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DEGENERATE FRACTIONAL DIFFERENTIAL EQUATIONS

IN LOCALLY CONVEX SPACES WITH A 𝜎-REGULAR PAIR

OF OPERATORS

M. KOSTIĆ, V.E. FEDOROV

Abstract. We consider a degenerate fractional order differential equation𝐷𝛼
𝑡 𝐿𝑢(𝑡) = 𝑀𝑢(𝑡)

in a Hausdorff sequentially complete locally convex space. Under the 𝑝-regularity of the
operator pair (𝐿,𝑀), we find the phase space of the equation and the family of its resolving
operators. We show that the identity image of the latter coincides with the phase space.
We prove an unique solvability theorem and obtain the form of the solution to the Cauchy
problem for the corresponding inhomogeneous equation. We give an example of applica-
tion the obtained abstract results to studying the solvability of the initial boundary value
problems for the partial differential equations involving entire functions on an unbounded
operator in a Banach space, which is a specially constructed Frechét space. It allows us to
consider, for instance, a periodic in a spatial variable 𝑥 problem for the equation with a
shift along 𝑥 and with a fractional order derivative with respect to time 𝑡.
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1. Introduction

We consider a linear differential equation

𝐷𝛼
𝑡 𝐿𝑢(𝑡) = 𝑀𝑢(𝑡) + 𝑓(𝑡), (1)

where 𝐷𝛼
𝑡 is the fractional Caputo derivative of order 𝛼 > 0 [1], U and V are separated

sequentially complete locally compact linear topological spaces, 𝐿 : U → V is a linear continuous
operator, 𝑀 : 𝐷𝑀 → V is a linear closed operator with a domain 𝐷𝑀 dense in U. In what
follows this equation is called degenerate since we assume that ker𝐿 ̸= {0}. In the work we
consider the issues on unique solvability of the Cauchy problem

𝑢(𝑘)(0) = 𝑢𝑘, 𝑘 = 0, 1, . . . ,𝑚− 1, (2)

for equation (1). Here 𝑚 is the smallest integer number greater than or equal to 𝛼.
Equations of such type in Banach spaces were considered in works [2, 3] in the non-degenerate

case, when the operator 𝐿 is continuously invertible and work [4] for a degenerate operator 𝐿
and a strong (𝐿, 𝑝)-sectorial operator 𝑀 . There are also works [5]–[10], in which fractional
differential equations were studied in locally convex spaces.
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The present work provides the generalizations of results of work [11], in which the solvability
of Cauchy problem (2) for homogeneous equation (1) in a Banach space was studied by using
the conditions of (𝐿, 𝜎)-boundedness of the operator [12] introduced in studying a degenerate
equation of order 𝛼 = 1. In the present work we employ the notion of (𝐿, 𝜎)-regular operator
used before in [13] for studying first order degenerate equation in locally convex spaces. By
means of (𝐿, 𝜎)-regularity condition for the operator 𝑀 , we obtain pairs of invariant subspaces
of operators 𝐿 and 𝑀 and the original equation is reduced to a system of two equations on
two subspaces. One of the obtained equations is resolved with respect the derivative and has a
regular operator [14] at the sought function. The solvability condition of the Cauchy problem
for such equation and its solution were found in work [14]. The other obtained equation has
a nilpotent operator at the derivative. In the case of 𝑝-regular pair of operators (𝐿,𝑀) we
show the unique solvability of such equation without initial data. In the homogeneous case the
corresponding solution is trivial. This fact allows us to find the phase space and the family
of resolving operator for the homogeneous equation. In the inhomogeneous case it leads to
compatibility conditions for the initial data in the Cauchy problem and the right hand of the
equation.

We also consider a generalized Showalter-Sidorov problem, in which the initial data is imposed
only for the projection of the solution on the first subspace instead of the initial for the solution
itself. This is why the difference between the solvability theorem for such problem and for
the Cauchy problem is just the absence of the compatibility conditions that stress a natural
character of such problem for degenerate evolution equations.

The family of the resolving operators found in the work is constructed explicitly by using
Mittag-Leffler function and this family is used for the representation of the solution.

The obtain abstract results are used for studying the solvability of periodic in a spatial
variable 𝑥 Cauchy problem and Showalter-Sidorov problem for the equations of fractional order
w.r.t. the time and of infinite order w.r.t. 𝑥 with entire functions of the differentiation operator
in 𝑥 and with a shift in this variable. In order to do it, the shift in the spatial variable is
represented as the action of an exponential function of the operator 𝐴 of the differentiation in
𝑥. For the obtained operators we show the (𝐿, 0)-regularity of the operator 𝑀 while considering
the problem in the Fréchet space being the inductive limit of the scale of Fréchet space of the
elements of 𝐴-exponential type in 𝐷(𝐴∞).

2. Inhomogeneous Cauchy problem for a non-degenerate equation

Let Z be a separated sequentially complete locally convex space. By ~Z we denote a funda-
mental system of semi-norms in Z defining a topology in this space.

Definition 1. A linear continuous operator 𝐴 : Z → Z is called regular (shortly 𝐴 ∈ ℛ(Z))
if there exists 𝐶 ∈ R+ such that for each semi-norm 𝑞 ∈ ~Z there exists a semi-norm 𝑟 ∈ ~Z

such that 𝑞(𝐴𝑛𝑧) 6 𝐶𝑛𝑟(𝑧) for all 𝑧 ∈ Z, 𝑛 ∈ N.

Remark 1. The constant 𝐶 in Definition 1 is called the regularity constant of the operator
𝐴. It is clear that the set of the regularity constants for a given operator is unbounded from
above.

Remark 2. In the case of the Banach space Z, the regularity of the operator means exactly
the belonging to class ℒ(Z) of linear continuous on the entire space operators.

Remark 3. In the case of a quasi-complete locally convex space, an operator 𝐴 is regular in
the sense of the above definition if and only if it is a regular element of the convex bornological
algebra of continuous linear mappings from Z into Z with the bornology of equicontinuity [14].

The regular spectrum 𝜎𝑟(𝐴) of an operator 𝐴 [14] is a set of 𝜇 ∈ C, for which there exists
no regular operator (𝜇𝐼 − 𝐴)−1, and the regular resolvent set of operator 𝐴 is the set 𝜌𝑟(𝐴) =
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C ∖𝜎𝑟(𝐴). The regular spectrum of a regular operator in a quasi-complete locally convex space
is a non-empty compact set [14]. In this case of the spectral radius of a regular operator 𝐴 we
have 𝑟𝜎(𝐴) = inf{𝐶 > 0 : 𝑞(𝐴𝑛𝑣) 6 𝐶𝑛𝑟(𝑣)}.

We denote 𝑔𝛿(𝑡) = Γ(𝛿)−1𝑡𝛿−1 as 𝛿 > 0, 𝑡 > 0,

𝐽𝛿
𝑡 ℎ(𝑡) = (𝑔𝛿 * ℎ)(𝑡) =

𝑡∫︁
0

𝑔𝛿(𝑡− 𝑠)ℎ(𝑠)𝑑𝑠.

Let 𝛼 > 0, 𝑚 be the smallest integer greater than or equal to 𝛼, 𝐷𝑚
𝑡 is the usual derivative

of order 𝑚 ∈ N, 𝐽0
𝑡 is the identical operator, 𝐷𝛼

𝑡 is the fractional Caputo derivative, that is,
𝐷𝛼

𝑡 𝑓(𝑡) = 𝐽𝑚−𝛼
𝑡 𝐷𝑚

𝑡 𝑓(𝑡) in the case when the expression in the right hand side of this identity
makes sense. In what follows we shall make use of the identity

𝐷𝛼
𝑡 𝑓(𝑡) = 𝐷𝑚

𝑡 𝐽
𝑚−𝛼
𝑡

(︃
𝑓(𝑡) −

𝑚−1∑︁
𝑘=0

𝑓 (𝑘)(0)𝑔𝑘+1(𝑡)

)︃
,

which is valid in the case when the expression in its right hand side is well-defined [1].

As 𝛼, 𝛽 > 0 we introduce the Mittag-Leffler function 𝐸𝛼,𝛽(𝑧) =
∞∑︀
𝑛=0

𝑧𝑛

Γ(𝛼𝑛+𝛽)
and we consider

the Cauchy problem

𝑧(𝑘)(0) = 𝑧𝑘, 𝑘 = 0, 1, . . . ,𝑚− 1, (3)

for the fractional differential equation

𝐷𝛼
𝑡 𝑧(𝑡) = 𝐴𝑧(𝑡) + 𝑓(𝑡), 𝑡 ∈ [0, 𝑇 ), (4)

where 𝑇 ∈ (0,+∞], 𝐴 is a regular operator in a sequentially complete locally convex
space Z. A solution to problem (3), (4) is a function 𝑧 ∈ 𝐶𝑚−1(R+;Z), for which

𝑔𝑚−𝛼 *
(︂
𝑧 −

𝑚−1∑︀
𝑘=0

𝑧(𝑘)(0)𝑔𝑘+1

)︂
∈ 𝐶𝑚(R+;Z) and identities (3) and (4) are satisfied. Hereinafter

R+ = {𝑥 ∈ R : 𝑥 > 0}, R+ = R+ ∪ {0}.

Theorem 1. Let 𝐴 ∈ ℛ(Z), 𝑓 ∈ 𝐶𝑚([0, 𝑇 );Z). Then for each 𝑧0 ∈ Z there exists the unique
solution to problem (3), (4). This solution is

𝑧(𝑡) =
𝑚−1∑︁
𝑘=0

𝑡𝑘𝐸𝛼,𝑘+1(𝐴𝑡
𝛼)𝑧𝑘 +

𝑡∫︁
0

(𝑡− 𝑠)𝛼−1𝐸𝛼,𝛼(𝐴(𝑡− 𝑠)𝛼)𝑓(𝑠)𝑑𝑠. (5)

Proof. Differentiating series term by term, by the regularity of the operator 𝐴 we obtain the
identities

𝐷𝛼
𝑡

𝑚−1∑︁
𝑘=0

𝑡𝑘𝐸𝛼,𝑘+1(𝐴𝑡
𝛼)𝑧𝑘 = 𝐴

𝑚−1∑︁
𝑘=0

𝑡𝑘𝐸𝛼,𝑘+1(𝐴𝑡
𝛼)𝑧𝑘, (6)

𝐷𝑙
𝑡

𝑚−1∑︁
𝑘=0

𝑡𝑘𝐸𝛼,𝑘+1(𝐴𝑡
𝛼)𝑧𝑘|𝑡=0 = 𝑧𝑙, 𝑙 = 0, 1, . . . ,𝑚− 1, (7)
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𝐷𝛼
𝑡

𝑡∫︁
0

(𝑡− 𝑠)𝛼−1𝐸𝛼,𝛼(𝐴(𝑡− 𝑠)𝛼)𝑓(𝑠)𝑑𝑠 = 𝐽𝑚−𝛼
𝑡 𝐷𝑚

𝑡

𝑡∫︁
0

𝑠𝛼−1𝐸𝛼,𝛼(𝐴𝑠𝛼)𝑓(𝑡− 𝑠)𝑑𝑠

= 𝐽𝑚−𝛼
𝑡 𝐷𝑚−1

𝑡

(︀
𝑡𝛼−1𝐸𝛼,𝛼(𝐴𝑡𝛼)

)︀
𝑓(0) + 𝐽𝑚−𝛼

𝑡 𝐷𝑚−1
𝑡

𝑡∫︁
0

𝑠𝛼−1𝐸𝛼,𝛼(𝐴𝑠𝛼)𝑓 ′(𝑡− 𝑠)𝑑𝑠

= 𝐽𝑚−𝛼
𝑡

𝑚−1∑︁
𝑘=0

𝐷𝑘
𝑡

(︀
𝑡𝛼−1𝐸𝛼,𝛼(𝐴𝑡𝛼)

)︀
𝑓 (𝑚−1−𝑘)(0) + 𝐽𝑚−𝛼

𝑡

𝑡∫︁
0

𝑠𝛼−1𝐸𝛼,𝛼(𝐴𝑠𝛼)𝑓 (𝑚)(𝑡− 𝑠)𝑑𝑠

= 𝐽𝑚−𝛼
𝑡

𝑚−1∑︁
𝑘=0

∞∑︁
𝑛=0

𝐴𝑛𝑡𝛼(𝑛+1)−1−𝑘

Γ(𝛼𝑛 + 𝛼− 𝑘)
𝑓 (𝑚−1−𝑘)(0)

+

𝑡∫︁
0

(𝑡− 𝜏)𝑚−1−𝛼𝑑𝜏

Γ(𝑚− 𝛼)

𝜏∫︁
0

(𝜏 − 𝑠)𝛼−1𝐸𝛼,𝛼(𝐴(𝜏 − 𝑠)𝛼)𝑓 (𝑚)(𝑠)𝑑𝑠

=
𝑚−1∑︁
𝑘=0

∞∑︁
𝑛=0

𝐴𝑛𝑡𝛼𝑛+𝑚−1−𝑘

Γ(𝛼𝑛 + 𝑚− 𝑘)
𝑓 (𝑚−1−𝑘)(0)

+

𝑡∫︁
0

𝑑𝑠

𝑡∫︁
𝑠

(𝑡− 𝜏)𝑚−1−𝛼

Γ(𝑚− 𝛼)
(𝜏 − 𝑠)𝛼−1𝐸𝛼,𝛼(𝐴(𝜏 − 𝑠)𝛼)𝑓 (𝑚)(𝑠)𝑑𝜏

=
𝑚−1∑︁
𝑘=0

𝑡𝑘𝐸𝛼,𝑘+1(𝐴𝑡
𝛼)𝑓 (𝑘)(0) +

𝑡∫︁
0

𝑑𝑠

𝑡−𝑠∫︁
0

(𝑡− 𝑠− 𝜎)𝑚−1−𝛼

Γ(𝑚− 𝛼)
𝜎𝛼−1𝐸𝛼,𝛼(𝐴𝜎𝛼)𝑓 (𝑚)(𝑠)𝑑𝜎

=
𝑚−1∑︁
𝑘=0

𝑡𝑘𝐸𝛼,𝑘+1(𝐴𝑡
𝛼)𝑓 (𝑘)(0) +

𝑡∫︁
0

[︀
𝐽𝑚−𝛼
𝑡−𝑠 (𝑡− 𝑠)𝛼−1𝐸𝛼,𝛼(𝐴(𝑡− 𝑠)𝛼)

]︀
𝑓 (𝑚)(𝑠)𝑑𝑠

=
𝑚−1∑︁
𝑘=0

𝑡𝑘𝐸𝛼,𝑘+1(𝐴𝑡
𝛼)𝑓 (𝑘)(0) +

𝑡∫︁
0

(𝑡− 𝑠)𝑚−1𝐸𝛼,𝑚(𝐴(𝑡− 𝑠)𝛼)𝑓 (𝑚)(𝑠)𝑑𝑠

= 𝑓(𝑡) −
𝑡∫︁

0

[︂
𝑑

𝑑𝑠
𝐸𝛼,1(𝐴(𝑡− 𝑠)𝛼)

]︂
𝑓(𝑠)𝑑𝑠 = 𝐴

𝑡∫︁
0

(𝑡− 𝑠)𝛼−1𝐸𝛼,𝛼(𝐴(𝑡− 𝑠)𝛼)𝑓(𝑠)𝑑𝑠 + 𝑓(𝑡).

(8)

Here in the end we made 𝑚-multiple integration by parts. It follows from identities (6)-(8) that
function (5) solves problem (3), (4).

If there exist solutions 𝑧1 and 𝑧2 to problem (3), (4), then their difference 𝑧 = 𝑧1 − 𝑧2 solves
Cauchy problem (3) with the initial data 𝑧𝑘 = 0, 𝑘 = 0, 1, . . . ,𝑚 − 1, for the homogeneous
equation 𝐷𝛼

𝑡 𝑧(𝑡) = 𝐴𝑧(𝑡). We apply the operator 𝐽𝛼
𝑡 to the both sides of this identity to obtain

𝑧(𝑡) =
𝑡∫︀
0

(𝑡−𝑠)𝛼−1

Γ(𝛼)
𝐴𝑧(𝑠)𝑑𝑠 (see [1, Formula (1.21)]). Then by [14, Thm. 4], the unique solution

to this problem for a regular operator 𝐴 in a sequentially complete locally convex space is
𝑧 ≡ 0.

3. 𝜎-regular pair of operators

Let U, V be sequentially complete locally convex spaces. By ℒ(U;V) we denote the set
of linear continuous operators acting from U into V. The set of linear closed operators with
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domains dense in the space U acting into V is denoted by 𝒞𝑙(U;V). If V = U, the corresponding
notations are ℒ(U) and 𝒞𝑙(U), respectively.

Let 𝐿,𝑀 ∈ 𝒞𝑙(U;V). By 𝐷𝐿, 𝐷𝑀 we denote the domains of the operators 𝐿 and 𝑀 . We
denote 𝑅𝐿

𝜇(𝑀) = (𝜇𝐿−𝑀)−1𝐿, 𝐿𝐿
𝜇(𝑀) = 𝐿(𝜇𝐿−𝑀)−1.

A regular 𝐿-resolvent set of the operator 𝑀 is the set 𝜌𝐿𝑟 (𝑀) = {𝜇 ∈ C : (𝜇𝐿 − 𝑀)−1 ∈
ℒ(V;U), 𝑅𝐿

𝜇(𝑀) ∈ R(U), 𝐿𝐿
𝜇(𝑀) ∈ R(V)}, a regular 𝐿-spectrum is its complement 𝜎𝐿

𝑟 (𝑀) =

C ∖ 𝜌𝐿𝑟 (𝑀).
Below we shall need the following identities valid for all 𝜇, 𝜆 ∈ 𝜌𝐿𝑟 (𝑀), 𝑢 ∈ 𝐷𝐿 ∩𝐷𝑀 :

(𝜇𝐿−𝑀)−1(𝜆𝐿−𝑀)𝑢 = 𝑢 + (𝜆− 𝜇)(𝜇𝐿−𝑀)−1𝐿𝑢,

(𝜆𝐿−𝑀)(𝜇𝐿−𝑀)−1 = 𝐼 + (𝜆− 𝜇)𝐿(𝜇𝐿−𝑀)−1,

(𝜇𝐿−𝑀)−1 − (𝜆𝐿−𝑀)−1 = (𝜆− 𝜇)𝑅𝐿
𝜇(𝑀)(𝜆𝐿−𝑀)−1,

𝐿(𝜇𝐿−𝑀)−1𝑀𝑢 = 𝑀(𝜇𝐿−𝑀)−1𝐿𝑢.

(9)

Proposition 1. Let 𝐿,𝑀 ∈ 𝒞𝑙(U;V), the set 𝐷𝐿 ∩𝐷𝑀 is sequentially dense in U. Then
(i) 𝜌𝐿𝑟 (𝑀) is an open set;
(ii) The operator function (𝜇𝐿−𝑀)−1, 𝑅𝐿

𝜇(𝑀), 𝐿𝐿
𝜇(𝑀) are strongly holomorphic on 𝜌𝐿𝑟 (𝑀);

(iii) We can choose regularity constants for the operators 𝑅𝐿
𝜇(𝑀) and 𝐿𝐿

𝜇(𝑀) depending

continuously on 𝜇 ∈ 𝜌𝐿𝑟 (𝑀).

Proof. Let 𝜇 ∈ 𝜌𝐿𝑟 (𝑀), 𝐶𝜇 be the maximal of two regularity constants of the operators 𝑅𝐿
𝜇(𝑀)

and 𝐿𝐿
𝜇(𝑀). Then

{𝜆 ∈ C : |𝜆− 𝜇| < 𝐶−1
𝜇 } ⊂ 𝜌𝐿𝑟 (𝑀).

Indeed, in accordance with the second identity in (9), the continuous operator is well-defined:

[(𝜆𝐿−𝑀)(𝜇𝐿−𝑀)−1]−1 =
∞∑︁
𝑘=0

(𝜇− 𝜆)𝑘[𝐿(𝜇𝐿−𝑀)−1]𝑘.

We multiply this identity by 𝐿𝐿
𝜇(𝑀) from the left and for each 𝑣 ∈ V, 𝑞 ∈ ~V we obtain:

𝑞(𝐿𝐿
𝜆(𝑀)𝑣) =𝑞

(︃
∞∑︁
𝑘=0

(𝜆− 𝜇)𝑘(𝐿𝐿
𝜇(𝑀))𝑘+1𝑣

)︃
6

𝐶𝜇𝑟(𝑣)

1 − |𝜆− 𝜇|𝐶𝜇

,

𝑞((𝐿𝐿
𝜆(𝑀))𝑛𝑣) 6

∞∑︁
𝑘1=0

· · ·
∞∑︁

𝑘𝑛=0

|𝜆− 𝜇|
𝑛∑︀

𝑖=1
𝑘𝑖
𝑞

(︃
(𝐿𝐿

𝜇(𝑀))
𝑛+

𝑛∑︀
𝑖=1

𝑘𝑖
𝑣

)︃

6
∞∑︁

𝑘1=0

|𝜆− 𝜇|𝑘1𝐶𝑘1+1
𝜇 · · ·

∞∑︁
𝑘𝑛=0

|𝜆− 𝜇|𝑘𝑛𝐶𝑘𝑛+1
𝜇 𝑟(𝑣) 6

𝐶𝑛
𝜇𝑟(𝑣)

(1 − |𝜆− 𝜇|𝐶𝜇)𝑛

for some 𝑟 ∈ ~V. Thus, operator 𝑅𝐿
𝜆 (𝑀) is regular with the regularity constant 𝐶𝜇(1 − |𝜆 −

𝜇|𝐶𝜇)−1.
The proof for the operator functions (𝜇𝐿 −𝑀)−1, 𝑅𝐿

𝜇(𝑀) is similar by employing the first

identity in (9). This is why each point 𝜇 lies in 𝜌𝐿𝑟 (𝑀) with some neighbourhood. Statements
(ii) and (iii) are obviously implied by the proved facts.

Definition 2. Let 𝐿 ∈ ℒ(U;V), 𝑀 ∈ 𝒞𝑙(U;V). The operator 𝑀 is called (𝐿, 𝜎)-regular if

∃𝑎 > 0 ∀𝜇 ∈ C (|𝜇| > 𝑎) ⇒ (𝜇 ∈ 𝜌𝐿𝑟 (𝑀)).

Sometimes, instead of (𝐿, 𝜎)-regular operator 𝑀 , it is more convenient to speak about 𝜎-regular
pair of operators (𝐿,𝑀), which in our presentation is the same.
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We take a (𝐿, 𝜎)-regular operator 𝑀 and construct a closed contour

𝛾 = {𝜇 ∈ C : |𝜇| = 𝑅 > 𝑎}.

Then the integrals

𝑃𝑢 =
1

2𝜋𝑖

∫︁
𝛾

𝑅𝐿
𝜇(𝑀)𝑢𝑑𝜇, 𝑄𝑣 =

1

2𝜋𝑖

∫︁
𝛾

𝐿𝐿
𝜇(𝑀)𝑣𝑑𝜇

are well-defined as the integrals of holomorphic functions over the closed contour.
It is easy to show that the operators 𝑃 and 𝑄 are projectors. We let U0 = ker𝑃, V0 = ker𝑄,

U1 = im𝑃, V1 = im𝑄, then U = U0 ⊕ U1, V = V0 ⊕V1. By 𝐿𝑘 (𝑀𝑘) we denote the restriction
of the operator 𝐿 (𝑀) on U𝑘 (𝐷𝑀𝑘

= 𝐷𝑀 ∩ U𝑘), 𝑘 = 0, 1. Moreover, by 𝜎𝐿
𝑟,𝑘(𝑀) we denote the

regular 𝐿𝑘-spectrum of the operator 𝑀𝑘, while 𝜌𝐿𝑟,𝑘(𝑀) stands for its regular 𝐿𝑘-resolvent set.

Lemma 1. Let the operator 𝑀 be (𝐿, 𝜎)-regular. Then for each 𝑢 ∈ U 𝑃𝑢 ∈ 𝐷𝑀 .

Proof. Indeed, by Statement (ii) in Proposition 1, the integral∫︁
𝛾

𝑀𝑅𝐿
𝜇(𝑀)𝑢𝑑𝜇 =

∫︁
𝛾

𝜇𝐿𝑅𝐿
𝜇(𝑀)𝑢𝑑𝜇

converges. Since the operator 𝑀 is closed, we obtain the needed fact.

Theorem 2. Let the operator 𝑀 be (𝐿, 𝜎)-regular. Then
(i) 𝐿𝑘 ∈ ℒ(U𝑘;V𝑘), 𝑘 = 0, 1;
(ii) 𝑀0 ∈ 𝒞𝑙(U0;V0), 𝑀1 ∈ ℒ(U1;V1);
(iii) There exists the operator 𝐿−1

1 ∈ ℒ(V1;U1);
(iv) 𝜌𝐿𝑟,0(𝑀) = C and in particular, there exists the operator 𝑀−1

0 ∈ ℒ(V0;U0);

(v) The operators 𝑆1 = 𝐿−1
1 𝑀1, 𝑇1 = 𝑀1𝐿

−1
1 are regular.

The proof of the theorem can be found in [13].
We denote 𝐻 = 𝑀−1

0 𝐿0. If for some 𝑝 ∈ N0 ≡ {0} ∪ N we have 𝐻𝑝 ̸= O, 𝐻𝑝+1 = O, then
the (𝐿, 𝜎)-regular operator 𝑀 is called (𝐿, 𝑝)-regular. At that, the pair of the operators (𝐿,𝑀)
is called (𝐿, 𝑝)-regular.

It is easy to show that the nilpotentness degree of the operator 𝐻 or the absence of the
nilpotentness determine the character of the singularity at the infinity for the operator function
(𝜇𝐿−𝑀)−1 (see [12]).

An ordered set {𝜙0, 𝜙1, 𝜙2, . . .} ⊂ U is called a chain of 𝑀 -adjont vectors of the operator 𝐿
if 𝜙0 ∈ ker𝐿 ∖ {0},

𝐿𝜙𝑘+1 = 𝑀𝜙𝑘, 𝑘 = 0, 1, . . . , 𝜙𝑙 ̸∈ ker𝐿, 𝑙 = 1, 2, . . .

The chain is finite if there exists an 𝑀 -adjoint vector 𝜙𝑝 such that either 𝜙𝑝 ̸∈ 𝐷𝑀 or 𝑀𝜙𝑝 ̸∈
im𝐿. The index of a 𝑀 -adjoint vector in the chain is called the height of this vector. The linear
span of all 𝑀 -adjoint vectors of the operator 𝐿 is called 𝑀 -root lineal of the operator 𝐿.

Arguing as in the monograph [12], we can obtain the following result.

Theorem 3. Let the operator 𝑀 be (𝐿, 𝜎)-regular. Then a 𝑀-root lineal of the operator 𝐿
is contained in U0. At that, the following statements hold.

(i) The operator 𝑀 is (𝐿, 𝑝)-regular for 𝑝 ∈ N if and only if 𝑀-root lineal consists of 𝑀-
adjoint vectors of the operator 𝐿 of height at most 𝑝 and at that there exist a 𝑀-adjoint vector
of the height 𝑝. In this case, the 𝑀-root space of the operator 𝐿 coincides with U0.

(ii) The operator 𝑀 is (𝐿, 0)-regular if and only if ker𝐿 = U0. At that, im𝐿 = V1 and for
each 𝜙0 ∈ ker𝐿 ∖ {0} we have 𝜙0 /∈ 𝐷𝑀 or 𝑀𝜙0 /∈ im𝐿.
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Lemma 2. Let the operator 𝑀 be (𝐿, 𝜎)-regular 𝛾 = {𝜇 ∈ C : |𝜇| = 𝑅 > 𝑎}, 𝛼, 𝛽 > 0,

𝑈𝛼,𝛽(𝑡) =
1

2𝜋𝑖

∫︁
𝛾

𝑅𝐿
𝜇(𝑀)𝐸𝛼,𝛽(𝜇𝑡𝛼)𝑑𝜇, 𝑡 > 0.

𝑉𝛼,𝛽(𝑡) =
1

2𝜋𝑖

∫︁
𝛾

𝐿𝐿
𝜇(𝑀)𝐸𝛼,𝛽(𝜇𝑡𝛼)𝑑𝜇, 𝑡 > 0.

Then for each 𝑡 > 0 we have 𝑈𝛼,𝛽(𝑡)𝑃 = 𝑃𝑈𝛼,𝛽(𝑡) = 𝑈𝛼,𝛽(𝑡), 𝑉𝛼,𝛽(𝑡)𝑄 = 𝑄𝑉𝛼,𝛽(𝑡) = 𝑉𝛼,𝛽(𝑡).

Proof. Let 𝛾 = {𝜇 ∈ C : |𝜇| = 𝑅 > 𝑎}, 𝛾1 = {𝜆 ∈ C : |𝜆| = 𝑅 + 1}, then

𝑈𝛼,𝛽(𝑡)𝑃 = 𝑃𝑈𝛼,𝛽(𝑡) =
1

(2𝜋𝑖)2

∫︁
𝛾

∫︁
𝛾1

𝑅𝐿
𝜆 (𝑀)𝑅𝐿

𝜇(𝑀)𝐸𝛼,𝛽(𝜇𝑡𝛼)𝑑𝜇𝑑𝜆

=
1

(2𝜋𝑖)2

∫︁
𝛾

𝑅𝐿
𝜇(𝑀)𝐸𝛼,𝛽(𝜇𝑡𝛼)𝑑𝜇

∫︁
𝛾1

𝑑𝜆

𝜆− 𝜇
− 1

(2𝜋𝑖)2

∫︁
𝛾1

𝑅𝐿
𝜆 (𝑀)𝑑𝜆

∫︁
𝛾

𝐸𝛼,𝛽(𝜇𝑡𝛼)𝑑𝜇

𝜆− 𝜇
= 𝑈𝛼,𝛽(𝑡).

The statements of the lemma on the operators 𝑉𝛼,𝛽(𝑡) and 𝑄 can be proved in the same way.

The above lemma implies the obvious corollary.

Corollary 1. Let the operator 𝑀 be (𝐿, 𝜎)-regular, 𝛼, 𝛽 > 0. Then for each 𝑡 > 0 we have
U0 ⊂ ker𝑈𝛼,𝛽(𝑡), im𝑈𝛼,𝛽(𝑡) ⊂ U1, V0 ⊂ ker𝑉𝛼,𝛽(𝑡), im𝑉𝛼,𝛽(𝑡) ⊂ V1.

Lemma 3. Let the operator 𝑀 be (𝐿, 𝜎)-regular, 𝛼, 𝛽 > 0. Then for each 𝑡 > 0 we have
𝑈𝛼,𝛽(𝑡) = 𝐸𝛼,𝛽(𝐿−1

1 𝑀1𝑡
𝛼)𝑃 , 𝑉𝛼,𝛽(𝑡) = 𝐸𝛼,𝛽(𝑀1𝐿

−1
1 𝑡𝛼)𝑄.

Proof. By Theorem 2, 𝑆 ≡ 𝐿−1
1 𝑀1 ∈ ℛ(U1). By Lemma 2, for 𝑡 > 0,

𝑈𝛼,𝛽(𝑡) =𝑈𝛼,𝛽(𝑡)𝑃 =
1

2𝜋𝑖

∫︁
𝛾

𝑅𝐿1
𝜇 (𝑀1)𝑃𝐸𝛼,𝛽(𝜇𝑡𝛼)𝑑𝜇

=
1

2𝜋𝑖

∫︁
𝛾

(𝜇𝐼 − 𝑆)−1𝑃𝐸𝛼,𝛽(𝜇𝑡𝛼)𝑑𝜇 =
1

2𝜋𝑖

∫︁
𝛾

∞∑︁
𝑘=0

𝜇−𝑘−1𝑆𝑘𝑃
∞∑︁
𝑛=0

𝜇𝑛𝑡𝛼𝑛

Γ(𝛼𝑛 + 𝛽)
𝑑𝜇

=
∞∑︁
𝑘=0

𝑆𝑘𝑡𝛼𝑘

Γ(𝛼𝑘 + 𝛽)
𝑃 = 𝐸𝛼,𝛽(𝑆𝑡𝛼)𝑃.

The second identity can be proved in the same way.

Remark 4. In the same way we can show that if the operator 𝐿 is continuously invertible,
then 𝑈𝛼,𝛽(𝑡) = 𝐸𝛼,𝛽(𝐿−1𝑀𝑡𝛼) for regular operator 𝐿−1𝑀 and 𝑉𝛼,𝛽(𝑡) = 𝐸𝛼,𝛽(𝑀𝐿−1𝑡𝛼) if the
operator 𝑀𝐿−1 is regular.

4. Homogeneous degenerate equation

A solution to the equation

𝐷𝛼
𝑡 𝐿𝑢(𝑡) = 𝑀𝑢(𝑡), 𝑡 ∈ R+, (10)

is a function 𝑢 ∈ 𝐶(R+;𝐷𝑀) obeying

𝐿𝑢 ∈ 𝐶𝑚−1(R+;V), 𝑔𝑚−𝛼 *

(︃
𝐿𝑢−

𝑚−1∑︁
𝑘=0

(𝐿𝑢)(𝑘)(0)𝑔𝑘+1

)︃
∈ 𝐶𝑚(R+;V),

at that, for all 𝑡 ∈ R+ identity (10) holds true.
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We shall consider equation (10) together with the equivalent equation on the space V

𝐷𝛼
𝑡 𝐿

𝐿
𝛽 (𝑀)𝑣(𝑡) = 𝑀(𝛽𝐿−𝑀)−1𝑣(𝑡), 𝑡 ∈ R+, (11)

where (𝛽𝐿 −𝑀)−1 ∈ ℒ(V;U). The relation between the solutions to equations (10) and (11)
is given by the identity 𝑢(𝑡) = (𝛽𝐿−𝑀)−1𝑣(𝑡).

Lemma 4. Let the operator 𝑀 be (𝐿, 𝜎)-regular. Then for each 𝑢0 ∈ U (𝑣0 ∈ V), the vector
function 𝑢(𝑡) = 𝑈𝛼,1(𝑡)𝑢0 (𝑣(𝑡) = 𝑉𝛼,1(𝑡)𝑣0) solves equations (10) (11).

Proof. Let 𝑢0 ∈ U. Then

𝑀𝑈(𝑡)𝑢0 =
1

2𝜋𝑖

∫︁
𝛾

𝜇𝐿𝑅𝐿
𝜇(𝑀)𝑢0𝐸𝛼(𝜇𝑡𝛼)𝑑𝜇− 1

2𝜋𝑖

∫︁
𝛾

𝐿𝑢0𝐸𝛼(𝜇𝑡𝛼)𝑑𝜇.

The obtained function is continuous in 𝑡. It is also obvious that 𝐿𝑈𝛼,1(·)𝑢0 ∈ 𝐶𝑚−1(R+;V). In
view of the strong holomorphy in 𝜇 of the integrands, as 𝑡 > 0, we obtain the identities

𝐷𝛼
𝑡 𝐿𝑈(𝑡)𝑢0 =

1

2𝜋𝑖

∫︁
𝛾

𝐿𝑅𝐿
𝜇(𝑀)𝑢0𝐽

𝑚−𝛼
𝑡

∞∑︁
𝑛=1

𝜇𝑛𝑡𝛼𝑛−𝑚

Γ(𝛼𝑛−𝑚 + 1)
𝑑𝜇

=
1

2𝜋𝑖

∫︁
𝛾

𝐿𝑅𝐿
𝜇(𝑀)𝑢0

∞∑︁
𝑛=1

𝜇𝑛𝑡𝛼(𝑛−1)𝐵(𝑚− 𝛼, 𝛼𝑛−𝑚 + 1)

Γ(𝑚− 𝛼)Γ(𝛼𝑛−𝑚 + 1)
𝑑𝜇

=
1

2𝜋𝑖

∫︁
𝛾

𝐿𝑅𝐿
𝜇(𝑀)𝑢0

∞∑︁
𝑛=1

𝜇𝑛𝑡𝛼(𝑛−1)

Γ(𝛼(𝑛− 1) + 1)
𝑑𝜇 =

1

2𝜋𝑖

∫︁
𝛾

𝜇𝐿𝑅𝐿
𝜇(𝑀)𝑢0𝐸(𝜇𝑡𝛼)𝑑𝜇

=
1

2𝜋𝑖

∫︁
𝛾

𝐿𝑢0𝐸(𝜇𝑡𝛼)𝑑𝜇 +
1

2𝜋𝑖

∫︁
𝛾

𝑀𝑅𝐿
𝜇(𝑀)𝑢0𝐸(𝜇𝑡𝛼)𝑑𝜇 = 0 + 𝑀𝑈(𝑡)𝑢0

by the Cauchy theorem and the closedness of the operator 𝑀 .

A solution to the Cauchy problem

𝑢(0) = 𝑢0, 𝑢(𝑘)(0) = 0, 𝑘 = 1, 2, . . . ,𝑚− 1, (12)

for equation (10) is a solution 𝑢 ∈ 𝐶𝑚−1(R+;U) to this equation satisfying conditions (12).
The feature of equations like (10) with a degenerate operator at the derivative is that their

solutions cover pointwise just some subspace of the original space, in which the equation is
posed. Of course, this subspace plays an important role in studying the equation. In order to
describe it formally, we follow [12] and introduce a definition.

The set P ⊂ U is called the phase space of equation (10) if
(i) for each solution 𝑢 = 𝑢(𝑡) to equation (10) we have 𝑢(𝑡) ∈ P for all 𝑡 > 0;
(ii) for each 𝑢0 ∈ P there exists the unique solution to problem (10), (12).
It is obvious that if the phase space of the equation exists, it is unique.

Remark 5. If the operator 𝐿−1 ∈ ℒ(V;U) exists and at that 𝐿−1𝑀 is regular, then the phase
space of equation (9) is the entire space U. Indeed, by [14, Thm. 4], for each 𝑢0 ∈ U there exists
the unique solution 𝑢(𝑡) = 𝐸𝛼,1(𝐿

−1𝑀𝑡𝛼)𝑢0 to problem (10), (12).

Lemma 5. Let an operator 𝐺 ∈ ℒ(Z) be nilpotent of degree 𝑝 ∈ N0, there exist fractional
derivatives (𝐷𝛼

𝑡 𝐺)𝑘𝑔 ∈ 𝐶([0, 𝑇 );Z) as 𝑘 = 0, 1, . . . , 𝑝, 𝑇 ∈ (0,+∞]. Then there exists the
unique solution to the equation

𝐷𝛼
𝑡 𝐺𝑧(𝑡) = 𝑧(𝑡) + 𝑔(𝑡), 𝑡 ∈ [0, 𝑇 ), (13)
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and it is of the form

𝑧(𝑡) = −
𝑝∑︁

𝑘=0

(𝐷𝛼
𝑡 𝐺)𝑘𝑔(𝑡), 𝑡 ∈ [0, 𝑇 ). (14)

Proof. Let 𝑧 = 𝑧(𝑡) be a solution to equation (13). We apply the operator 𝐺 to the both sides
of (13) to obtain the identity 𝐺𝐷𝛼

𝑡 𝐺𝑧(𝑡) = 𝐺𝑧(𝑡) + 𝐺𝑔(𝑡). Then there exists the fractional
derivative of order 𝛼 of its right hand side, and hence, of its left hand side. Applying the
operator 𝐷𝛼

𝑡 to the both sides of this identity, we obtain

(𝐷𝛼
𝑡 𝐺)2𝑧 = 𝐷𝛼

𝑡 𝐺𝑧 + 𝐷𝛼
𝑡 𝐺𝑔 = 𝑧 + 𝑔 + 𝐷𝛼

𝑡 𝐺𝑔.

Repeating this procedure, at the 𝑝-th step we obtain the identity

(𝐷𝛼
𝑡 𝐺)𝑝+1𝑧 = 𝑧 +

𝑝∑︁
𝑘=0

(𝐷𝛼
𝑡 𝐺)𝑘𝑔.

By the continuity and the nilpotentness of the operator 𝐺 we have

(𝐷𝛼
𝑡 𝐺)𝑝+1𝑧 = (𝐷𝛼

𝑡 )𝑝+1𝐺𝑝+1𝑧 ≡ 0,

which implies identity (14). It yields the existence of solution to equation (13) that can be
checked by substituting this function into the equation and it also yields the uniqueness.

Theorem 4. Let the operator 𝑀 is (𝐿, 𝑝)-regular. Then the phase space of equation (10)
(of equation (11)) coincides with the space U1 (V1).

Proof. Let 𝑢 = 𝑢(𝑡) be a solution to equation (10). We let 𝑢0(𝑡) ≡ (𝐼 − 𝑃 )𝑢(𝑡), 𝑢1(𝑡) ≡ 𝑃𝑢(𝑡).
Then by Theorem 2 we have

𝐷𝛼
𝑡 𝐻𝑢0(𝑡) = 𝑢0(𝑡), 𝐻 ≡ 𝑀−1

0 𝐿0 ,

𝐷𝛼
𝑡 𝑢

1(𝑡) = 𝑆𝑢1(𝑡), 𝑆 ≡ 𝐿−1
1 𝑀1 . (15)

According to Lemma 5, 𝑢0 ≡ 0 and 𝑢(𝑡) = 𝑢1(𝑡) ∈ U1 for each 𝑡 > 0.
By Theorem 2, the operator 𝑆 is regular in the space U1. Then for each 𝑃𝑢0 = 𝑢1

0 ∈ U1 there
exists the unique solution to the Cauchy problem 𝑢1(0) = 𝑢1

0, 𝑢
1(𝑘)(0) = 0, 𝑘 = 1, 2, . . . ,𝑚− 1,

for equation (15) (see Remark 5). Hence, the solution exists also for equation (10) and it is of
the form 𝑢(𝑡) = 𝐸𝛼,1(𝑆𝑡

𝛼)𝑢1
0 = 𝑈𝛼,1(𝑡)𝑢0 .

The statement of the theorem on the phase space of equation (11) can be proved in the same
way.

Remark 6. It follows from the proof of Theorem 4 that the Cauchy problem

𝑢(𝑘)(0) = 𝑢𝑘, 𝑘 = 0, 1, 2, . . . ,𝑚− 1, (16)

for equation (10) under the condition of (𝐿, 𝑝)-regularity for the operator 𝑀 is reduced to the
Cauchy problem for equation (15). It implies the equivalence of Cauchy problem (12) and
general Cauchy problem (16) for equation (10) and the solvability of the latter problem for each
given 𝑢𝑘 ∈ U1, 𝑘 = 0, 1, 2, . . . ,𝑚 − 1. According to [1] and Remark 5, the solution to both
problem (10), (16) and problem (10), (12) is of the form:

𝑢(𝑡) =
𝑚−1∑︁
𝑘=0

𝐽𝑘
𝑡 𝑈𝛼,1(𝑡)𝑢𝑘 =

𝑚−1∑︁
𝑘=0

𝐽𝑘
𝑡 𝐸𝛼,1(𝑆𝑡

𝛼)𝑢𝑘 =
𝑚−1∑︁
𝑘=0

𝑡𝑘𝑈𝛼,𝑘+1(𝑡)𝑢𝑘.

The family of operators {𝑊 (𝑡) ∈ ℒ(U) : 𝑡 ∈ R+} is called the family of resolving operators
for equation (10) if there exists the phase space P of this equation and for each 𝑢0 ∈ P the
unique solution to problem (10), (12) is of the form 𝑢(𝑡) = 𝑊 (𝑡)𝑢0 as 𝑡 > 0.

It follows from the definition that for each 𝑡 > 0, the family of the resolving operators satisies
im𝑊 (𝑡) ⊂ P, im𝑊 (0) = P
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Theorem 5. Let the operator 𝑀 is (𝐿, 𝑝)-regular. Then the family of the operators
{𝑈𝛼,1(𝑡) ∈ ℒ(U) : 𝑡 ∈ R+} ({𝑉𝛼,1(𝑡) ∈ ℒ(U) : 𝑡 ∈ R+}) is the family of resolving operators
for equation (10), (12).

Proof. If 𝑢0 ∈ U1, by the definition of the phase space there exists the unique solution to problem
(12) for equation (10). Therefore it should coincide with the known solution 𝑢(𝑡) = 𝑈𝛼,1(𝑡)𝑢0

to this problem.

5. Cauchy problem and Showalter-Sidorov problem for inhomogeneous
degenerate equation

Theorem 6. Let the operator 𝑀 be (𝐿, 𝑝)-regular, 𝑄𝑓 ∈ 𝐶𝑚([0, 𝑇 );V), 𝑇 ∈ (0,+∞], there
exist fractional derivatives (𝐷𝛼

𝑡 𝐻)𝑛𝑀−1
0 (𝐼 − 𝑄)𝑓 ∈ 𝐶([0, 𝑇 );U) as 𝑛 = 0, 1, . . . , 𝑝, 𝑢𝑘 ∈ U,

𝑘 = 0, 1, . . . ,𝑚− 1, the identities

−𝐷𝑘
𝑡

𝑝∑︁
𝑛=0

(𝐷𝛼
𝑡 𝐻)𝑛𝑀−1

0 (𝐼 −𝑄)𝑓(𝑡)|𝑡=0 = (𝐼 − 𝑃 )𝑢𝑘, 𝑘 = 0, 1, . . . ,𝑚− 1, (17)

hold true. Then there exists the unique solution to problem (16) for the equation

𝐷𝛼
𝑡 𝐿𝑢(𝑡) = 𝑀𝑢(𝑡) + 𝑓(𝑡), 𝑡 ∈ [0, 𝑇 ), (18)

and it is of the form as 𝑡 ∈ [0, 𝑇 )

𝑢(𝑡) =
𝑚−1∑︁
𝑘=0

𝑡𝑘𝑈𝛼,𝑘+1(𝑡)𝑢𝑘+

𝑡∫︁
0

(𝑡−𝑠)𝛼−1𝑈𝛼,𝛼(𝑡−𝑠)𝐿−1
1 𝑄𝑓(𝑠)𝑑𝑠−

𝑝∑︁
𝑛=0

(𝐷𝛼
𝑡 𝐻)𝑛𝑀−1

0 (𝐼−𝑄)𝑓(𝑡). (19)

Proof. Arguing as in the proof of Theorem 4, we obtain

𝐷𝛼
𝑡 𝐻𝑢0(𝑡) = 𝑢0(𝑡) + 𝑀−1

0 (𝐼 −𝑄)𝑓(𝑡), 𝐻 ≡ 𝑀−1
0 𝐿0, (20)

𝐷𝛼
𝑡 𝑢

1(𝑡) = 𝑆𝑢1(𝑡) + ℎ(𝑡), 𝑆 ≡ 𝐿−1
1 𝑀1, ℎ(𝑡) = 𝐿−1

1 𝑄𝑓(𝑡). (21)

By Lemma 5, there exists the unique solution to equation (20), it is of the form

𝑢0 = −
𝑝∑︁

𝑛=0

(𝐷𝛼
𝑡 𝐻)𝑛𝑀−1

0 (𝐼 −𝑄)𝑓.

It follows that to satisfy Cauchy conditions (16), we need to satisfy compatibility conditions
(17).

By Theorem 2, we have 𝑆 ∈ ℛ(U1). This is why by Theorem 1, there exists the unique
solution to Cauchy problem 𝑢1(𝑘)(0) = 𝑃𝑢𝑘, 𝑘 = 0, 1, . . . ,𝑚 − 1 for equation (21) and it is of
the form

𝑢1(𝑡) =
𝑚−1∑︁
𝑘=0

𝑡𝑘𝐸𝛼,𝑘+1(𝑆
𝛼𝑡𝛼)𝑃𝑢𝑘 +

𝑡∫︁
0

(𝑡− 𝑠)𝛼−1𝐸𝛼,𝛼(𝑆𝛼(𝑡− 𝑠)𝛼)ℎ(𝑠)𝑑𝑠.

By using Lemma 3 we complete the proof.

Since in the definition of the solution the function 𝐿𝑢 belongs to the class 𝐶𝑚−1([0, 𝑇 );V) but
not 𝑢, it could seem logical to consider the initial conditions (𝐿𝑢)(𝑘)(0) = 𝑣𝑘, 𝑘 = 0, 1, . . .𝑚−1,
instead of conditions (16). However, as we see by Theorem 6, in this case we need the matching
conditions of the form

lim
𝑡→0+

𝐷𝑘
𝑡𝐿

𝑝∑︁
𝑛=0

(𝐷𝛼
𝑡 𝐻)𝑛𝑀−1

0 (𝐼 −𝑄)𝑓(𝑡) = −𝐿(𝐼 − 𝑃 )𝑢𝑘, 𝑘 = 0, 1, . . . ,𝑚− 1.
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It seems to be more natural to consider the generalized Showalter-Sidorov problem

(𝑃𝑢)(𝑘)(0) = 𝑢𝑘, 𝑘 = 0, 1, . . . ,𝑚− 1, (22)

quite often arising in applications.
A solution of problem (22) for equation (18) is the solution to this equation satisfying condi-

tions (22). We observe that the existence of the derivatives (𝐿𝑢)(𝑘)(0) implies the existence of
the derivatives (𝑃𝑢)(𝑘)(0). Indeed, 𝐿−1

1 𝑄(𝐿𝑢)(𝑘) = (𝐿−1
1 𝑄𝐿𝑢)(𝑘) = (𝐿−1

1 𝐿𝑃𝑢)(𝑘) = (𝑃𝑢)(𝑘). In
the case 𝑝 = 0, by Theorem 3, the identity ker𝑃 = ker𝐿 holds true and this is conditions (22)
are equivalent to conditions for (𝐿𝑢)(𝑘)(0).

Theorem 7. Let the operator 𝑀 be (𝐿, 𝑝)-regular, 𝑄𝑓 ∈ 𝐶𝑚([0, 𝑇 );V), there exist fractional
derivatives (𝐷𝛼

𝑡 𝐻)𝑛𝑀−1
0 (𝐼−𝑄)𝑓 ∈ 𝐶([0, 𝑇 );U) as 𝑛 = 0, 1, . . . , 𝑝. Then there exists the unique

solution to problem (18), (22) and it given by (19).

The proof is similar the previous one. At that, the feature of the initial Showalter-Sidorov
condition is such that it does not imply the initial conditions for the projection 𝑢0 of the solution
to equation (18) and to its derivatives. This is why there is no need in satisfying compatibility
conditions (17).

6. Example

Let X be a Banach space, 𝐴 ∈ 𝒞𝑙(X). We equip the lineal 𝐷(𝐴∞) =
⋂︀∞

𝑘=1𝐷(𝐴𝑘) by the

system of semi-norms 𝑞𝑘(𝑢) =
∑︀𝑘

𝑙=0 ‖𝐴𝑙𝑢‖X, 𝑘 ∈ N0, and we obtain the Frechét space, which we

denote by D𝐴. For some 𝜏 > 0 we denote by E̊A(𝜏) = {𝑢 ∈ 𝐷(𝐴∞) : lim𝑘→∞‖𝐴𝑘𝑢‖1/𝑘X 6 𝜏} the
set of the elements of 𝐴-exponential type not exceeding 𝜏 . The maximal closed in the topology
D𝐴 subspace of the space E̊A(𝜏) is denoted by E𝜏 . This set with the topology induced by the
semi-norms 𝑞𝑘, 𝑘 ∈ N0, is also a Frechét space. We denote 𝐴𝜏 = 𝐴|E𝜏 . It was shown in [14, Ch.
7, Sect. 3] that 𝜎(𝐴𝜏 ) ⊂ 𝜎(𝐴) ∩ {𝜆 ∈ C : |𝜆| 6 𝜏}, at that, the operator 𝐴𝜏 is regular in E𝜏 .

Let 𝐿 = 𝐺(𝐴) =
∞∑︀
𝑘=0

𝑎𝑘𝐴
𝑘, 𝑀 = 𝐽(𝐴) =

∞∑︀
𝑘=0

𝑏𝑘𝐴
𝑘, where 𝐺(𝜆), 𝐽(𝜆) are entire functions. By

the said above, 𝐿,𝑀 ∈ ℒ(E𝜏 ).
We consider the inductive scale of locally convex linear topological spaces {E𝜏 : 𝜏 ∈ N}

and its inductive limit E∞. It is interior and even proper [15, Ch. 1, Append.]. The space

E∞ =
⋃︀

𝜏∈N E𝜏 ⊂ D𝐴 equipped by the semi-norms 𝑞𝑘,𝜏 (𝑢) =
∑︀𝑘

𝑙=0 ‖𝐴𝑙
𝜏𝑢‖X, 𝑘 ∈ N0, 𝜏 ∈ N, is a

separable locally convex space. By [15, Ch. 1, Append., Prop. 4.1], 𝐺(𝐴), 𝐽(𝐴) ∈ ℒ(E∞).
We denote 𝒢0 = {𝜆 ∈ R : 𝐺(𝜆) = 0}.

Theorem 8. Let X be a Hilbert space, 𝐴 be a self-adjoint operator in X, U = V = E∞,
entire functions 𝐺, 𝐽 have no common zeroes in the set 𝜎(𝐴),

∃𝑎 > 0 ∀𝜆 ∈ 𝜎(𝐴) ∖ 𝒢0 |𝐽(𝜆)/𝐺(𝜆)| 6 𝑎.

Then the operator 𝐽(𝐴) is (𝐺(𝐴), 0)-regular.

Proof. We denote by {ℰ𝜆 : 𝜆 ∈ R} the spectral family of the self-adjoint operator 𝐴. By the
assumption of the theorem, in the case |𝜇| > 𝑎+ 1 the inequality |𝜇−𝐽(𝜆)/𝐺(𝜆)| > |𝜇|−𝑎 > 1
holds true and therefore, ∫︁

𝜎(𝐴)∖𝒢0

𝑑ℰ𝜆𝑢
𝜇− 𝐽(𝜆)/𝐺(𝜆)

= 𝑅𝐿
𝜇(𝑀)𝑢 = 𝐿𝐿

𝜇(𝑀)𝑢,

𝑞𝛽,𝜏 ([𝑅𝐿
𝜇(𝑀)]𝑘𝑢) =

𝛽∑︁
𝑙=0

⃦⃦⃦⃦
⃦⃦⃦ ∫︁
𝜎(𝐴𝜏 )∖𝒢0

𝜆𝑙𝑑ℰ𝜆𝑢
(𝜇− 𝐽(𝜆)/𝐺(𝜆))𝑘

⃦⃦⃦⃦
⃦⃦⃦
X

6
𝛽∑︁

𝑙=0

⃦⃦⃦⃦
⃦⃦⃦ ∫︁
𝜎(𝐴𝜏 )∖𝒢0

𝜆𝑙𝑑ℰ𝜆𝑢

⃦⃦⃦⃦
⃦⃦⃦
X

= 𝑞𝛽,𝜏 (𝑢).
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Moreover, U0 = V0 = im
∫︀
𝒢0

𝑑ℰ𝜆, 𝐿0 = O, and this is why the operator 𝑀 is (𝐿, 0)-regular.

Let X = 𝐿2(0, 1),

𝐴 = 𝑖
𝑑

𝑑𝑥
, 𝐷(𝐴) = {𝑣 ∈ 𝐿2(0, 1) : 𝑣′ ∈ 𝐿2(0, 1), 𝑣(0) = 𝑣(1)}. (23)

Then 𝜎(𝐴) = {𝜆𝑘 = 2𝜋𝑘 : 𝑘 ∈ Z}. The eigenfunctions associated with the eigenvalues 𝜆𝑘 are
𝜙𝑘(𝑥) = 𝑒−2𝜋𝑘𝑖𝑥. By the operator 𝐴 we construct the space E∞ as it was done above.

We consider the initial boundary value problem

𝐷𝛼
𝑡 𝐺(𝐴)𝑢(𝑥, 𝑡) = 𝐽1(𝐴)𝑢(𝑥 + ℎ, 𝑡) + 𝑓(𝑥), (𝑥, 𝑡) ∈ R×R+, (24)

𝑢(𝑥, 𝑡) = 𝑢(𝑥 + 1, 𝑡), (𝑥, 𝑡) ∈ R×R+, (25)

𝜕𝑛𝑢

𝜕𝑥𝑛
(𝑥, 0) = 𝑢𝑛(𝑥), 𝑛 = 0, 1, . . . ,𝑚− 1, 𝑥 ∈ (0, 1). (26)

Theorem 9. Let 𝐺 and 𝐽1 be entire functions satisfying |𝐺(2𝜋𝑘)| + |𝐽(2𝜋𝑘)| ≠ 0 as 𝑘 ∈ Z,
the set {𝐽1(2𝜋𝑘)/𝐺(2𝜋𝑘) : 𝑘 ∈ Z, 𝐺(2𝜋𝑘) ̸= 0} is bounded, 𝑓(𝑥, 𝑡) = 𝑓(𝑥 + 1, 𝑡) for all
(𝑥, 𝑡) ∈ R×R+, 𝑓 ∈ 𝐶𝑚(R+;E∞), 𝑢𝑛 ∈ E∞,∫︁

𝒢0

𝑑ℰ𝜆(𝐽1(𝜆)𝑒−𝑖ℎ𝜆𝑢𝑛 + 𝑓 (𝑛)(·, 0)) = 0, 𝑛 = 0, 1, . . . ,𝑚− 1.

Then problem (24)-(26) has the unique solution with the values in the space E∞ and it is of the
form

𝑢(𝑥, 𝑡) =
𝑚−1∑︁
𝑛=0

𝑡𝑛
∫︁

𝜎(𝐴)∖𝒢0

𝐸𝛼,𝑛+1

(︂
𝑡𝛼
𝐽1(𝜆)𝑒−𝑖ℎ𝜆

𝐺(𝜆)

)︂
𝑑ℰ𝜆𝑢𝑛

+

𝑡∫︁
0

(𝑡− 𝑠)𝛼−1

∫︁
𝜎(𝐴)∖𝒢0

𝐸𝛼,𝛼

(︂
𝑡𝛼
𝐽1(𝜆)𝑒−𝑖ℎ𝜆

𝐺(𝜆)

)︂
𝑑ℰ𝜆𝑓(·, 𝑠)
𝐺(𝜆)

𝑑𝑠−
∫︁
𝒢0

𝑒𝑖ℎ𝜆𝑑ℰ𝜆𝑓(·, 𝑠)
𝐽1(𝜆)

.

(27)

Proof. We let X = 𝐿2(0, 1), 𝐴 is self-adjoint operator (23), 𝐽(𝜆) = 𝑒−𝑖ℎ𝜆𝐽1(𝜆). Then

𝐽(𝐴)𝑣(𝑥) = 𝐽1(𝐴)
∞∑︁
𝑘=0

ℎ𝑘𝑣(𝑘)(𝑥)

𝑘!
= 𝐽1𝑣(𝑥 + ℎ)

for 𝑣 ∈ 𝐷(𝐴∞). By Theorem 8 we obtain (𝐺(𝐴), 0)-regularity of the operator 𝐽(𝐴) in the space
C∞. Theorem 6 implies the statement of the theorem.

In this case the Showalter-Sidorov condition can be imposed as

𝐺(𝐴)

(︂
𝜕𝑛𝑢

𝜕𝑥𝑛
(𝑥, 0) − 𝑢𝑛(𝑥)

)︂
= 0, 𝑛 = 0, 1, . . . ,𝑚− 1, 𝑥 ∈ (0, 1). (28)

In the same way we obtain the following statement.

Theorem 10. Let 𝐺 and 𝐽1 be entire functions satisfying |𝐺(2𝜋𝑘)|+ |𝐽(2𝜋𝑘)| ≠ 0 as 𝑘 ∈ Z,
the set {𝐽1(2𝜋𝑘)/𝐺(2𝜋𝑘) : 𝑘 ∈ Z, 𝐺(2𝜋𝑘) ̸= 0} is bounded, 𝑓(𝑥, 𝑡) = 𝑓(𝑥 + 1, 𝑡) for all
(𝑥, 𝑡) ∈ R×R+, 𝑓 ∈ 𝐶𝑚(R+;E∞), 𝑢𝑛 ∈ E∞ as 𝑛 = 0, 1, . . . ,𝑚− 1. Then problem (24), (25),
(28) has the unique solution with the values in the space E∞ and it has the form (27).
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Remark 7. The assumptions of Theorem 9 are satisfied, for instance, by the polynomials 𝐺
and 𝐽1 having no common zeroes among the numbers {2𝜋𝑘 : 𝑘 ∈ Z} and satisfying deg𝐺 >
deg 𝐽1. Then equation (24) has the form

𝐷𝛼
𝑡

𝑟∑︁
𝑘=0

𝑎𝑘𝑢
(𝑘)(𝑥, 𝑡) =

𝑠∑︁
𝑙=0

𝑏𝑙𝑢
(𝑙)(𝑥 + ℎ, 𝑡) + 𝑓(𝑥), (𝑥, 𝑡) ∈ R×R+,

where 𝑎𝑟 ̸= 0, 𝑏𝑠 ̸= 0, 𝑟 > 𝑠, −𝑖𝑎𝑘 are the coefficients of the polynomial 𝐺, −𝑖𝑏𝑙 are the
coefficients of the polynomial 𝐽1.
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