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ON SOLVABILITY OF A BOUNDARY VALUE PROBLEM

FOR AN INHOMOGENEOUS POLYHARMONIC EQUATION

WITH A FRACTIONAL ORDER BOUNDARY OPERATOR

B.KH. TURMETOV

Abstract. In this paper we study the solvability of one boundary value problem for an
inhomogeneous polyharmonic equation. As a boundary operator, we consider a differen-
tiation operator of fractional order in the Hadamard sense. The considered problem is a
generalization of the known Neumann problem.

Keywords: polyharmonic equation, fractional derivative, Neumann problems, Hadamard
operators.
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1. Introduction

Let Ω = {𝑥 ∈ R𝑛 : |𝑥| < 1} be the 𝑛-dimensional unit ball, 𝑛 > 2, 𝜕Ω = {𝑥 ∈ R𝑛 : |𝑥| = 1}
be the unit sphere. Let 𝑢(𝑥) be a smooth function in the ball Ω, 𝑟 = |𝑥|, 𝜃 = 𝑥/𝑟, 𝛿 = 𝑟 𝑑

𝑑𝑟
be

the Dirac operator, where 𝑑
𝑑𝑟

=
𝑛∑︀

𝑗=1

𝑥𝑗

𝑟
𝜕

𝜕𝑥𝑗
.

For each 𝛼 > 0, the following expression

𝐽𝛼[𝑢](𝑥) =
1

Γ(𝛼)

𝑟∫︁
0

(︁
ln

𝑟

𝑠

)︁𝛼−1𝑢(𝑠𝜃)

𝑠
𝑑𝑠 (1)

is called the integration operator of order 𝛼 in the Hadamard sense [1].
In what follows we assume that 𝐽0[𝑢](𝑥) = 𝑢(𝑥).
By the change of variables 𝜉 = 𝑠𝑟, integral (1) is represented in the form

𝐽𝛼[𝑢](𝑥) =
1

Γ(𝛼)

1∫︁
0

(︂
ln

1

𝜉

)︂𝛼−1
𝑢(𝜉𝑥)

𝜉
𝑑𝜉. (2)

We observe that the operator 𝐽𝛼 can not be applied to continuous functions 𝑢(𝑥) as 𝑢(0) ̸= 0,

since the integral
1∫︀
0

(︁
ln 1

𝜉

)︁𝛼−1

𝜉−1𝑑𝜉 diverges. This is why for each 𝛼 ∈ (ℓ − 1, ℓ], ℓ = 1, 2, . . .,

as the differentiation operator of fractional order we consider the following modification of the
Hadamard operator
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𝐷𝛼[𝑢](𝑥) = 𝐽 ℓ−𝑎
[︀
𝛿ℓ[𝑢]

]︀
(𝑥) ≡ 1

Γ(ℓ− 𝛼)

𝑟∫︁
0

(︁
ln

𝑟

𝑠

)︁ℓ−1−𝛼
(︂
𝑠
𝑑

𝑑𝑠

)︂ℓ

[𝑢](𝑠𝜃)
𝑑𝑠

𝑠
.

Let 0 < 𝛼 6 1, 𝑚 = 1, 2, . . . In the domain Ω, we consider the following problem

(−∆)𝑚𝑢(𝑥) = 𝑓(𝑥), 𝑥 ∈ Ω, (3)

𝐷𝛼+𝑘 [𝑢] (𝑥) = 𝑔𝑘(𝑥), , 𝑥 ∈ 𝜕Ω, 𝑘 = 0, 1, . . . ,𝑚− 1. (4)

A solution to problem (3), (4) is a function 𝑢 ∈ 𝐶2𝑚 (Ω)∩𝐶(Ω), for which 𝐷𝛼+𝑘[𝑢] ∈ 𝐶
(︀
Ω
)︀
,

𝑘 = 0, 1, . . . ,𝑚 − 1, and the equation (3) and boundary conditions (4) are satisfied in the
classical sense.

We note that the boundary value problems for elliptic second order equations with fractional
order boundary operators were studied in works [2]–[10]. The applications of boundary value
problems for elliptic equations with fractional order boundary operators were considered in
works [11]–[13]. The analogues of the Neumann problems for the biharmonic and polyharmonic
equations in the case of the integer order boundary operators were studied in works [15]–[19],
while boundary operators fractional in Riemann-Liouville, Caputo and Hadamard-Marchaud
sense were addressed in [20]–[23].

Since 𝐽0[𝑢](𝑥) = 𝑢(𝑥), in the case 𝛼 = 1 the operator 𝐷1 coincides with the operator 𝛿, while

𝐷𝑘 = 𝛿𝑘 ≡
(︀
𝑟 𝑑
𝑑𝑟

)︀𝑘
. It was proved in [20] that the operator

(︀
𝑟 𝑑
𝑑𝑟

)︀𝑘
satisfies the identity(︂

𝑟
𝜕

𝜕𝑟

)︂𝑘

=
𝑘∑︁

𝑖=1

(︃
𝑖∑︁

𝑗=1

(−1)𝑖−𝑗 𝑗𝑛

𝑗!(𝑖− 𝑗)!

)︃
𝑟𝑖

𝜕𝑖

𝜕𝑟𝑖
≡

𝑘∑︁
𝑖=1

𝑎
(𝑘)
𝑖 𝑟𝑖

𝜕𝑖

𝜕𝑟𝑖
, 𝑘 = 1, 2, . . .

.
It is also known (see, for instance, [17]) that

𝑟𝑖
𝑑𝑖

𝑑𝑟𝑖

⃒⃒⃒⃒
𝜕Ω

= 𝑟
𝑑

𝑑𝑟

(︂
𝑟
𝑑

𝑑𝑟
− 1

)︂
. . .

(︂
𝑟
𝑑

𝑑𝑟
− 𝑖 + 1

)︂⃒⃒⃒⃒
𝜕Ω

=
𝜕𝑖𝑢(𝑥)

𝜕𝜈𝑖

⃒⃒⃒⃒
𝜕Ω

,

where 𝜈 is the outward normal for the boundary of the domain Ω. Therefore, in the case 𝛼 = 1,
problem (3)–(4) is a some analogue of the Neumann problem for equation (3).

2. Auxiliary statements

In this section we study some properties of the operators 𝐽𝛼 and 𝐷𝛼.

Lemma 1. Let 0 < 𝛼, 0 < 𝜆 < 1 and 𝑢 ∈ 𝐶𝜆+𝑝(Ω), 𝑝 = 0, 1, . . . If 𝑢(0) = 0, then the
function 𝐽𝛼[𝑢](𝑥) also belongs to the class 𝐶𝜆+𝑝(Ω) and the identity 𝐽𝛼[𝑢](0) = 0 holds true.

Proof. Let 𝑢(0) = 0. Then

|𝐽𝛼[𝑢](𝑥)| 6 1

Γ(𝛼)

1∫︁
0

(︂
ln

1

𝑠

)︂𝛼−1 |𝑢(𝑠𝑥)|
𝑠

𝑑𝑠 6
𝐶

Γ(𝛼)

1∫︁
0

(︂
ln

1

𝑠

)︂𝛼−1

𝑠𝜆−1𝑑𝑠.

Since the integral
1∫︀
0

(︀
ln 1

𝑠

)︀𝛼−1
𝑠𝜆−1𝑑𝑠 converges, then |𝐽𝛼[𝑢](𝑥)| 6 𝐶, where 𝐶 ≡ 𝑐𝑜𝑛𝑠𝑡, and

hence, the functiuon 𝐽𝛼[𝑢](𝑥) is well-defined. We denote ℎ(𝑥) = 𝐽𝛼[𝑢](𝑥). Then for each
𝑥, 𝑦 ∈ Ω we have

|ℎ(𝑥) − ℎ(𝑦)| 6 1

Γ(𝛼)

1∫︁
0

(︂
ln

1

𝑠

)︂𝛼−1 |𝑢(𝑠𝑥) − 𝑢(𝑠𝑦)|
𝑠

𝑑𝑠
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6
𝐶|𝑥− 𝑦|𝜆

Γ(𝛼)

1∫︁
0

(︂
ln

1

𝑠

)︂𝛼−1

𝑠𝜆−1𝑑𝑠 6 𝐶|𝑥− 𝑦|𝜆.

In the same for each multi-index 𝛽 with |𝛽| 6 𝑝 we obtain

⃒⃒
𝐷𝛽ℎ(𝑥) −𝐷𝛽ℎ(𝑦)

⃒⃒
6

1

Γ(𝛼)

1∫︁
0

(︂
ln

1

𝑠

)︂𝛼−1 |𝐷𝛽𝑢(𝑠𝑥) −𝐷𝛽𝑢(𝑠𝑦)|
𝑠

𝑑𝑠 6 𝐶|𝑥− 𝑦|𝜆.

Moreover,

𝐽𝛼[𝑢](0) = lim
𝑥→0

𝐽𝛼[𝑢](𝑥) =
1

Γ(𝛼)

1∫︁
0

(︂
ln

1

𝑠

)︂𝛼−1

𝑠−1 lim
𝑥→0

𝑢(𝑠𝑥)𝑑𝑠 = 0.

In the same way we prove the following statement.

Lemma 2. Let 0 < 𝛼 6 1, 0 < 𝜆 < 1 and 𝑢 ∈ 𝐶𝜆+𝑝+1(Ω). Then 𝐷𝛼[𝑢] ∈ 𝐶𝜆+𝑝(Ω) and the
identity 𝐷𝛼[𝑢](0) = 0 holds true.

Lemma 3. Let 0 < 𝛼, 𝜆 < 1 and 𝑢 ∈ 𝐶𝜆+1(Ω). Then
1) for each 𝑥 ∈ Ω, the identity

𝐽𝛼 [𝐷𝛼[𝑢]] (𝑥) = 𝑢(𝑥) − 𝑢(0) (5)

holds true;
2) if 𝑢(0) = 0, then for each 𝑥 ∈ Ω, the identity

𝐷𝛼 [𝐽𝛼[𝑢]] = 𝑢(𝑥) (6)

holds true.

Proof. If𝑢 ∈ 𝐶𝜆+1(Ω), by Lemma 2.2 we obtain: 𝐷𝛼[𝑢] ∈ 𝐶𝜆(Ω) and 𝐷𝛼[𝑢](0) = 0. On the
class of such functions, the operator 𝐽𝛼 is well-defined and

𝐽𝛼 [𝐷𝛼[𝑢]] (𝑥) =
1

Γ(𝛼)

𝑟∫︁
0

(︁
ln

𝑟

𝑠

)︁𝛼−1

𝐷𝛼[𝑢](𝑠𝜃)
𝑑𝑠

𝑠

=
1

Γ(𝛼)

1

Γ(1 − 𝛼)

𝑟∫︁
0

(︁
ln

𝑟

𝑠

)︁𝛼−1
𝑠∫︁

0

(︁
ln

𝑠

𝜏

)︁−𝛼

𝛿[𝑢](𝜏𝜃)
𝑑𝜏

𝜏

𝑑𝑠

𝑠

=
1

Γ(𝛼)

1

Γ(1 − 𝛼)

𝑟∫︁
0

𝑑𝑢(𝜏𝜃)

𝑑𝜏

𝑟∫︁
𝑠

(︁
ln

𝑟

𝑠

)︁𝛼−1(︁
ln

𝑠

𝜏

)︁−𝛼𝑑𝑠

𝑠
𝑑𝜏 .

It is easy to show that
𝑟∫︁

𝑠

(︁
ln

𝑟

𝜏
− ln

𝑠

𝜏

)︁𝛼−1(︁
ln

𝑠

𝜏

)︁−𝛼

𝑑
(︁

ln
𝑠

𝜏

)︁
=

Γ(𝛼)Γ(1 − 𝛼)

Γ(1)
.

Then

𝐽𝛼 [𝐷𝛼[𝑢]] (𝑥) =

𝑟∫︁
0

𝑑𝑢(𝜏𝜃)

𝑑𝜏
𝑑𝜏 = 𝑢(𝑥) − 𝑢(0).

The identity (5) is proven.
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Since 𝑢(0) = 0, by Lemma 2.1 the function 𝐽𝛼[𝑢](𝑥) is defined in domain Ω and

𝐷𝛼 [𝐽𝛼[𝑢]] (𝑥) =
1

Γ(1 − 𝛼)

𝑟∫︁
0

(︁
ln

𝑟

𝑠

)︁−𝛼

𝑠
𝑑

𝑑𝑠
𝐽𝛼[𝑢](𝑠𝜃)

𝑑𝑠

𝑠

=
1

Γ(1 − 𝛼)
𝑟
𝑑

𝑑𝑟

𝑟∫︁
0

1

1 − 𝛼

(︁
ln

𝑟

𝑠

)︁1−𝛼 𝑑

𝑑𝑠
𝐽𝛼[𝑢](𝑠𝜃)𝑑𝑠

=
1

Γ(1 − 𝛼)
𝑟
𝑑

𝑑𝑟

⎡⎣ 1

1 − 𝛼

(︁
ln

𝑟

𝑠

)︁1−𝛼

𝐽𝛼[𝑢](𝑠𝜃)

⃒⃒⃒⃒𝑠=𝑟

𝑠=0

+

𝑟∫︁
0

(︁
ln

𝑟

𝑠

)︁−𝛼

𝐽𝛼[𝑢](𝑠𝜃)𝑑𝑠

⎤⎦
=𝑟

𝑑

𝑑𝑟

⎡⎣ 1

Γ(1 − 𝛼)

𝑟∫︁
0

(︁
ln

𝑟

𝑠

)︁−𝛼

𝐽𝛼[𝑢](𝑠𝜃)𝑑𝑠

⎤⎦ = 𝑟
𝑑

𝑑𝑟

[︀
𝐽1−𝛼[𝐽𝛼[𝑢]]

]︀
(𝑥).

Since 𝐽1−𝛼 · 𝐽𝛼 = 𝐽1, then

𝐷𝛼 [𝐽𝛼[𝑢]] (𝑥) = 𝑟
𝑑

𝑑𝑟

𝑟∫︁
0

𝑢(𝑠𝜃)
𝑑𝑠

𝑠
= 𝑟

𝑢(𝑟𝜃)

𝑟
= 𝑢(𝑥).

Lemma 4. Let (−∆)𝑚𝑢(𝑥) = 𝑓(𝑥), where 𝑓(𝑥) is a smooth function in Ω. Then the identity

(−∆)𝑚𝐷𝛼[𝑢](𝑥) = 𝐹 (𝑥), 𝑥 ∈ Ω, (7)

holds, where

𝐹 (𝑥) = |𝑥|−2𝑚𝐷𝛼
[︀
|𝑥|2𝑚𝑓(𝑥)

]︀
. (8)

Proof. Employing identity (2) for the function 𝐷𝛼[𝑢](𝑥), we have

𝐷𝛼[𝑢](𝑥) =
1

Γ(1 − 𝛼)

1∫︁
0

(︂
ln

1

𝑠

)︂−𝛼

𝑠
𝑑

𝑑𝑠
[𝑢](𝑠𝑥)

𝑑𝑠

𝑠
.

It is easy to show that

∆𝑚

[︂
𝑠
𝑑

𝑑𝑠
[𝑢](𝑠𝑥)

]︂
= 𝑠2𝑚

(︂
𝑠
𝑑

𝑑𝑠
+ 2𝑚

)︂
𝑓(𝑠𝑥).

Moreover,

𝑠2𝑚
(︂
𝑠
𝑑

𝑑𝑠
+ 2𝑚

)︂
𝑓(𝑠𝑥) = 𝑠

𝑑

𝑑𝑠

[︀
𝑠2𝑚𝑓(𝑠𝑥)

]︀
.

Applying the operator ∆𝑚 to the function 𝐷𝛼[𝑢](𝑥), we obtain

∆𝑚𝐷𝛼[𝑢](𝑥) =
1

Γ(1 − 𝛼)

1∫︁
0

(︂
ln

1

𝑠

)︂−𝛼

𝑠
𝑑

𝑑𝑠
[𝑠2𝑚𝑓(𝑠𝑥)]

𝑑𝑠

𝑠

=
𝑟−2𝑚

Γ(1 − 𝛼)

1∫︁
0

(︂
ln

1

𝑠

)︂−𝛼
𝑑

𝑑𝑠
[(𝑠𝑟)2𝑚𝑓(𝑠𝑥)]𝑑𝑠 = |𝑥|−2𝑚𝐷𝛼

[︀
|𝑥|2𝑚𝑓(𝑥)

]︀
= 𝐹 (𝑥).
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Lemma 5. The function 𝐹 (𝑥) can be represented as

𝐹 (𝑥) =

(︂
𝑟
𝑑

𝑑𝑟
+ 2𝑚

)︂
𝑓1−𝛼(𝑥), (9)

where

𝑓1−𝛼(𝑥) = |𝑥|−2𝑚𝐽1−𝛼
[︀
|𝑥|2𝑚𝑓(𝑥)

]︀
. (10)

Proof. By the change of variables 𝑠𝑟 = 𝜉, it follows from representation (8) that

𝐹 (𝑥) =
|𝑥|−2𝑚

Γ(1 − 𝛼)

𝑟∫︁
0

(︂
ln

𝑟

𝜉

)︂−𝛼
𝑑

𝑑𝜉

[︀
𝜉2𝑚𝑓(𝜉𝜃)

]︀
𝑑𝜉

=
|𝑥|−2𝑚

Γ(1 − 𝛼)
𝑟
𝑑

𝑑𝑟

⎡⎣ 𝑟∫︁
0

1

1 − 𝛼

(︂
ln

𝑟

𝜉

)︂1−𝛼
𝑑

𝑑𝜉

[︀
𝜉2𝑚𝑓(𝜉𝜃)

]︀
𝑑𝜉

⎤⎦
=

|𝑥|−2𝑚

Γ(1 − 𝛼)
𝑟
𝑑

𝑑𝑟

⎡⎣ 1

1 − 𝛼

(︂
ln

𝑟

𝜉

)︂1−𝛼

𝜉2𝑚𝑓(𝜉𝜃)

⃒⃒⃒⃒
⃒
𝜉=𝑟

𝜉=0

+

𝑟∫︁
0

(︂
ln

𝑟

𝜉

)︂−𝛼

𝜉2𝑚𝑓(𝜉𝜃)
𝑑𝜉

𝜉

⎤⎦
=|𝑥|−2𝑚𝑟

𝑑

𝑑𝑟

⎡⎣ 1

Γ(1 − 𝛼)

𝑟∫︁
0

(︂
ln

𝑟

𝜉

)︂−𝛼

𝜉2𝑚𝑓(𝜉𝜃)
𝑑𝜉

𝜉

⎤⎦
=|𝑥|−2𝑚𝑟

𝑑

𝑑𝑟

⎡⎣ |𝑥|2𝑚

Γ(1 − 𝛼)

1∫︁
0

(︂
ln

1

𝑠

)︂−𝛼

𝑠2𝑚𝑓(𝑠𝑥)
𝑑𝑠

𝑠

⎤⎦ .

We denote

𝑓1−𝛼(𝑥) =
1

Γ(1 − 𝛼)

1∫︁
0

(︂
ln

1

𝑠

)︂−𝛼

𝑠2𝑚𝑓(𝑠𝑥)
𝑑𝑠

𝑠
.

It is obvious that

𝑓1−𝛼(𝑥) =
1

Γ(1 − 𝛼)

1∫︁
0

(︂
ln

1

𝑠

)︂−𝛼

𝑠2𝑚𝑓(𝑠𝑥)
𝑑𝑠

𝑠
= |𝑥|−2𝑚𝐽1−𝛼

[︀
|𝑥|−2𝑚𝑓(𝑥)

]︀
.

Then

𝐹 (𝑥) = |𝑥|−2𝑚𝑟
𝑑

𝑑𝑟

[︀
|𝑥|2𝑚𝑓1−𝛼(𝑥)

]︀
=

(︂
𝑟
𝑑

𝑑𝑟
+ 2𝑚

)︂
𝑓1−𝛼(𝑥),

that is, identity (9) holds.

The following statement was proved in work [22].

Lemma 6. Let 0 < 𝛼 6 1, and 𝐷𝛼+𝑘𝑢(𝑥), 𝑘 = 1, 2, . . . is well-defined. Then the identity

𝐷𝛼+𝑘[𝑢](𝑥) =

(︂
𝑟
𝑑

𝑑𝑟

)︂𝑘

𝐷𝛼[𝑢](𝑥) (11)

holds true.
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3. Study of some properties of solutions to Dirichlet type problem

We consider the following problem{︃
(−∆)𝑚𝑣(𝑥) = 𝐹 (𝑥), 𝑥 ∈ Ω,

𝛿𝑘 [𝑣] (𝑥) = 𝑔𝑘(𝑥), 𝑥 ∈ 𝜕Ω, 𝑘 = 0, 1, . . . ,𝑚− 1.
(12)

Assume that functions 𝑉 (𝑥) and 𝑤(𝑥) solve the following problems:{︃
(−∆)𝑚𝑉 (𝑥) = 𝐹 (𝑥), 𝑥 ∈ Ω,

𝛿𝑘 [𝑉 ] (𝑥) = 0, 𝑥 ∈ 𝜕Ω, 𝑘 = 0, 1, . . . ,𝑚− 1,
(13){︃

(−∆)𝑚𝑤(𝑥) = 0, 𝑥 ∈ Ω,

𝛿𝑘 [𝑤] (𝑥) = 𝑔𝑘(𝑥), 𝑥 ∈ 𝜕Ω, 𝑘 = 0, 1, . . . ,𝑚− 1.
(14)

Then 𝑣(𝑥) = 𝑉 (𝑥) + 𝑤(𝑥).

Lemma 7. Let 0 < 𝜆 < 1 and 𝐹 ∈ 𝐶𝜆+𝑝−2𝑚(Ω), 𝑝 > 2𝑚. Then
1) problem (13) is uniquely solvable and the solution belongs to the class 𝐶𝜆+𝑝

(︀
Ω
)︀

;
2) if the function 𝐹 (𝑥) can be represented as

𝐹 (𝑥) =

(︂
𝑟
𝑑

𝑑𝑟
+ 2𝑚

)︂
𝑔(𝑥), (15)

then the identity

𝑉 (0) =
1

4𝑚−1((𝑚− 1)!)2𝜔𝑛

∫︁
𝜕Ω

(︀
1 − |𝑦|2

)︀𝑚−1
𝑔(𝑦)𝑑𝜉 (16)

holds true.

Proof. In Section 1 we have shown that the boundary value problems in problem (13) are
equivalent to the conditions

𝛿𝑘 [𝑉 ] (𝑥) =
𝑘∑︁

𝑖=0

𝑎
(𝑘)
𝑖

𝜕𝑖𝑉 (𝑥)

𝜕𝜈𝑖
, 𝑥 ∈ 𝜕Ω.

Then problem (13) is equivalent to the Dirichlet problem for the equation (−∆)𝑚 = 𝐹 (𝑥),
𝑥 ∈ Ω. It is known (see, for instance, [24]) that for 𝐹 ∈ 𝐶𝜆+𝑝−2𝑚(Ω), the Dirichlet problem is
uniquely solvable in the class 𝐶𝜆+𝑝(Ω). The first statement of the lemma is proven.

It is also known (see, for instance, [15]) that the solution to the Dirichlet problem is repre-
sented as

𝑉 (𝑥) =

∫︁
Ω

𝐺𝑚,𝑛(𝑥, 𝑦)𝐹 (𝑦) 𝑑𝑦, (17)

where 𝐺𝑚,𝑛(𝑥, 𝑦) is the Green function of the Dirichlet problem.
We note that the function 𝐺𝑚,𝑛(𝑥, 𝑦) was constructed explicitly in work [25]–[27]. For in-

stance, it was shown in work [25] that 𝐺𝑚,𝑛(𝑥, 𝑦) is of the form

𝐺𝑚,𝑛(𝑥, 𝑦) = 𝐾𝑚,𝑛|𝑥− 𝑦|2𝑚−𝑛

𝑎(𝑥,𝑦)∫︁
1

(𝑡2 − 1)
𝑚−1

𝑡1−𝑛𝑑𝑡, (18)

where

𝑎(𝑥, 𝑦) =

⃒⃒⃒
𝑥|𝑦| − 𝑦

|𝑥|

⃒⃒⃒
|𝑥− 𝑦|

, 𝐾𝑚,𝑛 =
1

4𝑚−1((𝑚− 1)!)2𝑛𝑒𝑛
, 𝑒𝑛 =

𝜋𝑛/2

Γ
(︀
1 + 𝑛

2

)︀ .
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Employing the identity 𝜔𝑛 = 2𝜋𝑛/2

Γ(𝑛
2 )

, the coefficient 𝐾𝑚,𝑛 can be represented as

𝐾𝑚,𝑛 =
1

4𝑚−1((𝑚− 1)!)2𝑛

2𝑛
2
Γ
(︀
𝑛
2

)︀
2𝜋𝑛/2

=
1

4𝑚−1((𝑚− 1)!)2𝜔𝑛

.

In what follows we shall need the value of the function 𝐺𝑚,𝑛(𝑥, 𝑦) at the point 𝑥 = 0. By the
representation (18) we have

𝐺𝑚,𝑛 (0, 𝑦) = 𝐾𝑚,𝑛|𝑦|2𝑚−𝑛

|𝑦|−1∫︁
1

(𝑡2 − 1)
𝑚−1

𝑡1−𝑛𝑑𝑡.

We denote the last integral by 𝐼𝑚,𝑛. Let calculate this integral. If 𝑛 ̸= 2(𝑖+1), 𝑖 = 0, 1, . . . ,𝑚−
1, then

𝐼𝑚,𝑛 =

|𝑦|−1∫︁
1

(𝑡2 − 1)
𝑚−1

𝑡1−𝑛𝑑𝑡 =
𝑚−1∑︁
𝑖=0

(−1)𝑚−1−𝑖𝐶𝑖
𝑚−1

|𝑦|−1∫︁
1

𝑡2𝑖+1−𝑛𝑑𝑡

=
𝑚−1∑︁
𝑖=0

(−1)𝑚−1−𝑖𝐶𝑖
𝑚−1

𝑡2(𝑖+1)−𝑛

2(𝑖 + 1) − 𝑛

⃒⃒⃒⃒𝑡=|𝑦|−1

𝑡=1

=
𝑚−1∑︁
𝑖=0

(−1)𝑚−1−𝑖𝐶𝑖
𝑚−1

1

2(𝑖 + 1) − 𝑛

[︀
|𝑦|𝑛−2(𝑖+1) − 1

]︀
.

Let

𝑑𝑚,𝑛,𝑖 = (−1)𝑚−1−𝑖𝐶𝑖
𝑚−1

1

2(𝑖 + 1) − 𝑛
.

If 𝑛 takes one of the values 𝑛 = 2(𝑘 + 1), 𝑘 = 0, 1, . . . ,𝑚− 1, then

𝐼𝑚,𝑛 =
𝑚−1∑︁

𝑖=0,𝑖 ̸=𝑘

(−1)𝑚−1−𝑖𝐶𝑖
𝑚−1

|𝑦|−1∫︁
1

𝑡2𝑖+1−𝑛𝑑𝑡 + (−1)𝑚−1−𝑘𝐶𝑘
𝑚−1

|𝑦|−1∫︁
1

𝑡−1𝑑𝑡

=
𝑚−1∑︁

𝑖=0,𝑖 ̸=𝑘

𝑑𝑚,𝑛,𝑖

[︀
|𝑦|𝑛−2(𝑖+1) − 1

]︀
+ (−1)𝑚−1−𝑘𝐶𝑘

𝑚−1 ln
1

|𝑦|
.

Then as 𝑛 ̸= 2(𝑖 + 1), 𝑖 = 0, 1, . . . ,𝑚− 1 we have

𝐺𝑚,𝑛 (0, 𝑦) = 𝐾𝑚,𝑛

[︃
𝑚−1∑︁
𝑖=0

𝑑𝑚,𝑛,𝑖

[︀
|𝑦|2𝑚−2(𝑖+1) − |𝑦|2𝑚−𝑛

]︀]︃
, (19)

while for other values 𝑛 we have

𝐺𝑚,𝑛 (0, 𝑦) =𝐾𝑚,𝑛

[︃
𝑚−1∑︁

𝑖=0,𝑖 ̸=𝑘

𝑑𝑚,𝑛,𝑖

[︀
|𝑦|2𝑚−2(𝑖+1) − |𝑦|2𝑚−𝑛

]︀]︃

+ 𝐾𝑚,𝑛(−1)𝑚−1−𝑘𝐶𝑘
𝑚−1|𝑦|2𝑚−𝑛 ln

1

|𝑦|
.

(20)

Then in the case 𝑛 ̸= 2(𝑖+1), 𝑖 = 0, 1, . . . ,𝑚−1, it follows from identity (19) and representation
(15) that

𝑉 (0) = 𝐾𝑚,𝑛

∫︁
Ω

[︃
𝑚−1∑︁
𝑖=0

𝑑𝑚,𝑛,𝑖

[︀
|𝑦|2𝑚−2(𝑖+1) − |𝑦|2𝑚−𝑛

]︀]︃(︂
𝜌
𝑑

𝑑𝜌
+ 2𝑚

)︂
𝑔(𝑦)𝑑𝑦.
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Passing to the spherical coordinates 𝑦 = (𝜌, 𝜉), where 𝜉 are angular coordinates, we express the
latter integral as

𝑉 (0) =𝐾𝑚,𝑛

∫︁
|𝜉|=1

1∫︁
0

𝜌𝑛−1

[︃
𝑚−1∑︁
𝑖=0

𝑑𝑚,𝑛,𝑖

[︀
𝜌2𝑚−2(𝑖+1) − 𝜌2𝑚−𝑛

]︀]︃(︂
𝜌
𝑑

𝑑𝜌
+ 2𝑚

)︂
𝑔(𝜌, 𝜉)𝑑𝜌𝑑𝜉

=𝐾𝑚,𝑛

∫︁
|𝜉|=1

[𝐽1(𝜌, 𝜉) + 𝐽2(𝜌, 𝜉)]𝑑𝜉,

where

𝐽1(𝜌, 𝜉) =
𝑚−1∑︁
𝑖=0

𝑑𝑚,𝑛,𝑖

1∫︁
0

𝜌𝑛−1
[︀
𝜌2𝑚−2(𝑖+1) − 𝜌2𝑚−𝑛

]︀
𝜌
𝑑

𝑑𝜌
𝑔(𝜌, 𝜉)𝑑𝜌,

𝐽2(𝜌, 𝜉) = 2𝑚

⎡⎣𝑚−1∑︁
𝑖=0

𝑑𝑚,𝑛,𝑖

1∫︁
0

𝜌𝑛−1
[︀
𝜌2𝑚−2(𝑖+1) − 𝜌2𝑚−𝑛

]︀
𝑔(𝜌, 𝜉)𝑑𝜌

⎤⎦ .

Integrating by parts in 𝐽1(𝜌, 𝜉), we obtain

𝐽1 =
𝑚−1∑︁
𝑖=0

𝑑𝑚,𝑛,𝑖

1∫︁
0

[︀
− (2𝑚 + 𝑛− 2(𝑖 + 1)) 𝜌2𝑚+𝑛−1−2(𝑖+1) + 2𝑚𝜌2𝑚−1

]︀
𝑔(𝜌, 𝜉)𝑑𝜌 =

=
𝑚−1∑︁
𝑖=0

𝑑𝑚,𝑛,𝑖

1∫︁
0

𝜌𝑛−1
[︀
− (2𝑚 + 𝑛− 2(𝑖 + 1)) 𝜌2𝑚−2(𝑖+1) + 2𝑚𝜌2𝑚−𝑛

]︀
𝑔(𝜌, 𝜉)𝑑𝜌.

Hence,

𝐽1(𝜌, 𝜉) + 𝐽2(𝜌, 𝜉) =

1∫︁
0

𝜌𝑛−1

𝑚−1∑︁
𝑖=0

(−1)𝑚−1−𝑖𝐶𝑖
𝑚−1𝜌

2(𝑚−𝑖−1)𝑔(𝜌, 𝜉)𝑑𝜌

=

1∫︁
0

𝜌𝑛−1
(︀
1 − 𝜌2

)︀𝑚−1
𝑔(𝜌, 𝜉)𝑑𝜌.

Therefore,

𝑉 (0) =𝐾𝑚,𝑛

∫︁
|𝜉|=1

1∫︁
0

𝜌𝑛−1
(︀
1 − 𝜌2

)︀𝑚−1
𝑔(𝜌, 𝜉)𝑑𝜌𝑑𝜉

=
1

4𝑚−1((𝑚− 1)!)2𝜔𝑛

∫︁
𝜕Ω

(︀
1 − |𝑦|2

)︀𝑚−1
𝑔(𝑦)𝑑𝜉.

If 𝑛 takes one of the values 𝑛 = 2(𝑘 + 1), 𝑘 = 0, 1, . . . ,𝑚 − 1, as above, by identity (20) we
obtain

𝑣 (0) =𝐾𝑚,𝑛

⎡⎣ 𝑚−1∑︁
𝑖=0,𝑖 ̸=𝑘

𝑑𝑚,𝑛,𝑖

∫︁
Ω

[︀
|𝑦|2𝑚−2(𝑖+1) − |𝑦|2𝑚−𝑛

]︀(︂
𝜌
𝑑

𝑑𝜌
+ 2𝑚

)︂
𝑔(𝑦)𝑑𝑦

⎤⎦
+ 𝐾𝑚,𝑛(−1)𝑚−1−𝑘𝐶𝑘

𝑚−1

∫︁
Ω

|𝑦|2𝑚−𝑛 ln
1

|𝑦|

(︂
𝜌
𝑑

𝑑𝜌
+ 2𝑚

)︂
𝑔(𝑦)𝑑𝑦
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=𝐾𝑚,𝑛

∫︁
|𝜉|=1

[𝐽1,1(𝜌, 𝜉) + 𝐽2,1(𝜌, 𝜉)]𝑑𝜉.

Here

𝐽1,1(𝜌, 𝜉) =
𝑚−1∑︁

𝑖=0,𝑖 ̸=𝑘

𝑑𝑚,𝑛,𝑖

1∫︁
0

𝜌𝑛−1
[︀
𝜌2𝑚−2(𝑖+1) − 𝜌2𝑚−𝑛

]︀
𝜌
𝑑

𝑑𝜌
𝑔(𝜌, 𝜉)𝑑𝜌

+ (−1)𝑚−1−𝑘𝐶𝑘
𝑚−1

1∫︁
0

𝜌𝑛−1

(︂
𝜌2𝑚−𝑛 ln

1

𝜌

)︂
𝜌
𝑑

𝑑𝜌
𝑔(𝜌, 𝜉)𝑑𝜌,

𝐽2,1(𝜌, 𝜉) =2𝑚

⎡⎣𝑚−1∑︁
𝑖=0

𝑑𝑚,𝑛,𝑖

1∫︁
0

𝜌𝑛−1
[︀
𝜌2𝑚−2(𝑖+1) − 𝜌2𝑚−𝑛

]︀
𝑔(𝜌, 𝜉)𝑑𝜌

⎤⎦
+ 2𝑚(−1)𝑚−1−𝑘𝐶𝑘

𝑚−1

1∫︁
0

𝜌𝑛−1

(︂
𝜌2𝑚−𝑛 ln

1

𝜌

)︂
𝑔(𝜌, 𝜉)𝑑𝜌.

Integrating by parts 𝐽1,1(𝜌, 𝜉), we obtain

𝐽1,1 =
𝑚−1∑︁

𝑖=0,𝑖 ̸=𝑘

𝑑𝑚,𝑛,𝑖

1∫︁
0

𝜌𝑛−1
[︀
− (2𝑚 + 𝑛− 2(𝑖 + 1)) 𝜌2𝑚−2(𝑖+1) + 2𝑚𝜌2𝑚

]︀
𝑔(𝜌, 𝜉)𝑑𝜌

− (−1)𝑚−1−𝑘𝐶𝑘
𝑚−12𝑚

1∫︁
0

𝜌𝑛−1

(︂
𝜌2𝑚−𝑛 ln

1

𝜌

)︂
𝑔(𝜌, 𝜉)𝑑𝜌

+ (−1)𝑚−1−𝑘𝐶𝑘
𝑚−1

1∫︁
0

𝜌𝑛−1𝜌2𝑚−𝑛𝑔(𝜌, 𝜉)𝑑𝜌.

Then

𝐽1,1(𝜌, 𝜉) + 𝐽2,1(𝜌, 𝜉) =

1∫︁
0

𝜌𝑛−1

𝑚−1∑︁
𝑖=0

(−1)𝑚−1−𝑖𝐶𝑖
𝑚−1𝜌

2(𝑚−𝑖−1)𝑔(𝜌, 𝜉)𝑑𝜌

=

1∫︁
0

𝜌𝑛−1
(︀
1 − 𝜌2

)︀𝑚−1
𝑔(𝜌, 𝜉)𝑑𝜌.

Hence, in this case we also have identity (16).

Let us study problem (14). Let 𝐴 be a matrix of

𝐴 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

*20𝑐11 1. . . 1

02 4. . . 2 (𝑚− 1)

022 42. . . [2 (𝑚− 1)]2

...
...

...
. . .

...

02𝑚−1 4𝑚−1 [2 (𝑚− 1)]𝑚−1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
. (21)
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We denote by ∆𝑗, 𝑗 = 0, 1, . . . ,𝑚− 1 the determinant of the matrix obtained from the matrix
𝐴 by removing the first column and 𝑗 + 1 rows. In particular, ∆0 = |𝐴| = det𝐴. It is easy to
show that |𝐴| ≠ 0.

Lemma 8. Let 0 < 𝜆 < 1 and 𝑔𝑘 ∈ 𝐶𝜆+𝑝−𝑘 (𝜕Ω), 𝑝 > 𝑚− 1, 𝑘 = 0, 1, . . . ,𝑚− 1. Then
1) problem (14) is uniquely solvable and belongs to the class 𝐶𝜆+𝑝

(︀
Ω
)︀
;

2) the solution to problem (14) satisfies the identity

𝑤 (0) = − 1

𝜔𝑛|𝐴|

𝑚−1∑︁
𝑗=0

∫︁
𝜕Ω

(−1)𝑗+1∆𝑗 · 𝑔𝑗(𝑥)𝑑𝑆𝑥. (22)

Proof. Let us show that problem (14) is equivalent to the Dirichlet problem for the equation
(−∆)𝑚𝑤(𝑥) = 0. In Section 1 we have shown that if 𝜈 is the outward normal for the sphere
𝜕Ω, then for all 𝑥 ∈ 𝜕Ω the identity

𝜕𝑘𝑤(𝑥)

𝜕𝑟𝑘

⃒⃒⃒⃒
𝜕Ω

= 𝑟𝑘
𝜕𝑘𝑤(𝑥)

𝜕𝑟𝑘

⃒⃒⃒⃒
𝜕Ω

=
𝜕𝑘𝑤(𝑥)

𝜕𝜈𝑘

⃒⃒⃒⃒
𝜕Ω

, 𝑘 = 1, 2, . . . ,

holds true.
Then for 𝑘 = 1 we have 𝛿 [𝑤] (𝑥) = 𝑟 𝜕𝑤

𝜕𝑟
, and hence, it follows from the condition 𝛿 [𝑤] (𝑥) |𝜕Ω =

𝑔1(𝑥) that

𝜕𝑤

𝜕𝜈

⃒⃒⃒⃒
𝜕Ω

= 𝑔1(𝑥) ≡ 𝜙1(𝑥).

For 𝑘 = 2 we have

𝛿2 [𝑤] (𝑥) =

(︂
𝑟
𝜕

𝜕𝑟

)︂2

𝑤(𝑥) = 𝑟2
𝜕2𝑤

𝜕𝑟2
+ 𝑟

𝜕𝑤

𝜕𝑟
.

Then by the boundary condition 𝛿2 [𝑤] |𝜕Ω = 𝑔2 we obtain

𝜕2𝑤

𝜕𝜈2

⃒⃒⃒⃒
𝜕Ω

= 𝑔2(𝑥) − 𝜕𝑤

𝜕𝑟

⃒⃒⃒⃒
𝜕Ω

= 𝑔2(𝑥) − 𝑔1 ≡ 𝜙2(𝑥).

In the general case, by employing the identity

𝛿𝑘 [𝑤] (𝑥) =
𝑘∑︁

𝑖=0

𝑎
(𝑘)
𝑖

𝜕𝑖𝑤(𝑥)

𝜕𝜈𝑖
, 𝑥 ∈ 𝜕Ω,

we obtain

𝛿𝑘 [𝑤] (𝑥) = 𝑟𝑘
𝜕𝑘𝑤

𝜕𝑟𝑘
+

𝑘−1∑︁
𝑖=1

𝑎
(𝑘)
𝑖 𝑟𝑖

𝜕𝑖𝑤

𝜕𝑟𝑖
.

Employing the boundary conditions 𝛿𝑘 [𝑤] (𝑥) |𝜕Ω = 𝑔𝑘(𝑥) in problem (14), for 𝜕𝑘𝑣
𝜕𝜈𝑘

(𝑥) we
obtain

𝜕𝑘𝑣

𝜕𝜈𝑘
|𝜕Ω = 𝑔𝑘(𝑥) −

𝑘−1∑︁
𝑖=0

𝑏𝑖,𝑘𝑔𝑖(𝑥) ≡ 𝜙𝑘(𝑥), 𝑘 = 2, 3, . . . ,𝑚− 1,

where the coefficients 𝑏𝑖,𝑘 depend on 𝑎
(𝑘)
𝑖 , 𝑖 < 𝑘. Thus, problem (14) is equivalent to the

Dirichlet problem: ⎧⎨⎩
∆𝑚𝑤(𝑥) = 0,

𝜕𝑘𝑤

𝜕𝜈𝑘
(𝑥) |𝜕Ω = 𝜙𝑘(𝑥), 𝑘 = 0, 1, . . . ,𝑚− 1.

It is obvious that as 𝑔𝑘 ∈ 𝐶𝜆+𝑝−𝑘 (𝜕Ω), the functions 𝜙𝑘(𝑥) also belong to the class
𝐶𝜆+𝑝−𝑘 (𝜕Ω). Then by the known statement for the Dirichlet problem [24] it follows that
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problem (14) is uniquely solvable and the solution belongs to the class 𝐶𝜆+𝑝
(︀
Ω
)︀
. The first of

the lemma is proven.
We proceed to the proof of the second statement. Let 𝑤(𝑥) be the solution to problem

(14). Since the function 𝑤(𝑥) is polyharmonic, there exist the harmonic in Ω functions 𝑤𝑗(𝑥),
𝑗 = 0,𝑚− 1, such that

𝑤(𝑥) = 𝑤0(𝑥) + |𝑥|2𝑤1(𝑥) + . . . + |𝑥|2(𝑚−1)𝑤𝑚−1(𝑥). (23)

We apply the operator
(︀
𝑟 𝜕
𝜕𝑟

)︀ℓ
, ℓ = 1, 2, . . . ,𝑚−1, to the functions of the form |𝑥|2𝑗𝑤𝑗(𝑥). Then

for all 1 6 ℓ 6 𝑚− 1 and 0 6 𝑗 6 𝑚− 1 we find(︂
𝑟
𝜕

𝜕𝑟

)︂ℓ [︁
|𝑥|2𝑗𝑤𝑗(𝑥)

]︁
=

ℓ∑︁
𝑖=1

𝑎
(ℓ)
𝑖 𝑟𝑖

𝜕𝑖

𝜕𝑟𝑖
[︀
𝑟2𝑗𝑤𝑗(𝑥)

]︀
=

ℓ∑︁
𝑖=1

𝑎
(ℓ)
𝑖 𝑟𝑖

𝑖∑︁
𝑝=0

𝐶𝑝
𝑖

𝜕𝑝𝑟2𝑗

𝜕𝑟𝑝
𝜕𝑖−𝑝𝑤𝑗(𝑥)

𝜕𝑟𝑖−𝑝
=

ℓ∑︁
𝑖=1

𝑎
(ℓ)
𝑖 𝑟𝑖

𝑖∑︁
𝑝=0

𝐶𝑝
𝑖 𝑑

(𝑝)
𝑖,𝑗 𝑟

2𝑗−𝑝𝜕
𝑖−𝑝𝑤𝑗(𝑥)

𝜕𝑟𝑖−𝑝
,

where

𝑑
(𝑝)
𝑖,𝑗 =

⎧⎪⎨⎪⎩
0, 𝑝 > 2𝑗

1, 𝑝 = 0

2𝑗 (2𝑗 − 1) . . . (2𝑗 − 𝑝 + 1) , 𝑝 6 2𝑗.

Thus, the function
(︀
𝑟 𝜕
𝜕𝑟

)︀ℓ
[𝑟2𝑗𝑤𝑗(𝑥)] can be represented as(︂

𝑟
𝜕

𝜕𝑟

)︂ℓ [︁
|𝑥|2𝑗𝑤𝑗(𝑥)

]︁
= |𝑥|2𝑗ℎ𝑗,ℓ(𝑥), (24)

where

ℎ𝑗,𝑙(𝑥) =
ℓ∑︁

𝑖=1

𝑎
(ℓ)
𝑖

𝑖∑︁
𝑝=0

𝐶𝑝
𝑖 𝑑

(𝑝)
𝑖,𝑗 𝑟

𝑖−𝑝𝜕
𝑖−𝑝𝑤𝑗(𝑥)

𝜕𝑟𝑖−𝑝
. (25)

Since for harmonic function 𝑤𝑗(𝑥), the functions 𝑟𝑖−𝑝 𝜕
𝑖−𝑝𝑤𝑗(𝑥)

𝜕𝑟𝑖−𝑝 are also harmonic Ω, then for
all 𝑗 = 0, . . . ,𝑚 − 1, ℓ = 1, . . . , 𝑚 − 1 the functions ℎ𝑗,ℓ(𝑥) are harmonic in Ω. On the other
hand, expanding the functions 𝑤𝑗(𝑥), 𝑗 = 0,𝑚− 1 into the series of the form

𝑤𝑗(𝑥) =
∞∑︁
𝑘=0

ℎ𝑘∑︁
𝑖=1

𝑤
(𝑖)
𝑘,𝑗𝐻

(𝑖)
𝑘 (𝑥)

and applying the operator
(︀
𝑟 𝜕
𝜕𝑟

)︀ℓ
, ℓ = 1, 2, . . . ,𝑚 − 1 to the function |𝑥|2𝑗𝑤𝑗(𝑥) for all 𝑥 ∈ Ω,

we obtain (︂
𝑟
𝜕

𝜕𝑟

)︂ℓ [︁
|𝑥|2𝑗𝑤𝑗(𝑥)

]︁
= |𝑥|2𝑗

∞∑︁
𝑘=0

ℎ𝑘∑︁
𝑖=1

(𝑘 + 2𝑗)ℓ𝑤
(𝑖)
𝑘,𝑗𝐻

(𝑖)
𝑘 (𝑥) = |𝑥|2𝑗ℎ𝑗,ℓ(𝑥).

Therefore, as |𝑥| < 1, the representation

ℎℓ,𝑗(𝑥) =
∞∑︁
𝑘=0

ℎ𝑘∑︁
𝑖=1

(𝑘 + 2𝑗)ℓ𝑤
(𝑖)
𝑘,𝑗𝐻

(𝑖)
𝑘 (𝑥) (26)

holds true.
Thus, for the polyharmonic function

(︀
𝑟 𝜕
𝜕𝑟

)︀ℓ
𝑤(𝑥) we obtain(︂

𝑟
𝜕

𝜕𝑟

)︂𝑙

𝑤(𝑥) = ℎ0,𝑙(𝑥) + |𝑥|2ℎ𝑖,𝑒(𝑥) + . . . + |𝑥|2(𝑚−1)ℎ𝑚−1,𝑙(𝑥),



166 B.KH. TURMETOV

where the harmonic functions ℎ𝑗,ℓ(𝑥) are determined by the identity (3.14) and are expanded
into the series of form (26).

We consider harmonic in Ω functions{︂
𝑧0(𝑥) = 𝑤0(𝑥) + 𝑤1(𝑥) + . . . + 𝑤𝑚−1(𝑥)

𝑧ℓ(𝑥) = ℎ0,ℓ(𝑥) + ℎ1,ℓ(𝑥) + . . . + ℎ𝑚−1,ℓ(𝑥), ℓ = 1, 2, . . . ,𝑚− 1.
(27)

It is obvious that

𝑧ℓ(𝑥) |𝜕Ω = ℎ0,ℓ(𝑥) + ℎ1,ℓ(𝑥) + . . . + ℎ𝑚−1,ℓ(𝑥) |𝜕Ω = 𝑔ℓ(𝑥), ℓ = 0,𝑚− 1.

Then the functions 𝑧ℓ(𝑥) can be represented as the Poisson integral

𝑧ℓ(𝑥) =
1

𝜔𝑛

∫︁
𝜕Ω

1 − |𝑥|2

|𝑥− 𝑦|𝑛
𝑔ℓ (𝑦) 𝑑𝑆𝑦.

Hence, for each ℓ = 0, 1, . . . ,𝑚− 1

𝑧ℓ (0) =
1

𝜔𝑛

∫︁
𝜕Ω

𝑔ℓ (𝑦) 𝑑𝑆𝑦. (28)

It follows from expansion (26) that

ℎℓ,𝑗 (0) =

ℎ0∑︁
ℓ=1

(2𝑗)ℓ𝑤
(𝑖)
0,𝑗𝐻

(𝑖)
0 =(2𝑗)ℓ𝑤𝑗 (0) , ℓ > 1.

Then by identities (27) we obtain the system of equations⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑤0 + 𝑤1 + · · · + 𝑤𝑚−1 = 𝑧0

0 · 𝑤0 + 2 · 𝑤1 + · · · + 2(𝑚− 1) · 𝑤𝑚−1 = 𝑧1

. . .

0 · 𝑤0 + 2𝑚−1 · 𝑤1 + · · · + [2(𝑚− 1)]𝑚−1 · 𝑤𝑚−1 = 𝑧𝑚−1.

(29)

The matrix of this system is of form (21). It follows from representation (23) that 𝑤 (0) = 𝑤0 (0).
Let us show that the value 𝑤0 (0) is expressed via linear combinations of the integrals of the

functions 𝑔𝑗(𝑥), 𝑗 = 0,𝑚− 1 over the sphere 𝜕Ω. Indeed, since |𝐴| = det 𝐴 ̸= 0, by the Cramer
rule, we find the value 𝑤0(0) from the system (29) by the formula

𝑤0 (0) =
∆𝑧

|𝐴|
, (30)

where ∆𝑧 stands for the determinant

∆𝑧 =

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒⃒

𝑧0 (0) 1 1 . . . 1
𝑧1 (0) 2 4 . . . 2 (𝑚− 1)

𝑧2 (0) 22 42 . . . [2 (𝑚− 1)]2

...
...

...
...

𝑧𝑚−1 (0) 2𝑚−1 4𝑚−1 . . . [2 (𝑚− 1)]𝑚−1

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒⃒

It is obvious that ∆𝑧 = −
𝑚−1∑︀
𝑗=0

(−1)𝑗+1∆𝑗 · 𝑧𝑗 (0). And since 𝑧𝑗(0) are determined by (28),

then

∆𝑧 = − 1

𝜔𝑛

𝑚−1∑︁
𝑗=0

∫︁
𝜕Ω

(−1)𝑗+1∆𝑗 · 𝑔𝑗(𝑥)𝑑𝑆𝑥.
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Now it follows from identity (30) that

𝑤 (0) = 𝑤0 (0) =
∆𝑧

|𝐴|
= − 1

𝜔𝑛|𝐴|

𝑚−1∑︁
𝑗=0

∫︁
𝜕Ω

(−1)𝑗+1∆𝑗 · 𝑔𝑗(𝑥)𝑑𝑆𝑥.

Hence, identity (22) holds true.

Lemmata 3.1 and 3.2 imply the following statement.

Lemma 9. Let 0 < 𝜆 < 1, 𝑔𝑘 ∈ 𝐶𝜆+𝑝−𝑘(𝜕Ω), 𝑘 = 0, 1, . . . ,𝑚 − 1, and 𝐹 ∈ 𝐶𝜆+𝑝−2𝑚(Ω).
Then

1) problem (12) is uniquely solvable and the solution belongs to the class 𝐶𝜆+𝑝(Ω);
2) if the function 𝐹 (𝑥) is represented as (15), then the identity 𝑣(0) = 0 is necessary and

sufficient for the condition∫︁
Ω

(︀
1 − |𝑦|2

)︀𝑚−1
𝑔(𝑦)𝑑𝜉 =

4𝑚−1((𝑚− 1)!)2

|𝐴|

𝑚−1∑︁
𝑗=0

∫︁
𝜕Ω

(−1)𝑗+1∆𝑗 · 𝑔𝑗(𝑥)𝑑𝑆𝑥. (31)

4. Main statement

In this section we provide the main statement on problem (3), (4).
We have the following statement.

Theorem 1. Let 0 < 𝛼 6 1, 0 < 𝜆 < 1, 𝑔𝑘 ∈ 𝐶𝜆+𝑚−1−𝑘(𝜕Ω), 𝑘 = 0, 1, . . . ,𝑚 − 1 and
𝑓 ∈ 𝐶𝜆+1(Ω). Then problem (3), (4) is solvable if and only if∫︁

Ω

(︀
1 − |𝑦|2

)︀𝑚−1
𝑓1−𝛼(𝑦)𝑑𝑦 =

𝑚−1∑︁
𝑗=0

∫︁
𝜕Ω

𝑎𝑗,𝑚𝑔𝑗(𝑥)𝑑𝑆𝑥, (32)

where

𝑓1−𝛼(𝑥) = |𝑥|−2𝑚𝐽1−𝛼
[︀
|𝑥|2𝑚𝑓(𝑥)

]︀
, 𝑎𝑗,𝑚 =

4𝑚−1((𝑚− 1)!)2

|𝐴|
· (−1)𝑗+1∆𝑗,

|𝐴| is the determinant of the matrix 𝐴 in identity (21), ∆𝑗, 𝑗 = 0, 1, . . . ,𝑚 − 1, are the
determinants of the matrices obtained from the matrix 𝐴 by removing the first column and
𝑗 + 1-th row.
If the problem is solvable, the solution belongs to the class 𝐶𝜆+𝑚−1(Ω) and is unique up to a

constant term. It is represented as

𝑢(𝑥) = 𝐶 + 𝐽𝛼[𝑣](𝑥), (33)

where 𝑣(𝑥) is the solution to problem (12) with the function 𝐹 (𝑥) = |𝑥|−2𝑚𝐷𝛼 [|𝑥|2𝑚𝑓(𝑥)]
satisfying the additional condition 𝑣(0) = 0.

Proof. Assume that problem (3)–(4) exists and it is 𝑢(𝑥). We apply the operator 𝐷𝛼 to the
function 𝑢(𝑥) and denote 𝑣(𝑥) = 𝐷𝛼[𝑢]. Let us find the conditions for the function 𝑣(𝑥). First
of all, by Lemma 2.2, the identity 𝑣(0) = 0 holds true. By Lemma 2.5, the representation (11)
holds, that is,

𝐷𝛼+𝑘[𝑢](𝑥) =

(︂
𝑟
𝑑

𝑑𝑟

)︂𝑘

[𝐷𝛼[𝑢]] (𝑥) ≡ 𝛿𝑘[𝑣](𝑥).

Then

𝑣(𝑥)|𝜕Ω = 𝐷𝛼 [𝑢] (𝑥)|𝜕Ω = 𝑔0(𝑥), 𝛿𝑘[𝑣](𝑥)
⃒⃒
𝜕Ω

= 𝐷𝛼+𝑘[𝑢](𝑥)
⃒⃒
𝜕Ω

= 𝑔𝑘(𝑥), 𝑘 = 1, 2, . . .

And finally, applying the operator (−∆)𝑚 to the identity 𝑣(𝑥) = 𝐷𝛼[𝑢](𝑥), by formula (7) in
Lemma 2.3 we obtain

(−∆)𝑚𝑣(𝑥) = (−∆)𝑚𝐷𝛼 [𝑢] (𝑥) = 𝐹 (𝑥),
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where 𝐹 (𝑥) is defined by identity (8).
Thus, if 𝑢(𝑥) is a solution to problem (3), (4), then for the function 𝑣(𝑥) = 𝐷𝛼 [𝑢] (𝑥)

we obtain the problem (12) with the function 𝐹 (𝑥) = |𝑥|−2𝑚𝐷𝛼 [|𝑥|2𝑚𝑓 ] (𝑥). Moreover, since
𝐷𝛼 [𝑢] (0) = 0, the function 𝑣(𝑥) should satisfy the condition 𝑣(0) = 0. Under the assumptions
of the theorems, by Lemma 3.3 problem (12) is uniquely solvable and the solution belongs to
the class 𝐶𝜆+𝑚−1(Ω). In order to satisfy the condition 𝑣(0) = 0, we need condition (31), which
in our case has form (32).

Therefore, if problem (3), (4) is solvable, then condition (32) is satisfied. Let us show that
this condition is also sufficient for the solvability of problem (3), (4).

Indeed, assume that in problem (12), the function 𝐹 (𝑥) can be represented as 𝐹 (𝑥) =
|𝑥|−2𝑚𝐷𝛼 [|𝑥|2𝑚𝑓 ] (𝑥). Then under the condition 𝑓 ∈ 𝐶𝜆+1(Ω) we have 𝐹 ∈ 𝐶𝜆(Ω) and if
𝑔𝑘 ∈ 𝐶𝜆+𝑚−1−𝑘 (𝜕Ω), 𝑘 = 0, 1, . . . ,𝑚 − 1, then by Lemma 3 problem (12) is uniquely solvable
and the solution belongs to the class 𝐶𝜆+𝑚−1(Ω). If condition (32) is satisfied, this solution
also satisfies the condition 𝑣(0) = 0. This is why in the class of such functions the operator
𝐽𝛼 is well-defined and therefore, we can consider the function 𝐶 + 𝐽𝛼 [𝑣] (𝑥). We denote this
function by 𝑢(𝑥), that is, we consider the function 𝑢(𝑥) = 𝐶 + 𝐽𝛼[𝑣](𝑥). Let us show that this
function satisfies all the conditions in problem (3), (4).

Indeed, since 𝑣(0) = 0, by Lemma 2.1 the function 𝐽𝛼 [𝑣] (𝑥) belongs to the class 𝐶𝜆+𝑚−1
(︀
Ω
)︀
.

Applying the operator (−∆)𝑚 to this function, we obtain

(−∆)𝑚𝑢(𝑥) =(−∆)𝑚[𝐶] + (−∆)𝑚𝐽𝛼 [𝑣] (𝑥)

=
1

Γ (𝛼)

1∫︁
0

(︂
ln

1

𝑠

)︂𝛼−1

𝑠2𝑚−1(−∆)𝑚𝑣 (𝑠𝑥) 𝑑𝑠

=
1

Γ (𝛼)

1∫︁
0

(︂
ln

1

𝑠

)︂𝛼−1

𝑠2𝑚𝐹 (𝑠𝑥)
𝑑𝑠

𝑠

=
1

Γ (𝛼)

1∫︁
0

(︂
ln

1

𝑠

)︂𝛼−1

𝑠2𝑚|𝑠𝑥|−2𝑚𝐷𝛼
[︀
|𝑥|2𝑚𝑓

]︀
(𝑠𝑥)

𝑑𝑠

𝑠

=|𝑥|−2𝑚𝐽𝛼
[︀
𝐷𝛼
[︀
|𝑥|2𝑚𝑓

]︀]︀
(𝑥).

Then, by identity (5),

𝐽𝛼
[︀
𝐷𝛼
[︀
|𝑥|2𝑚𝑓

]︀]︀
(𝑥) = |𝑥|2𝑚𝑓(𝑥) − |𝑥|2𝑚𝑓(𝑥)

⃒⃒
𝑥=0

= |𝑥|2𝑚𝑓(𝑥).

Then (−∆)𝑚𝐽𝛼 [𝑣] (𝑥) = 𝑓(𝑥), that is, the function 𝑢(𝑥) satisfies equation (3). Moreover, it
follows from condition (6) that

𝐷𝛼 [𝑢] (𝑥) = 𝐷𝛼 [𝐽𝛼 [𝑣] + 𝐶] (𝑥) = 𝐷𝛼 [𝐽𝛼 [𝑣]] (𝑥) = 𝑣(𝑥).

Therefore,

𝐷𝛼 [𝑢] (𝑥) |
𝜕Ω

= 𝑣(𝑥) |
𝜕Ω

= 𝑔1(𝑥),

𝐷𝛼+𝑘 [𝑢] (𝑥) |
𝜕Ω

=

(︂
𝑟
𝑑

𝑑𝑟

)︂𝑘

𝐷𝛼 [𝑢] (𝑥) |
𝜕Ω

=

(︂
𝑟
𝑑

𝑑𝑟

)︂𝑘

𝑣(𝑥) |
𝜕Ω

= 𝑔𝑘(𝑥), 𝑘 = 1, 2, . . . .

Let us consider the solvability conditions of problem (3), (4) for some particular cases.
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Example 1. If 𝑚 = 1, we obtain the boundary value problem for the Poisson equation. Since
in this case |𝐴| = ∆0 = 1, the solvability condition of this problem is of the form:∫︁

Ω

𝑓1−𝛼(𝑦)𝑑𝑦 =

∫︁
𝜕Ω

𝑔0 (𝑦)𝑑𝑆𝑦.

If 𝛼 = 1, then 𝑓0(𝑦) ≡ 𝑓(𝑦) and we obtain the solvability condition of the classical Neumann
problem for the Poisson equation.

Example 2. Let 𝑚 = 2, then

𝐴 =

(︂
1 1
0 2

)︂
, |𝐴| = 2, ∆𝑧 =

⃒⃒⃒⃒
𝑧0 1
𝑧1 2

⃒⃒⃒⃒
, ∆0 = 2, ∆1 = 1,

𝑎0,2 =
4

2
· (−1) ∆0 = −4, 𝑎1,2 =

4

2
· (−1)2∆1 = 2.

Then the solvability condition of the problem is of the form∫︁
Ω

(1 − |𝑦|2)
2

𝑓1−𝛼(𝑦)𝑑𝑦 =

∫︁
𝜕Ω

[𝑔1(𝑦) − 2𝑔0(𝑦)] 𝑑𝑆𝑥.
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