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REPRESENTATION OF ANALYTIC FUNCTIONS

A.I. ABDULNAGIMOV, A.S. KRIVOSHEYEV

Abstract. In this paper we consider exponential series with complex exponents, whose
real and imaginary parts are integer. We prove that each function analytical in the vicinity
of the closure of a bounded convex domain in the complex plain can be expanded into the
above mentioned series and this series converges absolutely inside this domain and uniformly
on compact subsets. The result is based on constructing a regular subset with a prescribed
angular density of the sequence of all complex numbers, whose real and imaginary parts
are integer.
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1. Introduction

Let ΛZ = {𝜆𝑘}∞𝑘=1 be a sequence of all complex numbers with integer coordinates 𝜆𝑘 = 𝑚+𝑖𝑙,
𝑚, 𝑙 ∈ Z, taken in the order of ascending absolute values. We consider the series∑︁

𝑚,𝑙∈Z

𝑑𝑚,𝑙𝑒
(𝑚+𝑖𝑙)𝑧. (1.1)

We assume that this series converges at each point of some open subset 𝐸 ⊂ C. It is easy to
see that the sequence ΛZ = {𝜆𝑘}∞𝑘=1 satisfies the relations

lim
𝑘→∞

ln 𝑘

|𝜆𝑘|
= lim

𝑘→∞

ln 𝑘√
𝑘

= 0.

Then according to the results of work [1] (Theorems 3.1 and 4.1), series (1.1) converges in a
convex domain 𝐷 ⊂ C containing the convex hull of the set 𝐸. The domain 𝐷 is determined
by means of Cauchy-Hadamard formula for the series of exponentials (see [1, Thm. 4.1]):

𝐷 = {𝑧 ∈ C : Re (𝑧𝜉) < ℎ(𝜉), |𝜉| = 1},

ℎ(𝜉) = inf lim
𝑗→∞

ln(1/|𝑑𝑚(𝑘(𝑗)),𝑙(𝑘(𝑗))|)
𝜆𝑘(𝑗)

, 𝜆𝑘 = 𝑚(𝑘) + 𝑖𝑙(𝑘),

where the infimum is taken over all the subsequences {𝜆𝑘(𝑗)}∞𝑗=1 of the sequence ΛZ such that
𝜆𝑘(𝑗)/|𝜆𝑘(𝑗)| converges to the point 𝜉 as 𝑗 → ∞. At that, series (1.1) converges absolutely and
uniformly on compact subsets of the domain 𝐷 (see [1, Thm. 3.1]). Therefore, its sum 𝑔(𝑧) is
an analytic function in the domain 𝐷.

This, if series (1.1) converges on an open subset 𝐸 ⊂ C, it converges on a convex domain 𝐷
containing 𝐸 to a function analytic in 𝐷.

In the present work we solve an inverse in some sense problem on representing each function
analytic in the vicinity of the closure of an arbitrary fixed bounded convex domain 𝐷 ⊂ C by
series (1.1) converging on 𝐷.
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Thanks to a classical result by A.F. Leontiev (see [2, Ch. IV, Sect. 6, Thm. 4.6.4]) on
representation of functions analytic in the vicinity of the closure of a bounded convex domain
𝐷 ⊂ C, we succeed to reduce the mentioned problem to the problem on constructing a regular
set with a prescribed angular density (see [3, Ch. II, Sect. 1]) being a part of the sequence ΛZ.

In the second section (Thms. 2.1 and 2.2), the latter problem is solved completely. On the
base of this problem, in the third section we prove (Theorem 3.2) that each function analytic
in the vicinity of the closure of an arbitrary fixed bounded convex domain 𝐷 ⊂ C is expanded
into series (1.1) converging absolutely and uniformly on compact subsets of the domain 𝐷.

2. Constructing of regular set

Let Λ = {𝜆𝑘}∞𝑘=1 be a sequence of complex numbers taken in the order of ascending absolute
values such that |𝜆𝑘| → ∞. We denote by 𝑛(𝑟,Λ) the amount of points 𝜆𝑘 lying in the ball
𝐵(0, 𝑟) of radius 𝑟 > 0 centered at the origin. The upper and lower densities of Λ are respectively
the quantities

𝑛(Λ) = lim
𝑟→∞

𝑛(𝑟,Λ)

𝑟
, 𝑛(Λ) = lim

𝑟→∞

𝑛(𝑟,Λ)

𝑟
.

The sequence Λ is said to have a density 𝑛(Λ) (measurable) if 𝑛(Λ) = 𝑛(Λ) = 𝑛(Λ) < +∞. We
have:

lim
𝑘→∞

𝑘

|𝜆𝑘|
6 lim

𝑘→∞

𝑛(|𝜆𝑘| + 1,Λ)

|𝜆𝑘|
= lim

𝑘→∞

𝑛(|𝜆𝑘| + 1,Λ)

|𝜆𝑘| + 1
6 𝑛(Λ),

lim
𝑘→∞

𝑘

|𝜆𝑘|
> lim

𝑘→∞

𝑛(|𝜆𝑘| − 1,Λ)

|𝜆𝑘|
= lim

𝑘→∞

𝑛(|𝜆𝑘| − 1,Λ)

|𝜆𝑘| − 1
> 𝑛(Λ).

Thus, if sequence Λ is measurable, then

𝑛(Λ) = lim
𝑘→∞

𝑘

|𝜆𝑘|
.

Let 𝜙1, 𝜙2 ∈ [−2𝜋, 2𝜋), 𝜙2−𝜙1 ∈ (0, 2𝜋]. We shall call such values 𝜙1, 𝜙2 admissible. We let

Γ(𝜙1, 𝜙2)(Γ(𝜙1, 𝜙2]) = {𝜆 = 𝑡𝑒𝑖𝜙 : 𝜙 ∈ (𝜙1, 𝜙2)((𝜙1, 𝜙2]), 𝑡 > 0}.
By the symbol Λ(𝜙1, 𝜙2)(Λ(𝜙1, 𝜙2]) we denote the sequence consisting of all pairs {𝜆𝑘, 𝑛𝑘} such
that 𝜆𝑘 ∈ Γ(𝜙1, 𝜙2)(Γ(𝜙1, 𝜙2]).

Lemma 2.1. Let 𝜙1, 𝜙2 be admissible and 𝛾 > 0. There exists 𝑅0 > 0 such that as 𝑅 > 𝑅0,
each interval (𝑅,𝑅 + 𝛾) contains the absolute value |𝜆𝑘| of some point 𝜆𝑘 ∈ ΛZ(𝜙1, 𝜙2).

Proof. Let 𝑝, 𝑚 be integer number such that the ray Γ starting at the origin and passing the
point with the coordinates (𝑚, 𝑝) lies (except the beginning) in the angle Γ(𝜙1, 𝜙2). Such 𝑝,
𝑚 can be chosen by taken an appropriate approximation of the number tan𝜙 by the fractions
𝑝/𝑚 (𝜙 ∈ (𝜙1, 𝜙2) ∖ {𝜋𝑘}𝑘∈Z is chosen arbitrarily).

The ray Γ consists of the diagonals of the rectangles, whose vertices are the points in the
sequences ΛZ, while the lengths of the sides are equal to |𝑝| and |𝑚|. It contains the points 𝜆𝑘(𝑠),
𝑠 = 1, 2, . . ., of the sequence ΛZ(𝜙1, 𝜙2) separated by the distance ℎ. The latter coincides with
the lengths of the diagonals of the mentioned rectangles. The points 𝜆𝑘(𝑠) have the coordinates
(𝑠𝑚, 𝑠𝑝), 𝑠 = 1, 2, . . . Let 𝜍𝑠 be the straight line perpendicular to the ray Γ and passing through
the points 𝜆𝑘(𝑠), 𝑠 > 1. It also consists of the diagonals of the rectangles, whose vertices are
the points in the sequence ΛZ and the lengths of their sides are equal to |𝑝| and |𝑚|. For each
𝑠 > 1, the straight line 𝜍𝑠 contains the points 𝜆𝑘(𝑠,𝑗), 𝑗 ∈ Z, of the sequence ΛZ. Their are of the

form 𝜆𝑘(𝑠,𝑗) = 𝜆𝑘(𝑠) + 𝑗ℎ𝑒𝑖(𝜙0+𝜋/2), 𝑗 ∈ Z, where 𝜙0 is determined by the identity tan𝜙0 = 𝑝/𝑚.
Since the ray Γ ∖ {0} lies in the angle Γ(𝜙1, 𝜙2), for some number 𝛽 > 0 each point 𝜆𝑘(𝑠,𝑗)

obeying the condition 0 6 𝑗 6 𝛽𝑠 and 𝑠 > 1 belongs to the sequence ΛZ(𝜙1, 𝜙2). Let 𝑠 > 1 and
𝑗𝑠 be the maximal number 𝑗 > 0 satisfying the inequality 𝑗 6 𝛽𝑠.
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We consider the set |𝜆𝑘(𝑠,𝑗)|, 𝑗 = 0, 1, . . . , 𝑗𝑠. The quantity |𝜆𝑘(𝑠,𝑗)| is the hypotenuse of the
right triangle with the vertices 0, 𝜆𝑘(𝑠) and 𝜆𝑘(𝑠,𝑗). The length |𝜆𝑘(𝑠) − 𝜆𝑘(𝑠,𝑗)| of one of its
cathetus is an increasing function in the parameter 𝑗 > 0; it is equal to 𝑗ℎ. This is why we get
the inequalities

|𝜆𝑘(𝑠,0)| < |𝜆𝑘(𝑠,1)| < · · · < |𝜆𝑘(𝑠,𝑗𝑠)|.
We have

|𝜆𝑘(𝑠,0)| = |𝜆𝑘(𝑠)| =
√︀

(𝑠𝑚)2 + (𝑠𝑝)2 = 𝑠
√
𝑚2 + 𝑠2 = 𝑠ℎ

and as 𝑗 > 0,

|𝜆𝑘(𝑠,𝑗+1)| − |𝜆𝑘(𝑠,𝑗)| =
√︁
|𝜆𝑘(𝑠)|2 + ((𝑗 + 1)ℎ)2 −

√︁
|𝜆𝑘(𝑠)|2 + (𝑗ℎ)2

=
√︀

(𝑠ℎ)2 + ((𝑗 + 1)ℎ)2 −
√︀

(𝑠ℎ)2 + (𝑗ℎ)2

=ℎ(
√︀
𝑠2 + (𝑗 + 1)2 −

√︀
𝑠2 + 𝑗2) = ℎ

√︀
𝑠2 + 𝑗2

(︃√︃
1 +

2𝑗 + 1

𝑠2 + 𝑗2
− 1

)︃
.

We have the estimate ln
√

1 + 𝑥 6 𝑥/2. Therefore,

√
1 + 𝑥 6 𝑒𝑥/2 =

∞∑︁
𝑛=0

𝑥𝑛

2𝑛𝑛!
6 1 +

𝑥

2
+ 𝑥2

∞∑︁
𝑛=0

𝑥𝑛 = 1 +
𝑥

2
+

𝑥2

1 − 𝑥
6 1 + 𝑥

for all 𝑥 ∈ [0, 1/4]. By the above relations we obtain

|𝜆𝑘(𝑠,𝑗+1)| − |𝜆𝑘(𝑠,𝑗)| 6 ℎ
√︀
𝑠2 + 𝑗2

2𝑗 + 1

𝑠2 + 𝑗2
= ℎ

2𝑗 + 1√︀
𝑠2 + 𝑗2

= ℎ
2𝑗 + 1

𝑠
√︀

1 + (𝑗/𝑠)2
6 ℎ

2𝑗 + 1

𝑠
.

We choose an index 𝑠0 such that ℎ/𝑠0 < 𝛾/2. Then

|𝜆𝑘(𝑠,𝑗+1)| − |𝜆𝑘(𝑠,𝑗)| < 𝛾, 𝑗 6
𝑠𝛾

4ℎ
, 𝑠 > 𝑠0.

Let 𝛼 = min{𝛽, 𝑠𝛾/4ℎ} and ̃︀𝑗𝑠 be the maximal index 𝑗 > 0 satisfying the inequality 𝑗 6 𝛽𝑠.

Then ̃︀𝑗𝑠 6 𝑗𝑠. This is why all the points 𝜆𝑘(𝑠,𝑗), 𝑗 = 0,̃︀𝑗𝑠, 𝑠 > 1, belong to the sequence
ΛZ(𝜙1, 𝜙2). Moreover, the inequalities

|𝜆𝑘(𝑠,𝑗+1)| − |𝜆𝑘(𝑠,𝑗)| < 𝛾, 𝑗 = 0,̃︀𝑗𝑠, 𝑠 > 𝑠0. (2.1)

Let us estimate from below the quantity |𝜆𝑘(𝑠,̃︀𝑗𝑠)|. By the choice of the index ̃︀𝑗𝑠 we have

|𝜆𝑘(𝑠,̃︀𝑗𝑠)| =

√︁
|𝜆𝑘(𝑠)|2 + (̃︀𝑗𝑠ℎ)2 =

√︀
(𝑠ℎ)2 + ((𝛽𝑠− 1)ℎ)2 = 𝑠ℎ

√︃
1 +

(︂
𝛽𝑠− 1

𝑠

)︂2

.

Since

lim
𝑠→∞

𝑠

𝑠+ 1

√︃
1 +

(︂
𝛽𝑠− 1

𝑠

)︂2

=
√︀

1 + 𝛽2 > 1,

there exists an index 𝑠1 > 𝑠0 such that

|𝜆𝑘(𝑠,̃︀𝑗𝑠)| > 𝑠ℎ+ +ℎ, 𝑠 > 𝑠1.

Thus, for each 𝑠 > 𝑠1 we an increasing set of numbers |𝜆𝑘(𝑠,𝑗)|, 𝑗 = 0,̃︀𝑗𝑠 such that 𝜆𝑘(𝑠,𝑗) ∈
ΛZ(𝜙1, 𝜙2) for all 𝑗 = 0,̃︀𝑗𝑠. The first of these numbers coincides with 𝑠ℎ, while the other is
strictly greater than 𝑠ℎ+ℎ. In view of (2.1) it follows that each interval (𝑅,𝑅+𝛾) intersecting
the semi-interval [𝑠ℎ, 𝑠ℎ + ℎ) contains at least one of the numbers in this set. Letting now
𝑅0 = 𝑠1ℎ, we complete the proof of the lemma.
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Let Λ1 = {𝜆1𝑘}∞𝑘=1 and Λ2 = {𝜆2𝑗}∞𝑗=1. We shall say that Λ1 is a subsequence of Λ2 and we

shall write Λ1 ⊂ Λ2 if there exists a set of the indices 𝑗(𝑘), 𝑘 > 1, such that 𝜆1𝑘 = 𝜆2𝑗(𝑘), 𝑘 > 1.

If 𝜆1𝑘 ̸= 𝜆2𝑗 , 𝑘, 𝑗 > 1, then by the union Λ1
⋃︀

Λ2 of the sequences Λ1 and Λ2 we shall mean the

sequence consisting of all elements 𝜆1𝑘, 𝜆
2
𝑗 , 𝑘, 𝑗 > 1.

The proof of the next statement is based on the method exposed in the proof of Lemma 5 in
work [4], see also [5, Lm. 2].

Lemma 2.2. Let 𝜙1, 𝜙2 be admissible, 𝛿 > 0 and Λ0 = {𝜆0𝑘}∞𝑘=1 have a density 𝜏0 > 0
(probably, Λ0 is empty). Assume that 𝜏 > 𝜏0. Then there exists a sequence Λ1 = {𝜆1𝑗}∞𝑗=1 ⊆
ΛZ(𝜙1, 𝜙2) having density 𝜏 − 𝜏0 such that⃒⃒

|𝜆1𝑗 | − |𝜆0𝑘|
⃒⃒
>

1

2𝜏
− 𝛿

2
, 𝑘, 𝑗 > 1, |𝜆1𝑗+1| − |𝜆1𝑗 | >

1

𝜏
− 𝛿, 𝑗 > 1. (2.2)

If Λ0 is empty, the first inequality in (2.2) is omitted.

Proof. Let 𝛼 = 1/𝜏 and 𝛾 = min{𝛿, 𝛼}. By Lemma 2.1, there exists a natural number 𝑝0
such that as 𝑅 > 𝑝0𝛼, each interval (𝑅,𝑅 + 𝛾) contains the absolute value |𝜉𝑚| of some point
𝜉𝑚 ∈ ΛZ(𝜙1, 𝜙2). We seek the sequence Λ1 as the union Λ1 =

⋃︀
𝑝>𝑝0

Λ1
𝑝. We construct the sets

Λ1
𝑝, 𝑝 > 𝑝0, by the induction. First we denote the total amount of the points in the set Λ1

𝑠,
𝑠 = 𝑝0, 𝑝, by the symbol 𝑁𝑝.

Let 𝑝 = 𝑝0. If the semi-interval [𝑝𝛼, (𝑝 + 1)𝛼) contains at least one of the elements of the
sequence {|𝜆0𝑘|}∞𝑘=1, we let Λ1

𝑝 = ∅. Otherwise as Λ1
𝑝 we choose the set consisting of one point

𝜉𝑚 ∈ ΛZ(𝜙1, 𝜙2), whose absolute value |𝜉𝑚| belongs to the interval(︂
2𝑝+ 1

2
𝛼− 𝛾

2
,
2𝑝+ 1

2
𝛼 +

𝛾

2

)︂
. (2.3)

At least one such point 𝜉𝑚 exists by the definition of the point 𝑝0; if there are several such
points, we arbitrarily choose one of them.

Suppose now 𝑝 > 𝑝0. We assume that we have constructed the sets Λ1
𝑠 for all 𝑠 = 𝑝0, 𝑝− 1.

Let us define Λ1
𝑝. If the inequality

𝑁𝑝−1 + 𝑛((𝑝+ 1)𝛼,Λ0) − 𝑛(𝑝0𝛼,Λ
0) > 𝑝+ 1 − 𝑝0 (2.4)

holds true, we let Λ1
𝑝 = ∅. If

𝑁𝑝−1 + 𝑛((𝑝+ 1)𝛼,Λ0) − 𝑛(𝑝0𝛼,Λ
0) < 𝑝+ 1 − 𝑝0, (2.5)

as Λ1
𝑝 we choose a set consisting of some point 𝜉𝑚 ∈ ΛZ(𝜙1, 𝜙2) whose absolute value |𝜉𝑚|

belongs to interval (2.3). As above, there exists at least one such point 𝜉𝑚.
Thus, we have constructed the sequence Λ1. Let us show that it is the sought one. We let

Λ = Λ0
⋃︀

Λ1 and we are going to prove that Λ has density 𝜏 .
Let us prove first that for all 𝑙 > 𝑝0 the inequalities

𝑙 − 𝑝0 6 𝑛(𝑙𝛼,Λ) − 𝑛(𝑝0𝛼,Λ) 6 max{𝑙 − 𝑝0, 𝑁𝑙−2 + 𝑛(𝑙𝛼,Λ0) − 𝑛(𝑝0𝛼,Λ
0)} (2.6)

hold true, where for the convenience we let 𝑁𝑝0−1 = 0.
If as 𝑝 = 𝑙 − 1, we have (2.4), then by the construction Λ1

𝑙−1 = ∅. This is why 𝑁𝑙−1 = 𝑁𝑙−2.
Therefore,

𝑛(𝑙𝛼,Λ) − 𝑛(𝑝0𝛼,Λ) = 𝑁𝑙−1 + 𝑛(𝑙𝛼,Λ0) − 𝑛(𝑝0𝛼,Λ
0) = 𝑁𝑙−2 + 𝑛(𝑙𝛼,Λ0) − 𝑛(𝑝0𝛼,Λ

0),

that is, the right inequality in (2.6) holds true. If (2.5) holds true, then by the construction
Λ1
𝑙−1 consists of one point. This is why 𝑁𝑙−1 = 𝑁𝑙−2 + 1. Therefore, by (2.5) we have

𝑛(𝑙𝛼,Λ) − 𝑛(𝑝0𝛼,Λ) =𝑁𝑙−1 + 𝑛(𝑙𝛼,Λ0) − 𝑛(𝑝0𝛼,Λ
0)

=𝑁𝑙−2 + 1 + 𝑛(𝑙𝛼,Λ0) − 𝑛(𝑝0𝛼,Λ
0) < 𝑙 − 𝑝0 + 1 6 𝑙 − 𝑝0.
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Thus, the right inequality in (2.6) holds true in this case as well.
Let us prove the left inequality. We employ the induction. If the semi-interval [𝑝0𝛼, (𝑝0 + 1)𝛼)

contains at least one element of the sequence {|𝜆0𝑘|}∞𝑘=1, then

𝑛((𝑝0 + 1)𝛼,Λ) − 𝑛(𝑝0𝛼,Λ) > 𝑛((𝑝0 + 1)𝛼,Λ0) − 𝑛(𝑝0𝛼,Λ
0) > 1 = 𝑝0 + 1 − 𝑝0,

that is, in this case the left inequality in (2.6) holds true. If the semi-interval [𝑝0𝛼, (𝑝0 + 1)𝛼)
contains no elements of the sequence {|𝜆0𝑘|}∞𝑘=1, by the construction, Λ1

𝑝0
consists of one point.

This is why

𝑛((𝑝0 + 1)𝛼,Λ) − 𝑛(𝑝0𝛼,Λ) > 𝑛((𝑝0 + 1)𝛼,Λ1) − 𝑛(𝑝0𝛼,Λ
1) = 𝑁𝑝0 = 1 = 𝑝0 + 1 − 𝑝0.

Thus, the left inequality in (2.6) is true under the assumption 𝑙 = 𝑝0 + 1. We assume that it is
true for all 𝑙 = 𝑝0 + 1, 𝑝 and let us prove it for 𝑙 = 𝑝+ 1.

If (2.4) holds true for 𝑝 = 𝑙 − 1, then

𝑛(𝑙𝛼,Λ) − 𝑛(𝑝0𝛼,Λ) =𝑛((𝑝+ 1)𝛼,Λ) − 𝑛(𝑝0𝛼,Λ) = 𝑁𝑝 + 𝑛((𝑝+ 1)𝛼,Λ0) − 𝑛(𝑝0𝛼,Λ
0)

>𝑁𝑝−1 + 𝑛((𝑝+ 1)𝛼,Λ0) − 𝑛(𝑝0𝛼,Λ
0) > 𝑝+ 1 − 𝑝0 = 𝑙 − 𝑝0,

that is, in this case the left inequality in (2.6) holds true. Assume that (2.5) is true for
𝑝 = 𝑙 − 1. Then by the definition Λ1

𝑝 consists of one point, that is, 𝑁𝑝 = 𝑁𝑝−1 + 1. By the
induction assumption 𝑛(𝑝𝛼,Λ) − 𝑛(𝑝0𝛼,Λ) > 𝑝− 𝑝0. Therefore,

𝑛(𝑙𝛼,Λ) − 𝑛(𝑝0𝛼,Λ) =𝑛((𝑝+ 1)𝛼,Λ) − 𝑛(𝑝0𝛼,Λ)

=𝑛(𝑝𝛼,Λ) − 𝑛(𝑝0𝛼,Λ) + +𝑛((𝑝+ 1)𝛼,Λ) − 𝑛(𝑝𝛼,Λ)

>𝑝− 𝑝0 + 𝑛((𝑝+ 1)𝛼,Λ1) − 𝑛(𝑝𝛼,Λ1) = 𝑝− 𝑝0 +𝑁𝑝 −𝑁𝑝−1

=𝑝− 𝑝0 + 1 = 𝑙 − 𝑝0.

Thus, inequalities (2.6) are proved.
Employing the left inequality in (2.6), we obtain

𝑛(Λ) = lim
𝑟→∞

𝑛(𝑟,Λ)

𝑟
> lim

𝑙→∞

𝑛(𝑙𝛼,Λ)

(𝑙 + 1)𝛼
= lim

𝑙→∞

𝑛(𝑙𝛼,Λ)

𝑙𝛼

= lim
𝑙→∞

𝑛(𝑙𝛼,Λ) − 𝑛(𝑝0𝛼,Λ) + 𝑛(𝑝0𝛼,Λ)

𝑙𝛼
= lim

𝑙→∞

𝑛(𝑙𝛼,Λ) − 𝑛(𝑝0𝛼,Λ)

𝑙𝛼

> lim
𝑙→∞

𝑙 − 𝑝0
𝑙𝛼

= lim
𝑙→∞

𝑙

𝑙𝛼
=

1

𝛼
= 𝜏.

It implies that 𝑛(Λ) > 𝜏 . Let us prove the inequality 𝑛(Λ) 6 𝜏 .
Let 𝑟𝑗 → ∞ be a sequence realizing the uppoer limit in the definition of the quantity 𝑛(Λ), and

𝑙(𝑗), 𝑗 > 1, be the minimal natural number such that 𝑙(𝑗)𝛼 > 𝑟𝑗. If 𝑛(𝑙𝛼,Λ)−𝑛(𝑝0𝛼,Λ) > 𝑙−𝑝0
for all 𝑙 > 𝑝0, by the right inequality in (2.6) and the definition of 𝑁𝑙 we have

𝑛(𝑙𝛼,Λ) − 𝑛(𝑝0𝛼,Λ) 6𝑁𝑙−2 + 𝑛(𝑙𝛼,Λ0) − 𝑛(𝑝0𝛼,Λ
0)

=𝑛((𝑙 − 1)𝛼,Λ) − 𝑛(𝑝0𝛼,Λ) + 𝑛(𝑙𝛼,Λ0) − 𝑛((𝑙 − 1)𝛼,Λ0)

6𝑁𝑙−3 + 𝑛((𝑙 − 1)𝛼,Λ0) − 𝑛(𝑝0𝛼,Λ
0) + +𝑛(𝑙𝛼,Λ0) − 𝑛((𝑙 − 1)𝛼,Λ0)

=𝑛((𝑙 − 2)𝛼,Λ) − 𝑛(𝑝0𝛼,Λ) + +𝑛(𝑙𝛼,Λ0) − 𝑛((𝑙 − 2)𝛼,Λ0)

6 · · ·
6𝑁𝑝0−1 + 𝑛((𝑝0 + 1)𝛼,Λ0) − 𝑛(𝑝0𝛼,Λ

0) + 𝑛(𝑙𝛼,Λ0) − 𝑛((𝑝0 + 1)𝛼,Λ0)

=𝑛(𝑙𝛼,Λ0) − 𝑛(𝑝0𝛼,Λ
0).
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Hence, taking into consideration that Λ0 has the density 𝜏0 < 𝜏 , we obtain:

𝑛(Λ) = lim
𝑗→∞

𝑛(𝑟𝑗,Λ)

𝑟𝑗
6 lim

𝑗→∞

𝑛(𝑙(𝑗)𝛼,Λ)

(𝑙(𝑗) − 1)𝛼
= lim

𝑗→∞

𝑛(𝑙(𝑗)𝛼,Λ) − 𝑛(𝑝0𝛼,Λ) + 𝑛(𝑝0𝛼,Λ)

𝑙(𝑗)𝛼

= lim
𝑗→∞

𝑛(𝑙(𝑗)𝛼,Λ) − 𝑛(𝑝0𝛼,Λ)

𝑙(𝑗)𝛼
6 lim

𝑗→∞

𝑛(𝑙(𝑗)𝛼,Λ0) − 𝑛(𝑝0𝛼,Λ
0)

𝑙(𝑗)𝛼

= lim
𝑗→∞

𝑛(𝑙(𝑗)𝛼,Λ0)

𝑙(𝑗)𝛼
6 𝑛(Λ0) = 𝜏0 < 𝜏.

This contradicts the inequality 𝑛(Λ) > 𝜏 . Therefore, 𝑛(𝑙𝛼,Λ) − 𝑛(𝑝0𝛼,Λ) 6 𝑙 − 𝑝0 at least for
one index 𝑙 > 𝑝0. Thus, there exists 𝑗0 such that for each 𝑗 > 𝑗0 there exists a maximal natural
number 𝑚(𝑗) satisfying the conditions: 𝑚(𝑗) 6 𝑙(𝑗) and 𝑛(𝑚(𝑗)𝛼,Λ) − 𝑛(𝑝0𝛼,Λ) 6 𝑚(𝑗) − 𝑝0.
Choosing a subsequence, we can assume that 𝑚(𝑗)/𝑙(𝑗) converges to some number 𝛾 ∈ [0, 1].
Employing the right inequality in (2.6), as above, we obtain the estimate

𝑛(𝑙(𝑗)𝛼,Λ) − 𝑛(𝑝0𝛼,Λ) 6𝑛((𝑙(𝑗) − 1)𝛼,Λ) − 𝑛(𝑝0𝛼,Λ) + 𝑛(𝑙(𝑗)𝛼,Λ0) − 𝑛((𝑙(𝑗) − 1)𝛼,Λ0)

6 · · · 6 𝑛(𝑚(𝑗)𝛼,Λ) − 𝑛(𝑝0𝛼,Λ) + 𝑛(𝑙(𝑗)𝛼,Λ0) − 𝑛(𝑚(𝑗)𝛼,Λ0).

By the choice of index 𝑚(𝑗) we get

𝑛(Λ) 6 lim
𝑗→∞

𝑛(𝑙(𝑗)𝛼,Λ)

(𝑙(𝑗) − 1)𝛼
= lim

𝑗→∞

𝑛(𝑙(𝑗)𝛼,Λ)

𝑙(𝑗)𝛼
= lim

𝑗→∞

𝑛(𝑙(𝑗)𝛼,Λ) − 𝑛(𝑝0𝛼,Λ)

𝑙(𝑗)𝛼

6 lim
𝑗→∞

𝑛(𝑚(𝑗)𝛼,Λ) − 𝑛(𝑝0𝛼,Λ)

𝑙(𝑗)𝛼
+ lim

𝑗→∞

𝑛(𝑙(𝑗)𝛼,Λ0) − 𝑛(𝑚(𝑗)𝛼,Λ0)

𝑙(𝑗)𝛼

6 lim
𝑗→∞

𝑚(𝑗) − 𝑝0
𝑙(𝑗)𝛼

+ lim
𝑗→∞

𝑛(𝑙(𝑗)𝛼,Λ0) − 𝑛(𝑚(𝑗)𝛼,Λ0)

𝑙(𝑗)𝛼

=
𝛾

𝛼
+ lim

𝑗→∞

𝑛(𝑙(𝑗)𝛼,Λ0) − 𝑛(𝑚(𝑗)𝛼,Λ0)

𝑙(𝑗)𝛼
.

If 𝛾 = 0, then

𝑛(Λ) 6 lim
𝑗→∞

𝑛(𝑙(𝑗)𝛼,Λ0) − 𝑛(𝑚(𝑗)𝛼,Λ0)

𝑙(𝑗)𝛼
6 lim

𝑗→∞

𝑛(𝑙(𝑗)𝛼,Λ0)

𝑙(𝑗)𝛼
6 𝑛(Λ0) = 𝜏0 < 𝜏.

This contradicts the inequality 𝑛(Λ) > 𝜏 . Therefore, 𝛾 > 0. We choose 𝛿′ > 0 such that
𝛾 − 𝛿′ > 0. We let 𝛿 = 1 − 𝛾 + 𝛿′. Then 𝛿 ∈ (0, 1) and 𝑚(𝑗) > (1 − 𝛿)𝑙(𝑗), 𝑗 > 𝑗1. Hence,

𝑛(Λ) 6
𝛾

𝛼
+ lim

𝑗→∞

𝑛(𝑝(𝑗)𝛼,Λ0) − 𝑛((1 − 𝛿)𝑝(𝑗)𝛼,Λ0)

𝑝(𝑗)𝛼
.

Since the sequence Λ0 have the density 𝜏0, then

lim
𝑗→∞

𝑛(𝑝(𝑗)𝛼,Λ0) − 𝑛((1 − 𝛿)𝑝(𝑗)𝛼,Λ0)

𝑝(𝑗)𝛼
= lim

𝑗→∞

𝑛(𝑝(𝑗)𝛼,Λ0) − ((1 − 𝛿)𝑝(𝑗)𝛼,Λ0)

𝑝(𝑗)𝛼

= lim
𝑗→∞

𝑛(𝑝(𝑗)𝛼,Λ0)

𝑝(𝑗)𝛼
− lim

𝑗→∞

𝑛((1 − 𝛿)𝑝(𝑗)𝛼,Λ0)

𝑝(𝑗)𝛼
= 𝜏0 − (1 − 𝛿)𝜏0 = 𝛿𝜏0.

Thus,

𝑛(Λ) 6
𝛾

𝛼
+ 𝛿𝜏0 = 𝜏𝛾 + (1 − 𝛾 + 𝛿′)𝜏0.

Since 𝛿′ > 0 can be arbitrarily small, then 𝑛(Λ) 6 𝜏𝛾 + (1 − 𝛾)𝜏0. By the inequalities 𝜏0 < 𝜏
and 𝑛(Λ) > 𝜏 we obtain: 𝑛(Λ) = 𝜏 and 𝛾 = 1. In particular, it means that the sequence Λ has
the density 𝜏 . Then

𝑛(Λ1) = lim
𝑟→∞

𝑛(𝑟,Λ1)

𝑟
= lim

𝑟→∞

𝑛(𝑟,Λ) − 𝑛(𝑟,Λ0)

𝑟
= lim

𝑟→∞

𝑛(𝑟,Λ)

𝑟
− lim

𝑟→∞

𝑛(𝑟,Λ0)

𝑟
= 𝜏 − 𝜏0,
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that is, Λ1 has the density 𝜏 − 𝜏0.
It remains to prove inequalities (2.2). By construction, each semi-interval [𝑝𝛼, (𝑝 + 1)𝛼),

𝑝 = 0, 1, . . ., contains at most one element of the sequence {|𝜆1𝑗 |}∞𝑗=1. At that, if the semi-

interval [𝑝𝛼, (𝑝+1)𝛼), 𝑝 = 0, 1, . . ., contains the number |𝜆1𝑗 |, it lies in interval (2.3). Therefore,

|𝜆1𝑗+1| − |𝜆1𝑗 | > 𝛼 − 𝛾 = 1/𝜏 − 𝛾 > 1/𝜏 − 𝛿, 𝑗 > 1, that is, the right inequality in (2.2) holds
true.

Let us prove the left one. We have

𝑛((𝑝+ 1)𝛼,Λ) − 𝑛(𝑝0𝛼,Λ) =𝑛((𝑝+ 1)𝛼,Λ1) − 𝑛(𝑝0𝛼,Λ
1)

+ 𝑛((𝑝+ 1)𝛼,Λ0) − 𝑛(𝑝0𝛼,Λ
0)

=𝑛((𝑝+ 1)𝛼,Λ1) − 𝑛(𝑝𝛼,Λ1)

+ 𝑛(𝑝𝛼,Λ1) − 𝑛(𝑝0𝛼,Λ
1) + 𝑛((𝑝+ 1)𝛼,Λ0) − 𝑛(𝑝0𝛼,Λ

0)

=𝑛((𝑝+ 1)𝛼,Λ1) − 𝑛(𝑝𝛼,Λ1) +𝑁𝑝−1

+ 𝑛((𝑝+ 1)𝛼,Λ0) − 𝑛(𝑝0𝛼,Λ
0).

(2.7)

Moreover,

𝑛((𝑝+ 1)𝛼,Λ) − 𝑛(𝑝0𝛼,Λ) =𝑛(𝑝𝛼,Λ) − 𝑛(𝑝0𝛼,Λ) + 𝑛((𝑝+ 1)𝛼,Λ1) − 𝑛(𝑝𝛼,Λ1)

+ 𝑛((𝑝+ 1)𝛼,Λ0) − 𝑛(𝑝0𝛼,Λ
0).

(2.8)

Assume that the semi-interval [𝑝𝛼, (𝑝 + 1)𝛼) contains at the same time some number |𝜆1𝑗 | and

at least one element of the sequence {|𝜆0𝑘|}∞𝑘=1. Then

𝑛((𝑝+ 1)𝛼,Λ1) − 𝑛(𝑝𝛼,Λ1) = 1, 𝑛((𝑝+ 1)𝛼,Λ0)𝑛(𝑝0𝛼,Λ
0) > 1.

In view of (2.8) and the left inequality in (2.6) we obtain

𝑛((𝑝+ 1)𝛼,Λ) − 𝑛(𝑝0𝛼,Λ) > 𝑛(𝑝𝛼,Λ) − 𝑛(𝑝0𝛼,Λ) + 2 > 𝑝− 𝑝0 + 2 > 𝑝+ 1 − 𝑝0.

This is why by the right inequality in (2.6) we have

𝑛((𝑝+ 1)𝛼,Λ) − 𝑛(𝑝0𝛼,Λ) 6 𝑁𝑝−1 + 𝑛((𝑝+ 1)𝛼,Λ0) − 𝑛(𝑝0𝛼,Λ
0).

Together with (2.7) this gives the identity

𝑛((𝑝+ 1)𝛼,Λ1) − 𝑛(𝑝𝛼,Λ1) = 0,

which means that the semi-interval [𝑝𝛼, (𝑝+1)𝛼) contains no elements of the sequence {|𝜆1𝑗 |}∞𝑗=1.
This contradicts the assumptions.

Thus, if the semi-interval [𝑝𝛼, (𝑝 + 1)𝛼) contains some number |𝜆1𝑗 |, it contains no elements

of the sequence {|𝜆0𝑘|}∞𝑘=1. By construction, |𝜆1𝑗 | belongs to interval (2.3). Therefore,⃒⃒
|𝜆1𝑗 | − |𝜆0𝑘|

⃒⃒
>
𝛼

2
− 𝛾

2
=

1

2𝜏
− 𝛾

2
>

1

2𝜏
− 𝛿

2
, 𝑘 > 1.

This gives the first inequality in (2.2). The proof is complete.

Lemma 2.3. Let 𝛿 > 0 and 𝜙1 ∈ [−2𝜋, 0), 𝜙1 < 𝜙2 < · · · < 𝜙𝑛 < 𝜙𝑛+1 = 𝜙1 + 2𝜋,
𝜏1, . . . , 𝜏𝑛 > 0 and 𝜏 = 𝜏1 + · · · + 𝜏𝑛 > 0. There exists a sequence Λ = {𝜆𝑘}∞𝑘=1 such that
Λ ⊆ ΛZ, 𝑛(Λ(𝜙𝑠, 𝜙𝑠+1]) = 𝜏𝑠, 𝑠 = 1, 𝑛, and

|𝜆𝑘+1| − |𝜆𝑘| >
1

2𝜏
− 𝛿, 𝑘 > 1. (2.9)

Proof. We let 𝜏0 = 0 and Λ0 = ∅. We seek a sequence Λ ⊆ ΛZ as the union Λ1

⋃︀
. . .
⋃︀

Λ𝑛.
By induction, we construct sequences Λ𝑠 ⊆ ΛZ(𝜙𝑠, 𝜙𝑠+1), 𝑠 = 1, 𝑛, satisfying the following
conditions: Λ𝑠 = {|𝜆𝑠𝑘|}∞𝑘=1 has the density 𝜏𝑠 and as 𝜏𝑠 > 0, the inequalities⃒⃒

|𝜆𝑠𝑙 | − |𝜆𝑗𝑘|
⃒⃒
>

1

2̃︀𝜏𝑠 − 𝛿

2
, 𝑘, 𝑙 > 1, 𝑗 = 1, 𝑠− 1, |𝜆𝑠𝑘+1| − |𝜆𝑠𝑘| >

1̃︀𝜏𝑠 − 𝛿, 𝑘 > 1, (2.10)
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hold true, where ̃︀𝜏𝑠 = 𝜏1 + · · · + 𝜏𝑠, if Λ0

⋃︀
. . .
⋃︀

Λ𝑠−1 = ∅, then the first inequality in (2.10) is
omitted. If 𝜏𝑠 = 0, then Λ𝑠 = ∅.

Let 𝑠 = 1. If 𝜏1 = 0, we let Λ1 = ∅. Otherwise by Lemma 2.2 there exists a sequence
Λ1 = {|𝜆1𝑘|}∞𝑘=1 ⊆ ΛZ(𝜙1, 𝜙2) having the density ̃︀𝜏1 − 𝜏0 = 𝜏1 such that (2.10) holds true.

We assume that the sought sequences Λ𝑗, 𝑗 = 1, 𝑠− 1, are constructed. In Lemma 2.2, as
Λ0 we choose the union Λ1

⋃︀
. . .
⋃︀

Λ𝑠−1. Then by this lemma there exists a sequence Λ𝑠 =
{𝜆𝑠𝑘}∞𝑘=1 ⊆ ΛZ(𝜙𝑗, 𝜙𝑗+1) having the density 𝜏𝑠 = ̃︀𝜏𝑠 − ̃︀𝜏𝑠−1 such that (2.10). Thus, we have
constructed the sequence Λ = {𝜆𝑘}∞𝑘=1 ⊆ ΛZ, for which 𝑛(Λ(𝜙𝑠, 𝜙𝑠+1]) = 𝑛(Λ𝑠) = 𝜏𝑠, 𝑠 = 1, 𝑛.
Since 𝜏 > ̃︀𝜏𝑠, 𝑠 = 1, 𝑛, it satisfies (2.9). The proof is complete.

Let us consider more precise characteristics of the sequence Λ = {𝜆𝑘}∞𝑘=1.
The lower and upper densities of Λ in the angle Γ(𝜙1, 𝜙2) are the corresponding densities of

the sequence Λ(𝜙1, 𝜙2).
A sequence Λ is said to have an angular density 𝑛(Λ, 𝜙1, 𝜙2) < +∞ (at order one) if

for all admissible 𝜙1, 𝜙2 except probably a countable set ΦΛ, the identity 𝑛(Λ(𝜙1, 𝜙2)) =
𝑛(Λ(𝜙1, 𝜙2)) = 𝑛(Λ, 𝜙1, 𝜙2) holds true [3, Ch. II, Sect. 1]. We have ̃︀𝜙 ∈ ΦΛ ∖ {−2𝜋} if and only
if inf
𝜙>0

𝑛(Λ(̃︀𝜙− 𝜙, ̃︀𝜙 + 𝜙)) > 0, where 𝜙 is sufficiently small. The number −2𝜋 belongs or does

not to ΦΛ simultaneously with ̃︀𝜙 = 0.
By the symbol Σ we denote the class of non-decaying in [−2𝜋, 2𝜋] functions 𝜔(𝜙) possessing

the following properties: 𝜔(0) = 0, 𝜔 is right-continuous, 𝜔(𝜙) = 𝜔(𝜙 − 2𝜋) − 𝜔(−2𝜋), 𝜙 ∈
[0, 2𝜋). By Φ(𝜔) we denote the set of the discontinuity points of the function 𝜔.

Let Λ have an angular density. Then it determines uniquely the function 𝜔Λ ∈ Σ by the rule:
for 𝜙1, 𝜙2 ∈ (−2𝜋, 0) ∖ ΦΛ, 𝜙 ∈ (𝜙1, 𝜙1 + 2𝜋) ∖ ΦΛ

𝜔Λ(𝜙1) = − lim
𝜙2→0

𝑛(Λ, 𝜙1, 𝜙2), 𝜔Λ(𝜙) = 𝑛(Λ, 𝜙1, 𝜙) + 𝜔Λ(𝜙1).

More precisely, 𝜔Λ is continued uniquely to a function in the class Σ, and the continuation is
independent of 𝜙1. It is easy to see that the sets ΦΛ and Φ(𝜔Λ) coincide. The definition of 𝜔Λ

implies the identity 𝑛(Λ, 𝜙1, 𝜙2) = 𝜔Λ(𝜙2) − 𝜔Λ(𝜙1) for all admissible 𝜙1, 𝜙2 /∈ ΦΛ = Φ(𝜔Λ).
At that, 𝑛(Λ) = 𝜔Λ(𝜙 + 2𝜋) − 𝜔Λ(𝜙), 𝜙 ∈ [−2𝜋, 0). We shall say that the sequence Λ has an
angular density 𝜔 ∈ Σ if it has an angular density and 𝜔Λ = 𝜔.

Lemma 2.4. Let 𝜔 ∈ Σ and Λ are such that for some 𝜙1 ∈ (−2𝜋, 0) ∖ Φ(𝜔) and all 𝜙, 𝜓 /∈
Φ(𝜔) obeying the condition 𝜙1 6 𝜙 < 𝜓 6 𝜙1 + 2𝜋 the sequence Λ(𝜙, 𝜓] has a density and
𝑛(Λ(𝜙, 𝜓]) = 𝜔(𝜓) − 𝜔(𝜙). Then Λ has an angular density 𝜔.

Proof. Let ̃︀𝜙1, ̃︀𝜙2 /∈ ΦΛ be admissible. Subject to the location of the points ̃︀𝜙1, ̃︀𝜙2 in the
segment [−2𝜋, 2𝜋], several situations are possible. We shall study two of them, the other can
be considered in the same way.

1. ̃︀𝜙2 = 𝜙1. In this case Λ(̃︀𝜙1, ̃︀𝜙2) = Λ(̃︀𝜙1 + 2𝜋, 𝜙1 + 2𝜋) ⊆ Λ(̃︀𝜙1 + 2𝜋, 𝜙1 + 2𝜋]. By the
assumption, (𝜙1 + 2𝜋) /∈ Φ(𝜔). Let us show that (̃︀𝜙1 + 2𝜋) /∈ Φ(𝜔). Since ̃︀𝜙1 /∈ ΦΛ, then

inf
𝜙>0

𝑛(Λ(̃︀𝜙1 + 2𝜋 − 𝜙, ̃︀𝜙1 + 2𝜋 + 𝜙)) = inf
𝜙>0

𝑛(Λ(̃︀𝜙1 − 𝜙, ̃︀𝜙1 + 𝜙)) = 0.

Let 𝜓𝑙 → 0 be such that (̃︀𝜙1 + 2𝜋 ± 𝜓𝑙) /∈ Φ(𝜔), 𝑙 > 1. Then by the assumption we have

𝜔(̃︀𝜙1 + 2𝜋 + 𝜓𝑙) − 𝜔(̃︀𝜙1 + 2𝜋 − 𝜓𝑙) =𝑛(Λ(̃︀𝜙1) + 2𝜋 − 𝜓𝑙, ̃︀𝜙1 + 2𝜋 + 𝜓𝑙])

6𝑛(Λ(̃︀𝜙1 + 2𝜋 − 2𝜓𝑙, ̃︀𝜙1 + 2𝜋 + 2𝜓𝑙)) → 0, 𝑙 → ∞.

Since 𝜔 does not decay, this implies the desired statement. Then by the definition of the upper
density and in view of Lemma 2.1 we obtain

𝑛(Λ(̃︀𝜙1, ̃︀𝜙2)) 6 𝑛(Λ(̃︀𝜙1 + 2𝜋, ̃︀𝜙2 + 2𝜋]) = 𝜔(𝜙1 + 2𝜋) − 𝜔(̃︀𝜙1 + 2𝜋).
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On other hand, similar arguments yield the inequality

𝑛(Λ(̃︀𝜙1, ̃︀𝜙2)) > 𝑛(Λ(̃︀𝜙1 + 2𝜋, 𝜙1 + 2𝜋 − 𝜓𝑙]) = 𝜔(𝜙1 + 2𝜋 − 𝜓𝑙) − 𝜔(̃︀𝜙1 + 2𝜋), 𝑙 > 1,

where 0 < 𝜓𝑙 → 0 and (𝜙1 + 2𝜋 − 𝜓𝑙) /∈ Φ(𝜔). Hence, employing the continuity of 𝜔 at the
point 𝜙1 + 2𝜋 and the previous inequality we find that Λ(̃︀𝜙1, ̃︀𝜙2) has the density 𝜔(𝜙1 + 2𝜋) −
𝜔(̃︀𝜙1 + 2𝜋) = = 𝜔(𝜙1) − 𝜔(̃︀𝜙1) = 𝜔(̃︀𝜙2) − 𝜔(̃︀𝜙1).

2. ̃︀𝜙2 > 𝜙1, ̃︀𝜙1 < 𝜙1. As above, one can show that ̃︀𝜙2, ̃︀𝜙1 + 2𝜋 /∈ Φ(𝜔) and Λ(𝜙1, ̃︀𝜙2) has
density 𝜔(̃︀𝜙2) − 𝜔(𝜙1). In view of the assumption we have

𝑛(Λ(̃︀𝜙1, ̃︀𝜙2)) =𝑛(Λ(̃︀𝜙1, 𝜙1]) + 𝑛(Λ(𝜙1, ̃︀𝜙2)) = 𝑛(Λ(̃︀𝜙1 + 2𝜋, 𝜙1 + 2𝜋]) + 𝑛(Λ(𝜙1, ̃︀𝜙2))

=𝜔(𝜙1 + 2𝜋) − 𝜔(̃︀𝜙1 + 2𝜋) + 𝜔(̃︀𝜙2) − 𝜔(𝜙1) = 𝜔(̃︀𝜙2) − 𝜔(̃︀𝜙1).

By the continuity of 𝜔 at point 𝜙1 it implies that 𝜙1 /∈ ΦΛ.
Thus, Λ has the angular density 𝑛(Λ, ̃︀𝜙1, ̃︀𝜙2) = 𝜔(̃︀𝜙2) − 𝜔(̃︀𝜙1). It remains to show 𝜔Λ = 𝜔.

In view of the above fact this is implied immediately by the definition of 𝜔Λ, the left-continuity
of function 𝜔 and identity 𝜔(0) = 0. The proof is complete.

The proof of the following statement is based on the method used in the proof of Theorem 2.1
in work [6].

Theorem 1. Let 𝜔 ∈ Σ and 𝛿 > 0. There is a sequence Λ = {𝜆𝑘}∞𝑘=1 ⊆ ΛZ with an angular
density 𝜔 such that

|𝜆𝑘+1| − |𝜆𝑘| >
1

2(𝜔Λ(𝜙1 + 2𝜋) − 𝜔Λ(𝜙1))
− 𝛿, 𝑘 > 1, (2.11)

where 𝜙1 ∈ (−2𝜋, 0) ∖ Φ(𝜔) is chosen arbitrarily.

Proof. First of all, let us construct a special set of sequences Λ𝑗 ⊆ ΛZ, 𝑗 > 1. Then we
shall “glue” sequence Λ with the desired angular density from the parts of Λ𝑗. Let 𝜙1 ∈
(−2𝜋, 0) ∖ Φ(𝜔). For each 𝑗 > 1 we fix a set of numbers 𝜙𝑗𝑠 /∈ Φ(𝜔), 𝑠 = 1, 𝑠(𝑗) such that

𝜙𝑗1 = 𝜙1, 𝜙
𝑗
1 < 𝜙𝑗2 < · · · < 𝜙𝑗𝑠(𝑗) < 𝜙1 + 2𝜋 = 𝜙𝑗𝑠(𝑗)+1 and 𝜙𝑗𝑠+1 − 𝜙𝑗𝑠 < 1/𝑗, 𝑠 = 1, 𝑠(𝑗). By

Lemma 2.3, for each 𝑗 > 1 there exists a sequence Λ𝑗 = {𝜆𝑗𝑘}∞𝑘=1 ⊆ ΛZ such that

𝑛(Λ𝑗(𝜙𝑗𝑠, 𝜙
𝑗
𝑠+1]) = 𝜏 𝑗𝑠 = 𝜔(𝜙𝑗𝑠+1) − 𝜔(𝜙𝑗𝑠), 𝑠 = 1, 𝑠(𝑗), 𝑗 > 1, (2.12)

|𝜆𝑗𝑘+1| − |𝜆𝑗𝑘| > 𝛼 =
1

2𝜏
− 𝛿, 𝑘 > 1, (2.13)

where 𝜏 = 𝜏 𝑗1 + · · · + 𝜏 𝑗𝑠(𝑗). By (2.12) we obtain 𝑛(Λ𝑗) = 𝜏 = 𝜔Λ(𝜙1 + 2𝜋) − 𝜔Λ(𝜙1).

Let 𝑗 > 1. By (2.12), there exists a number 𝑅𝑗 > 0 satisfying the condition⃒⃒⃒⃒
⃒𝑛(𝑟,Λ𝑗(𝜙𝑗𝑠, 𝜙

𝑗
𝑠+1])

𝑟
− (𝜔(𝜙𝑗𝑠+1) − 𝜔(𝜙𝑗𝑠))

⃒⃒⃒⃒
⃒ < 1

𝑗𝑠(𝑗)
, 𝑠 = 1, 𝑠(𝑗), 𝑟 > 𝑅𝑗. (2.14)

We can assume that

𝑅𝑗+1 > 2𝑅𝑗, 𝑅𝑗+1 − 𝛼 > 𝑅𝑗, 𝑗 > 1. (2.15)

Let Λ𝑗,𝑗 be the set of all elements in the sequence Λ𝑗 located in the ring {𝜆 ∈ C : 𝑅𝑗 6 |𝜆| < 𝑅𝑗+1 − 𝛼}.
We let Λ =

⋃︀
𝑗>1 Λ𝑗,𝑗. By construction, Λ = {𝜆𝑘}∞𝑘=1 ⊆ ΛZ. By (2.13), condition (2.11) holds

for all points in set Λ𝑗,𝑗, 𝑗 > 1. Then by construction |𝜆𝑗𝑘| − |𝜆𝑙𝑛| > 𝛼 if 𝑗 ̸= 𝑙 and 𝜆𝑗𝑘 ∈ Λ𝑗,𝑗,
𝜆𝑙𝑛 ∈ Λ𝑙,𝑙. It follows that condition (2.11) holds true for the sequence Λ. It remains to show
that Λ has the angular density 𝜔.
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We fix numbers 𝜙, 𝜓 /∈ Φ(𝜔) such that 𝜙1 6 𝜙 < 𝜓 6 𝜙1 + 2𝜋. Let us prove the identity
𝑛(Λ(𝜙, 𝜓]) = 𝜔(𝜓) − 𝜔(𝜙). Let 𝑟 > 0 and an index 𝑗(𝑟) be such that 𝑅𝑗(𝑟)−1 < 𝑟 6 𝑅𝑗(𝑟). By
construction, for each index 𝑗0 and all 𝑟 > 𝑅𝑗0 we have

𝑛(𝑟,Λ(𝜙, 𝜓]) =𝑛(𝑅𝑗0 ,Λ(𝜙, 𝜓]) +

𝑗(𝑟)−2∑︁
𝑗=𝑗0

(︀
𝑛(𝑅𝑗+1 − 𝛼,Λ𝑗(𝜙, 𝜓]) − 𝑛(𝑅𝑗,Λ

𝑗(𝜙, 𝜓])
)︀

+ 𝑛(𝑡(𝑟),Λ𝑗(𝑟)−1(𝜙, 𝜓]) − 𝑛(𝑅𝑗(𝑟)−1,Λ
𝑗(𝑟)−1(𝜙, 𝜓]),

(2.16)

where 𝑡(𝑟) = min{𝑟, 𝑅𝑗(𝑟) − 𝛼}.
For each 𝑗 > 1 there exist indices 1 6 𝑖(𝑗) 6 𝑙(𝑗) 6 𝑠(𝑗) such that the embeddings

𝑙(𝑗)−1⋃︁
𝑠=𝑖(𝑗)+1

Γ(𝜙𝑗𝑠, 𝜙
𝑗
𝑠+1] ⊆ Γ(𝜙, 𝜓] ⊆

𝑙(𝑗)⋃︁
𝑠=𝑖(𝑗)

Γ(𝜙𝑗𝑠, 𝜙
𝑗
𝑠+1]

hold true. For finitely many indices 𝑗 we can have 𝑖(𝑗) + 1 > 𝑙(𝑗) − 1; in this case the left
embedding is absent. Then we obtain

𝑙(𝑗)−1∑︁
𝑠=𝑖(𝑗)+1

(︀
𝑛(𝑟,Λ𝑗(𝜙𝑗𝑠, 𝜙

𝑗
𝑠+1]) − 𝑛(̃︀𝑟,Λ𝑗(𝜙𝑗𝑠, 𝜙

𝑗
𝑠+1])

)︀
6 𝑛(𝑟,Λ𝑗(𝜙, 𝜓]) − 𝑛(̃︀𝑟,Λ𝑗(𝜙, 𝜓])

6
𝑙(𝑗)∑︁
𝑠=𝑖(𝑗)

(︀
𝑛(𝑟,Λ𝑗(𝜙𝑗𝑠, 𝜙

𝑗
𝑠+1]) − 𝑛(̃︀𝑟,Λ𝑗(𝜙𝑗𝑠, 𝜙

𝑗
𝑠+1])

)︀
, 0 < ̃︀𝑟 < 𝑟.

(2.17)

Let 1 6 𝑖 6 𝑙 6 𝑠(𝑗) and 𝑟 > ̃︀𝑟 > 𝑅𝑗. By (2.14) the inequality⃒⃒⃒⃒
⃒

𝑙∑︁
𝑠=𝑖

(︀
𝑛(𝑟,Λ𝑗(𝜙𝑗𝑠, 𝜙

𝑗
𝑠+1]) − 𝑛(̃︀𝑟,Λ𝑗(𝜙𝑗𝑠, 𝜙

𝑗
𝑠+1])

)︀
− (𝑟 − ̃︀𝑟) 𝑙∑︁

𝑠=𝑖

(︀
𝜔(𝜙𝑗𝑠+1) − 𝜔(𝜙𝑗𝑠)

)︀⃒⃒⃒⃒⃒ 6 2𝑟

𝑗
,

holds true. Therefore,⃒⃒⃒⃒
⃒

𝑙∑︁
𝑠=𝑖

(︀
𝑛(𝑟,Λ𝑗(𝜙𝑗𝑠, 𝜙

𝑗
𝑠+1]) − 𝑛(̃︀𝑟,Λ𝑗(𝜙𝑗𝑠, 𝜙

𝑗
𝑠+1])

)︀
− (𝑟 − ̃︀𝑟) (︀𝜔(𝜙𝑗𝑙 ) − 𝜔(𝜙𝑗𝑖 )

)︀⃒⃒⃒⃒⃒ 6 2𝑟

𝑗
.

In view of (2.17) this implies:

(𝑟 − ̃︀𝑟)(︁𝜔(𝜙𝑗𝑙(𝑗)−1) − 𝜔(𝜙𝑗𝑖(𝑗)+1)
)︁
− 2𝑟/𝑗 6 𝑛(𝑟,Λ𝑗(𝜙, 𝜓]) − 𝑛(̃︀𝑟,Λ𝑗(𝜙, 𝜓])

6 (𝑟 − ̃︀𝑟)(︁𝜔(𝜙𝑗𝑙(𝑗)) − 𝜔(𝜙𝑗𝑖(𝑗))
)︁

+ 2𝑟/𝑗, 𝑗 > 1, 𝑟 > ̃︀𝑟 > 𝑅𝑗.
(2.18)

Let 𝜀 > 0. By the continuity of 𝜔 at the points 𝜓 and 𝜙 there exists 𝛿 > 0 such that

|𝜔( ̃︀𝜓) − 𝜔(̃︀𝜙) − (𝜔(𝜓) − 𝜔(𝜙))| < 𝜀, ∀ ̃︀𝜓, ̃︀𝜙 : | ̃︀𝜓 − 𝜓| < 𝛿, |̃︀𝜙− 𝜙| < 𝛿. (2.19)

We choose 𝑗0 > max{1/𝛿, 1/𝜀}. Then in view of (2.16), (2.18), (2.19) and (2.15) we have

𝑛(𝑟,Λ(𝜙, 𝜓]) >𝑛(𝑅𝑗0 ,Λ(𝜙, 𝜓]) +

𝑗(𝑟)−2∑︁
𝑗=𝑗0

(︂
(𝑅𝑗+1 − 𝛼−𝑅𝑗)(𝜔(𝜙𝑗𝑙(𝑗)) − 𝜔(𝜙𝑗𝑖(𝑗))) −

2𝑅𝑗+1

𝑗

)︂
+ (𝑡(𝑟) −𝑅𝑗(𝑟)−1)(𝜔(𝜙

𝑗(𝑟)−1
𝑙(𝑗(𝑟)−1)) − 𝜔(𝜙

𝑗(𝑟)−1
𝑖(𝑗(𝑟)−1))) −

2𝑡(𝑟)

𝑗(𝑟) − 1

>𝑛(𝑅𝑗0 ,Λ(𝜙, 𝜓]) + +

𝑗(𝑟)−1∑︁
𝑗=𝑗0+1

(︂
(𝑅𝑗+1 − 𝛼−𝑅𝑗)(𝜔(𝜓) − 𝜔(𝜙) − 𝜀) − 2𝑅𝑗+1

𝑗

)︂
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+ (𝑡(𝑟) −𝑅𝑗(𝑟)−1)(𝜔(𝜓) − 𝜔(𝜙) − 𝜀) − 2𝑡(𝑟)

𝑗(𝑟) − 1

>𝑛(𝑅𝑗0 ,Λ(𝜙, 𝜓]) + (𝜔(𝜓) − 𝜔(𝜙) − 𝜀)

⎛⎝𝑗(𝑟)−2∑︁
𝑗=𝑗0

(𝑅𝑗+1 − 𝛼−𝑅𝑗) + 𝑡(𝑟) −𝑅𝑗(𝑟)−1

⎞⎠
−

𝑗(𝑟)−2∑︁
𝑗=𝑗0

2𝑅𝑗+1

𝑗
− 2𝑡(𝑟)

𝑗(𝑟) − 1

>𝑛(𝑅𝑗0 ,Λ(𝜙, 𝜓]) + (𝜔(𝜓) − 𝜔(𝜙) − 𝜀)(𝑟 −𝑅𝑗0 − 𝛼𝑗(𝑟)) − 6𝜀𝑟, 𝑟 > 𝑅𝑗0 .

Therefore,

𝑛(Λ(𝜙, 𝜓]) = lim
𝑟→∞

𝑛(𝑟,Λ(𝜙, 𝜓])

𝑟
> 𝜔(𝜓) − 𝜔(𝜙) − 𝜀− lim

𝑟→∞

𝛼𝑗(𝑟)

𝑟
− 6𝜀.

By the choice of index 𝑗(𝑟) and (2.15), the inequalities 𝑟 > 𝑅𝑗(𝑟)−1 > 2𝑗(𝑟)−2𝑅1 hold true. This
is why 𝑛(Λ(𝜙, 𝜓]) > 𝜔(𝜓)−𝜔(𝜙)−7𝜀. Since 𝜀 > 0 is arbitrary, then 𝑛(Λ(𝜙, 𝜓]) > 𝜔(𝜓)−𝜔(𝜙).
In the same way we get the upper bound: 𝑛(Λ(𝜙, 𝜓]) 6 𝜔(𝜓) − 𝜔(𝜙). Hence, we have the
identities 𝑛(Λ(𝜙, 𝜓]) = 𝑛(Λ(𝜙, 𝜓]) = 𝑛(Λ(𝜙, 𝜓]) = 𝜔(𝜓) − 𝜔(𝜙). By Lemma 2.4 it yields that
Λ has angular density 𝜔. The proof is complete.

We recall that sequence Λ = {𝜆𝑘}∞𝑘=1 is called properly distributed set (see [1, Ch. II, Sect.
1]) at order one if it has an angular density and Lindelöf condition is satisfied, that is, there
exists lim

𝑟→∞
𝑁(𝑟,Λ), where

𝑁(𝑟,Λ) =
∑︁
|𝜆𝑘|<𝑟

1

𝜆𝑘
.

In the following statements we give an answer to the question how a sequence with an angular
density can be “converted” into a properly distributed set.

Let Λ have an angular density. We shall say that Λ is a general form sequence if there exist
𝜙1, 𝜙2, 𝜙3 ∈ [−𝜋, 𝜋) such that 𝜙1 < 𝜙2 < 𝜙3, 𝜙2 − 𝜙1 < 𝜋, 𝜙3 − 𝜙2 < 𝜋, 𝜙1 + 2𝜋 − 𝜙3 < 𝜋 and

𝑛(Λ(𝜙𝑗 − 𝜙, 𝜙𝑗 + 𝜙)) > 0, 𝑗 = 1, 2, 3, 𝜙 ∈ (0, 𝜋/2).

We observe that the function depending on 𝜙 in the left hand side in this inequality is non-
decreasing. This is it is sufficient to satisfy the inequality at some sequence 𝜙 = 𝜓𝑗,𝑝 → 0.

Lemma 2.5. Let 𝑎 > 1, Λ = {𝜆𝑘}∞𝑘=1 and C ∋ 𝛾𝑚 → 0, 𝑚 → ∞. Assume that Λ is a
general form sequence. Then there exists a sequence of zero density 𝑇 ⊂ Λ such that

𝑙∑︁
𝑚=1

𝛾𝑚 −𝑁(𝑎𝑙+1, 𝑇 ) → 0, 𝑙 → ∞.

Proof. Let 𝜙1, 𝜙2, 𝜙3 be the numbers involved in the definition of the general form sequence.
We let

𝜙0 = 4−1 min{𝜋 − (𝜙2 − 𝜙1);𝜋 − (𝜙3 − 𝜙2);𝜋 − (𝜙1 + 2𝜋 − 𝜙3)} < 𝜋/4.

Let us observe an important property of numbers 𝜙0, 𝜙1, 𝜙2, 𝜙3. For an arbitrary straight
line passing through the origin and for each of two half-planes created by this line, there exists
𝑗 = 1, 2, 3 such that the angle Γ𝑗 = Γ(𝜙𝑗 − 2𝜙0, 𝜙𝑗 + 2𝜙0) lies in this half-plane.

We seek the set 𝑇 as 𝑇 =
⋃︀∞
𝑚=1 𝑇𝑚, where 𝑇𝑚 = {𝑡𝑙}̃︀𝑝(𝑚)

𝑙=̃︀𝑝(𝑚−1)+1 = {𝜆𝑘(𝑚,𝑝)}𝑝(𝑚)
𝑝=1 is a some

subset of Λ lying in the ring 𝐾(𝑚) = {𝜉 : 𝑎𝑚 < |𝜉| 6 𝑎𝑚+1}. It is possible that 𝑇𝑚 = ∅ (that
is, 𝑝(𝑚) = 0, ̃︀𝑝(𝑚) = ̃︀𝑝(𝑚− 1)) for some 𝑚.
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We let ̃︀𝑝(0) = 𝑝(0) = 0, 𝛾0(0) = 0, 𝛾𝑚(0) = 𝛾𝑚−1(𝑝(𝑚− 1)) + 𝛾𝑚, 𝑚 > 1,

𝛾𝑚(𝑝) = 𝛾𝑚(0) −
̃︀𝑝(𝑚−1)+𝑝∑︁

𝜇=̃︀𝑝(𝑚−1)+1

1

𝑡𝜇
, 𝑝 = 1, 𝑝(𝑚). (2.20)

Let ̃︀Γ𝑗 = Γ(𝜙𝑗 − 𝜙0, 𝜙𝑗 + 𝜙0), 𝑗 = 1, 2, 3, Π(𝜙) = {𝜉 ∈ C : Re (𝜉𝑒𝑖𝜙} > 0, 𝜙(𝑚, 𝑝) be the
argument of number 𝛾𝑚(𝑝) and 𝑗(𝑚, 𝑝), 𝑚 ̸= 0, be the index such that Γ𝑗(𝑚,𝑝) ⊂ Π(𝜙(𝑚, 𝑝)).

For each 𝑚 > 1 we choose a set 𝑇𝑚 = {𝑡𝑙}̃︀𝑝(𝑚−1)+𝑝(𝑚)
𝑙=̃︀𝑝(𝑚−1)+1 such that

1) 𝑝(𝑚) is the minimal non-negative integer number for which either |𝛾𝑚(𝑝(𝑚))| 6
(𝑎𝑚 sin𝜙0)

−1 or the set 𝐾(𝑚)
⋂︀

Γ𝑗(𝑚,𝑝(𝑚)) contains no points in the sequence Λ ∖ 𝑇𝑚.

2) For each 𝑝 = 1, 𝑝(𝑚), the number 𝑡̃︀𝑝(𝑚−1)+𝑝 is an arbitrary element 𝜆𝑘(𝑚,𝑝) ∈ Λ ∖ 𝑇𝑚,𝑝−1,

where 𝑇𝑚,0 = ∅ and 𝑇𝑚,𝑝−1 = {𝜆𝑘(𝑚,𝑠)}𝑝−1
𝑠=1, 𝑝 > 1, and this element belongs to the intersection

𝐾(𝑚)
⋂︀̃︀Γ𝑗(𝑚,𝑝−1).

Thus, the set 𝑇 =
⋃︀∞
𝑚=1 𝑇𝑚 is well-defined. Let us find the upper bound for the indices

𝑝(𝑚) > 0. First of all, let us prove the inequality

|𝛾𝑚(𝑝)| 6 |𝛾𝑚(𝑝− 1)| − 2−1𝑎−𝑚−1 sin𝜙0, 𝑝 = 1, 𝑝(𝑚). (2.21)

In accordance with (2.20) we have 𝛾𝑚(𝑝) = 𝛾𝑚(𝑝 − 1) − (𝜆𝑘(𝑚,𝑝))
−1. Then by the cosine

theorem

|𝛾𝑚(𝑝)|2 = |𝛾𝑚(𝑝− 1)|2 + |𝜆𝑘(𝑚,𝑝)|−2 − 2|𝛾𝑚(𝑝− 1)||𝜆𝑘(𝑚,𝑝)|−1 cos𝛼,

where 𝛼 is an angle between the vectors 𝛾𝑚(𝑝 − 1) and (𝜆𝑘(𝑚,𝑝))
−1, which does not exceed

𝜋/2 − 𝜙0 (such angle exists since 𝜆𝑘(𝑚,𝑝) ∈ ̃︀Γ𝑗(𝑚,𝑝−1)). Since 𝜆𝑘(𝑚,𝑝) ∈ 𝐾(𝑚) and by 1) the
inequality |𝛾𝑚(𝑝− 1)| > (𝑎𝑚 sin𝜙0)

−1 holds true, then

|𝛾𝑚(𝑝− 1)|2 − |𝛾𝑚(𝑝)|2 >2|𝛾𝑚(𝑝− 1)||𝜆𝑘(𝑚,𝑝)|−1 sin𝜙0 − |𝜆𝑘(𝑚,𝑝)|−2

=|𝛾𝑚(𝑝− 1)||𝜆𝑘(𝑚,𝑝)|−1
(︀
2 sin𝜙0 − (|𝜆𝑘(𝑚,𝑝)||𝛾𝑚(𝑝− 1)|)−1

)︀
>|𝛾𝑚(𝑝− 1)||𝜆𝑘(𝑚,𝑝)|−1(2 sin𝜙0 − sin𝜙0) > |𝛾𝑚(𝑝− 1)|𝑎−𝑚−1 sin𝜙0.

In particular, |𝛾𝑚(𝑝− 1)| > |𝛾𝑚(𝑝)|. Therefore,

2|𝛾𝑚(𝑝− 1)|(|𝛾𝑚(𝑝− 1)| − |𝛾𝑚(𝑝)|) > (|𝛾𝑚(𝑝− 1)| + |𝛾𝑚(𝑝)|)(|𝛾𝑚(𝑝− 1)| − |𝛾𝑚(𝑝)|)
> |𝛾𝑚(𝑝− 1)|𝑎−𝑚−1 sin𝜙0.

It follows inequality (2.21). Applying it 𝑝(𝑚) times, we get

0 6 |𝛾𝑚(𝑝(𝑚))| 6 |𝛾𝑚(0)| − 2−1𝑎−𝑚−1𝑝(𝑚) sin𝜙0, 𝑚 > 1. (2.22)

For 𝑝(𝑚) = 0 this inequality is trivial. This is why

𝑝(𝑚) 6 2𝑎𝑚+1(sin𝜙0)
−1|𝛾𝑚(0)|, 𝑚 > 1. (2.23)

Let us show that

𝛾𝑙(𝑝(𝑙)) =
𝑙∑︁

𝑚=1

𝛾𝑚 −𝑁(𝑎𝑙+1, 𝑇 ) → 0, 𝑙 → ∞. (2.24)

By the assumption, 𝑛(Λ(𝜙𝑗 − 𝜙0, 𝜙𝑗 + 𝜙0)) > 0, 𝑗 = 1, 2, 3. Then

lim
𝑚→∞

𝑛(𝑎𝑚+1,Λ(𝜙𝑗 − 𝜙0, 𝜙𝑗 + 𝜙0)) − 𝑛(𝑎𝑚,Λ(𝜙𝑗 − 𝜙0, 𝜙𝑗 + 𝜙0))

𝑎𝑚+1

= 𝑛(Λ(𝜙𝑗 − 𝜙0, 𝜙𝑗 + 𝜙0)) − 𝑎−1𝑛(Λ(𝜙𝑗 − 𝜙0, 𝜙𝑗 + 𝜙0)) > 0, 𝑗 = 1, 2, 3.

Therefore, there exist a number 𝜏 > 0 and an index 𝑚0 such that

𝑛(𝑎𝑚+1,Λ(𝜙𝑗 − 𝜙0, 𝜙𝑗 + 𝜙0)) − 𝑛(𝑎𝑚,Λ(𝜙𝑗 − 𝜙0, 𝜙𝑗 + 𝜙0)) > 𝑎𝑚+1, 𝑗 = 1, 2, 3, 𝑚 > 𝑚0.
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In view of (2.22) and 1), 2) we obtain

|𝛾𝑚(𝑝(𝑚))| 6 max{(𝑎𝑚 sin𝜙0)
−1, |𝛾𝑚(0)| − 2−1𝜏 sin𝜙0}, 𝑚 > 𝑚0. (2.25)

In accordance with the assumption of the lemma we can assume that

|𝛾𝑚| + (𝑎𝑚−1 sin𝜙0)
−1 6 4−1𝜏 sin𝜙0, 𝑚 > 𝑚0. (2.26)

Assume that |𝛾𝑚(𝑝(𝑚))| > (𝑎𝑚 sin𝜙0)
−1 for all 𝑚 > 𝑚0. Then by (2.25), (2.26) and the

definition of 𝛾𝑚(0) we have

|𝛾𝑙(𝑝(𝑙))| 6|𝛾𝑙(0)| − 2−1𝜏 sin𝜙0 6 |𝛾𝑙−1(𝑝(𝑙 − 1))| + |𝛾𝑙| − 2−1𝜏 sin𝜙0

6|𝛾𝑙−1(𝑝(𝑙 − 1))| − 4−1𝜏 sin𝜙0 6 · · · 6 |𝛾𝑚0(𝑝(𝑚0))| − 4−1𝜏(𝑙 −𝑚0) sin𝜙0.

For large indices 𝑙 the right hand in the above relation becomes negative. This leads us to the
contradiction. Thus, there exists 𝑚1 > 𝑚0 such that |𝛾𝑚1(𝑝(𝑚1))| 6 (𝑎𝑚1 sin𝜙0)

−1. Then by
(2.26) we obtain

|𝛾𝑚1+1(0)| − 2−1𝜏 sin𝜙0 6 |𝛾𝑚1(𝑝(𝑚1))| + |𝛾𝑚1+1| − 2−1𝜏 sin𝜙0 6 0.

Therefore, in view of (2.25) we have |𝛾𝑚1+1(𝑝(𝑚1 + 1))| 6 (𝑎𝑚1+1 sin𝜙0)
−1. It yields that (2.24)

is true. It remains to show that 𝑇 has a zero density. In accordance with (2.23), (2.24), the
assumption of the lemma and the definition of 𝛾𝑚(0) we have:

𝑝(𝑚)

𝑎𝑚
6

2𝑎|𝛾𝑚(0)|
sin𝜙0

6
2𝑎(|𝛾𝑚−1(𝑝(𝑚− 1))| + |𝛾𝑚|)

sin𝜙0

→ 0, 𝑚→ ∞.

We fix 𝜀 > 0. Then there exists an index 𝑚(𝜀) such that 𝑝(𝑚) 6 𝜀𝑎𝑚, 𝑚 > 𝑚(𝜀). Let 𝑟 > 𝑎𝑚(𝜀)

and an index 𝑚(𝑟) is chosen so that 𝑎𝑚(𝑟) 6 𝑟 < 𝑎𝑚(𝑟)+1. Then

𝑛(𝑟, 𝑇 )

𝑟
=
𝑛(𝑎𝑚(𝜀), 𝑇 )

𝑟
+
𝑛(𝑎𝑚(𝑟)+1, 𝑇 ) − 𝑛(𝑎𝑚(𝜀), 𝑇 )

𝑟

6
𝑛(𝑎𝑚(𝜀), 𝑇 )

𝑟
+
𝑝(𝑚(𝜀)) + · · · + 𝑝(𝑚(𝑟))

𝑎𝑚(𝑟)
6
𝑛(𝑎𝑚(𝜀), 𝑇 )

𝑟
+ 𝜀

𝑎𝑚(𝜀) + · · · + 𝑎𝑚(𝑟)

𝑎𝑚(𝑟)
.

It follows that 𝑛(𝑇 ) 6 𝜀𝑎/(𝑎− 1). Since 𝜀 > 0 is arbitrary, this completes the proof.

Lemma 2.6. Let Λ = {𝜆𝑘}∞𝑘=1 has a density 𝜏 > 0, 𝑎 > 1, 𝑟2 > 𝑟1 > 0 and 𝑟2/𝑟1 6 𝑎. Then
the representation∑︁
𝑟16|𝜆𝑘|<𝑟2

1

|𝜆𝑘|
= 𝜏 ln

(︂
𝑟2
𝑟1

)︂
+ 𝜀(𝑟1, 𝑟2), 𝜀(𝑟1, 𝑟2) → 0, 𝑟1 → ∞, 𝑟2 > 𝑟1 > 0, 𝑟2/𝑟1 6 𝑎,

holds true, that is 𝜀(𝑟1, 𝑟2) → 0, 𝑟1 → ∞, uniformly in 𝑟2 : 𝑟2 > 𝑟1 > 0, 𝑟2/𝑟1 6 𝑎.

Remark. If the ring 𝑟1 6 |𝜆| < 𝑟2 contains no points 𝜆𝑘, we assume that the left hand side
in the above identity vanishes.

Proof. We assume that 𝑛(𝑟,Λ) → +∞, 𝑟 → ∞; otherwise the statement of the lemma becomes
trivial.

Let 𝜏 = 0. Since 𝑟2/𝑟1 6 𝑎, then∑︁
𝑟16|𝜆𝑘|<𝑟2

1

|𝜆𝑘|
6

1

𝑟1
(𝑛(𝑎𝑟1,Λ) − 𝑛(𝑟1,Λ)) → 0, 𝑟1 → ∞.

Let 𝜏 > 0. Then by Euler representation we have
𝑛∑︁
𝑘=1

1

𝑘
= ln𝑛+ 𝛽 + 𝛽(𝑛), 𝛽(𝑛) → 0, 𝑛→ ∞, (2.27)
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where 𝛽 is the Euler constant. By the assumption, Λ has the density 𝜏 , that is, the identities

|𝜆𝑘| = 𝑘/(𝜏 + 𝛿(𝑘)), 𝑘 → ∞, 𝑛(𝑟,Λ) = 𝜏𝑟 + 𝜀(𝑟)𝑟, 𝜀(𝑟) → 0, 𝑟 → ∞, (2.28)

hold true. By (2.27) it follows that∑︁
𝑟16|𝜆𝑘|<𝑟2

1

|𝜆𝑘|
=

∑︁
𝑟16|𝜆𝑘|<𝑟2

𝜏 + 𝛿(𝑘)

𝑘
= 𝜏

𝑛(𝑟2,Λ)∑︁
𝑘=𝑛(𝑟1,Λ)+1

1

𝑘
+

𝑛(𝑟2,Λ)∑︁
𝑘=𝑛(𝑟1,Λ)+1

𝛿(𝑘)

𝑘

=𝜏 ln
𝑛(𝑟2,Λ)

𝑛(𝑟1,Λ)
+ 𝜏 (𝛽(𝑛(𝑟2,Λ)) − 𝛽(𝑛(𝑟1,Λ))) +

𝑛(𝑟2,Λ)∑︁
𝑘=𝑛(𝑟1,Λ)+1

𝛿(𝑘)

𝑘

=𝜏 ln
𝑟2
𝑟1

+ 𝜏

(︂
ln
𝜏 + 𝜀(𝑟2)

𝜏 + 𝜀(𝑟1)
+ 𝛽(𝑛(𝑟2,Λ)) − 𝛽(𝑛(𝑟1,Λ))

)︂
+

𝑛(𝑟2,Λ)∑︁
𝑘=𝑛(𝑟1,Λ)+1

𝛿(𝑘)

𝑘
.

We fix 𝜀 > 0. In accordance with (2.27) and (2.28) we choose an index 𝑘0 such that |𝛿(𝑘)| 6 𝜀,
𝛽(𝑛)| 6 𝜀, 𝑘, 𝑛 > 𝑘0. By (2.28) we also choose 𝑟(𝜀) > 0 such that⃒⃒⃒⃒

ln
𝜏 + 𝜀(𝑟2)

𝜏 + 𝜀(𝑟1)

⃒⃒⃒⃒
6 𝜀, 𝑛(𝑟1,Λ) > 𝑘0, 𝑟2 > 𝑟1 > 𝑟(𝜀).

Then

|𝜀(𝑟1, 𝑟2)| 6 3𝜀𝜏 + 𝜀

𝑛(𝑎𝑟1,Λ)∑︁
𝑘=𝑛(𝑟1,Λ)+1

1

𝑘
6 3𝜀𝜏 + 𝜀(ln 𝑎+ 3𝜀), 𝑟2 > 𝑟1 > 𝑟(𝜀), 𝑟2/𝑟1 6 𝑎.

The proof is complete.

Let 𝐾 be a convex compact set. It determines uniquely a function in the class Σ by means
of the arc length of its boundary 𝜕𝐾. For each 𝜙 ∈ R by 𝐿(𝜙,𝐾) we denote the intersection
of the support straight line

𝑙(𝜙,𝐾) = {𝑧 : Re (𝑧𝑒−𝑖𝜙) = 𝐻(𝜙,𝐾)}, 𝐻(𝜙,𝐾) = sup
𝑧∈𝐾

Re (𝑧𝑒−𝑖𝜙),

and the boundary 𝜕𝐾, where 𝐻(𝜙,𝐾) is the support function of the compact set 𝐾. The
set 𝐿(𝜙,𝐾) is either a point, which we denote by 𝑧(𝜙,𝐾), or a segment. The set Ψ(𝐾)
of directions 𝜙, for which 𝐿(𝜙,𝐾) is a segment, is at most countable. Let 𝜙1, 𝜙2 /∈ Ψ(𝐾),
𝜙2 − 𝜙1 ∈ (0, 2𝜋), and 𝑠(𝜙1, 𝜙2, 𝐾) be the length of the arc 𝜕𝐾 connecting points 𝑧(𝜙1, 𝐾) and
𝑧(𝜙2, 𝐾) and motion on this arc is made from 𝑧(𝜙1, 𝐾) to 𝑧(𝜙2, 𝐾) in the positive direction
(counterclockwise). Let 𝜙1, 𝜙2 ∈ (−2𝜋, 0) ∖ Ψ(𝐾), 𝜙 ∈ (𝜙1, 𝜙1 + 2𝜋) ∖ Ψ(𝐾). The function

𝜔(𝜙1, 𝐾) = − lim
𝜙2→0

𝑠(𝜙1, 𝜙2, 𝐾), 𝜔(𝜙,𝐾) = 𝑠(𝜙1, 𝜙,𝐾) + 𝜔(𝜙1, 𝐾)

is continued uniquely to the function in the class Σ and this continuation is independent of 𝜙1.
It is easy to observe that the sets Ψ(𝐾)

⋂︀
[−2𝜋, 2𝜋) and Φ(𝜔(·, 𝐾)) coincide.

Let 𝜙𝑠 /∈ Φ(𝐾), 𝑠 = 1, 𝑝, be such that 𝜙1 ∈ (−2𝜋, 0) and 𝜙1 < · · · < 𝜙𝑝 < 𝜙1+2𝜋= 𝜙𝑝+1. We
let 𝑎𝑠 = 𝑧(𝜙𝑠, 𝐾), 𝑠 = 1, 𝑝+ 1 and consider the convex polygon Ω with vertices 𝑎1, . . . , 𝑎𝑝, 𝑎𝑝+1 =
𝑎1 inscribed in the compact set 𝐾. We note that some vertices with neighbouring indices can
coincide. By the symbol 𝑒𝑠 we denote the unit outward normal to 𝜕Ω in the internal points (if
they exist) of the segment [𝑎𝑠, 𝑎𝑠+1]. We mention that for some 𝜙(𝑠) ∈ (𝜙𝑠, 𝜙𝑠+1) the identity
𝑒𝑠 = 𝑒𝑖𝜙(𝑠) holds true. If 𝑎𝑠 = 𝑎𝑠+1, then by 𝑒𝑠 we mean an arbitrarily chosen vector 𝑒𝑖𝜙, where
𝜙 ∈ (𝜙𝑠, 𝜙𝑠+1). The next statement has a simple geometric meaning.

Lemma 2.7. The identity
𝑝∑︁
𝑠=1

|𝑎𝑠+1 − 𝑎𝑠|𝑒𝑠 = 0
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holds true.

Proof. We have
𝑝∑︁
𝑠=1

|𝑎𝑠+1 − 𝑎𝑠|𝑒𝑠 =

𝑝∑︁
𝑠=1

(𝑎𝑠+1 − 𝑎𝑠)𝑒
−𝑖𝜋/2 = 0.

Remark. It follows from 2.7 that for 𝜔 = 𝜔(·, 𝐾), the identity∫︁ 2𝜋

0

𝑒𝑖𝜙𝑑𝜔(𝜙) = 0 (2.29)

holds true. Vice versa, let 𝜔 ∈ Σ satisfy this identity. Then by [3, Ch. I, Sect. 17, Thm. 24],
[2, Ch. I, Sect. 2, Thm. 1.2.4] the function

𝐻(𝜙) = 𝐴 cos𝜙+𝐵 sin𝜙− 1

2𝜋

𝜙∫︁
𝜙−2𝜋

(𝜙− 𝜃) sin(𝜙− 𝜃)𝑑𝜔(𝜃),

coincide with the support function 𝐻(𝜙,𝐾) of the convex set 𝐾 (for different 𝐴,𝐵 ∈ R the
compact sets can be obtained one from the other by a shift). At that, 𝜔(𝜃) ≡ 𝜔(𝜃,𝐾).

By the symbol Σ0 we denote a subclass of all functions 𝜔 ∈ Σ satisfying (2.29).

Lemma 2.8. Let Λ = {𝜆𝑘}∞𝑘=1 has an angular density 𝜔Λ ∈ Σ0. Then for all 𝑎 > 1,
𝑟2 > 𝑟1 > 0 and 𝑟2/𝑟1 6 𝑎

𝒩 (𝑟2,Λ) −𝒩 (𝑟1,Λ) = 𝜀(𝑟1, 𝑟2) → 0, 𝑟1 → ∞.

Proof. By the assumption, 𝜔Λ ∈ Σ0. Then, as it was mentioned above, there exists a convex
compact set 𝐾 obeying the identity 𝜔Λ ≡ 𝜔(𝜙,𝐾).

We fix 𝜀 > 0 and choose 𝛿 > 0 such that

|𝑒𝑖𝜙 − 𝑒𝑖𝜃| 6 𝜀/(4𝑠(𝐾) ln 𝑎), ∀𝜙, 𝜃 : |𝜙− 𝜃| < 𝛿,

where 𝑠(𝐾) = 𝜔Λ(𝜙1 + 2𝜋) − 𝜔Λ(𝜙1) is the length of the boundary of the compact set 𝐾.
We choose numbers 𝜙𝑠 /∈ Φ(𝜔Λ), 𝑠 = 1, 𝑝, 𝜙1 ∈ (−2𝜋, 0), 𝜙1 < · · · < 𝜙𝑝 < 𝜙1 + 2𝜋 = 𝜙𝑝+1,
satisfying the conditions: 1) 𝜙𝑠+1 − 𝜙𝑠 < 𝛿, 𝑠 = 1, 𝑝, 2) 𝑠(𝐾) − 𝑃 (Ω) < 𝜀/(4 ln 𝑎), where 𝑃 (Ω)
is the perimeter of the convex polygon Ω with the vertices 𝑎1, . . . , 𝑎𝑝, 𝑎𝑝+1 = 𝑎1, 𝑎𝑠 = 𝑧(𝜙𝑠, 𝐾),
𝑠 = 1, 𝑝+ 1.

Let 𝜆𝑘 = |𝜆𝑘|𝑒𝑖𝜓𝑘 , 𝜓𝑘 ∈ (𝜙1, 𝜙1 +2𝜋], 𝑘 > 1, and 𝜙(𝑠) ∈ (𝜙𝑠, 𝜙𝑠+1), 𝑠 = 1, 𝑝, are such that the
vector 𝑒𝑠 = 𝑒𝑖𝜙(𝑠) is the outward normal to 𝜕Ω in the internal points of the segment [𝑎𝑠, 𝑎𝑠+1]
(if there are no such points, then 𝜙(𝑠) ∈ (𝜙𝑠, 𝜙𝑠+1) is chosen arbitrarily). Then by condition 1)
and the choice of 𝛿 > 0 we have:⃒⃒⃒⃒

⃒⃒ ∑︁
𝜓𝑘∈(𝜙𝑠,𝜙𝑠+1],𝑟16|𝜆𝑘|<𝑟2

(︂
1

𝜆𝑘
− 1

|𝜆𝑘|𝑒𝑖𝜙(𝑠)

)︂⃒⃒⃒⃒⃒⃒ 6 𝜀

4𝑠(𝐾) ln 𝑎

∑︁
𝜓𝑘∈(𝜙𝑠,𝜙𝑠+1],𝑟16|𝜆𝑘|<𝑟2

1

|𝜆𝑘|
.

Since 𝑛(Λ(𝜙𝑠, 𝜙𝑠+1]) = 𝜔Λ(𝜙𝑠+1) − 𝜔Λ(𝜙𝑠), by Lemma 2.6 we obtain⃒⃒⃒⃒
⃒⃒ ∑︁
𝜓𝑘∈(𝜙𝑠,𝜙𝑠+1],𝑟16|𝜆𝑘|<𝑟2

(︂
1

𝜆𝑘
− 1

|𝜆𝑘|𝑒𝑖𝜙(𝑠)

)︂⃒⃒⃒⃒⃒⃒ 6 𝜖(𝜔Λ(𝜙𝑠+1) − 𝜔Λ(𝜙𝑠))

4𝑠(𝐾)
+ 𝜀𝑠(𝑟1, 𝑟2),

where 𝑟2 > 𝑟1 > 0, 𝑟2/𝑟1 6 𝑎 and 𝜀𝑠(𝑟1, 𝑟2) → 0, 𝑟1 → ∞. Thus,

𝑝∑︁
𝑠=1

⃒⃒⃒⃒
⃒⃒ ∑︁
𝜓𝑘∈(𝜙𝑠,𝜙𝑠+1],𝑟16|𝜆𝑘|<𝑟2

(︂
1

𝜆𝑘
− 1

|𝜆𝑘|𝑒𝑖𝜙(𝑠)

)︂⃒⃒⃒⃒⃒⃒ 6 𝜀

4
+ ̃︀𝜀(𝑟1, 𝑟2) 6 𝜀

2
, (2.30)
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where 𝑟2 > 𝑟1 > 𝑟0(𝜀),
𝑟2
𝑟1

6 𝑎.

Let 𝜔Λ(𝜙𝑠+1) − 𝜔Λ(𝜙𝑠) = |𝑎𝑠+1 − 𝑎𝑠| + 𝛾𝑠. Employing again Lemma 2.6 and Lemma 2.7, we
get

𝑝∑︁
𝑠=1

∑︁
𝜓𝑘∈(𝜙𝑠,𝜙𝑠+1],𝑟16|𝜆𝑘|<𝑟2

𝑒𝑠
|𝜆𝑘|

= ln

(︂
𝑟2
𝑟1

)︂ 𝑝∑︁
𝑠=1

𝑒𝑠(|𝑎𝑠+1 − 𝑎𝑠| + 𝛾𝑠) + 𝜀(𝑟1, 𝑟2)

= ln

(︂
𝑟2
𝑟1

)︂ 𝑝∑︁
𝑠=1

𝑒𝑠𝛾𝑠 + 𝜀(𝑟1, 𝑟2), 𝜀(𝑟1, 𝑟2) →→ 0, 𝑟1 → ∞.

In view of (2.30) and condition 2) we obtain

𝒩 (𝑟2,Λ) −𝒩 (𝑟1,Λ) = 𝜀(𝑟1, 𝑟2),

|𝜀(𝑟1, 𝑟2)| 6
𝜀

2
+ ln

(︂
𝑟2
𝑟1

)︂ ⃒⃒⃒⃒
⃒
𝑝∑︁
𝑠=1

𝑒𝑠𝛾𝑠

⃒⃒⃒⃒
⃒+ |𝜀(𝑟1, 𝑟2)| 6

3𝜀

4
+ ln 𝑎(𝑠(𝐾) − 𝑃 (Ω)) 6 𝜀,

where 𝑟2 > 𝑟1 > ̃︀𝑟0(𝜀), 𝑟2/𝑟1 6 𝑎. This completes the proof.

Let 𝜔 ∈ Σ. we shall say that 𝜔 is a general form function if there exist 𝜙1, 𝜙2, 𝜙3 ∈ [−𝜋, 𝜋)
such that 𝜙1 < 𝜙2 < 𝜙3, 𝜙2 − 𝜙1 < 𝜋, 𝜙3 − 𝜙2 < 𝜋, 𝜙1 + 2𝜋 − 𝜙3 < 𝜋 and

𝜔(𝜙𝑗 + 𝜙) − 𝜔(𝜙𝑗 − 𝜙) > 0, 𝑗 = 1, 2, 3, 𝜙 ∈ (0, 𝜋/2).

If Λ has an angular density 𝜔, it is easy to confirm that Λ is a general form sequence if and only
if 𝜔 = 𝜔Λ is a general form function. Let 𝐾 be a convex compact set. It is easy to show that
𝜔(𝜙,𝐾) is a general form function if and only if it is a closure of a bounded convex domain.
Assume that the identity 𝜔(𝜙) ≡ 𝜔(𝜙,𝐾) holds true. If 𝐾 is a point, then 𝜔(𝜙) ≡ 0. If 𝐾 is
a segment, then 𝜔 takes exactly three mutually different values in [0, 2𝜋]. In other cases, that
is, as 𝐾 is a closure of a domain, 𝜔 takes more than three mutually different values in segment
[0, 2𝜋]. If 𝜔 ∈ Σ0, as it was mentioned above, there exists a convex compact set 𝐾 satisfying
the identity 𝜔(𝜙) ≡ 𝜔(𝜙,𝐾).

Thus, if 𝜔 ∈ Σ0, then 𝜔 is a general form function if and only if it takes more than three
mutually different values in segment [0, 2𝜋].

Lemma 2.9. Let ̃︀Λ has an angular density 𝜔̃︀Λ ∈ Σ0 and 𝜔̃︀Λ is a general form function.

Then there exists a sequence Λ ⊆ ̃︀Λ with an angular density 𝜔Λ = 𝜔̃︀Λ such that 𝒩 (𝑟,Λ) → 0,
𝑟 → +∞.

Proof. We let

𝛾1 = 𝒩 (22, ̃︀Λ), 𝛾𝑚 = 𝒩 (2𝑚+1, ̃︀Λ) −𝒩 (2𝑚, ̃︀Λ), 𝑚 > 2.

Since 𝜔̃︀Λ ∈ Σ0, by Lemma 2.8 𝛾𝑚 → 0, 𝑚 → ∞. By the assumption, 𝜔̃︀Λ is a general form

function. Therefore, ̃︀Λ is a general form sequence. Then by Lemma 2.5 there exists a sequence

of zero density 𝑇 ⊂ ̃︀Λ such that

𝑙∑︁
𝑚=1

𝛾𝑚 −𝒩 (2𝑙+1, 𝑇 ) → 0, 𝑙 → ∞.

By the definition of 𝛾𝑚 we obtain: 𝒩 (2𝑙, ̃︀Λ) −𝒩 (2𝑙, 𝑇 ) → 0, 𝑙 → ∞. Let Λ ⊆ ̃︀Λ is a sequence

completing 𝑇 to ̃︀Λ, that is, ̃︀Λ = Λ
⋃︀
𝑇 . Then by the above facts we have 𝒩 (2𝑙,Λ) → 0,

𝑙 → +∞. For each 𝑟 > 0 we choose a number 𝑙(𝑟) by condition 2𝑙(𝑟) 6 𝑟 < 2𝑙(𝑟)+1. The proven
facts and Lemma 2.8 yield

𝑁(𝑟,Λ) = 𝑁(2𝑙(𝑟),Λ) + (𝒩 (𝑟,Λ) −𝒩 (2𝑙(𝑟),Λ)) → 0, 𝑟 → +∞.
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Since 𝑇 has a zero density, the sequence Λ has an angular density 𝜔Λ = 𝜔̃︀Λ. At that, the
embedding holds true. The proof is complete.

Theorem 2. Let 𝛿 > 0 and 𝜔 ∈ Σ0 is a general form function. Then there exists a sequence
Λ = {𝜆𝑘}∞𝑘=1 ⊆ ΛZ with an angular density 𝜔Λ = 𝜔 such that

|𝜆𝑘+1| − |𝜆𝑘| > 𝛼 =
1

2(𝜔Λ(𝜙1 + 2𝜋) − 𝜔Λ(𝜙1))
− 𝛿, 𝑘 > 1, (2.31)

where 𝜙1 ∈ (−2𝜋, 0) ∖ Φ(𝜔) is chosen arbitrarily and 𝒩 (𝑟,Λ) → 0, 𝑟 → +∞.

Proof. By Theorem 2.1, there exists a sequence ̃︀Λ = {̃︀𝜆𝑘}∞𝑘=1 ⊆ ΛZ with an angular density
𝜔̃︀Λ = 𝜔 such that

|̃︀𝜆𝑘+1| − |̃︀𝜆𝑘| > 𝛼, 𝑘 > 1. (2.32)

By Lemma 2.9, there exists a sequence Λ ⊆ ̃︀Λ ⊆ ΛZ with an angular density 𝜔Λ = 𝜔̃︀Λ = 𝜔
satisfying the condition 𝒩 (𝑟,Λ) → 0, 𝑟 → +∞. It remains to observe that inequalities (2.31)

hold true for Λ ⊆ ̃︀Λ by (2.32). The proof is complete.

Remark. The sequence Λ ⊆ ΛZ, existence of which is proved in Theorem 2.2, is a regular
set and in particular, it is properly distributed.

3. Representation of analytic functions

Properly distributed sets are closely related with functions of regular growth. Let 𝑓 be an
entire function of exponential type, that is, there exists 𝐴 > 0 and 𝐵 > 0 such that

ln |𝑓(𝜆)| 6 𝐴+𝐵|𝜆|, 𝜆 ∈ C.
The upper indicator of 𝑓 (or simply indicator) is the function

ℎ𝑓 (𝜆) = lim
𝑡→∞

ln |𝑓(𝑡𝜆)|
𝑡

, 𝜆 ∈ C.

The indicator ℎ𝑓 is a convex positive homogeneous function of order one. At that, ℎ𝑓 (𝑒
𝑖𝜙)

coincides with the support function 𝐻(𝜙,𝐾) of some convex compact set 𝐾 called the indicator
diagram of 𝑓 (see, [3, Ch. I, Sect. 19]). The compact set complex conjugated with 𝐾 is called
the conjugate diagram of function 𝑓 .

Function 𝑓 is said to have a regular growth (see [3, Ch. III]) if

ℎ𝑓 (𝜆) = lim
𝑡→∞,𝑡/∈𝐸

ln |𝑓(𝑡𝜆)|
𝑡

, 𝜆 ∈ C,

where 𝐸 is a set of zero relative measure in the ray (0,+∞), that is, the Lebesgue measure of
its intersection with the interval (0, 𝑟) is infinitesimally small in comparison with 𝑟 as 𝑟 → +∞.
The regularity of the growth for function 𝑓 is equivalent to the asymptotic identity

ln |𝑓(𝜆)| = ℎ𝑓 (𝜆) + 𝛼(𝜆), 𝜆 ∈ C, lim
|𝜆|→∞,𝜆/∈ℐ𝑓

𝛼(𝜆)/|𝜆| = 0,

where ℐ𝑓 is a some 𝐶0-set. We recall (see [3, Ch. II, Sect. 1]) that ℛ ⊂ C is called 𝐶0-set if it
can be covered by the balls 𝐵(𝑧𝑗, 𝑟𝑗), 𝑗 > 1, such that

lim
𝑟→∞

1

𝑟

∑︁
|𝑧𝑗 |<𝑟

𝑟𝑗 = 0.

Let Λ = {𝜆𝑘}∞𝑘=1 and 𝑓(𝜆,Λ) be the canonical product

𝑓(𝜆,Λ) =
∞∏︁
𝑘=1

(︂
1 − 𝜆

𝜆𝑘

)︂
exp

𝑛𝑘𝜆

𝜆𝑘
.
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The function 𝑓(𝜆,Λ) has a regular growth if and only if Λ is a properly distributed set [3,
Ch. III, Sect. 3, Thm. 4, Ch. II, Sect. 1, Thm. 2]. At that, its angular density 𝜔Λ belongs to
the set Σ0. If 𝐾 is an indicator diagram of the function 𝑓(𝜆,Λ), then 𝜔Λ(𝜃) ≡ 𝜔(𝜃,𝐾)/2𝜋 and
ℎ𝑓 (𝑒

𝑖𝜙) ≡ 𝐻(𝜙,𝐾) [3, Ch. II, Sect. 1, Eq. (2.07)].
Let 𝐷 be a bounded convex domain in C and 𝐻(𝐷) is a space of functions analytic in the

vicinity of the closure 𝐷. There are well-known A.F. Leontiev conditions [2, Ch. IV, Sect. 6,
Thm. 4.6.4] for representing functions 𝑔 ∈ 𝐻(𝐷) as the series

𝑔(𝑧) =
∞∑︁
𝑘=1

𝑑𝑘𝑒
𝜆𝑘𝑧, 𝑧 ∈ 𝐷, (3.1)

in the case, when Λ is a set of simple zeroes for an entire function 𝑓 of exponential type, whose
conjugated diagram coincides with 𝐷. These are two conditions: the regularity of the growth
of function 𝑓 and the lower bound for the absolute value of its derivatives at points 𝜆𝑘

ln |𝑓 ′(𝜆𝑘)| > ℎ𝑓 (𝜆𝑘) − 𝜀𝑘|𝜆𝑘|, 0 < 𝜀𝑘 → 0, 𝑘 → ∞.

Let us provide sufficient conditions for representation (3.1) for an arbitrary sequence Λ =
{𝜆𝑘}∞𝑘=1, which sequence is not assumed to be a zero set of some entire functions. These
conditions are formulated only in terms of geometric characteristics of Λ and 𝐷. In order to do
it, we need a “local” characteristics of the sequence Λ introduced in work [7].

Let Λ = {𝜆𝑘}∞𝑘=1. We consider the function

𝑞Λ(𝑧, 𝑤, 𝛿) =
∏︁

𝜆𝑘∈𝐵(𝑤,𝛿|𝑤|)

𝑧 − 𝜆𝑘
3𝛿|𝜆𝑘|

.

In the case, when the ball 𝐵(𝑤, 𝛿|𝑤|) contains no points 𝜆𝑘, we let 𝑞Λ(𝑧, 𝑤, 𝛿) ≡ 1. The absolute
value of the function 𝑞Λ(𝑧, 𝑤, 𝛿) can be interpreted as the measure of accumulation of points
𝜆𝑘 ∈ 𝐵(𝑤, 𝛿|𝑤|) at 𝑧. The quantity ln |𝑞Λ(𝑧, 𝑤, 𝛿)|/|𝑤| is similar by sense to the logarithm of
geometric mean (arithmetic mean of logarithm) of normalized distances from 𝜆𝑘 ∈ 𝐵(𝑤, 𝛿|𝑤|)
to 𝑧. If 𝛿 ∈ (0, 1), then the absolute value of each factor in the definition of 𝑞Λ in the ball
𝐵(𝑤, 𝛿|𝑤|) is estimated from above by the quantity 2(3(1 − 𝛿))−1. This is why for 𝛿 ∈ (0, 1/3)
it does not exceed one. We let

𝑞𝑚Λ (𝑧, 𝛿) =
∏︁

𝜆𝑘∈𝐵(𝜆𝑚,𝛿|𝜆𝑚|),𝑘 ̸=𝑚

𝑧 − 𝜆𝑘
3𝛿|𝜆𝑘|

, 𝑆Λ = lim
𝛿→0

lim
𝑚→∞

ln |𝑞𝑚Λ (𝜆𝑚, 𝛿)|
|𝜆𝑚|

.

The definition of 𝑆Λ implies the inequality 𝑆Λ 6 0 (see [7]).

Lemma 3.1. Let Λ = {𝜆𝑘}∞𝑘=1 be the zero set of an entire function 𝑓 of exponential type
and regular growth. Assume that 𝑆Λ = 0. Then

ln |𝑓 ′(𝜆𝑘)| > ℎ𝑓 (𝜆𝑘) − 𝜀𝑘|𝜆𝑘|, 0 < 𝜀𝑘 → 0, 𝑘 → ∞. (3.2)

Proof. The regular growth of function 𝑓 means that

ln |𝑓(𝜆)| = ℎ𝑓 (𝜆) + 𝛼(𝜆), 𝜆 ∈ C, lim
|𝜆|→∞,𝜆/∈ℐ𝑓

𝛼(𝜆)/|𝜆| = 0, (3.3)

where ℐ𝑓 is a 𝐶0-set. Fix 𝜀 > 0 and choose 𝑅 > 0 such that

𝛼(𝜆) > −𝜀|𝜆|, 𝜆 ∈ ℐ𝑓 , |𝜆| > 𝑅. (3.4)

The indicator ℎ𝑓 (𝜆) is a convex function and this is why it is continuous. Employing its uniform
continuity on compact subsets, we find 𝛿0 ∈ (0, 1/3), for which the inequality

|ℎ𝑓 (𝜆) − ℎ𝑓 (𝑤)| 6 𝜀, 𝑤 ∈ 𝐵(𝜆, 𝛿0), |𝜆| = 1, (3.5)
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holds true. In accordance with the assumption and the definition of quantity 𝑆Λ we choose
𝛿 ∈ (0, 𝛿0) and an index 𝑘0 such that

|𝜆𝑘| > 2𝑅, ln |𝑞𝑘Λ(𝜆𝑘, 𝛿)| > −𝜀|𝜆𝑘|, 𝑘 > 𝑘0. (3.6)

Finally, taking into consideration that ℐ𝑓 is a 𝐶0-set, we can assume the following condition:
for each 𝑘 > 𝑘0 the total sum of exceptional circles in ℐ𝑓 intersecting 𝐵(𝜆𝑘, 𝛿|𝜆𝑘|) does not
exceed 𝛿|𝜆𝑘|/4. Then by (3.3), (3.4) and (3.6), for each 𝑘 > 𝑘0, there exists 𝛼𝑘 ∈ (1/2, 1) such
that

ln |𝑓(𝜆)| > ℎ𝑓 (𝜆) − 𝜀|𝜆|, 𝜆 ∈ 𝜕𝐵(𝜆𝑘, 𝛼𝑘𝛿|𝜆𝑘|).
Taking into consideration the positive homogeneity of the indicator and (3.5), we obtain:

ln |𝑓(𝜆)| > ℎ𝑓 (𝜆𝑘) − 3𝜀|𝜆𝑘|, 𝜆 ∈ 𝜕𝐵(𝜆𝑘, 𝛼𝑘𝛿|𝜆𝑘|), 𝑘 > 𝑘0. (3.7)

According to the assumption, the function ln |(𝑓(𝜆)/𝑞Λ(𝜆, 𝜆𝑘, 𝛿)| is harmonic in the circle
𝐵(𝜆𝑘, 𝛿|𝜆𝑘|). Since 𝛿 < 1/3, the function ln |𝑞Λ(𝜆, 𝜆𝑘, 𝛿)| is non-positive in this circle. Hence,
employing (3.7) and the minimum principle for harmonic functions, we get:

ln |ℎ𝑘(𝜆𝑘)| > ℎ𝑓 (𝜆𝑘) − 3𝜀|𝜆𝑘|, 𝑘 > 𝑘0.

By (3.6) this implies:

ln |𝑓 ′(𝜆𝑘)| = ln |ℎ𝑘(𝜆𝑘)| + ln |𝑞𝑘Λ(𝜆𝑘, 𝛿)| − ln(3𝛿|𝜆𝑘|) > ℎ𝑓 (𝜆𝑘) − 5𝜀|𝜆𝑘|, 𝑘 > 𝑘1.

The proof is complete.

Remark. 1. Estimate (3.2) implies the identity 𝑆Λ = 0. At that, the regularity of the growth
of the function 𝑓 is not needed (see the proof of Corollary 4.2 in work [8]).

2. The issue on whether estimate (3.2) implies the regularity of the growth for 𝑓 is still open.
The answer is the matter of the A.F. Leontiev problem.

3. The only identity 𝑆Λ = 0 does not imply estimate (3.2) (see example in the end of work
[9]).

Theorem 3. Let 𝐷 be a bounded convex domain and ̃︀Λ = {̃︀𝜆𝑘}∞𝑘=1 has an angular density.

Assume that 𝑆̃︀Λ = 0 and the identity 𝜔̃︀Λ(𝜙) ≡ 𝜔(𝜙, ̃︀𝐾)/2𝜋 holds true, where ̃︀𝐾 is the complex

conjugate to 𝐷 compact set. Then in the domain 𝐷 each function 𝑔 ∈ 𝐻(𝐷) is represented by
the series

𝑔(𝑧) =
∞∑︁
𝑘=1

̃︀𝑑𝑘𝑒̃︀𝜆𝑘𝑧, 𝑧 ∈ 𝐷. (3.8)

Proof. Since 𝐷 is a domain, then 𝜔(𝜓, ̃︀𝐾) ∈ Σ0 (see the remark after Lemma 2.7) and 𝜔(𝜓, ̃︀𝐾) is
a general form function. Then in accordance with Lemma 2.9, there exists a properly distributed

set Λ ⊆ ̃︀Λ with an angular density 𝜔Λ = (2𝜋)−1𝜔(·, ̃︀𝐾). In the beginning of the section we
mentioned that in this case the canonical function 𝑓(𝜆,Λ) has a regular growth, while its

indicator diagram (see the remark after Lemma 2.7) coincides with some shift ̃︀𝐾 − 𝑧0 of the

compact set ̃︀𝐾.
We let 𝑓(𝜆) = 𝑓(𝜆,Λ)𝑒𝜆𝑧0 . Then the function 𝑓 has a regular growth and its conjugate

diagram coincides with 𝐷. By the assumption, 𝑆Λ = 0. Since Λ ⊆ ̃︀Λ, by the definition all the
factors forming the function 𝑞𝑚Λ (𝑧, 𝛿) are among the factors forming the function 𝑞𝑚̃︀Λ (𝑧, 𝛿). As

𝛿 ∈ (0, 1/3), the absolute value of each of them does not exceed one. It implies the inequality
𝑆Λ > 𝑆̃︀Λ = 0. We mentioned above that we always have 𝑆Λ = 0. This is why 𝑆Λ = 0.

Thus, we can apply Lemma 3.1. In accordance with this lemma, estimate (3.2) holds true.
Therefore, by Theorem 4.6.4. in book [2], each function 𝑔 ∈ 𝐻(𝐷) is represented in the domain
𝐷 by series (3.1), and therefore, by series (3.8). The proof is complete.
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Remark. Let {𝐾𝑝}∞𝑝=1 be a sequence of convex compact sets in the domain 𝐷, which strictly
exhausts it, that is, 𝐾𝑝 ⊂ int𝐾𝑝+1, 𝑝 > 1, (the symbol int stands for the interior of a set)
and 𝐷 =

⋃︀∞
𝑝=1𝐾𝑝. For each 𝑝 > 1 we introduce the Banach space of the sequences of complex

numbers

𝑄𝑝 = {𝑑 = {𝑑𝑘} : ‖𝑑‖𝑝 = sup
𝑘>1

|𝑑𝑘| exp𝐻𝐾𝑝(𝜆𝑘) <∞}.

Let 𝑄(𝐷,Λ) =
⋂︀
𝑝>1𝑄𝑝 be equipped with the topology of the projective limit. According to

Lemma 2.3 in work [1], the pointwise convergence of series (3.1) on the domain 𝐷 implies the
inclusion 𝑑 = {𝑑𝑘} ∈ 𝑄(𝐷,Λ). Moreover, by Theorem 3.1 in this work (an analogue of Abel
theorem for power series) the inequality

∞∑︁
𝑘=1

|𝑑𝑘|max
𝑧∈𝐾𝑝

|𝑒𝜆𝑘𝑧| 6 𝐶𝑝||𝑑||𝑝+2, 𝑝 > 1,

holds true, where 𝐶𝑝 > 0 is independent of 𝑑 = {𝑑𝑘} ∈ 𝑄𝑝. In particular, it means that series
(3.1) ((3.8)) converges absolutely and uniformly on each compact set on the domain 𝐷.

Lemma 3.2. Let 𝛼 > 0 and Λ = {𝜆𝑘}∞𝑘=1 satisfy the condition

|𝜆𝑘+1| − |𝜆𝑘| > 𝛼, 𝑘 > 1. (3.9)

Then 𝑆Λ = 0.

Proof. Let 𝑚 > 1 and 𝛿 ∈ (0, 1/3). In view of (3.9), for each 𝜆𝑘 ∈ 𝐵(𝜆𝑚, 𝛿|𝜆𝑚|) we have:

𝛿|𝜆𝑚| > |𝜆𝑚 − 𝜆𝑘| > ||𝜆𝑚| − |𝜆𝑘|| > |𝑚− 𝑘|𝛼.

Therefore, the inequalities (1 − 𝛿)|𝜆𝑚| < |𝜆𝑘| < (1 + 𝛿)|𝜆𝑚| hold true. By 𝑙(𝑚, 𝛿) we denote
the maximal natural number obeying 𝑙(𝑚, 𝛿)𝛼 < 𝛿|𝜆𝑚|. Then the quantity 𝑙𝛼/3𝛿|𝜆𝑘| does

not exceed one for all 𝑙 = 1, 𝑙(𝑚, 𝛿). This is why the above facts yield (we also take into
consideration that 𝑠! > (𝑠/3)𝑠)

|𝑞𝑚Λ (𝜆𝑚, 𝛿)| >
∏︁

𝜆𝑘∈𝐵(𝜆𝑚,𝛿|𝜆𝑚|),𝑘 ̸=𝑚

|𝜆𝑚 − 𝜆𝑘|
3𝛿|𝜆𝑘|

>
∏︁

𝜆𝑘∈𝐵(𝜆𝑚,𝛿|𝜆𝑚|),𝑘 ̸=𝑚

|𝑚− 𝑘|𝛼
3𝛿|𝜆𝑘|

>
𝑙(𝑚,𝛿)∏︁
𝑙=1

(︂
𝑙𝛼

3𝛿|𝜆𝑘|

)︂2

=

(︂
𝛼

(1 + 𝛿)3𝛿|𝜆𝑚|

)︂2𝑙(𝑚,𝛿)

(𝑙(𝑚, 𝛿)!)2 >

(︂
𝑙(𝑚, 𝛿)𝛼

(1 + 𝛿)9𝛿|𝜆𝑚|

)︂2𝑙(𝑚,𝛿)

.

Thus, by the definition of 𝑙(𝑚, 𝛿) we have

𝑆Λ > lim
𝛿→0

lim
𝑚→∞

2𝑙(𝑚, 𝛿)

|𝜆𝑚|
ln

𝑙(𝑚, 𝛿)𝛼

(1 + 𝛿)9𝛿|𝜆𝑚|
> lim

𝛿→0
lim
𝑚→∞

2𝑙(𝑚, 𝛿)

|𝜆𝑚|
ln

𝛿|𝜆𝑚| − 𝛼

(1 + 𝛿) = 9𝛿|𝜆𝑚|

= lim
𝛿→0

lim
𝑚→∞

2𝑙(𝑚, 𝛿)

|𝜆𝑚|
ln

1

(1 + 𝛿)9
> lim

𝛿→0
lim
𝑚→∞

2𝛿|𝜆𝑚|
𝛼|𝜆𝑚|

ln
1

(1 + 𝛿)9
= 0.

Since we always have 𝑆Λ 6 0, this completes the proof.

Theorem 4. Let 𝐷 be a bounded convex domain in C. Then each function 𝑔 ∈ 𝐻(𝐷) is
represented by the series

𝑔(𝑧) =
∑︁
𝑚,𝑙∈Z

𝑑𝑚,𝑙𝑒
(𝑚+𝑖𝑙)𝑧, 𝑧 ∈ 𝐷. (3.10)

At that, {𝑑𝑚,𝑙} ∈ 𝑄(𝐷,ΛZ) and series (3.10) converges absolutely and uniformly on compact
subsets on the domain 𝐷.
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Proof. Let ̃︀𝐾 be the compact set complex conjugate to 𝐷. Since 𝐷 is a domain, then

𝜔(𝜓, ̃︀𝐾) ∈ Σ0 (see the remark after Lemma 2.7) and 𝜔(𝜓, ̃︀𝐾) is a general form function.
Then by Theorem 2.2 and Lemma 3.2 there exists a sequence Λ = {𝜆𝑘}𝑘=1 ⊆ ΛZ with the an-

gular density 𝜔Λ = (2𝜋)−1𝜔(·, ̃︀𝐾) such that 𝑆Λ = 0. By Theorem 3.1 each function 𝑔 ∈ 𝐻(𝐷)
is represented in the domain 𝐷 by series (3.1), and therefore, by series (3.10), where we let
𝑑𝑚,𝑙 = 𝑑𝑘 if (𝑚 + 𝑖𝑙) = 𝜆𝑘 ∈ Λ and 𝑑𝑚,𝑙 = 0 if (𝑚 + 𝑖𝑙) /∈ Λ. At that, according to the remark
after Theorem 3.1, series (3.10) converges absolutely and uniformly on compact subsets in the
domain 𝐷. Moreover, {𝑑𝑘} ∈ 𝑄(𝐷,Λ). Together with the definition of the coefficients 𝑑𝑚,𝑙 it
implies that {𝑑𝑚,𝑙} ∈ 𝑄(𝐷,ΛZ). The proof is complete.

Remark. 1. According to the Abel theorem for the exponential series in work [1] (Theo-
rem 3.1), series (3.10) converges absolutely on a convex domain (probably, unbounded one) and
uniformly on its compact subsets. This domain is determined by the Cauchy-Hadamard formula
for the exponential series [1, Thm. 4.1].

2. It follows from Lemma 2.5 of work [1] that for each set of the coefficients
{𝑑𝑚,𝑙} ∈ 𝑄(𝐷,ΛZ) the sum 𝑔(𝑧) of series (3.10) is a function analytic in the domain 𝐷 (but
not necessarily in the vicinity of 𝐷).
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