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HOMOTOPY CLASSIFICATION OF ELLIPTIC PROBLEMS

ASSOCIATED WITH DISCRETE GROUP ACTIONS

ON MANIFOLDS WITH BOUNDARY

A.YU. SAVIN, B.YU. STERNIN

Abstract. Given an action of a discrete group 𝐺 on a smooth compact manifold 𝑀 with a
boundary, we consider a class of operators generated by pseudodifferential operators on 𝑀
and shift operators associated with the group action. For elliptic operators in this class, we
obtain a classification up to stable homotopies and show that the group of stable homotopy
classes of such problems is isomorphic to the 𝐾-group of the crossed product of the algebra
of continuous functions on the cotangent bundle over the interior of the manifold and the
group 𝐺 acting on this algebra by automorphisms.
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1. Introduction

The index problem in elliptic theory is to express the index of an elliptic operator in terms
of the topological invariants of its symbol and the manifold, on which this operator is defined
[1]. Here a description of the homotopy classification of operators plays an important role; this
classification means to calculate the group of (stable) homotopy classes of elliptic operators on
the manifold. The benefit of such calculation is that the homotopy invariants of the operators,
and, in particular, the index, are functionals on this group of the homotopy classes.

The homotopy classification was obtained first on a smooth closed manifold in [1], where it
was shown that the group of stably homotopy classes is isomorphic to a topological 𝐾-group
with compact supports 𝐾𝑐(𝑇

*𝑀) of the cotangent bundle of the manifold. Then the homotopy
classification was obtained for many other interesting elliptic operators. For instance, it was
shown in [2] that the homotopy classification of classical boundary value problems on a manifold
with a boundary can be obtained in terms of the group 𝐾𝑐(𝑇

*𝑀∘) associated with the interior
𝑀∘ = 𝑀 ∖ 𝜕𝑀 of the manifold with a boundary. The homotopy classification of elliptic
operators in Boutet de Monvel’s algebra was obtained on a manifold with a boundary [3, 4].
The homotopy classification was also obtained for many classes of manifolds with singularities
[5]–[7]. There were considered the applications of the classification to calculating obstruction
of Atiyah–Bott type [8] for the existence of elliptic problems on manifolds with singularities,
to the description of Poincaré duality on manifolds with singularities and others [9]–[13].
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There is an interesting class of elliptic problems associated with the groups actions on mani-
folds (see the monographs and survey [14]–[17] and the references therein). For these problems
on a smooth closed manifold there was obtained a homotopy classification in terms of 𝐾-group
𝐾0(𝐶0(𝑇

*𝑀) o𝐺) of the crossed product of the algebra of continuous functions on the cotan-
gent bundle 𝑇 *𝑀 and by the group 𝐺 acting by the automorphisms on this algebra. The
latter 𝐾-group can be calculated in the topological terms for many groups 𝐺 thanks to the
Baum–Connes mapping (isomorphism) [18].

The aim of the present work is to obtain the homotopy classfication of elliptic pseudodiffer-
ential operators associated with the action of a discrete group on a manifold with a boundary.
We note that the theory of general pseudodifferential operators on a manifold with a boundary
was described in works [19]–[21]. In the present work we lean on the description of the corre-
sponding 𝐶*-algrebra of such operators given in work [22]. We show that the group of stably
homotopy classes is isomorphic to the 𝐾-group 𝐾0(𝐶0(𝑇

*𝑀∘) o 𝐺) of the crossed product
associated with the interior of the manifold.

2. Formulation of the problem

2.1. Pseudodifferential operators on a manifold with a boundary. In this subsection
we recall main facts on the structure of the algebra of pseudodifferential operators on a manifold
with a boundary from work [22]. Let 𝑀 be a smooth compact manifold with a boundary
𝑋 = 𝜕𝑀 . We assume that some collar neighbourhood 𝑈 of the boundary is chosen, that is, a
diffeomorphism

𝑈 ≃ 𝑋 × [0, 1), (1)

under which the boundary 𝑋 is mapped into the manifold 𝑋 × {0}. In what follows, as local
coordinates in a neighbourhood of the boundary we choose (𝑦, 𝑡), where 𝑦 are coordinates on
𝑋, and 𝑡 ∈ [0, 1).

By Ψ(𝑀) ⊂ ℬ𝐿2(𝑀) we denote the 𝐶*-algebra of pseudodifferential operators of zero order
on 𝑀 , generally speaking, without transmission property [22] and acting in space 𝐿2 on the
manifolds. The Calkin’s algebra is denoted by Σ = Ψ(𝑀)/𝒦. Hereinafter by 𝒦 we denote the
ideal of compact operators. Let us recall the needed to us facts on the algebra Σ established
in the cited work. There exists a symbolic mapping

𝜎 = (𝜎𝑖𝑛𝑡, 𝜎𝑏) : Σ −→ 𝐶(𝑆*𝑀) ⊕ 𝐶(𝑆*𝑋,ℬ𝐿2(R+)), (2)

whose components are called interior and boundary symbol, respectively. The 𝐶*-algebra of
boundary symbols denote by

Σ𝑏 = Im𝜎𝑏 ⊂ 𝐶(𝑆*𝑋,ℬ𝐿2(R+)),

has the following additional symbolic structure: on this algebra, the mapping of the interior
symbol is defined

𝜎′
𝑖𝑛𝑡 : Σ𝑏 −→ 𝐶(𝑆*𝑀 |𝑋)

and of Mellin symbol

𝜎𝑀 : Σ𝑏 −→ 𝐶(𝑋 ×R);

the exact sequence of 𝐶*-algebras

0 −→ 𝐶(𝑆*𝑋,ℳ0) −→ Σ𝑏
𝜎𝑀−→ 𝐶(𝑋 ×R) −→ 0

holds, where ℳ0 ⊂ ℬ𝐿2(R+) is the ideal formed by the boundary symbols with zero Mellin
symbol. We note that the boundary symbols corresponding to this ideal satisfy the transmission
condition, while this ideal coincides with the ideal considered in Theorem 2 in [3]. In particular,
it was established in the cited work that this ideal has trivial 𝐾-groups

𝐾*(ℳ0) = 0. (3)
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In the local coordinates (𝑦, 𝑡) in a neighbourhood of the boundary the boundary symbol can
be obtained from the operator by freezing its coefficients at a point of the boundary and applying
then Fourier transform 𝑦 → 𝜂. We obtain an operator in the space with the coordinates 𝜂, 𝑡,
which is a family of operators acting in the space of 𝐿2-functions on the half-line R+ with the
coordinate 𝑡 and depending on the parameters 𝜂. This family is exactly the boundary symbol.

The Mellin symbol 𝜎𝑀(𝑎) of a boundary symbol 𝑎 ∈ Σ𝑏 is introduced as follows. The
boundary symbol 𝑎 is a family of operators on the half-line R+. Then the zero 0 ∈ R+

is considered as a conical point and the Mellin symbol is just the conormal symbol of the
considered operator at this point. In other words, we freeze the coefficients of the operator 𝑎 at
zero and make the Mellin transform 𝑡 → 𝑝. The boundary symbol is mapped in the operator
of multiplication by a function of the variable 𝑝, which, by the definition, is the Mellin symbol
of the operator.

2.2. 𝐺-pseudodifferential operators on a manifold with a boundary. We assume in
addition that the action by diffeomorphisms of a discrete group 𝐺 on 𝑀 is given. We also
assume that this group is amenable [23]. A class of operators called 𝐺-operators is associated
with the action of a group on a manifold [17, 24]. Let us define these operators in the considered
situation.

The group 𝐺 acts on the manifold and therefore, it acts by means of the corresponding
change of variables by the automorphisms on the 𝐶*-algebra 𝐶(𝑀) of continuous functions on
the manifold 𝑀 , as well as on the algebra Ψ(𝑀) of pseudodifferential operators. The 𝐶*-crossed
product

Ψ(𝑀) o𝐺

is associated with the action of the algebra Ψ(𝑀) [16],[24]. By the amenability of the group
the crossed product is defined uniquely. The elements of this 𝐶*-algebra are families {𝐷𝑔}𝑔∈𝐺
of pseudodifferential operators 𝐷𝑔 ∈ Ψ(𝑀) parameterized by the group 𝐺. To this family, we
associated a so-called 𝐺-operator

𝐷 =
∑︁
𝑔∈𝐺

𝐷𝑔𝑈𝑔 : 𝐿2(𝑀) −→ 𝐿2(𝑀), (4)

where

𝑈𝑔 : 𝑢(𝑥) ↦−→
(︂

(𝑔−1)*𝜇

𝜇
(𝑥)

)︂1/2

𝑢(𝑔−1𝑥)

is the unitary representation of the group by means of the weighted shift operators in the space
𝐿2(𝑀). Here 𝜇 is the volume form on 𝑀 defining the scalar product in the space 𝐿2(𝑀). The
sum in (4) is well-defined for compactly supported in 𝑔 families and can be extended to the
entire crossed product by the universal property of the crossed products (for details see [17, 24])
and thus, the representation

Ψ(𝑀) o𝐺 −→ ℬ𝐿2(𝑀)
{𝐷𝑔} ↦−→ 𝐷 =

∑︀
𝑔∈𝐺𝐷𝑔𝑈𝑔

of the crossed product is well-defined in the space 𝐿2(𝑀). For the obtained operator we
introduce the notion of the symbol

𝜎(𝐷) = {𝜎(𝐷𝑔)}𝑔∈𝐺 ∈ Σ o𝐺,

the ellipticity condition is formulated as the invertibility condition of the symbol in the men-
tioned algebra (in the cited works more explicit descriptions of this condition are also given)
and it is shown that the elliptic operators are Fredholm.

Apart from scalar operators (4), we can also consider the corresponding matrix operator.
However, we note that it is more natural to make the homotopy classification in terms of a
wider class of operators than operators (4) or even matrix operators being analogues of operators
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acting in the sections of the vector bundles (see [1] in the classical case). Namely, we consider
the class of the operators of the form

𝐷 : Im𝑃1 −→ Im𝑃2, Im𝑃1,2 ⊂ 𝐿2(𝑀,C𝑁), (5)

acting between the ranges of the matrix projectors

𝑃1,2 ∈ Mat𝑁(𝐶(𝑀) o𝐺)

(that is, the relations(𝑃1)
2 = 𝑃1, (𝑃2)

2 = 𝑃2 hold true) with the entries in the algebra 𝐶(𝑀)o𝐺,
and

𝐷 ∈ Mat𝑁(Ψ(𝑀) o𝐺)

is a matrix operator with the entries in the crossed product Ψ(𝑀) o𝐺. The projectors 𝑃1, 𝑃2

and operators 𝐷 satisfy the relation

𝑃2𝐷𝑃1 = 𝐷𝑃1,

which means that the operator 𝐷 maps the range of the projector 𝑃1 into the range of the
projector 𝑃2. For the operators of form (5) we naturally introduce the notion of the symbol
and the ellipticity and the Fredholm property theorem is true (see the abstract construction in
[5]).

2.3. Problem on homotopy classification. By Ell(𝑀,𝐺) we denote the Abelian group
of stably homotopy classes of elliptic operators of form (5). We recall briefly (for details see
[5]) that two operators of such type are called stably homotopy if there exists a continuous
homotopy of elliptic operators (𝐷𝑡, 𝑃1,𝑡, 𝑃2,𝑡) connecting direct sums of these operators with
some trivial operators. Here, as a trivial operator, we call operators of form (5) in which the
operator 𝐷 has the entries in the subalgebra

𝐶(𝑀) o𝐺 ⊂ Ψ(𝑀) o𝐺.

In the standard way one can check that the stable homotopy is an equivalence relation on the
set of elliptic operators of form (5).

The aim of the work is to obtain a stably homotopy classification, that is, to calculate the
group Ell(𝑀,𝐺) in terms of the topological invariants of the action of the group on the manifold.

3. Main result

The main result of this work is given in a theorem below. In order to state it, we need the
definition of an admissible action.

Definition 1. The action of a group 𝐺 on a manifold 𝑀 with a boundary is called admissible
if one of the following two conditions is satisfied:

1) either for each element 𝑔 ∈ 𝐺, the induced action on the cotangent bundle by means of
the differentials

𝜕𝑔 = (𝑑𝑔𝑡)−1 : 𝑇 *𝑀 −→ 𝑇 *𝑀, where 𝑑𝑔 : 𝑇𝑀 → 𝑇𝑀 is a differential,

over the boundary (i.e., as 𝑡 = 0) is equal to

𝜕𝑔|𝑡=0 =

(︂
𝜕(𝑔|𝑋) 0

0 𝑖𝑑

)︂
: 𝑇 *𝑋 ⊕R −→ 𝑇 *𝑋 ⊕R, (6)

where we employ the expansion

𝑇 *𝑀 |𝑋 ≃ 𝑇 *𝑋 ⊕R
corresponding to collar neighbourhood (1). In other words, as 𝑡 = 0, the co-differential
acts identically along the normal direction to the boundary, while along the directions
tangent to the boundary it coincides with the differential of the restriction of the action
on the boundary;
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2) or for an arbitrary 𝐶*-algebra 𝐴, on which the group 𝐺 acts, the triviality of its 𝐾-groups
𝐾*(𝐴) = 0 implies the same for the 𝐾-group of the crossed product 𝐾*(𝐴o𝐺) = 0.

We observe that the class of admissible actions includes arbitrary actions of finite groups
or, more general, an arbitrary isometric action (in this Condition 1) is satisfied), an arbitrary
action of the group Z𝑛 for 𝑛 (here Condition 2) is satisfied), one can easily confirm this by
employing Pimsner-Voiculescu sequence [25].

Theorem 1. Assume that the action of a group 𝐺 on the manifold 𝑀 is admissible. Then
the isomorphism of the groups

Ell(𝑀,𝐺) ≃ 𝐾0

(︀
𝐶0(𝑇

*𝑀∘) o𝐺
)︀

(7)

holds true, where 𝑀∘ = 𝑀 ∖𝑋 is the interior of the manifold. Here, on the cotangent bundle
𝑇 *𝑀∘ we consider the following action of the group 𝐺:

(𝑥, 𝜉) ∈ 𝑇 *𝑀 ↦−→
(︂
𝑔𝑥, |𝜉| 𝜕𝑔𝜉

|𝜕𝑔𝜉|

)︂
∈ 𝑇 *𝑀,

where the norms of the covectors are calculated with respect to some fixed metric on the manifold.

Isomorphism (7) can be treated as follows (cf. [8, 2, 3]): the group Ell(𝑀,𝐺) is isomorphic to
an analogous group for some narrower (and simpler) class of operators, which are isomorphisms
over the boundary and an arbitrary operator is stably homotopy to an operator in this class.

Remark 1. For the trivial group 𝐺 = {𝑒} this theorem gives the isomorphism

Ell(𝑀, {𝑒}) ≃ 𝐾0(𝐶0(𝑇
*𝑀∘)) ≃ 𝐾𝑐(𝑇

*𝑀∘),

that is in agreement with the results on the classification of classical boundary value problem
and pseudodifferential operators with the transmission property [2]–[4].

Remark 2. For many discrete groups, the 𝐾-group of the crossed product in (7) can be
calculated in topological terms by employing Baum-Connes mapping with coefficients (see [18]).
For instance,

1) for a finite group 𝐺 we obtain the isomorphism

𝐾0(𝐶0(𝑇
*𝑀∘) o𝐺) ≃ 𝐾𝐺

0 (𝑀)

with the even group of 𝐺-equivalent 𝐾-homologies of the manifold 𝑀 ;
2) for the group 𝐺 = Z𝑛 we have

𝐾0(𝐶0(𝑇
*𝑀∘) o Z𝑛) ≃ 𝐾0(𝑀 ×R𝑛/Z𝑛),

where in the right hand side we have the 𝐾-homology group of the quotient space of the product
𝑀 × R𝑛 with respect to the diagonal action of the group Z𝑛 (the diagonal ation is free and
proper and this is why the factor space is a smooth manifold).

Remark 3. In the case, when the action of the group is isometric, Theorem 1 can be applied
for proving the index formula. In order to do it, we need just to construct the topological index
by using the methods in [16, 26]. These issues are planned to be considered in other work.

4. Proof of the main theorem

Here we prove Theorem 1.
1. First we express the group Ell(𝑀,𝐺) of stable homotopy classes of elliptic operators in

terms of the 𝐾-group of some 𝐶*-algebra associated with the algebra of the symbols. Namely,
by the results of work [5] we have the isomorphism of Abelian groups

Ell(𝑀,𝐺) ≃ 𝐾0

(︀
Con(𝐶(𝑀) o𝐺 → Σ o𝐺)

)︀
= 𝐾0

(︀
Con(𝐶(𝑀) → Σ) o𝐺

)︀
, (8)
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where for a homomorphism 𝑓 : 𝐴 → 𝐵 of 𝐶*-algebras 𝐴 and 𝐵, by

Con(𝐴 → 𝐵) = {(𝑎, 𝑏(𝑡)) ∈ 𝐴⊕ 𝐶[0, 1) ⊗𝐵 | 𝑓(𝑎) = 𝑏(0)}
we denote the cone of this homomorphism.

2. We consider the ideals

𝐶0(𝑀
∘) ⊂ 𝐶(𝑀), Σ0 = 𝐶0(𝑆

*𝑀∘) ⊂ Σ (9)

consisting of the functions and symbols vanishing at the boundary. The ideals in (9) give us a
short exact sequence

0 → Con(𝐶0(𝑀
∘) → Σ0) o𝐺

𝑖→ Con(𝐶(𝑀) → Σ) o𝐺 → Con(𝐶(𝑋) → Σ𝑏) o𝐺 (10)

of the crossed products of the cones for the corresponding mapping, where Σ𝑏 ⊂
𝐶(𝑆*𝑋,ℬ𝐿2(R+)) stands for the algebra of the boundary symbols. The exact sequence in
𝐾-theory

. . . −→ 𝐾*+1(Con(𝐶(𝑋) → Σ𝑏) o𝐺)
𝜕−→ 𝐾*(Con(𝐶0(𝑀

∘) → Σ0) o𝐺)
𝑖*−→

𝑖*−→ 𝐾*(Con(𝐶(𝑀) → Σ) o𝐺) −→ 𝐾*(Con(𝐶(𝑋) → Σ𝑏) o𝐺) → . . .
(11)

corresponding to short sequence (10) implies that the embedding 𝑖 induces the isomorphism of
𝐾-groups if 𝐾-groups of the cone Con(𝐶(𝑋) → Σ𝑏) o𝐺 are trivial.

Now we assume that the action of the group is admissible in the sense of Definition 1 and
Condition 1) holds true. The case, when Condition 2) holds true, will be considered later. Then
we have the isomorphism of 𝐶*-algebras

Con(𝐶0(𝑀
∘) → Σ0) o𝐺 ≃ 𝐶0(𝑇

*𝑀∘) o𝐺 (12)

and therefore, we have the isomorphism of their 𝐾-groups. This isomorphism and the isomor-
phism 𝑖* in (11) lead us to the statement of the theorem.

Thus, in order to prove the theorem, it is sufficient to establish the triviality of the 𝐾-groups
of the cone

Con(𝐶(𝑋) → Σ𝑏) o𝐺. (13)

By the exact sequence for the cone in 𝐾-theory (see, for instance, [27]), cone (13) has trivial
𝐾-groups if the embedding

𝐶(𝑋) o𝐺 −→ Σ𝑏 o𝐺, (14)

to which it is associated, induces the isomorphism in 𝐾-theory.
3. The mapping of the Mellin symbol

𝜎𝑀 : Σ𝑏 → 𝐶(𝑋 ×R)

gives a short exact sequence of 𝐶*-algebras

0 → (𝐶(𝑆*𝑋) ⊗ℳ0) o𝐺 −→ Σ𝑏 o𝐺
𝜎𝑀−→ 𝐶(𝑋 ×R) o𝐺 −→ 0, (15)

where ℳ0 ⊂ ℬ𝐿2(R+) is the ideal consisting of boundary symbols with zero Mellin symbol.
Here we observe the isomorphism of 𝐶*-algebras

(𝐶(𝑆*𝑋) ⊗ℳ0) o𝐺 ≃ (𝐶(𝑆*𝑋) o𝐺) ⊗ℳ0 (16)

implied by the fact that by our assumption the group 𝐺 acts trivially with respect the variable
𝑡, that is, it gives the identity mapping on the algebra ℳ0. Then the algebra ℳ0 coincides
with the ideal considered in work [3], where it was established that this ideal has trivial 𝐾-
groups. By Künneth formula we also obtain that algebra (16) has trivial 𝐾-groups and by the
exactness of the sequence in 𝐾-theory for pair (15) we obtain that the Mellin symbol induces
an isomorphism of 𝐾-groups

𝜎𝑀* : 𝐾*(Σ𝑏 o𝐺) −→ 𝐾*(𝐶(𝑋 ×R) o𝐺) ≃ 𝐾*(𝐶(𝑋) o𝐺). (17)
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Then it is obvious that embedding (14) defines the right inverse mapping for the mapping
𝜎𝑀 . And since 𝜎𝑀* is an isomorphism in 𝐾-theory, the mentioned embedding defines also an
isomorhism in 𝐾-theory.

4. Thus, we have established that isomorphism (14) induces the isomorphism of 𝐾-groups
and therefore, its cone (13) has trivial 𝐾-groups. This is why the embedding 𝑖 in (10) induces
an isomoprhism of 𝐾-groups and in view of (8) and (12) we finally obtain:

Ell(𝑀,𝐺) ≃ 𝐾0

(︀
Con(𝐶(𝑀) → Σ)o𝐺

)︀ 𝑖−1
*≃ 𝐾0(Con(𝐶0(𝑀

∘) → Σ0)o𝐺) ≃ 𝐾0(𝐶0(𝑇
*𝑀∘)o𝐺).

Theorem 1 has been proved for the case, when admissibility condition 1) is satisfied.
5. Let us prove the theorem for the actions satisfying the admissibility condition 2). For

such actions the proof follows the same lines as above except the only difference: formula (16)
is no longer true since the action of the group is not identical on the algebra ℳ0. However, by
the Künneth formula we have

𝐾*(𝐶(𝑆*𝑋) ⊗ℳ0) = 0,

that by the above condition for the group yields the triviality of 𝐾-groups of the crossed
products

𝐾*
(︀
(𝐶(𝑆*𝑋) ⊗ℳ0) o𝐺

)︀
= 0.

Other parts of the proof are reproduced with no changes.
The proof of Theorem 1 is complete.
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