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ON UNCONDITIONAL EXPONENTIAL BASES IN WEAKLY

WEIGHTED SPACES ON SEGMENT
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Abstract. We show that the existence of unconditional exponential bases is not deter-
mined by the growth characteristics of a weight function. In order to do this, we construct
examples of convex weights with arbitrarily slow growth near the boundary such that un-
conditional exponential bases do not exist in the corresponding space.
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1. Introduction

In the present work we consider Hilbert space of the form

𝐿2(𝑊 ) =

{︂
𝑓 ∈ 𝐿loc(−1, 1) : ‖𝑓‖2 =

∫︁ 1

−1

|𝑓(𝑡)|2𝑊 2(𝑡)𝑑𝑡 < ∞
}︂
,

where 𝑊 is positive continuous integrable function on (−1, 1).
In the classical case 𝑊 (𝑡) ≡ 1, the Fourier system {𝑒𝜋𝑛𝑖𝑡}𝑛∈Z forms an orthonormal basis. It

is obvious that in other cases there can be no orthonormal exponential bases in spaces 𝐿2(𝑊 ).
The notion of Riesz basis was introduced in [1] and it denotes the image of the orthonormalized
basis under a bounded invertible operator.

A basis {𝑒𝑘, 𝑘 = 1, 2, . . .} in a Hilbert space 𝐻 is called unconditional [2] if for some constants
𝑐, 𝐶 > 0 and each element

𝑥 =
∞∑︁
𝑘=1

𝑥𝑘𝑒𝑘

the relation

𝑐

∞∑︁
𝑘=1

|𝑥𝑘|2‖𝑒𝑘‖2 6 ‖𝑥‖2 6 𝐶

∞∑︁
𝑘=1

|𝑥𝑘|2‖𝑒𝑘‖2

holds true. An unconditional basis {𝑒𝑘, 𝑘 = 1, 2, ...} becomes Riesz basis if and only if 0 <
inf ‖𝑒𝑘‖ 6 sup ‖𝑒𝑘‖ < ∞.

The problem on Riesz basis property for a given exponential system {𝑒𝜆𝑘𝑡} in the classical
space 𝐿2 was studied in details. In work [3], there was obtained a criterion saying that the
generating function for this system should satisfy the Muckenhoupt condition. In the weighted
space with an unbounded weight function there can be no Riesz bases. This fact was proved
in work [4].

Unconditional bases were considered also in Hilbert subspaces of the space 𝐻(𝐷) of functions
analytic in a bounded convex domain 𝐷 ⊂ C. For the Smirnov space 𝐸2(𝐷) on a convex polygon
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𝐷 there were constructed unconditional exponentials bases [5]. In work [6], there was considered
the existence of exponential bases in 𝐸2(𝐷) on a convex domain 𝐷 with a smooth boundary.
It was proved in [7] that in Smirnov spaces on convex domains containing a smooth arc on the
boundary, there are no exponential bases. It was shown in [8] that in Bergman spaces 𝐵2(𝐷) on
convex domains with a point of non-zero curvature on the boundary, there are no exponential
bases.

In work [9] there was proved an analogue of this result in weighted spaces 𝐿2(𝑒
−ℎ(𝑡)) with a

convex function ℎ: under certain regularity conditions for the growth of the weight function
ℎ(𝑡), if for each 𝑘 ∈ N

𝑒ℎ(𝑡)(1 − |𝑡|)𝑘 −→ ∞, |𝑡| −→ 1,

then there are no unconditional exponential bases in the space 𝐿2(𝑒
−ℎ(𝑡)).

All the aforementioned problems can be formulated for one model of weighted spaces of
entire functions, if by the Fourier-Laplace transform we pass to an equivalent problem on
unconditional bases of reproducing kernels in Hilbert spaces of entire functions.

Let 𝑋 be some Hilbert space of functions, in which the system of all exponentials 𝑒𝜆𝑧, 𝜆 ∈ C, is
complete.The the Fourier-Laplace transform mapping each linear continuous functional 𝑆 ∈ 𝑋*

into the function ̂︀𝑆(𝜆) = 𝑆(𝑒𝜆𝑧), 𝜆 ∈ C,
makes a one-to-one correspondence between the dual space 𝑋* and some space of functions ̂︀𝑋.

Under natural conditions for the original space 𝑋, the space ̂︀𝑋 turns out to be the Hilbert space
of entire functions with a structure endowed by 𝑋*, in which point functionals 𝐹 −→ 𝐹 (𝑧)
turn out to be bounded for all 𝑧 ∈ C. Thus, by the self-adjointness of Hilbert spaces there
arises a reproducing kernel (see [10]) 𝐾(𝜆, 𝑧):

(𝐹 (𝜆), 𝐾(𝜆, 𝑧)) ̂︀𝑋 = 𝐹 (𝑧), ∀𝐹 ∈ ̂︀𝑋.

It follows from simple functional analytic arguments that the exponential system 𝑒𝜆𝑘𝑧, 𝑘 ∈ Z,
is an unconditional basis in 𝑋 if and only if the system 𝐾(𝜆, 𝜆𝑘), 𝑘 ∈ Z, is an unconditional

basis in ̂︀𝑋.
The problem on unconditional bases of reproducing kernels in weighted spaces of entire

functions was studied in works [11]–[14], in which the weighted spaces of entire functions

𝐻(𝜙) = {𝐹 ∈ 𝐻(C) : ‖𝐹‖2 =

∫︁
C

|𝐹 (𝑧)|2𝑒−2𝜙(𝑧)𝑑𝑚(𝑧) < ∞}

were considered. Here 𝜙 is a some subharmonic function on the plane, 𝑑𝑚(𝑧) is the planar
Lebesgue measure. In work [14], under assumption of some regularity for the growth of the
function 𝜙(𝑧) = 𝜙(|𝑧|), it was proved that if

ln2 𝑡 = 𝑜(𝜙(𝑡)), 𝑡 −→ ∞,

then the space 𝐻(𝜙) contains no unconditional bases of reproducing kernel, while in the spaces
with the weight 𝜙(𝑡) = ln𝛼 𝑡, 1 6 𝛼 6 2, such bases exist.

In work [15], a general condition for the Bergman function of the weighted space of en-
tire functions was proved. This condition ensured the absence of an unconditional bases of
reproducing kernels.

The results of work [14] suggests some stability of the existence of unconditional bases in
weighted spaces under a “perturbation” of the weight. The matter is that the spaces 𝐻(𝜙)
with 𝜙(𝜆) = 𝑂(ln |𝜆|), 𝜆 −→ ∞, become finite dimensional and hence, the unconditional bases
of reproducing kernels exist. In the present work we construct examples of convex functions
ℎ on the interval (−1; 1) with an arbitrary slow growth at the end-points of the interval such
that there are no exponential unconditional bases in the space 𝐿2(ℎ).
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2. Notations, preliminaries and formulation of the statements

The statement that two non-negative functions 𝑓 , 𝑔 satisfy the estimate

𝑓(𝑥) 6 𝐶𝑔(𝑥), ∀𝑥 ∈ 𝑋,

for with some constant 𝐶 is indicated by the symbol ≺:

𝑓(𝑥) ≺ 𝑔(𝑥), 𝑥 ∈ 𝑋.

The symbols ≻ have ≍ the corresponding meaning.

It was proved in work [16] that the space ̂︀𝐿2(ℎ) of Fourier-Laplace transform of continuous
functionals on 𝐿2(𝑒

−ℎ) considered as a normed space is isomorphic to the space of the entire
functions of exponential type with the norm

‖𝐹‖2 :=

∫︁ ∞

−∞

∫︁ ∞

−∞

|𝐹 (𝑥 + 𝑖𝑦)|2

𝐾(𝑥)
𝑑𝑦𝑑̃︀ℎ′(𝑥),

where ̃︀ℎ(𝑥) = sup
|𝑡|<1

(𝑥𝑡− ℎ(𝑡))

is Young dual function for the function ℎ and

𝐾(𝑥) = ‖𝑒(𝑥+𝑖𝑦)𝑡‖2̂︀𝐿2(ℎ)
=

∫︁ 1

−1

𝑒2𝑥𝑡−2ℎ(𝑡)𝑑𝑡.

If 𝛿𝑧 : 𝐹 (·) −→ 𝐹 (𝑧) is a point functional on ̂︀𝐿2(ℎ), then by the definition of the Fourier-Laplace
transform

‖𝛿𝑧‖2𝐿*
2(ℎ)

= ‖𝑒𝑧𝑡‖2 = 𝐾(Re 𝑧).

To simplify the notations, in what follows we write 𝐾(𝑧) := 𝐾(Re 𝑧).
Given a continuous in 𝐵(𝑧, 𝑟) function 𝑓 we let

‖𝑓‖𝑟 = max
𝑤∈𝐵(𝑧,𝑟)

|𝑓(𝑤)|.

Let 𝑑(𝑓, 𝑧, 𝑟) be the distance from the function 𝑓 to the space of harmonic in 𝐵(𝑧, 𝑟) functions:

𝑑(𝑓, 𝑧, 𝑟) = inf{‖𝑓 −𝐻‖𝑟, 𝐻is harmonic in 𝐵(𝑧, 𝑟)}.

For a continuous in C function 𝑢 and a positive number 𝑝 we let

𝜏(𝑢, 𝑧, 𝑝) = sup{𝑟 : 𝑑(𝑢, 𝑧, 𝑟) 6 𝑝}.

If the function 𝑢 depends on Re 𝑧 only, that is, 𝑢(𝑧) = 𝑢(𝑥), 𝑧 = 𝑥 + 𝑖𝑦, 𝑢(𝑥) is a convex
function, then by slightly different means, it is possible to define the characteristics of this
convex functions comparable with 𝜏(𝑢, 𝑧, 𝑝).

For instance, by 𝜌(𝑢, 𝑥, 𝑝) we denote the maximal number 𝑟 > 0 such that∫︁ 𝑟

−𝑟

|𝑢′(𝑥 + 𝑡) − 𝑢′(𝑥)|𝑑𝑡 6 𝑝.

Then it follows from Lemmata 2 and 5 in work [17] (see also [18]) that

𝜏(𝑢, 𝑥, 𝑝) ≍ 𝜌(𝑢, 𝑥, 𝑝), 𝑥 ∈ R.

The statement

𝐾(𝑥) ≍ 1

𝜌(̃︀ℎ, 𝑥, 𝑝)
𝑒2

̃︀ℎ(𝑥). (1)

was formulated in [17] and was proved in [18, Thm. 2].
In the present work we prove the following theorem.
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Theorem 1. For each continuous integrable positive function 𝑊 on the interval (−1; 1)
tending to zero as |𝑡| −→ 1, there exists a convex function ℎ such that 𝑒ℎ(𝑡) 6 1

𝑊 (𝑡)
as |𝑡| < 1

and there are no exponential bases in the space 𝐿2(𝑒
−ℎ(𝑡)).

The proof is essentially based on Theorem 4 in work [9].

Theorem A. Let ℎ(𝑡) be a convex function on the interval (−1; 1),

𝐾(𝜆) =

∫︁ 1

−1

𝑒2Re𝜆𝑡−2ℎ(𝑡) 𝑑𝑡.

Assume that for some 𝑝 > 0 there exists a sequence of segments [𝑎𝑚; 𝑏𝑚] and of positive numbers
𝜏𝑚, 𝑚 = 1, 2, . . . , such that

1) for some positive number 𝛿 and for all 𝑥 ∈ [𝑎𝑚; 𝑏𝑚]

𝛿𝜏𝑚 6 𝜏(ln𝐾, 𝑥, 𝑝) 6 𝜏𝑚, 𝑚 = 1, 2, . . . ,

2) the relation

lim
𝑚−→∞

𝑏𝑚 − 𝑎𝑚
𝜏𝑚

= ∞

holds true.
Then there are no exponential bases in the space 𝐿2(𝑒−ℎ).

3. Construction of dual function ̃︀ℎ
We take an arbitrary positive continuous monotonically increasing unbounded function 𝛼(𝑡)

on [1;∞) obeying the condition:

𝛼(2𝑡) 6 𝐴𝛼(𝑡), 𝑡 > 1, (2)

for some constant 𝐴 ∈ (1; 2).
This function also satisfies the condition:

𝛼(𝑦) 6 𝐴 ·
(︁𝑦
𝑥

)︁𝛿

𝛼(𝑥), 𝑥 > 1, (3)

for 𝑦 > 𝑥 and 𝛿 = ln𝐴
ln 2

. Indeed, let 𝑛 =
[︀
log2

𝑦
𝑥

]︀
+ 1, where the square brackets stand for the

integer part. Then by (2) and the monotonicity of 𝛼 we get the inequality

𝛼(𝑦) 6 𝛼(2𝑛𝑥) 6 𝐴𝑛𝛼(𝑥) 6 𝐴 · 𝐴log2
𝑦
𝑥𝛼(𝑥) = 𝐴 ·

(︁𝑦
𝑥

)︁𝛿

𝛼(𝑥).

Letting 𝑥 = 1 and taking consideration that 𝛿 < 1, we obtain the convergence of the improper
integral ∫︁ ∞ 𝛼(𝑡)𝑑𝑡

𝑡2
< ∞.

Thus, the function

𝑣(𝑥) =

∫︁ 𝑥

1

(︂∫︁ ∞

𝑡

𝛼(𝑠)𝑑𝑠

𝑠2

)︂
𝑑𝑡, 𝑥 > 1,

is well-defined. It is concave on [1;∞). Indeed,

𝑣′′(𝑥) = −𝛼(𝑥)

𝑥2
< 0.

We define a sequence of non-negative numbers 𝑇𝑛:

𝑇1 = 1, 𝑇𝑛+1 = max(𝛼(−1)(𝑛2), 2𝑇𝑛), 𝑛 ∈ N, (4)
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where 𝛼(−1) is the inverse function for 𝛼. The sequence 𝑇𝑛 tends to infinity. For each 𝑛 ∈ N
we define the characteristic function of the segment 𝐼𝑛 = [𝑇𝑛; 2𝑇𝑛]

𝜒𝑛(𝑡) =

⎧⎪⎨⎪⎩
0, 𝑡 < 𝑇𝑛,

1, 𝑇𝑛 6 𝑡 6 2𝑇𝑛,

0, 2𝑇𝑛 < 𝑡.

and

𝛽𝑛(𝑡) =
√︀

𝛼(𝑡)𝜒𝑛(𝑡), 𝛽(𝑡) =
∞∑︁
𝑛=1

𝛽𝑛(𝑡), 𝑡 > 1.

We let

𝑢(𝑥) =

∫︁ 𝑥

1

(︂∫︁ ∞

𝑡

𝛽(𝑠)𝑑𝑠

𝑠2

)︂
𝑑𝑡, 𝑥 > 1.

Lemma 1. The function 𝑢(𝑥) is concave, non-negative, linear outside the segments 𝐼𝑛 and
grows monotonically to infinity. For some constant 𝑐 > 0, the estimate

𝑢(𝑥) 6 𝑐𝛼(𝑥), 𝑥 > 1,

holds true. The derivative 𝑢′(𝑥) tends to zero.

Proof. The function 𝛼 increases monotonically to infinity, hence, for each 𝑀 > 0 from some
index 𝑚 the inequality 𝛽(𝑡) > 𝑀 is satisfied on the segments 𝐼𝑘, 𝑘 > 𝑚. Then for 𝑡 ∈ [𝑇𝑘; 3

2
𝑇𝑘]

we have

𝑢′(𝑡) =

∫︁ ∞

𝑡

𝛽(𝑠)𝑑𝑠

𝑠2
> 𝑀

∫︁ 2𝑇𝑘

3
2
𝑇𝑘

𝑑𝑠

𝑠2
=

𝑀

6𝑇𝑘

.

Therefore,

𝑢

(︂
3

2
𝑇𝑚

)︂
= 𝑢(𝑇𝑚) +

∫︁ 3
2
𝑇𝑚

𝑇𝑚

𝑢′(𝑠)𝑑𝑠 >
𝑀

12
.

Since the function 𝑢 is increasing by the definition, it increases to infinity.
Let us estimate the derivative 𝑢′ from above. Let

𝐵𝑘 =

∫︁ 𝑇𝑘+1

𝑇𝑘

𝛽(𝑡)𝑑𝑡

𝑡2
=

∫︁ 2𝑇𝑘

𝑇𝑘

√︀
𝛼(𝑡)𝑑𝑡

𝑡2
, 𝑘 ∈ N.

Then by condition (2)

𝐵𝑘 6

√︀
𝛼(2𝑇𝑘)

2𝑇𝑘

6

√︀
𝐴𝛼(𝑇𝑘)

2𝑇𝑘

. (5)

Let 𝑥 ∈ [2𝑇𝑛, 𝑇𝑛+1]. Then

𝑢′(𝑥) =

∫︁ ∞

𝑥

𝛽(𝑡)𝑑𝑡

𝑡2
=

∞∑︁
𝑘=𝑛+1

𝐵𝑘 6
√
𝐴

∞∑︁
𝑘=𝑛+1

√︀
𝛼(𝑇𝑘)

2𝑇𝑘

.

We employ relation (3) for 𝑦 = 𝑇𝑘, 𝑘 > 𝑛 + 1, and 𝑥 = 𝑇𝑛+1:

𝛼(𝑇𝑘) 6 𝐴 ·
(︂

𝑇𝑘

𝑇𝑛+1

)︂𝛿

· 𝛼(𝑇𝑛+1).

We keep estimating 𝑢′:

𝑢′(𝑥) 6
𝐴
√︀

𝛼(𝑇𝑛+1)

2𝑇
𝛿
2
𝑛+1

∞∑︁
𝑘=𝑛+1

𝑇
𝛿
2
−1

𝑘 .

By the definition of the sequence 𝑇𝑘, the estimate

𝑇𝑘 > 2𝑘−(𝑛+1)𝑇𝑛+1
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holds true. Hence, for 𝜀 = 1 − 𝛿
2
> 0 and 𝑥 ∈ [2𝑇𝑛;𝑇𝑛+1] we have

𝑢′(𝑥) 6
𝐴
√︀

𝛼(𝑇𝑛+1)

2𝑇𝑛+1

∞∑︁
𝑘=𝑛+1

(2𝜀)𝑛+1−𝑘 =
𝐴
√︀
𝛼(𝑇𝑛+1)

2𝑇𝑛+1

· 2𝜀

2𝜀 − 1
:= 𝐴1

√︀
𝛼(𝑇𝑛+1)

𝑇𝑛+1

.

If 𝑥 ∈ [𝑇𝑛; 2𝑇𝑛], the latter inequality and (5) yield

𝑢′(𝑥) =

∫︁ 2𝑇𝑛

𝑥

𝛽(𝑡)𝑑𝑡

𝑡2
+ 𝑢′(2𝑇𝑛) 6 𝐵𝑛 + 𝑢′(2𝑇𝑛) 6

√
𝐴

2

√︀
𝛼(𝑇𝑛)

𝑇𝑛

+ 𝐴1

√︀
𝛼(𝑇𝑛+1)

𝑇𝑛+1

.

By definition (4) of the sequence 𝑇𝑛

𝑇𝑛+1 = 𝛼(−1)(𝑛2)

or
𝑇𝑛+1 = 2𝑇𝑛.

In each case
𝑛 6

√︀
𝛼(𝑇𝑛+1). (6)

In the first case
√︀

𝛼(𝑇𝑛+1) = 𝑛, this is why for 𝑛 > 2√︀
𝛼(𝑇𝑛+1) 6 2(𝑛− 1) 6 2

√︀
𝛼(𝑇𝑛).

In the second case we employ property (2)√︀
𝛼(𝑇𝑛+1) =

√︀
𝛼(2𝑇𝑛) 6

√
𝐴
√︀

𝛼(𝑇𝑛).

Therefore, for each 𝑛 > 2 √︀
𝛼(𝑇𝑛+1) 6 2

√︀
𝛼(𝑇𝑛). (7)

Thus, for 𝑥 ∈ [2𝑇𝑛; 2𝑇𝑛+1] and some constant 𝐴0 the estimate

𝑢′(𝑥) 6 𝐴0

√︀
𝛼(𝑇𝑛+1)

𝑇𝑛+1

, 𝑛 ∈ N,

holds true. We estimate 𝑢(𝑥) from above. Let 𝑥 ∈ [2𝑇𝑛; 2𝑇𝑛+1], then

𝑢(𝑥) =

∫︁ 𝑥

1

𝑢′(𝑡)𝑑𝑡 = 𝑢(2) +
𝑛−1∑︁
𝑘=1

∫︁ 2𝑇𝑘+1

2𝑇𝑘

𝑢′(𝑡) 𝑑𝑡 +

∫︁ 𝑥

2𝑇𝑛

𝑢′(𝑡)𝑑𝑡

6𝑢(2) + 2𝐴0

𝑛−1∑︁
𝑘=1

√︀
𝛼(𝑇𝑘+1)

𝑇𝑘+1

(𝑇𝑘+1 − 𝑇𝑘) + 𝐴0

√︀
𝛼(𝑇𝑛+1)

𝑇𝑛+1

(𝑥− 2𝑇𝑛)

6𝑢(2) + 2𝐴0

𝑛−1∑︁
𝑘=1

√︀
𝛼(𝑇𝑘+1) + 2𝐴0

√︀
𝛼(𝑇𝑛+1)

6𝑢(2) + 2𝐴0(𝑛− 1)
√︀
𝛼(𝑇𝑛) + 2𝐴0

√︀
𝛼(𝑇𝑛+1), 𝑛 ∈ N.

By inequalities (6) and (7) it follows that

𝑢(𝑥) 6 𝑐𝛼(𝑥)

for some constants 𝑐 > 0, 𝑥 > 1.

Normalizing the function 𝛼 if needed, we assume that

𝑢′(1) =
∞∑︁
𝑘=1

𝐵𝑘 < 1.

Then the function ̃︀ℎ(𝑥) = |𝑥| − 𝑢(|𝑥|), |𝑥| > 1, ̃︀ℎ(𝑥) = 1, |𝑥| 6 1,
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is a convex function on R decaying on R− and increasing on the positive semi-axis. We let

ℎ(𝑡) = sup
𝑥

(𝑥𝑡− ̃︀ℎ(𝑥)), |𝑡| < 1,

and let us prove that under appropriate choice of 𝛼 the function ℎ satisfies the assumptions of
Theorem 1.

4. Estimate for characteristics 𝜏

Lemma 2. If the function 𝛼 satisfies condition (2) and the functions 𝑢, ̃︀ℎ are defined by
means of this function 𝛼 then for 𝑞 < 1

4
and for each 𝑝 > 0 the estimate

𝜏(̃︀ℎ, 𝑥, 𝑝) ≍ 𝑥(𝛼(𝑥))−
1
4 = 𝑜(𝑥), 𝑥 ∈ 𝐽𝑛, 𝑛 ∈ N,

holds in the intervals 𝐽𝑛 = [(1 + 𝑞)𝑇𝑛; (2 − 𝑞)𝑇𝑛].

Proof. We have shown earlier that 𝜏(𝑢, 𝑥, 𝑝) ≍ 𝜌(𝑢, 𝑥, 𝑝), this is why in the proof we deal with
the characteristics 𝜌. If 𝑥 ∈ 𝐽𝑛 and 𝜌 < 𝑞𝑇𝑛, then∫︁ 𝜌

−𝜌

|̃︀ℎ′(𝑥 + 𝑡) − ̃︀ℎ′(𝑥)|𝑑𝑡 > min
𝑇𝑛6𝑦62𝑇𝑛

|𝑢′′(𝑦)|𝜌2.

Hence,

𝜌(̃︀ℎ, 𝑥, 𝑝) 6
√︁

𝑝( min
𝑇𝑛6𝑦62𝑇𝑛

|𝑢′′(𝑦)|)−1.

On the other hand, ∫︁ 𝜌

−𝜌

|̃︀ℎ′(𝑥 + 𝑡) − ̃︀ℎ′(𝑥)|𝑑𝑡 6 max
𝑇𝑛6𝑦62𝑇𝑛

|𝑢′′(𝑦)|𝜌2.

Therefore,

𝜌(̃︀ℎ, 𝑥, 𝑝) >
√︁

𝑝( max
𝑇𝑛6𝑦62𝑇𝑛

|𝑢′′(𝑦)|)−1.

By property (2) of function 𝛼 we arrive at the statement of the lemma.

Lemma 3. If the function 𝛼 satisfies condition (2) and the functios 𝑢, ̃︀ℎ are defined by this
function 𝛼, then for 𝑞 < 1

4
and for each 𝑝 > 0 the estimate

𝜏(ln𝐾, 𝑥, 𝑝) ≍ 𝑥(𝛼(𝑥))−
1
4 = 𝑜(𝑥), 𝑥 ∈ 𝐽𝑛, 𝑛 ∈ N,

holds true in the intervals 𝐽𝑛 = [(1 + 𝑞)𝑇𝑛; (2 − 𝑞)𝑇𝑛]. Thus, by Theorem A, there are no bases
of exponentials in the space 𝐿2(𝑒

−ℎ).

Proof. Relation (1) can be written as

𝐾(𝑥) ≍
4
√︀

𝛼(𝑥)

𝑥
𝑒2

̃︀ℎ(𝑥).
We let

𝑎(𝑥) =
4
√︀

𝛼(𝑥)

𝑥
, 𝑥 > 1.

Then by property (2), for 𝑥 ∈ 𝐽𝑛 and some constant 𝐶 > 0

| ln 𝑎(𝑥) − ln𝑇𝑛| 6 𝐶.

We let 𝑢1(𝑥) = ̃︀ℎ(𝑥), 𝑢2(𝑥) = ln𝐾(𝑥) − ln 𝑎(𝑇𝑛). Then

|𝑢1(𝑥) − 𝑢2(𝑥)| = |̃︀ℎ(𝑥) − ln𝐾(𝑥) + ln 𝑎(𝑇𝑛)| 6 𝐶.

in the interval 𝐽𝑛. By Lemma 4 in work [18] it follows that

𝑝

(𝑝 + 𝐶)
𝜌(𝑢1, 𝑦, 𝑝) 6 𝜌(𝑢2, 𝑦, 𝑝) 6

(𝑝 + 𝐶)

𝑝
𝜌(𝑢1, 𝑦, 𝑝).
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Hence, by Lemma 2,

𝜌(ln𝐾, 𝑥, 𝑝) ≍ 𝜌(̃︀ℎ, 𝑥, 𝑝) ≍ 𝑥(𝛼(𝑥))−
1
4 = 𝑜(𝑥), 𝑥 ∈ 𝐽𝑛, 𝑛 ∈ N.

5. Proof of Theorem 1

Passing if needed to the function 𝑊 (𝑡) := min(𝑊 (𝑡),𝑊 (−𝑡)), we can assume that the weight
function 𝑊 is positive, even and 𝑊 (𝑡) −→ 0, |𝑡| −→ 1. Then passing if needed to the function

𝑊 (𝑡) := min
|𝜏 |6𝑡

𝑊 (𝜏),

we can assume that this function is monotone on the intervals (−1; 0), (0; 1). Finally, normal-
izing by a multiplicative constant, we assume that 𝑊 (𝑡) 6 1. Thus, the function

𝑎(𝑡) = ln
1

𝑊 (𝑡)
, |𝑡| < 1,

is positive, even and monotone on (0; 1). We let̃︀𝑎(𝑥) = sup
|𝑡|<1

(𝑥𝑡− 𝑎(𝑡)), 𝑥 ∈ R.

The function ̃︀𝑎(𝑥) is convex on R, even and possesses the easily checked properties:

0 < ln 𝑎(0) 6 ̃︀𝑎(𝑥) < |𝑥|, lim
|𝑥|−→∞

̃︀𝑎(𝑥)

|𝑥|
= 1. (8)

At that, the function 𝑏(𝑥) = 𝑥 − ̃︀𝑎(𝑥) is concave and is unbounded in R+. Indeed, if 𝑡𝑥 is the
point at which the supremum is attained in the definition of ̃︀𝑎, then

𝑏(𝑥) = 𝑎(𝑡𝑥) + (1 − 𝑡𝑥)𝑥,

and if |𝑡𝑥| 6 𝑑 < 1 as 𝑥 ∈ R+, then 𝑏(𝑥) > (1 − 𝑑)𝑥 −→ ∞, while if lim𝑥−→∞𝑡𝑥 = 1, then
𝑏(𝑥) > 𝑎(𝑡𝑥) −→ ∞. It follows from the concavity that 𝑏′(𝑥) is a decreasing function and by the
unboudedness we get that 𝑏′(𝑥) is a non-negative function. Hence, the function 𝑏(𝑥) increases
to infinity. We let

ℎ0(𝑡) = sup
𝑥

(𝑥𝑡− ̃︀𝑎(𝑥)), |𝑡| < 1.

Then the function ℎ is convex on (−1; 1) and

𝑒ℎ0(𝑡) 6 𝑎(𝑡) =
1

𝑊 (𝑡)
, |𝑡| < 1.

It remains to find a convex function ̃︀ℎ(𝑥) > ̃︀𝑎(𝑥) on R having a structure described in Section 2.
Then

ℎ(𝑡) = sup
𝑥

(𝑥𝑡− ̃︀ℎ(𝑥)) 6 sup
𝑥

(𝑥𝑡− ̃︀𝑎(𝑥)) = ℎ0(𝑡) 6 𝑎(𝑡) 6
1

𝑊 (𝑡)
,

by Lemma 3, there are no unconditional exponential bases in the space 𝐿2(𝑒
−ℎ).

We define the function 𝛼(𝑥) by recurrent relations on the segments [2𝑛; 2𝑛+1]. We choose
a number 𝐴 ∈ (1; 2). Let 𝑙0(𝑥) be a linear function such that 𝑙0(1) = 𝑏(1), 𝑙0(2) =

min(𝑏(2),
√
𝐴𝑏(1)) and for 𝑥 ∈ [1; 2] we let 𝛼(𝑥) = 𝑙0(𝑥). By the concavity of 𝑏(𝑥) we

have 𝛼(𝑥) > 𝑏(𝑥), 𝑥 ∈ [1; 2]. Once we have defined the function 𝛼 on the segments
[2𝑘; 2𝑘+1] as 𝑘 6 𝑛 − 1, by 𝑙𝑛 we denote a linear function such that 𝑙𝑛(2𝑛) = 𝛼(2𝑛),

𝑙𝑛(2𝑛+1) = min(𝑏(2𝑛+1),
√
𝐴𝛼(2𝑛) and for 𝑥 ∈ [2𝑛; 2𝑛+1] we let 𝛼(𝑥) = 𝑙𝑛(𝑥). The function 𝛼
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introduced in this way is continuous, increases to infinity and satisfy the inequality 𝛼(𝑥) 6 𝑏(𝑥).
Indeed, if for some sequence 𝑛𝑘 we have 𝛼(2𝑛𝑘) = 𝑏(2𝑛𝑘), then

lim
𝑥−→∞

𝛼(𝑥) = lim
𝑘−→∞

𝑏(2𝑛𝑘) = ∞,

and if after some index 𝑚 𝛼(2𝑛) =
√
𝐴𝛼(2𝑛−1), then 𝛼(2𝑛) = 𝐴

𝑛−𝑚
2 𝛼(2𝑚) −→ ∞ as 𝑛 −→ ∞.

The function 𝛼 satisfies condition (2). We take 𝑥 ∈ [2𝑛; 2𝑛+1], 𝑛 ∈ N. Then

𝛼(2𝑥) 6 𝛼(2𝑛+2) 6
√
𝐴𝛼(2𝑛 + 1) 6 𝐴𝛼(2𝑛) 6 𝐴𝛼(𝑥).

As in Section 3, by the function 𝛼 we construct the concave increasing function 𝑢 on [1;∞)

and the convex function ̃︀ℎ on R. By Lemma 1 we can normalized the function 𝑢(𝑥) by a
multiplicative constant so that

𝑢(𝑥) 6 𝛼(𝑥), 𝑥 > 1.

By construction, ̃︀ℎ(𝑥) = 𝑥− 𝑢(𝑥) > 𝑥− 𝑏(𝑥) = ̃︀𝑎(𝑥). The proof is complete.
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