂𝑝−1

, 𝐺(𝑢, 𝑡) =
𝑢𝑝

𝐹 𝑠−1
𝜈 (𝑡)

(︂
𝐹 ′
𝜈(𝑡)

𝐹𝜈(𝑡)

)︂𝑝−1

, 𝑄(𝑡) =
1

𝐹 𝑠−1
𝜈 (𝑡)

.

By simple calculations it is easy to obtain that(︂
𝑐

𝑝

)︂𝑝/(𝑝−1)

(𝑝− 1)𝐺𝑝/(𝑝−1)
𝑢 𝑄−1/(𝑝−1) = 𝑐𝑝/(𝑝−1)(𝑝− 1)

𝑢𝑝(𝑡)

𝐹 𝑠−1
𝜈 (𝑡)

(︂
𝐹 ′
𝜈(𝑡)

𝐹𝜈(𝑡)

)︂𝑝

and

𝑐𝐺𝑡 = 𝑐𝑢𝑝(𝑡)

(︃
𝑝− 𝑠

𝐹 𝑠−1
𝜈 (𝑡)

(︂
𝐹 ′
𝜈(𝑡)

𝐹𝜈(𝑡)

)︂𝑝

+
(𝑝− 1)𝐹 ′′

𝜈 (𝑡)

𝐹 𝑠
𝜈 (𝑡)

(︂
𝐹 ′
𝜈(𝑡)

𝐹𝜈(𝑡)

)︂𝑝−2
)︃
.
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We have(︂
𝑐

𝑝

)︂𝑝/(𝑝−1)

(𝑝− 1)𝐺𝑝/(𝑝−1)
𝑢 𝑄−1/(𝑝−1) + 𝑐𝐺

=
𝑢𝑝(𝑡)

𝐹 𝑠−1
𝜈 (𝑡)

(︂
𝐹 ′
𝜈(𝑡)

𝐹𝜈(𝑡)

)︂𝑝 (︀
(𝑝− 1)𝑐𝑝/(𝑝−1) + 𝑐(2 − 𝑝− 𝑠)

)︀
+ 𝑐(𝑝− 1)𝑢𝑝(𝑡)

𝐹 ′′
𝜈 (𝑡)

𝐹 𝑠
𝜈 (𝑡)

(︂
𝐹 ′
𝜈(𝑡)

𝐹𝜈(𝑡)

)︂𝑝−2

=

(︂
𝑝 + 𝑠− 2

𝑝− 1

)︂𝑝−1

(𝑝− 1)𝑢𝑝(𝑡)
𝐹 ′′
𝜈 (𝑡)

𝐹 𝑠
𝜈 (𝑡)

(︂
𝐹 ′
𝜈(𝑡)

𝐹𝜈(𝑡)

)︂𝑝−2

.

Hence, it follows from Lemma B that

1∫︁
𝜀

(︃
𝑢′𝑝(𝑡)

𝐹 𝑠−1
𝜈 (𝑡)

+

(︂
𝑝 + 𝑠− 2

𝑝− 1

)︂𝑝−1

(𝑝− 1)𝑢𝑝(𝑡)
𝐹 ′′
𝜈 (𝑡)

𝐹 𝑠
𝜈 (𝑡)

(︂
𝐹 ′
𝜈(𝑡)

𝐹𝜈(𝑡)

)︂𝑝−2
)︃
𝑑𝑡

>

(︂
𝑝 + 𝑠− 2

𝑝− 1

)︂𝑝−1
{︃

𝑢𝑝(1)

𝐹 𝑠−1
𝜈 (1)

(︂
𝐹 ′
𝜈(1)

𝐹𝜈(1)

)︂𝑝−1

− 𝑢𝑝(𝜀)

𝐹 𝑠−1
𝜈 (𝜀)

(︂
𝐹 ′
𝜈(𝜀)

𝐹𝜈(𝜀)

)︂𝑝−1
}︃
.

In the latter inequality we employ the equation

𝐹 ′′
𝜈 (𝑡) +

𝑗2𝜈−1

4𝜈2
𝐹𝜈(𝑡)𝑡−2+ 1

𝜈 = 0 (7)

and pass to the limit as 𝜀 → 0. We obtain

1∫︁
0

𝑢′𝑝(𝑡)
𝑑𝑡

𝐹 𝑠−1
𝜈 (𝑡)

>
(𝑝 + 𝑠− 2)𝑝−1

(𝑝− 1)𝑝−2

𝑗2𝜈−1

4𝜈2

1∫︁
0

𝑢𝑝(𝑡)

𝑡2−
1
𝜈

(︂
𝐹 ′
𝜈(𝑡)

𝐹𝜈(𝑡)

)︂𝑝−2
𝑑𝑡

𝐹 𝑠−1
𝜈 (𝑡)

.

Equation (7) is a particular case of (3) as 𝜈 = 𝑟/𝑞.
It also follows from Lemma B that the constants are sharp provided

𝑢′(𝑡)

𝑢(𝑡)
=

𝑝 + 𝑠− 2

𝑝− 1

𝐹 ′
𝜈(𝑡)

𝐹𝜈(𝑡)
.

That is, as 𝑢(𝑡) = 𝐶𝐹
𝑝+𝑠−2
𝑝−1

𝜈 (𝑡), the inequality becomes the identity. It is easy to check that the

function 𝐶𝐹
𝑝+𝑠−2
𝑝−1

𝜈 (𝑡) satisfies the assumptions of the theorem.

We provide two corollaries of Theorem 2. Employing the identities

𝐽1/2(𝑡) =

√︂
2

𝜋

sin 𝑡√
𝑡
, 𝐽−1/2(𝑡) =

√︂
2

𝜋

cos 𝑡√
𝑡
,

and, as a result, 𝑗−1/2 = 𝜋/2, 𝑗1/2 = 𝜋 (see [8] for more details), we obtain

Corollary 1. Let 𝑠 ∈ (0,+∞), 𝑝 ∈ [2,+∞) and an absolutely continuous function 𝑢 on
[0, 1] be such that 𝑢(0) = 0 and

(︀
𝑢′(𝑡)

)︀𝑝
sin1−𝑠(𝑡) be integrable over [0, 1]. Then

1∫︁
0

|𝑢′(𝑡)|𝑝

sin𝑠−1(𝜋𝑡/2)
𝑑𝑡 >

(𝑝 + 𝑠− 2)𝑝−1

(𝑝− 1)𝑝−2

(︁𝜋
2

)︁𝑝 1∫︁
0

|𝑢(𝑡)|𝑝
(︂

cot
𝜋𝑡

2

)︂𝑝−2
𝑑𝑡

sin𝑠−1(𝜋𝑡/2)
. (8)

The inequality becomes the identity as 𝑢(𝑡) = 𝐶 sin
𝑝+𝑠−2
𝑝−1 (𝜋𝑡/2), where 𝐶 is some constant.

As 𝑠 = 1 and 𝑝 = 2 we have a result from [8].
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Corollary 2. Let 𝜈 ∈ (0,+∞), 𝑝 ∈ [2,+∞) and an absolutely continuous function 𝑢 on

[0, 1] be such that 𝑢(0) = 0 and
(︀
𝑢′(𝑡)

)︀2
is integrable over [𝑎, 𝑏]. Then

1∫︁
0

|𝑢′(𝑡)|2 >
𝑗2𝜈−1

4𝜈2

1∫︁
0

|𝑢(𝑡)|2

𝑡2−
1
𝜈

𝑑𝑡. (9)

The inequality becomes the identity as 𝑢(𝑡) = 𝐶
√
𝑡𝐽𝜈(𝑗𝜈−1𝑡

1
2𝜈 ), where 𝐶 is a some constant.

The second main result of the paper is also related to a particular case of the function 𝐹𝜈,𝑟,𝑞.
We let Φ𝑞(𝑡) = 𝐹0,1,𝑞(𝑡), that is,

Φ𝑞(𝑡) =
√
𝑡𝐽0(𝜆0(2/𝑞)𝑡𝑞/2).

The following theorem holds.

Theorem 3. Let 𝑠 ∈ (0,+∞), 𝜈 ∈ (0,+∞), 𝑝 ∈ [2,+∞) and an absolutely continuous func-
tion 𝑢 on [0, 1] be such that 𝑢(0) = 0 and 𝑢′/𝑡(𝑠−1)/(2𝑝) ∈ 𝐿𝑝[0, 1]. Then

1∫︁
0

|𝑢′(𝑡)|𝑝 𝑑𝑡

Φ𝑠−1
𝑞 (𝑡)

>
(𝑝 + 𝑠− 2)𝑝−1

(𝑝− 1)𝑝−2

1∫︁
0

|𝑢(𝑡)|𝑝
(︂

1

4𝑡2
+

𝑞2𝜆2
0(2/𝑞)

4𝑡2−𝑞

)︂(︂
Φ′

𝑞(𝑡)

Φ𝑞(𝑡)

)︂𝑝−2
𝑑𝑡

Φ𝑠−1
𝑞 (𝑡)

. (10)

As 𝑠 > 𝑝− 1, the inequality becomes the identity if and only if 𝑢(𝑡) = 𝐶(Φ𝑞(𝑡))
𝑝+𝑠−2
𝑝−1 , where 𝐶

is some constant.

Proof of Theorem 3. In Lemma B we let 𝑎 = 𝜀, 𝑏 = 1 and

𝑐 =

(︂
𝑝 + 𝑠− 2

𝑝− 1

)︂𝑝−1

, 𝐺(𝑢, 𝑡) =
𝑢𝑝

Φ𝑠−1
𝑞

(︂
Φ′

𝑞(𝑡)

Φ𝑞(𝑡)

)︂𝑝−1

, 𝑄(𝑡) =
1

Φ𝑠−1
𝑞 (𝑡)

.

Similar to the proof of Theorem 1 we obtain

1∫︁
𝜀

(︃
𝑢′𝑝

Φ𝑠−1
𝑞 (𝑡)

+

(︂
𝑝 + 𝑠− 2

𝑝− 1

)︂𝑝−1

(𝑝− 1)𝑢𝑝(𝑡)
Φ′′

𝑞(𝑡)

Φ𝑠
𝑞(𝑡)

(︂
Φ′

𝑞(𝑡)

Φ𝑞(𝑡)

)︂𝑝−2
)︃
𝑑𝑡

> 𝑐

(︃
𝑢𝑝(1)

Φ𝑠−1
𝑞 (1)

(︂
Φ′

𝑞(1)

Φ𝑞(1)

)︂𝑝−1

− 𝑢𝑝(𝜀)

Φ𝑠−1
𝑞 (𝜀)

(︂
Φ′

𝑞(𝜀)

Φ𝑞(𝜀)

)︂𝑝−1
)︃
.

Passing to the limit as 𝜀 → 0 and employing equation (3) as 𝜈 = 0, namely,

Φ′′
𝑞(𝑡) +

(︂
1

4𝑡2
+

𝑞2𝜆2
0(2/𝑞)

4𝑡2−𝑞

)︂
Φ𝑞(𝑡) = 0,

we have
1∫︁

0

𝑢′𝑝(𝑡)
𝑑𝑡

Φ𝑠−1
𝑞 (𝑡)

>
(𝑝 + 𝑠− 2)𝑝−1

(𝑝− 1)𝑝−2

1∫︁
0

𝑢𝑝(𝑡)

(︂
1

4𝑡2
+

𝑞2𝜆2
0(2/𝑞)

4𝑡2−𝑞

)︂(︂
Φ′

𝑞(𝑡)

Φ𝑞(𝑡)

)︂𝑝−2
𝑑𝑡

Φ𝑠−1
𝑞 (𝑡)

.

Here we have used that

|𝑢(𝑥)|𝑝 6
(︂
𝑠 + 2𝑝− 3

2(𝑝− 1)

)︂𝑝−1

𝑥(𝑠+2𝑝−3)/2

𝑥∫︁
0

|𝑢′(𝑡)|𝑝

𝑡(𝑠−1)/2
𝑑𝑡,

and that Φ𝑞(𝑡) = 𝑂(
√
𝑡) for small 𝑡.
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It also follows from Lemma B that the constants are sharp provided

𝑢′(𝑡)

𝑢(𝑡)
=

𝑝 + 𝑠− 2

𝑝− 1

Φ𝑞(𝑡)

Φ′
𝑞(𝑡)

.

That is, as 𝑢(𝑡) = 𝐶Φ
𝑝+𝑠−2
𝑝−1

𝑞 (𝑡), the inequality becomes the identity. It is easy to check that
as 𝑠 > 𝑝 − 1, the function Φ𝑞 satisfies the assumption of the theorem. At the present, the
sharpness as 𝑠 < 𝑝− 1 is unclear.

The last result of this paper is also related with a particular case of the function 𝐹𝜈,𝑟,𝑞. Let
Φ𝜈,𝑞(𝑡) = 𝐹𝜈,1,𝑞(𝑡). Then the function

Φ𝜈,𝑞(𝑡) =
√
𝑡𝐽𝜈(𝜆𝜈(2/𝑞)𝑡𝑞/2)

satisfies the following differential equation:

𝑡2𝑦′′ +

(︂
1 − 𝜈2𝑞2

4
+

𝑞2𝜆2
𝜈(2/𝑞)

4𝑡−𝑞

)︂
𝑦 = 0. (11)

Arguing as in the proof of Theorem 1, we have

1∫︁
𝜀

(︃
𝑢′𝑝(𝑡)

Φ𝑠−1
𝜈,𝑞 (𝑡)

+

(︂
𝑝 + 𝑠− 2

𝑝− 1

)︂𝑝−1

(𝑝− 1)𝑢𝑝(𝑡)
Φ′′

𝜈,𝑞(𝑥)(𝑡)

Φ𝑠
𝜈,𝑞(𝑡)

(︂
Φ′

𝜈,𝑞(𝑡)

Φ𝜈,𝑞(𝑡)

)︂𝑝−2
)︃
𝑑𝑡

> 𝑐

(︃
𝑢𝑝(1)

Φ𝑠−1
𝑞 (1)

(︂
Φ′

𝜈,𝑞(1)

Φ𝑞(1)

)︂𝑝−1

− 𝑢𝑝(𝜀)

Φ𝑠−1
𝑞,𝜈 (𝜀)

(︂
Φ′

𝜈,𝑞(𝜀)

Φ𝜈,𝑞(𝜀)

)︂𝑝−1
)︃
.

Passing to the limit and employing equation (11) lead us to the following theorem.

Theorem 4. Let 𝑠 ∈ (0,+∞), 𝜈 ∈ (0,+∞), 𝑝 ∈ [2,+∞) and an absolutely continuous
function 𝑢 on [0, 1] be such that 𝑢(0) = 0 and 𝑢′/𝑡(𝑠−1)(1+𝑞𝜈)/(2𝑝) ∈ 𝐿𝑝[0, 1]. Then

1∫︁
0

|𝑢′(𝑡)|𝑝

Φ𝑠−1
𝑞,𝜈 (𝑡)

𝑑𝑡 >
(𝑝 + 𝑠− 2)𝑝−1

(𝑝− 1)𝑝−2

1∫︁
0

|𝑢(𝑡)|𝑝

𝑡2

(︂
1 − 𝜈2𝑞2

4
+

𝑞2𝜆2
𝜈(2/𝑞)

4𝑡−𝑞

)︂(︂
Φ′

𝑞,𝜈(𝑡)

Φ𝑞,𝜈(𝑡)

)︂𝑝−2
𝑑𝑡

Φ𝑠−1
𝑞,𝜈 (𝑡)

.

As 𝑠 > (𝑝 − 1)
(︁

2(𝑝−1)
1+𝜈

− 𝑝
)︁

+ 1, the inequality becomes the identity if and only if 𝑢(𝑡) =

𝐶(Φ𝑞,𝜈(𝑡))
𝑝+𝑠−2
𝑝−1 , where 𝐶 is some constant.

4. Inequalities in convex domains

Let Ω be a 𝑛-dimensional proper subset of the Euclidean space R𝑛, 𝛿 = 𝛿(𝑥) = dist(𝑥, 𝜕Ω)
and

𝛿0 = 𝛿0(Ω) = sup
𝑥∈Ω

𝛿(𝑥) < ∞.

We proceed to proving the main result, Theorem 1. Here we employ the approach by
F.G. Avkhadiev, see, for instance, [17], [22]-[24]. We consider two cases of the range of the
parameter 𝑛: 𝑛 = 1 and 𝑛 > 2. As 𝑛 = 1, that is, as Ω = (𝑎, 𝑏), for each continuously
differentiable function such that 𝑓(𝑎) = 𝑓(𝑏) = 0 we need to prove the inequality

𝑏∫︁
𝑎

|𝑓 ′(𝑥)|𝑝

sin𝑠−1
(︁

𝜋𝛿
2𝛿0

)︁𝑑𝑥 >
(𝑝 + 𝑠− 2)𝑝−1

(𝑝− 1)𝑝−2

𝜋𝑝

(2𝛿0)𝑝

𝑏∫︁
𝑎

|𝑓(𝑥)|𝑝
(︂

cot
𝜋𝛿

2𝛿0

)︂𝑝−2
𝑑𝑥

sin𝑠−1
(︁

𝜋𝛿
2𝛿0

)︁ ,
where

𝛿 = 𝛿(𝑥) = min{𝑥− 𝑎, 𝑏− 𝑥}, 𝛿0 =
𝑏− 𝑎

2
.
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For arbitrary 𝜌 > 0, the change of variable 𝜏 = 𝜌𝑡 in (9) leads us to
𝜌∫︁

0

|𝑢′(𝜏)|𝑝

sin𝑠−1
(︁

𝜋𝜏
2𝜌

)︁𝑑𝜏 >
(𝑝 + 𝑠− 2)𝑝−1

(𝑝− 1)𝑝−2

𝜋𝑝

(2𝜌)𝑝

𝜌∫︁
0

|𝑢(𝜏)|𝑝
(︂

cot
𝜋𝜏

2𝜌

)︂𝑝−2
𝑑𝜏

sin𝑠−1
(︁

𝜋𝜏
2𝜌

)︁ .
Applying the latter inequality to the functions 𝑢(𝜏) = 𝑓(𝜏 + 𝑎) and 𝑢(𝜏) = 𝑓(𝑏 − 𝜏) with
𝜌 = 𝛿0 = 𝑏−𝑎

2
, we get

(𝑎+𝑏)/2∫︁
𝑎

|𝑓 ′(𝑥)|𝑝

sin𝑠−1
(︁

𝜋(𝑥−𝑎)
2𝜌

)︁𝑑𝑥 >
(𝑝 + 𝑠− 2)𝑝−1

(𝑝− 1)𝑝−2

𝜋𝑝

(2𝛿0)𝑝

(𝑎+𝑏)/2∫︁
𝑎

|𝑓(𝑥)|𝑝
(︂

cot
𝜋(𝑥− 𝑎)

2𝛿0

)︂𝑝−2
𝑑𝑥

sin𝑠−1
(︁

𝜋(𝑥−𝑎)
2𝜌

)︁
and

𝑏∫︁
(𝑎+𝑏)/2

|𝑓 ′(𝑥)|𝑝

sin𝑠−1
(︁

𝜋(𝑏−𝑥)
2𝜌

)︁𝑑𝑥 >
(𝑝 + 𝑠− 2)𝑝−1

(𝑝− 1)𝑝−2

𝜋𝑝

(2𝛿0)𝑝

𝑏∫︁
(𝑎+𝑏)/2

|𝑓(𝑥)|𝑝
(︂

cot
𝜋(𝑏− 𝑥)

2𝛿0

)︂𝑝−2
𝑑𝑥

sin𝑠−1
(︁

𝜋(𝑏−𝑥)
2𝜌

)︁ .
The sum of these two inequalities gives the required statement.

We proceed to the case 𝑛 > 2. We note that by means of F.G. Avkhadiev method, by one-
dimensional inequalities we can obtain inequalities in arbitrary even non-convex domains, see,
for instance, [17], [22]–[24]. We give a brief description of this method. Let Λ be an arbitrary
open domain, in which we need to prove the Hardy type inequality. Approximating the domain
Λ by cubes, F.G. Avkhadiev showed that it is sufficient to check the inequality on the sets of
special form:

𝐾(𝑆) = {𝑥 ∈ Λ1 : there exists a point 𝑦 ∈ 𝑆 such that 𝛿(𝑥,Λ) = |𝑥− 𝑦|},
where Λ1 is a some partition of the domain Λ and for 𝑘 ∈ {1, 2, . . . , 𝑛}, 𝑆 is the (𝑛 − 𝑘)-
dimensional cube face.

While calculating the integrals over set 𝐾(𝑆), we have to employ either spherical or cylindric
or Cartesian coordinates that allows us to pass to the corresponding iterated integral and to
prove only one-dimensional inequalities. For a convex domain the situation is simple and one-
dimensional inequalities are extended straightforwardly to the spatial case. This completes the
proof of Theorem 1.

The author thanks Professor F.G. Avkhadiev for valuable advises, comments and various
help in all stages of preparing this work.

BIBLIOGRAPHY

1. V. Levin. Notes on inequalities. II. On a class of integral inequalities // Rec. Math. Moscou. n.
Ser. 4. 309–324 (1938). (in Russian).

2. P.R. Beesack. Hardy’s inequality and its extensions // Pacific J. Math. 11:1, 39–61 (1961).
3. G. Talenti. Osservazioni sopra una classe di disuguaglianze // Rend. Sem. Mat. Fiz. Milano. 39:1,

171–185 (1969).
4. G. Tomaselli. A class of inequalities // Boll. Un. Mat. Ital. Ser. 2. 21, 622–631 (1969).
5. B. Muckenhoupt. Hardy’s inequality with weights // Studia Mathematica. 44:1, 31–38 (1972).
6. G. Sinnamon and V.D. Stepanov. The weighted Hardy inequality: new proofs and the case 𝑝 = 1

// J. London Math. Soc. 54:2, 89–101 (1996).
7. F.G. Avkhadiev, K.-J. Wirths. Sharp Hardy-type inequalities with Lamb’s constants // Bull. Belg.

Math. Soc. Simon Stevin. 18:4, 723–736 (2011).
8. F.G. Avkhadiev, K.-J. Wirths. Unified Poincaré and Hardy inequalities with sharp constants for
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