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Abstract. In the work we consider the scheme of constructing exact solutions to the
Sine-Gordon equation based on a restricting the characteristic Lie ring. We study in details
the case when the dimension of the space formed by commutators of length 6 is equal to 1.
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1. Introduction

It is known that the inverse problem method of the scattering theory allows one to construct
exact solutions to the Sine-Gordon equation

𝑢𝑥𝑦 = 𝑒𝑢 + 𝑒−𝑢, (1)

so-called solitons (see, for instance, [1], [2]).
In the present work we consider an alternative approach for constructing exact solutions to

equation (1) on the base of the characteristic Lie ring.
The characteristic ring 𝐴 of equation (1) is generated by the vector fields (see [3]):

𝑋1 =
𝜕

𝜕𝑦
+ 𝑢̄1

𝜕

𝜕𝑢
+ 𝑓

𝜕

𝜕𝑢1
+𝐷(𝑓)

𝜕

𝜕𝑢2
+ . . . , 𝑋2 =

𝜕

𝜕𝑢̄1
.

Here 𝑢̄1 = 𝑢𝑦, 𝑢1 = 𝑢𝑥, 𝑢2 = 𝑢𝑥𝑥, . . . , 𝑓 = 𝑒𝑢 + 𝑒−𝑢, an 𝐷 is the operator of the total
differentiation w.r.t. the variable 𝑥. Let 𝐿𝑛 be a linear space of commutators making the
lengths 𝑛− 1 , 𝑛 = 2, 3, . . . . Then the characteristic Lie ring 𝐴 can be represented as

𝐴 =
∞∑︁
𝑖=2

𝐿𝑖.

We let

L𝑛 =
𝑛∑︁

𝑖=2

𝐿𝑖.

A complete description of the structure of the ring 𝐴 was given in [3]. In particular, the ring
𝐴 satisfies the formulae

dim𝐿𝑛 =

{︃
2, as 𝑛 = 2𝑘,

1, as 𝑛 = 2𝑘 − 1.
𝑘 = 3, 4, . . . ,

dim𝐿2 = 2, dim𝐿3 = 1, dim𝐿4 = 1, dim𝐿5 = 1.

A.V. Zhiber, S.N. Kamaeva, Construction of exact solution to Sine-Gordon equation on the
base of its characteristic Lie ring.

c○ Zhiber A.V., Kamaeva S.N. 2016.
The study is supported by the grant of Russian Science Foundation (project no. 15-11-2007).
Submitted July 6, 2016.

49

http://dx.doi.org/10.13108/2016-8-3-49


50 A.V. ZHIBER, S.N. KAMAEVA

Exact solutions to equation (1) of 𝑁th order arise if we impose the condition

dimL2𝑁 = dimL2𝑁−1 + 1

on the space L2𝑁 .
In the work we study the case 𝑁 = 3. In the general situation dimL6 = 7 and the linear

space L6 is generated by the vector fields 𝑋1, 𝑋2, 𝑋3 = [𝑋2, 𝑋1], 𝑋5 = [𝑋1, 𝑋3], 𝑋7 = [𝑋1, 𝑋5],
𝑋8 = [𝑋2, 𝑋7], 𝑋9 = [𝑋1, 𝑋7]. At that, dimL𝑖 = 𝑖, 𝑖 = 2, 3, 4, 5, and the formulae

[𝐷,𝑋3] = −𝑓 ′𝑋2, [𝐷,𝑋5] = 𝑓 ′𝑋3 − 𝑓𝑋1,

[𝐷,𝑋7] = 𝑓 ′𝑋5, [𝐷,𝑋8] = 𝑓𝑋5, [𝐷,𝑋9] = −𝑓𝑋8 + 𝑓 ′𝑋7,
(2)

hold true, where 𝐷 is the operator of the total differentiation w.r.t. 𝑥. The total description
of finding these values can be found in the work [3].

We study two cases, dimL6 = 6 and dimL6 = 5.

2. Characteristic Lie ring in the case dimL6 = 6

In this section we obtain the conditions for the solutions to the Sine-Gordon equation, when
dimL6 = 6, that is, dim𝐿6 = 1. Namely, we consider two cases:

1) The vector fields 𝑋1, 𝑋2, 𝑋3, 𝑋5, 𝑋7, 𝑋9 are linearly independent and 𝑋8 is their linear
combination.

2) The vector fields 𝑋1, 𝑋2, 𝑋3, 𝑋5, 𝑋7, 𝑋8 are linear independent and 𝑋9 is their linear
combination.

Assume the first case holds true, that is,

𝑋8 = 𝛼1𝑋1 + 𝛼2𝑋3 + 𝛼3𝑋5 + 𝛼4𝑋7 + 𝛼5𝑋9.

Then

[𝐷,𝑋8] = [𝐷,𝛼1𝑋1 + 𝛼2𝑋3 + 𝛼3𝑋5 + 𝛼4𝑋7 + 𝛼5𝑋9].

By the property of commutators, the latter relation can be written as

[𝐷,𝑋8] =𝛼1[𝐷,𝑋1] +𝐷(𝛼1)𝑋1 + 𝛼2[𝐷,𝑋3] +𝐷(𝛼2)𝑋3 + 𝛼3[𝐷,𝑋5] +𝐷(𝛼3)𝑋5

+ 𝛼4[𝐷,𝑋7] +𝐷(𝛼4)𝑋7 + 𝛼5[𝐷,𝑋9] +𝐷(𝛼5)𝑋9.

Employing formulate (2), we obtain

[𝐷,𝑋8] = − 𝛼1𝑓𝑋2 +𝐷(𝛼1)𝑋1 − 𝛼2𝑓
′𝑋2 +𝐷(𝛼2)𝑋3 + 𝛼3𝑓

′𝑋3 − 𝛼3𝑓𝑋1

+𝐷(𝛼3)𝑋5 + 𝛼4𝑓
′𝑋5 +𝐷(𝛼4)𝑋7 − 𝛼1𝛼5𝑓𝑋1 − 𝛼2𝛼5𝑓𝑋3 − 𝛼3𝛼5𝑓𝑋5

− 𝛼4𝛼5𝑓𝑋7 − 𝛼5𝛼5𝑓𝑋9 + 𝛼5𝑓
′𝑋7 +𝐷(𝛼5)𝑋9.

On the other hand,

[𝐷,𝑋8] = 𝑓𝑋5,

and this is why we can equate the coefficients at the independent operators 𝑋𝑖 and to obtain
the system of the equations

𝐷(𝛼1) − 𝛼3𝑓 − 𝛼1𝛼5𝑓 =0, (3)

−𝛼1𝑓 − 𝛼2𝑓
′ =0, (4)

𝐷(𝛼2) + 𝛼3𝑓
′ − 𝛼2𝛼5𝑓 =0, (5)

𝐷(𝛼3) + 𝛼4𝑓
′ − 𝛼3𝛼5𝑓 =𝑓, (6)

𝐷(𝛼4) + 𝛼5𝑓
′ − 𝛼4𝛼5𝑓 =0, (7)

𝐷(𝛼5) − 𝛼5𝛼5𝑓 =0. (8)

Hence, the following statement holds.
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Lemma 1. If 𝑋1, 𝑋2, 𝑋3, 𝑋5, 𝑋7, 𝑋9 are linearly independent, and 𝑋8 is their linear
combination, then relations (3)–(8) hold true.

Let us study system of equations (3)–(8). If 𝛼5 = 0, these equations are rewritten as

𝐷(𝛼1) − 𝛼3𝑓 =0, (9)

−𝛼1𝑓 − 𝛼2𝑓
′ =0, (10)

𝐷(𝛼2) + 𝛼3𝑓
′ =0, (11)

𝐷(𝛼3) + 𝛼4𝑓
′ =𝑓, (12)

𝐷(𝛼4) =0. (13)

It is easy to check that the case 𝛼1𝛼2 = 0 can not be realized. Assume that 𝛼1𝛼2 ̸= 0. We
express 𝛼2 in equation (10) in terms of 𝛼1:

𝛼2 = −𝛼1𝑓

𝑓 ′ , (14)

and we differentiate this identity. Taking into consideration that 1 − 𝑓2

𝑓 ′2 = − 4
𝑓 ′2 , we get

𝐷(𝛼2) = −𝐷(𝛼1)
𝑓

𝑓 ′ +
4𝑢1𝛼1

𝑓 ′2 .

Taking into consideration the latter identity and relations (9) and (11), we obtain that

𝛼3 =
𝑢1𝛼1

𝑓 ′ . (15)

Now by (15) and (9) we obtain the differential equation

𝐷(𝛼1)

𝛼1

=
𝑢1𝑓

𝑓 ′ ,

whose solution is of the form
𝛼1 = 𝜑(𝑦)𝑓 ′. (16)

Hence, employing formulae (14) and (15), we find:

𝛼2 = −𝜑(𝑦)𝑓. (17)

𝛼3 = 𝑢1𝜑(𝑦). (18)

It follows from equation (12) that

𝛼4 =
𝑓 − 𝑢2𝜑(𝑦)

𝑓 ′ . (19)

It remains to show that 𝐷(𝛼4) = 0. In order to do it, we need to solve the following equation

𝐷

(︂
𝑓 − 𝑢2𝜑(𝑦)

𝑓 ′

)︂
= 0.

We differentiate it and find:

𝜑(𝑦) = − 4𝑢1
𝑢3𝑓 ′ − 𝑢1𝑢2𝑓

. (20)

Since 𝐷(𝜑(𝑦)) = 0, by applying the operator 𝐷 to the right hand side of (20) we obtain

𝑢1𝑢4𝑓
′ − 𝑢2𝑢3𝑓

′ − 𝑢31𝑢2𝑓
′

𝑢23𝑓
′2 − 2𝑢1𝑢2𝑢3𝑓 2 + 𝑢21𝑢2𝑓

2
= 0,

which holds only if
𝑢1𝑢4 − 𝑢2𝑢3 − 𝑢31𝑢2 = 0. (21)

Thus, relations (16)–(21) yields the following statement.
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Theorem 1. If 𝛼5 = 0, then the solution to system of equations (3)–(8) is of the form:

𝛼1 =
−4𝑢1𝑓

′

𝑢3𝑓 ′ − 𝑢1𝑢2𝑓
, 𝛼2 =

4𝑢1𝑓

𝑢3𝑓 ′ − 𝑢1𝑢2𝑓
, 𝛼3 =

−4𝑢21
𝑢3𝑓 ′ − 𝑢1𝑢2𝑓

, 𝛼4 =
𝑢3𝑓 − 𝑢1𝑢2𝑓

′

𝑢3𝑓 ′ − 𝑢1𝑢2𝑓
,

and identity (21) holds true.

The case 𝛼4 = 0 leads us to the relation

𝑢3𝑓 − 𝑢1𝑢2𝑓
′ = 0, (22)

whose solution, by equation (1), is of the form:

𝑢 = 𝑢(𝑥+ 𝑦).

Consider equation (21). In order to do it, we rewrite it as

𝑢4 =
𝑢2𝑢3
𝑢1

+ 𝑢21𝑢2, (23)

and apply operator 𝐷̄ due to equation (1).
If we write each derivative separately,

𝐷̄𝑢1 = 𝑢𝑥𝑦 = 𝑒𝑢 + 𝑒−𝑢,

𝐷̄𝑢2 = 𝐷𝑓 = (𝑒𝑢 − 𝑒−𝑢)𝑢1,

𝐷̄𝑢3 = 𝐷2𝑓 = (𝑒𝑢 + 𝑒−𝑢)𝑢21 + (𝑒𝑢 − 𝑒−𝑢)𝑢2,

𝐷̄𝑢4 = 𝐷3𝑓 = (𝑒𝑢 − 𝑒−𝑢)𝑢31 + (𝑒𝑢 − 𝑒−𝑢)𝑢3 + 3(𝑒𝑢 + 𝑒−𝑢)𝑢1𝑢2, (24)

then the right hand side of equation (23) casts into the form:

𝑢3(𝑒
𝑢 − 𝑒−𝑢) +

𝑢22
𝑢1

(𝑒𝑢 − 𝑒−𝑢) + 𝑢31(𝑒
𝑢 − 𝑒−𝑢) + 3𝑢1𝑢2(𝑒

𝑢 + 𝑒−𝑢) − 𝑢2𝑢3
𝑢21

(𝑒𝑢 + 𝑒−𝑢).

We equate the latter relation to (24) and after some simple transformations we obtain

𝑢3 = 𝑢1𝑢2
𝑒𝑢 − 𝑒−𝑢

𝑒𝑢 + 𝑒−𝑢
. (25)

Equation (25) coincides with (22). Thus, a solution 𝑢(𝑥, 𝑦) to equation (25) satisfying equa-
tion (1) is of the form:

𝑢 = 𝑢(𝑥, 𝑦),

that is,
𝑢′′ = 𝑓(𝑢). (26)

It is easy to show that the solutions to equation (26) satisfy equations (22) and (23). Thus, in
the first case 1), under the condition 𝛼5 = 0, the solutions to the Sine-Gordon equation (1) are
determined by equation (26).

Suppose that 𝛼5 ̸= 0, then by equation (8) we obtain that

𝛼5 =
1

𝑃 (𝑦) − 𝑢̄1
, (27)

where 𝑃 (𝑦) is a function depending on 𝑦.
If 𝛼1𝛼2𝛼3 = 0, then by (3)–(7) we obtain that 𝛼4 = 𝑓

𝑓 ′ . Since 𝐷(𝛼4) = −4 𝑢1

𝑓 ′2 , relation (7)

can be rewritten as
−4𝑢1(𝑃 (𝑦) − 𝑢̄1) + 𝑓 ′3 − 𝑓 2𝑓 ′

(𝑃 (𝑦) − 𝑢̄1)𝑓 ′2 = 0.

Therefore, we have the identity

𝑓 ′ + 𝑢1(𝑃 (𝑦) − 𝑢̄1) = 0.

It is easy to show that in this case 𝑢2 = 0. It implies that 𝑢 = 𝑐𝑜𝑛𝑠𝑡.
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We proceed to the case 𝛼1𝛼2𝛼3 ̸= 0. If we express 𝛼2 and 𝛼3 in terms of 𝛼1, we get the same
relations (14) and (15). Substituting them into (3), we obtain the differential equation

𝐷(𝛼1)

𝛼1

=
𝑢1𝑓

𝑓 ′ +
𝑓

𝑃 (𝑦) − 𝑢̄1
.

Its solution is of the form

𝛼1 =
𝑐1(𝑦)𝑓 ′)

𝑃 (𝑦) − 𝑢̄1
. (28)

Therefore, formulae (14) and (15) are rewritten as

𝛼2 = − 𝑐1(𝑦)𝑓

𝑃 (𝑦) − 𝑢̄1
, 𝛼3 =

𝑢1𝑐1(𝑦)

𝑃 (𝑦) − 𝑢̄1
. (29)

It remains to find 𝛼4 by equation (6)

𝛼4 =
𝑓

𝑓 ′ −
𝑢2𝑐1(𝑦)

(𝑃 (𝑦) − 𝑢̄1)𝑓 ′ . (30)

We proceed to equation (7). We calculate

𝐷(𝛼4) =
−4𝑢1
𝑓 ′2 − 𝑢3𝑐1(𝑦)

(𝑃 (𝑦) − 𝑢̄1)𝑓 ′ +
𝑢1𝑢2𝑓𝑐1(𝑦)

(𝑃 (𝑦) − 𝑢̄1)𝑓 ′2 − 𝑢2𝑓𝑐1(𝑦)

(𝑃 (𝑦) − 𝑢̄1)𝑓 ′

and substitute the obtained result into (7). It yields the relation

𝑐1(𝑦)(𝑢1𝑢2𝑓 − 𝑢3𝑓
′) = 4𝑓 ′ + 4𝑢1(𝑃 (𝑦) − 𝑢̄1). (31)

Let 𝑐1(𝑦) = 0 or 𝑢1𝑢2𝑓 − 𝑢3𝑓
′ = 0, then 𝛼1 = 𝛼2 = 𝛼3 = 0, 𝛼4 = 𝑓

𝑓 ′ , and

𝑃 (𝑦) = 𝑢̄1 −
𝑓 ′

𝑢1
holds true. But since

𝐷(𝑃 (𝑦)) =
𝑢2𝑓

′

𝑢21
= 0,

this case can not be realized and it follows that 𝑢2 = 0.
We consider the other case, that is, let 𝑐1(𝑦) and 𝑢1𝑢2𝑓 − 𝑢3𝑓

′ do not vanish simultaneously.
Then it follows from the properties of the characteristic ring 𝑥 that 𝛼𝑖 can depend only on the
derivatives of the function 𝑢 w.r.t. the variable 𝑥 and this is why a solution exists if and only if

𝑃 (𝑦) − 𝑢̄1 = 𝐵(𝑢, 𝑢1, 𝑢2, . . . ). (32)

We substitute (32) into formula (31) and find 𝑐1(𝑦):

𝑐1(𝑦) =
4𝑓 ′ + 4𝑢1𝐵

𝑢1𝑢2𝑓 − 𝑢3𝑓 ′ .

Using that 𝐷(𝑐1(𝑦)) = 0, we differentiate the latter identity and find 𝐵, that is,

𝐵(𝑢1𝑢4 − 𝑢2𝑢3 − 𝑢31𝑢2) − 𝑢21𝑢2𝑓
′ + 𝑢4𝑓

′ − 𝑢22𝑓 = 0.

Thus, if 𝑢1𝑢4 − 𝑢2𝑢3 − 𝑢31𝑢2 ̸= 0, we can find 𝐵 and apply the operator of differentiation 𝐷.
Then taking into consideration that

𝐷(𝐵) = −𝑓, (33)

we obtain the ordinary differential equation of the form

𝑢2𝑢5 − 𝑢3𝑢4 − 3𝑢1𝑢
3
2 = 0. (34)

It remains to consider the case 𝛼4 = 0. It is easy to check that then formulae (28), (29) and
the following identity

𝑢2𝑐1(𝑦) − 𝑓(𝑃 (𝑦) − 𝑢̄1) = 0
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hold true. Let us study the latter. In order to do it, we find 𝑐1(𝑦) and differentiate. As the
result, we get

𝐵(𝑢1𝑢2𝑓
′ − 𝑢3𝑓) = 𝑢2𝑓

2.

Employing this relation, it is easy to show that equation (8) does not hold. This is why that
case 𝛼4 = 0 can not be realized.

Thus, we have proved the following theorem.

Theorem 2. If 𝛼5 ̸= 0, then a solution to system of equations (3)-(8) is of the form

𝛼1 =
4𝑢2𝑓

′

𝑢21𝑢2𝑓
′ − 𝑢4𝑓 ′ + 𝑢22𝑓

, 𝛼2 =
−4𝑢2𝑓

𝑢21𝑢2𝑓
′ − 𝑢4𝑓 ′ + 𝑢22𝑓

, 𝛼3 =
4𝑢1𝑢2

𝑢21𝑢2𝑓
′ − 𝑢4𝑓 ′ + 𝑢22𝑓

,

𝛼4 =
𝑢21𝑢2𝑓 − 𝑢4𝑓 + 𝑢22𝑓

′

𝑢21𝑢2𝑓
′ − 𝑢4𝑓 ′ + 𝑢22𝑓

, 𝛼5 =
𝑢1𝑢4 − 𝑢2𝑢3 + 𝑢31𝑢2
𝑢21𝑢2𝑓

′ − 𝑢4𝑓 ′ + 𝑢22𝑓

and relation (34) holds true.

We consider the problem on constructing a solution to system of equations (34), (1). We
assume that the condition

𝑢1𝑢4 − 𝑢2𝑢3 − 𝑢31𝑢2 ̸= 0 (35)

holds true. Excluding the case

𝑢2 = 0, (36)

equation (34) can be written as

𝐷

(︂
𝑢4
𝑢2

)︂
− 3

2
𝐷(𝑢21) = 0,

that is,

𝑢4 =
3

2
𝑢21𝑢2 + 𝜓(𝑦)𝑢2. (37)

Here 𝜓(𝑦) is an arbitrary function. Thus, equations (34) and (37) are equivalent. We note
that the solutions of equation (36) satisfy both equations (34) and (37) and at the same time,
condition (35) fails.

We apply the operator 𝐷̄ to the both sides of equation (37) and taking into consideration
the formulae

𝐷𝐷̄𝑢 = 𝑒𝑢 + 𝑒−𝑢,

𝐷2𝐷̄𝑢 = (𝑒𝑢 − 𝑒−𝑢)𝑢1,

𝐷3𝐷̄𝑢 = (𝑒𝑢 + 𝑒−𝑢)𝑢21 + (𝑒𝑢 − 𝑒−𝑢)𝑢2,

𝐷4𝐷̄𝑢 = (𝑒𝑢 + 𝑒−𝑢)𝑢31 + (𝑒𝑢 − 𝑒−𝑢)𝑢3 + 3(𝑒𝑢 + 𝑒−𝑢)𝑢1𝑢2,

we get

𝑢3 =
1

2
𝑢31 +

𝜓′(𝑦)𝑢2
𝑒𝑢 − 𝑒−𝑢

+ 𝜓(𝑦)𝑢1. (38)

We note that solution 𝑢 to system (34), (1) satisfies equation (38). On the other hand,
equation (37) is equivalent to the equation

𝑢3 =
1

2
𝑢31 + 𝜓(𝑦)𝑢1 + ℎ(𝑦). (39)

Thus, solution 𝑢 to system (34), (1) satisfies simultaneously equations (38) and (39). Therefore,
this solution satisfies the equation

𝜓′(𝑦)𝑢2
𝑒𝑢 − 𝑒−𝑢

= ℎ(𝑦). (40)
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If 𝜓(𝑦) ̸= 0, then

𝑢2 =
ℎ(𝑦)

𝜓′(𝑦)
(𝑒𝑢 − 𝑒−𝑢), (41)

and therefore,

𝑢21 = 2
ℎ(𝑦)

𝜓′(𝑦)
(𝑒𝑢 + 𝑒−𝑢) + 𝜔(𝑦). (42)

On the other hand, it follows from (41) that

𝑢3 =
ℎ(𝑦)

𝜓′(𝑦)
(𝑒𝑢 + 𝑒−𝑢)𝑢1. (43)

We substitute derivatives (42) and (43) into equation (39) to obtain(︂
1

2
𝜔(𝑦) + 𝜓(𝑦)

)︂
𝑢1 + ℎ(𝑦) = 0. (44)

If 1
2
𝜔(𝑦) + 𝜓(𝑦) = 0, it follows from (44) that ℎ(𝑦) = 0 and by (41) we have (36). If 1

2
𝜔(𝑦) +

𝜓(𝑦) ̸= 0, by (44) we obtain that

𝑢1 = − ℎ(𝑦)
1
2
𝜔(𝑦) + 𝜓(𝑦)

,

and therefore, we arrive at equation (36).
If 𝜓′(𝑦) = 0, then 𝜓(𝑦) ≡ 𝑐2(𝑦), where 𝑐2(𝑦) is a constant, and by (40) we obtain that

ℎ(𝑦) = 0. Then equations (38) and (39) become

𝑢3 =
1

2
𝑢31 + 𝑐2(𝑦)𝑢1.

We calculate expression (35):(︂
3

2
𝑢21𝑢2 + 𝑐2(𝑦)

)︂
𝑢1 − 𝑢2

(︂
1

2
𝑢31 + 𝑐2(𝑦)𝑢1

)︂
− 𝑢31𝑢2 = 0.

Hence, condition (35) fails. Therefore, the case 𝛼5 ̸= 0 can not be realized.
We proceed to case 2). Here

𝑋9 = 𝛽1𝑋1 + 𝛽2𝑋3 + 𝛽3𝑋5 + 𝛽4𝑋7 + 𝛽5𝑋8. (45)

As in the first case, we obtain the system

𝐷(𝛽1) − 𝛽3𝑓 = 0, (46)

− 𝛽1𝑓 − 𝛽2𝑓
′ = 0, (47)

𝐷(𝛽2) + 𝛽3𝑓
′ = 0, (48)

𝐷(𝛽3) + 𝛽4𝑓
′ + 𝛽5𝑓 = 0, (49)

𝐷(𝛽4) = 𝑓 ′, (50)

𝐷(𝛽5) = −𝑓. (51)

Let us show that this case can be reduced to the previous one. It is easy to see that 𝛽5 ̸= 0
in equation (51). Therefore, 𝑋8 can be written as

𝑋8 = −𝛽1
𝛽5
𝑋1 −

𝛽2
𝛽5
𝑋3 −

𝛽3
𝛽5
𝑋5 −

𝛽4
𝛽5
𝑋7 +

1

𝛽5
𝑋9. (52)

Assume that 𝑋1, 𝑋2, 𝑋3, 𝑋5, 𝑋7, 𝑋9 are linearly dependent in relation (52) and 𝑋9 can be
expressed in terms of 𝑋1, 𝑋2, 𝑋3, 𝑋5, 𝑋7. It means that 𝑋8 can be also expressed in terms
of these functions. Therefore, 𝑋1, 𝑋2, 𝑋3, 𝑋5, 𝑋7, 𝑋8 are linearly dependent that contradicts
the given condition.
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3. Characteristic Lie ring in the case dimL6 = 5

In this section we study the solution to the Sine-Gordon equation, whose algebra is finite-
dimensional and its dimension is 5. That is, we consider the case, when 𝑋1, 𝑋2, 𝑋3, 𝑋5, 𝑋7

are linearly independent and 𝑋8 and 𝑋9 are their linear combinations:

𝑋9 = 𝜆1𝑋1 + 𝜆2𝑋3 + 𝜆3𝑋5 + 𝜆4𝑋7

and
𝑋8 = 𝜇1𝑋1 + 𝜇2𝑋3 + 𝜇3𝑋5 + 𝜇4𝑋7.

Then the identities

[𝐷,𝑋9] = [𝐷,𝜆1𝑋1 + 𝜆2𝑋3 + 𝜆3𝑋5 + 𝜆4𝑋7] = 𝑓𝑋5

and
[𝐷,𝑋8] = [𝐷,𝜇1𝑋1 + 𝜇2𝑋3 + 𝜇3𝑋5 + 𝜇4𝑋7] = −𝑓𝑋8 + 𝑓 ′𝑋7

hold true.
Employing formulae (2), we expand commutators and obtain the system of equations:

𝐷(𝜆1) − 𝜆3𝑓 = 0, (53)

− 𝜆1𝑓 − 𝜆2𝑓
′ = 0, (54)

𝐷(𝜆2) + 𝜆3𝑓
′ = 0, (55)

𝐷(𝜆3) + 𝜆4𝑓
′ = 𝑓, (56)

𝐷(𝜆4) = 0, (57)

𝐷(𝜇1) − 𝜇3𝑓 = −𝜆1𝑓, (58)

− 𝜇1𝑓 − 𝜇2𝑓
′ = 0, (59)

𝐷(𝜇2) + 𝜇3𝑓
′ = −𝜆2𝑓, (60)

𝐷(𝜇3) + 𝜇4𝑓
′ = −𝜆3𝑓, (61)

𝐷(𝜇4) = −𝜆4𝑓 + 𝑓 ′. (62)

It is easy to see that equations (53)–(57) coincide with equations (9)–(13). Thus, they satisfy
the assumptions of Theorem 1. This is why we can assume that the coefficients 𝜆𝑖 are found.
Let us find 𝜇𝑖, 𝑖 = 1, . . . , 4.

By formulae (59) and (60) we write

𝜇2 = −𝜇1𝑓

𝑓 ′ , (63)

𝜇3 =
𝜇1𝑢1
𝑓 ′ . (64)

We substitute (64) into (58). We obtain an inhomogeneous differential equation of the form

𝐷(𝜇1) − 𝑢1𝜇1
𝑓

𝑓 ′ = −𝑓𝑓 ′𝜙(𝑦),

whose solution is given by the formula

𝜇1 = 𝑓 ′𝑐(𝑦) − 𝑢̄1𝑓𝜙(𝑦).

Then by formulae (61), (63) and (64) we can find other coefficients. Namely,

𝜇2 = −𝑓𝑐(𝑦) − 𝑢̄1𝑓𝜙(𝑦), (65)

𝜇3 = 𝑢1𝑐(𝑦) − 𝑢1𝑢̄1𝑓𝜙(𝑦), (66)

𝜇4 =
𝑢̄1𝑢2𝜙(𝑦) − 𝑢2𝑐(𝑦)

𝑓 ′ . (67)
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In view of formulae (19), (67), equation (62) becomes

𝑐(𝑦) = 𝑢̄1𝜙(𝑦) +
4𝑓 ′

𝑢3𝑓 ′ − 𝑢1𝑢2𝑓
.

Let us study all possible cases of its solutions. It is easy to show that the condition 𝑐(𝑦) = 0
implies that 𝑢2 = 0. If 𝑐(𝑦) ̸= 0, taking into consideration equation (21), we obtain

𝑢22𝑓 + 𝑢21𝑢2𝑓
′ − 𝑢4𝑓

′ = 0. (68)

Now by (21) and (68) we have
𝑢3𝑓

′ − 𝑢1𝑢2𝑓 = 0.

The latter does not satisfied. Thus, we following statement holds.

Lemma 2. If the dimension of the characteristic Lie ring is equal to 5, then the Sine-Gordon
equation has no solution.
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