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SYMMETRIES AND CONSERVATION LAWS FOR A

TWO-COMPONENT DISCRETE POTENTIAL

KORTEWEG-DE VRIES EQUATION

M.N. POPTSOVA, I.T. HABIBULLIN

Abstract. In the work we discuss briefly a method for constructing a formal asymptotic
solution to a system of linear difference equations in the vicinity of a special value of the
parameter. In the case when the system is the Lax pair for some nonlinear equation on a
square graph, the found formal asymptotic solution allows us to describe the conservation
laws and higher symmetries for this nonlinear equation. In the work we give a complete
description of a series of conservation laws and the higher symmetries hierarchy for a discrete
potential two-component Korteweg-de Vries equation.
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1. Introduction

Considerably many works are devoted to studying the asymptotic behavior of the system of
linear differential equations near the singular point, see, for instance, monograph [1]. Asymp-
totic representation for an eigenfunction of the Lax operators allows one to study effectively
the motion integrals, higher symmetries and particular solutions of the corresponding nonlinear
dynamical system [2, 3]. The method of formal asymptotic diagonalization allowed the authors
of work [4] to establish a deep connection between integrable systems and affine Lie algebras.

An algorithm for solving the problem on asymptotic diagonalization of a discrete operator in
the vicinity of the singular point and its applications in the theory of integrable nonlinear dis-
crete equations was discussed in details in works [5, 6, 7]. Interesting results on non-autonomous
discrete dynamical systems were obtained by using the formal diagonalization method in works
[8, 9]. Alternative approaches to the problem on constructing the asymptotic expansion for an
eigenfunction of the discrete Lax operator were proposed in works [10, 11, 12].

In the present work we consider the two-component discrete potential Korteweg-de Vries
equation

(𝑢− 𝑢1,1)(𝑣1,0 − 𝑣0,1) = 𝑝2 − 𝑞2,

(𝑣 − 𝑣1,1)(𝑢1,0 − 𝑢0,1) = 𝑝2 − 𝑞2.

found in [13]. The Lax pair for this equation was provided in [13], we also mention that
its explicit particular solutions were found in [14]. We recall the one-component potential
Korteweg-de Vries equation

(𝑢1,1 − 𝑢)(𝑢1,0 − 𝑢0,1) = 4𝑐2 (1.1)
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was studied earlier in many works starting from [15, 16]. It is also known as equation H1 from
the list by Adler-Bobenko-Suris, see [17]. An infinite series of conservation laws for this equation
was obtained in work [18], higher symmetries were constructed in papers [19, 20, 21, 22].

In the present work, by means of the method of the formal asymptotic diagonalization of Lax
pair, we describe an infinite series of conservation laws and construct the higher symmetries of
the two-component discrete potential Korteweg-de Vries equation1.

Let us clarify briefly the structure of the work. In the second section we describe the class
of discrete linear equations with singular points, in the vicinities of which we construct an
asymptotic solution. By an example we demonstrate the way of reducing the linear system
to a special convenient form. In the third section we discuss an algorithm for reducing the
Lax operator to a quasi-diagonal form. In the forth section we expose a known method of
constructing the generating function for the conservation laws employing the commutation
condition of the diagonalized Lax operators. In the fifth section the formal diagonalization
method is applied to a particular dynamical system cdpKdV (5.1), for which we provide an
infinite series of conservation laws. And, finally, in the sixth section we prove that dynamical
system cdpKdV (5.1) has an infinite hierarchy of higher symmetries. First two symmetries are
constructed explicitly, for the others we provide an effective way of calculating.

2. Singularities of pole kind for discrete linear system

We consider a linear discrete equation of the form

𝑦(𝑛+ 1, 𝜆) = 𝑓(𝑛, 𝑢(𝑛), 𝜆)𝑦(𝑛, 𝜆), (2.1)

where the potential 𝑓 = 𝑓(𝑛, 𝑢, 𝜆) ∈ C𝑁×𝑁 depends on an integer 𝑛 ∈ (−∞,+∞), functional
parameter 𝑢 = 𝑢(𝑛) and complex parameter 𝜆. The potential is a meromorphic function on 𝜆
in a domain 𝐸 ⊂ C and it is assumed that det 𝑓 is not identically zero.

Let us define what is a singular point. We call a point 𝜆 = 𝜆0 singular for equation (2.1) if
at least one of the functions 𝑓(𝑛, 𝑢, 𝜆), 𝑓−1(𝑛, 𝑢, 𝜆) has a pole at this point. We assume that
𝜆0 is independent of 𝑛.

We note that some singular points can be removed by means of a transformation of the
dependent variable 𝑦(𝑛) = 𝑟(𝑛, 𝜆)𝑦(𝑛), which reduces equation (2.1) to the same form

𝑦(𝑛+ 1) = 𝑓(𝑛, 𝑢, 𝜆)𝑦(𝑛)

with a new potential 𝑓(𝑛, 𝑢, 𝜆) = 𝑟−1(𝑛+ 1, 𝜆)𝑓(𝑛, 𝑢, 𝜆)𝑟(𝑛, 𝜆).
As a simple illustrative example, we consider equation (2.1) with the potential

𝑓 =

(︂
𝜆𝑔11 𝜆𝑔12
𝜆𝑔21 𝜆𝑔22

)︂
, 𝑔𝑖𝑗 = 𝑔𝑖𝑗(𝑛, 𝑢).

This equation has two singular points 𝜆 = ∞, 𝜆 = 0. Both singular points are removed by the
transformation 𝑦(𝑛) = 𝜆𝑛𝑦(𝑛). Indeed, 𝑓 = 𝜆−1𝑓 = {𝑔𝑖𝑗}.

A less trivial example is provided the well known linear equation associated in the integrability
context to equation (1.1). Its potential is of the form

𝑓(𝑛, 𝑢, 𝜆) =

(︂
−𝑢(𝑛+ 1) 1

−𝜆−2 − 𝑢(𝑛)𝑢(𝑛+ 1) 𝑢(𝑛)

)︂
. (2.2)

Here 𝑢(𝑛) is an arbitrary function. Equation (2.1), (2.2) has two singular points 𝜆 = 0, 𝜆 = ∞.
The singular point 𝜆 = 0 can be removed by the transformation

𝑦(𝑛) = 𝑟(𝑛, 𝜆)𝑦(𝑛), 𝑟(𝑛, 𝜆) =

(︂
𝜆−𝑛 0

0 𝜆−𝑛−1

)︂
.

1We thank the authors of work [14], who attracted out attention to this problem.
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Indeed, in this case the potential casts into the form

𝑓(𝑛, 𝜆) =

(︂
−𝑢(𝑛+ 1)𝜆 1

−1 − 𝑢(𝑛)𝑢(𝑛+ 1)𝜆2 𝑢(𝑛)𝜆

)︂
and has the only singular point 𝜆 = ∞.

The key step of the diagonalization algorithm is the reducing of the original system (2.1) to
the special form

𝑦(𝑛+ 1, 𝜆) = 𝑃 (𝑛, 𝜆)𝑍𝑦(𝑛, 𝜆) (2.3)

in the vicinity of the singular point 𝜆 = 𝜆0. Here functions 𝑃 (𝑛, 𝜆) and 𝑃−1(𝑛, 𝜆) are analytic
in the vicinity of 𝜆0, the principal minors of the matrix 𝑃 (𝑛, 𝜆) satisfy conditions (3.8) below
and the matrix 𝑍 has diagonal form (3.7).

If we succeeded to reduce the system to the mentioned form, then the coefficients of the
asymptotic series can be effectively calculated. By the known coefficients of the series we can
construct easily the conservation laws and the symmetries. Let us discuss one of the ways of
reducing the original system to form (2.3) choosing as an example the equation

𝑦(𝑛+ 1, 𝜆) = 𝑓(𝑛, 𝑢(𝑛), 𝜆)𝑦(𝑛, 𝜆), 𝑓 =

(︂
𝜆 −𝑢(𝑛)
1 0

)︂
. (2.4)

It is easy to see that equation (2.4) has the unique singular point 𝜆 = ∞. First we represent 𝑓
as the product 𝑓(𝑛, 𝑢(𝑛), 𝜆) = 𝛼(𝑛, 𝑢(𝑛), 𝜆)𝑍𝛽(𝑛, 𝑢(𝑛), 𝜆) of three matrices, a diagonal matrix
𝑍 and triangular matrices 𝛼 and 𝛽:

𝛼 =

(︂
1 0
𝜆−1 𝑢(𝑛)

)︂
, 𝑍 =

(︂
𝜆 0
0 𝜆−1

)︂
, 𝛽 =

(︂
1 𝑢(𝑛)𝜆−1

0 1

)︂
.

We stress that 𝛼(𝑛, 𝜆) and 𝛽(𝑛, 𝜆) are analytic and non-degenerate in the vicinity of 𝜆 = ∞.
After the change 𝜓 = 𝛽𝑦, equation (2.4) casts into the required form

𝜓(𝑛+ 1, 𝜆) = 𝑃 (𝑛, 𝑢(𝑛), 𝜆)𝑍𝜓(𝑛, 𝜆).

Here 𝑃 is determined by the formula 𝑃 (𝑛, 𝑢(𝑛), 𝜆) = 𝛽(𝑛+ 1, 𝑢(𝑛+ 1), 𝜆)𝛼(𝑛, 𝑢(𝑛), 𝜆), namely,

𝑃 (𝑛, 𝑢(𝑛), 𝜆) =

(︂
1 − 𝑢(𝑛+ 1)𝜆−2 −𝑢(𝑛)𝑢(𝑛+ 1)𝜆−2

𝜆−1 𝑢(𝑛)

)︂
.

At that, 𝑃 (𝜆) is analytic at infinity and principal minors of the matrix 𝑃 (∞) are non-zero.

3. Asymptotic diagonalization of the discrete operator in the vicinity of a
singular point

Assume that 𝑓(𝑛, 𝑢, 𝜆) has a pole at 𝜆 = 𝜆0. Then 𝑓 can be expanded into the Laurent series
in the vicinity of this point:

𝑓(𝑛, 𝑢, 𝜆) = (𝜆− 𝜆0)
−𝑘𝑓(𝑘)(𝑛) + (𝜆− 𝜆0)

−𝑘+1𝑓(𝑘−1)(𝑛) + · · · , 𝑘 ≥ 1. (3.1)

The aim of the present section is to discuss sufficient conditions for the “diagonalizability” of
equation (2.1) in the vicinity of the point 𝜆 = 𝜆0. In accordance with work [6], equation (2.1)
is diagonalizable if there exist formal series

𝑅(𝑛, 𝜆) = 𝑅(0) +𝑅(1)(𝜆− 𝜆0) +𝑅(2)(𝜆− 𝜆0)
2 + · · · , (3.2)

ℎ(𝑛, 𝜆) = ℎ(0) + ℎ(1)(𝜆− 𝜆0) + ℎ(2)(𝜆− 𝜆0)
2 + · · · (3.3)

with matrix coefficients 𝑅(𝑗), ℎ(𝑗) ∈ C𝑁×𝑁 , where ℎ(𝑗) is a diagonal (block-diagonal) matrix for
all 𝑗 such that the formal change of the dependent variable 𝑦 = 𝑅𝜙 reduces equation (2.1) to
the form

𝜙1 = ℎ𝑍𝜙. (3.4)
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Here 𝑍 = (𝜆− 𝜆0)
𝑑, 𝑑 is a diagonal matrix with integer entries. We assume that det𝑅(0) ̸= 0,

detℎ(0) ̸= 0. It follows from formulae (3.2)–(3.4) that equation (2.1) has a formal solution with
the following asymptotic expansion

𝑦(𝑛, 𝜆) = 𝑅(𝑛, 𝜆)𝑒
∑︀𝑛−1

𝑠=𝑛0
log ℎ(𝑠,𝜆)𝑍𝑛 (3.5)

with “amplitude” 𝐴 = 𝑅(𝑛, 𝜆) and “phase” 𝜑 = 𝑛 log𝑍 +
∑︀𝑛−1

𝑠=𝑛0
log ℎ(𝑠, 𝜆).

We assume that the potential 𝑓(𝑛, 𝜆) can be represented as

𝑓(𝑛, 𝑢(𝑛), 𝜆) = 𝛼(𝑛, 𝑢(𝑛), 𝜆)𝑍𝛽(𝑛, 𝑢(𝑛), 𝜆), (3.6)

where 𝛼(𝑛, 𝜆) and 𝛽(𝑛, 𝜆) are analytic and non-degenerate in the vicinity of 𝜆 = 𝜆0, 𝑍 is a
diagonal matrix of the form

𝑍 =

⎛⎜⎜⎝
(𝜆− 𝜆0)

𝛾1𝐸1 0 . . . 0
0 (𝜆− 𝜆0)

𝛾2𝐸2 . . . 0
...

...
. . .

...
0 0 . . . (𝜆− 𝜆0)

𝛾𝑁𝐸𝑁

⎞⎟⎟⎠ , (3.7)

𝐸𝑗 are unit matrices of the size 𝑒𝑗×𝑒𝑗, the exponents are mutually different 𝛾1 < 𝛾2 < . . . < 𝛾𝑁 .
We let 𝑃 (𝑛, 𝑢, 𝜆) = 𝛽(𝑛 + 1, 𝑢(𝑛 + 1), 𝜆)𝛼(𝑛, 𝑢(𝑛), 𝜆) and assume that the principal minors of
the matrix 𝑃 (𝑛, 𝑢, 𝜆0) satisfy the following condition:

det
𝑗
𝑃 (𝑛, 𝑢, 𝜆0) ̸= 0 for 𝑗 = 𝑒1, 𝑒1 + 𝑒2, 𝑒1 + 𝑒2 + 𝑒3, . . . , 𝑁. (3.8)

Theorem 1. Assume that 𝜆 = 𝜆0 is a singular point and the potential 𝑓(𝑛, 𝑢(𝑛), 𝜆) satisfies
conditions (3.6), (3.8) in the vicinity of 𝜆0 and in the varying domain of 𝑢(𝑛). Then there
exists a formal series “diagonalizing” equation (2.1) in the vicinity of 𝜆 = 𝜆0, i.e., the formal
change 𝑦 = 𝑅𝜙 reduces (2.1) to form (3.4), where ℎ has the following block-diagonal structure

ℎ =

⎛⎜⎜⎝
ℎ11 0 . . . 0
0 ℎ22 . . . 0
...

...
. . .

...
0 0 . . . ℎ𝑟𝑟

⎞⎟⎟⎠ . (3.9)

Here ℎ𝑗𝑗 are square matrices of the size 𝑒𝑗 × 𝑒𝑗. The coefficients 𝑅(𝑖) and ℎ(𝑖) depend on a finite
subset of the infinite set of variables {𝑢(𝑘)}𝑘=−∞,∞ and this subset depends on 𝑖.

The proof of Theorem 1 was given in work [7]. It should be said that in the proof of the
theorem, there was constructed a formal series 𝑇 = 𝛽𝑅 satisfying the equation

𝐷𝑛(𝑇 )ℎ = 𝑃 (𝑛, 𝑢(𝑛), 𝜆)𝑇 , 𝑇 = 𝑍𝑇𝑍−1. (3.10)

Corollary 1. Linear equation (2.1) rewritten in the following special form

𝜓(𝑛+ 1, 𝜆) = 𝑃 (𝑛, 𝑢(𝑛), 𝜆)𝑍𝜓(𝑛, 𝜆)

is reduced to the block-diagonal form

𝜙(𝑛+ 1, 𝜆) = ℎ(𝑛, 𝜆)𝑍𝜙(𝑛, 𝜆)

by the transformation 𝜓(𝑛, 𝜆) = 𝑇 (𝑛, 𝜆)𝜙(𝑛, 𝜆) if 𝑃 = 𝐷𝑛(𝛽)𝛼, 𝑓 = 𝛼𝑍𝛽 and conditions (3.6),
(3.8) are satisfied.
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4. Asymptotic diagonalization of Lax operator and conservation laws

We consider the dynamical system

𝐹 (𝐷𝑚𝐷𝑛𝑣,𝐷𝑚𝑣,𝐷𝑛𝑣, 𝑣) = 0, (4.1)

where the sought object is an vector-valued function 𝑣 = 𝑣(𝑛,𝑚) with the coordinates 𝑣𝑗(𝑛,𝑚),
𝑗 = 1, . . . , 𝑁 , depending on integer 𝑛,𝑚. The shift operators 𝐷𝑛 and 𝐷𝑚 act by the rules
𝐷𝑛𝑦(𝑛,𝑚) = 𝑦(𝑛+ 1,𝑚) and 𝐷𝑚𝑦(𝑛,𝑚) = 𝑦(𝑛,𝑚+ 1). We assume that (4.1) is the compati-
bility condition for linear equations

𝑦(𝑛+ 1,𝑚) = 𝑃 (𝑛,𝑚, [𝑣], 𝜆)𝑍𝑦(𝑛,𝑚),

𝑦(𝑛,𝑚+ 1) = 𝑅(𝑛,𝑚, [𝑣], 𝜆)𝑦(𝑛,𝑚).
(4.2)

The expression [𝑣] means that the functions 𝑃 and 𝑅 depend on the variable 𝑣 and a finite
number of its shifts 𝐷𝑘

𝑛𝑣, 𝐷𝑘
𝑚𝑣. Let us introduce the discrete operators 𝐿 = 𝐷−1

𝑛 𝑃𝑍 and
𝑀 = 𝐷−1

𝑚 𝑅. Then the compatibility condition of system (4.2) can be written as

[𝐿,𝑀 ] = 0, where [𝐿,𝑀 ] = 𝐿𝑀 −𝑀𝐿. (4.3)

We note that the first equation in (4.2) has the form (2.3). Assume that 𝑃 (𝑛,𝑚, [𝑣], 𝜆) satisfies
the assumptions of Theorem 1: 𝑃 is analytic in the vicinity of 𝜆 = 𝜆0 for arbitrary integer 𝑛,
𝑚 and for all values 𝑢 = [𝑣] in some domain, while principal minors (3.8) are non-zero in this
domain. We also assume that the function 𝑅(𝑛,𝑚, [𝑣], 𝜆) is meromorphic in the vicinity of the
point 𝜆 = 𝜆0, when 𝑢 takes the values in the considered domain.

It follows from Theorem 1 that the discrete operator 𝐿 = 𝐷−1
𝑛 𝑃𝑍 is reduced to the quasi-

diagonal form 𝐿0 = 𝐷−1
𝑛 ℎ𝑍 by the transformation 𝐿 → 𝑇−1𝐿𝑇 = 𝐿0, where 𝑇 (𝑛, 𝜆) =∑︀∞

𝑖≥0 𝑇(𝑖)(𝜆 − 𝜆0)
𝑖. It follows from (4.3) that [𝐿0,𝑀0] = 0, where 𝑀0 := 𝑇−1𝑀𝑇 . By the

construction and by the above made assumption, the coefficient 𝑆 in the formula 𝑀0 = 𝐷−1
𝑚 𝑆

is a formal series of the form 𝑆 = (𝜆− 𝜆0)
𝑘
∑︀∞

𝑖=0 𝑆𝑖(𝜆− 𝜆0)
−𝑖.

Theorem 2. The coefficients 𝑆𝑖 of the series 𝑆 has the same bloc-diagonal structure as the
matrix ℎ.

By the block-diagonal structure, 𝑆 commutes with 𝑍 and we find that

𝐷𝑛(𝑆)ℎ = 𝐷𝑚(ℎ)𝑆. (4.4)

Passing to the block representation 𝑆 = {𝑆𝑖𝑗}, ℎ = {ℎ𝑖𝑗} in the identity (4.4), we obtain
𝐷𝑛(𝑆𝑖𝑖)ℎ𝑖𝑖 = 𝐷𝑚(ℎ𝑖𝑖)𝑆𝑖𝑖. Now it is clear that the equation

(𝐷𝑛 − 1) log det𝑆𝑖𝑖 = (𝐷𝑚 − 1) log detℎ𝑖𝑖, 𝑖 = 1, 2, . . . , 𝑁0, (4.5)

generates an infinite sequence of conservation laws for equation (4.1). Since the function det𝑆 =∏︀𝑁0

𝑖=1 det𝑆𝑖𝑖 is not identically zero, the logarithms in (4.5) are well-defined.

5. Conservation laws of two-component discrete potential
Korteweg-de Vries equation

Consider the two-component discrete potential Korteweg-de Vries equation (cdpKdV)

(𝑢𝑛,𝑚 − 𝑢𝑛+1,𝑚+1)(𝑣𝑛+1,𝑚 − 𝑣𝑛,𝑚+1) = 𝛿2 − 𝜎2,

(𝑣𝑛,𝑚 − 𝑣𝑛+1,𝑚+1)(𝑢𝑛+1,𝑚 − 𝑢𝑛,𝑚+1) = 𝛿2 − 𝜎2.
(5.1)

In this section we describe an infinite sequence of conservation laws and construct higher
symmetries for system (5.1) by means of the method of asymptotic diagonalization of Lax
operators. Lax pair for (5.1) was constructed in work [13] and is given by by the system of
equations

𝑦𝑛+1,𝑚 = 𝑓𝑦𝑛,𝑚, 𝑦𝑛,𝑚+1 = 𝑔𝑦𝑛,𝑚, (5.2)
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where the potentials 𝑓 and 𝑔 are written as

𝑓 =

⎛⎜⎜⎝
0 −𝑢𝑛+1,𝑚 0 1

−𝑣𝑛+1,𝑚 0 1 0
0 −𝜆−1 − 𝑢𝑛+1,𝑚𝑣𝑛,𝑚 0 𝑣𝑛,𝑚

−𝜆−1 − 𝑢𝑛,𝑚𝑣𝑛+1,𝑚 0 𝑢𝑛,𝑚 0

⎞⎟⎟⎠ ,

𝑔 =

⎛⎜⎜⎝
0 −𝑢𝑛,𝑚+1 0 1

−𝑣𝑛,𝑚+1 0 1 0
0 𝜎2 − 𝛿2 − 𝜆−1 − 𝑢𝑛,𝑚+1𝑣𝑛,𝑚 0 𝑣𝑛,𝑚

𝜎2 − 𝛿2 − 𝜆−1 − 𝑢𝑛,𝑚𝑣𝑛,𝑚+1 0 𝑢𝑛,𝑚 0

⎞⎟⎟⎠ .

We represent the potentials 𝑓 and 𝑔 as 𝑓 = 𝐹Ω and 𝑔 = 𝐺Ω, respectively, where

𝐹 =

⎛⎜⎜⎝
−𝑢𝑛+1,𝑚 0 1 0

0 −𝑣𝑛+1,𝑚 0 1
−𝜆−1 − 𝑢𝑛+1,𝑚𝑣𝑛,𝑚 0 𝑣𝑛,𝑚 0

0 −𝜆−1 − 𝑣𝑛+1,𝑚𝑢𝑛,𝑚 0 𝑢𝑛,𝑚

⎞⎟⎟⎠ ,

𝐺 =

⎛⎜⎜⎝
−𝑢𝑛,𝑚+1 0 1 0

0 −𝑣𝑛,𝑚+1 0 1
−𝜆−1 + 𝜎2 − 𝛿2 − 𝑢𝑛,𝑚+1𝑣𝑛,𝑚 0 𝑣𝑛,𝑚 0

0 −𝜆−1 + 𝜎2 − 𝛿2 − 𝑣𝑛,𝑚+1𝑢𝑛,𝑚 0 𝑢𝑛,𝑚

⎞⎟⎟⎠ ,

Ω =

⎛⎜⎜⎝
0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

⎞⎟⎟⎠ .

Let ℛ be the ring of matrices 𝑋𝑛×𝑛 satisfying the condition 𝜎𝑋𝜎−1 = 𝑋, where 𝜎 =
diag(1,−1, 1,−1). It is easy to see that the matrices 𝐹 and 𝐺 belong to the group 𝒢 of
the invertible elements of the ring ℛ.

By means of the change Ω𝑛+𝑚𝜙𝑛,𝑚 = 𝑦𝑛,𝑚, we transform system (5.2) to the system of the
equations

𝜙𝑛+1,𝑚 = 𝐹𝜙𝑛,𝑚, 𝜙𝑛,𝑚+1 = 𝐺̃𝜙𝑛,𝑚 (5.3)

with new potentials

𝐹 = Ω−(𝑛+𝑚+1)𝐹Ω𝑛+𝑚+1 =

(︂
−𝑝𝑛+1,𝑚 𝐼

−𝜆−1𝐼 − 𝑝𝑛+1,𝑚𝑝𝑛,𝑚 𝑝𝑛,𝑚

)︂
,

𝐺̃ = Ω−(𝑛+𝑚+1)𝐺Ω𝑛+𝑚+1 =

(︂
−𝑝𝑛,𝑚+1 𝐼

−𝜆−1𝐼 + (𝜎2 − 𝛿2)𝐼 − 𝑝𝑛,𝑚+1𝑝𝑛,𝑚 𝑝𝑛,𝑚

)︂
.

Here 𝐼 stands for the unit block diag(1, 1), the variable 𝑝𝑛,𝑚 is defined by the following formula:

𝑝𝑛,𝑚 = 𝐸−(𝑛+𝑚)

(︂
𝑢𝑛,𝑚 0

0 𝑣𝑛,𝑚

)︂
𝐸𝑛+𝑚, (5.4)

where

𝐸 =

(︂
0 1
1 0

)︂
.

Now system (5.1) can be considered as the commutation condition of two discrete operators
ℒ̃ = 𝐷−1

𝑛 𝐹 and ℳ̃ = 𝐷−1
𝑚 𝐺̃.

Let us reduce the equation 𝜙𝑛+1,𝑚 = 𝐹𝜙𝑛,𝑚 to special form (2.3). In order to do it, we

represent the potential 𝐹 as the product 𝐹 = 𝛼̃𝑍𝛽 of three matrices, block lower triangular
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matrix 𝛼̃, block diagonal matrix 𝑍 and block upper triangular matrix 𝛽:

𝛼̃ =

(︂
𝐼 0

˜𝑞𝑛,𝑚 + 𝜆−1𝑝−1
𝑛+1,𝑚 −𝑝−1

𝑛+1,𝑚

)︂
,

𝑍 =

(︂
𝐼 0
0 𝜆−1𝐼

)︂
, 𝛽 =

(︂
−𝑝𝑛+1,𝑚 𝐼

0 𝐼

)︂
.

Then the change 𝜓 = 𝛽𝜙 reduces the first equation in (5.3) to the form 𝜓𝑛+1,𝑚 = 𝑃𝜓𝑛,𝑚, where

𝑃 = 𝐷𝑛+1(𝛽)𝛼̃, namely,

𝑃 (𝜆) =

(︂
𝑞𝑛,𝑚 − 𝑝𝑛+1,𝑚 −𝑝−1

𝑛+1,𝑚

𝑞𝑛,𝑚 −𝑝−1
𝑛+1,𝑚

)︂
+ 𝜆−1

(︂
𝑝−1
𝑛+1,𝑚 0
𝑝−1
𝑛+1,𝑚 0

)︂
.

We see that 𝑃 ∈ ℛ. At that, the minors

det(𝑞𝑛,𝑚 − 𝑝𝑛+1,𝑚), det𝑃 (∞) (5.5)

of the matrix 𝑃 (∞) are non-zero. We recall that 𝑞𝑛,𝑚 and 𝑝𝑛+1,𝑚 are 2×2 blocks. By Theorem 1
there exist formal series

𝑇 = 𝑇0 + 𝑇1𝜆
−1 + · · · , ℎ̃ = ℎ̃0 + ℎ̃1𝜆

−1 + · · ·

such that the operator 𝐿̃0 := 𝑇−1𝐿̃𝑇 , where 𝐿̃ = 𝐷−1
𝑛 𝑃𝑍, is a diagonal operator of the form

𝐿̃0 = 𝐷−1
𝑛 ℎ̃𝑍. We find the series 𝑇 and ℎ̃ by the equation

𝐷𝑛(𝑇 )ℎ̃ = 𝑃𝑇 , 𝑇 = 𝑍𝑇𝑍−1. (5.6)

Since

𝑍𝑇𝑍−1 =

(︂
𝑇1,1 𝜆𝑇1,2

𝜆−1𝑇2,1 𝑇2,2

)︂
,

the identities

𝜆𝑇1,2 = 𝑇 1,2, 𝜆−1𝑇2,1 = 𝑇 2,1, 𝑇𝑖,𝑖 = 𝑇 𝑖,𝑖, 𝑖 = 1, 2,

hold true. Substituting here the formal series

𝑇 = 𝑇0 + 𝜆−1𝑇1 + · · · , 𝑇 = 𝑇 0 + 𝜆−1𝑇 1 + · · · ,

we obtain that

𝜆𝑇0,1,2 + 𝑇1,1,2 + 𝜆−1𝑇2,1,2 + · · · = 𝑇 0,1,2 + 𝜆−1𝑇 1,1,2 + 𝜆−2𝑇 2,1,2 + · · · ,

𝜆−1𝑇0,2,1 + 𝜆−2𝑇1,2,1 + 𝜆−3𝑇2,2,1 + · · · = 𝑇 0,2,1 + 𝜆−1𝑇 1,2,1 + 𝜆−2𝑇 2,2,1 + · · · ,

𝑇0,𝑖,𝑖 + 𝜆−1𝑇1,𝑖,𝑖 + · · · = 𝑇 0,𝑖,𝑖 + 𝜆−1𝑇 1,𝑖,𝑖 + · · · , 𝑖 = 1, 2.

It follows from the latter identities that 𝑇0,1,2 = 0, 𝑇 0,2,1 = 0, i.e., the matrices 𝑇 and 𝑇 are
block lower triangular and upper triangular, respectively, and the identities

𝑇𝑝+1,1,2 = 𝑇 𝑝,1,2, 𝑇𝑝,2,1 = 𝑇 𝑝+1,2,1, 𝑇𝑝,𝑖,𝑖 = 𝑇 𝑝,𝑖,𝑖, 𝑖 = 1, 2, (5.7)

hold true. We return back to equation (5.6) and rewrite it as

𝐷𝑛(𝑇0 + 𝜆−1𝑇1 + · · · )(ℎ̃0 + 𝜆−1ℎ̃1 + · · · ) = (𝑃0 + 𝜆−1𝑃1)(𝑇 0 + 𝜆−1𝑇 1 + · · · ) (5.8)
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Comparing the coefficients at different powers of 𝜆, we obtain the following sequence of the
equations

𝐷𝑛(𝑇0)ℎ̃0 = 𝑃0𝑇 0, (5.9)

𝐷𝑛(𝑇1)ℎ̃0 +𝐷𝑛(𝑇0)ℎ̃1 − 𝑃0𝑇 1 = 𝑃1𝑇 0, (5.10)

𝐷𝑛(𝑇𝑘)ℎ̃0 +𝐷𝑛(𝑇0)ℎ̃𝑘 − 𝑃0𝑇 𝑘 = 𝑃1𝑇 𝑘−1 −
𝑘−1∑︁
𝑗=1

𝐷𝑛(𝑇𝑘−𝑗)ℎ̃𝑗, 𝑘 ≥ 2. (5.11)

Equation (5.9) is the Gauss problem on the decomposition of the matrix 𝑃0 into the product
of three matrices in the group 𝒢, a block lower triangular matrix 𝐷𝑛(𝑇0), a block diagonal

matrix ℎ̃0 and a block upper triangular 𝑇
−1

0 . The solvability of this problem is guaranteed by
regularity condition (5.5). The uniqueness of the solution to this problem is ensured by letting
the blocks of the matrix 𝑇0 to be equal to the unit matrices of the size 2 × 2. Since the Gauss

problem is solved in group 𝒢, we obtain that the matrices 𝑇0, ℎ̃0 and 𝑇 0 belong to the group 𝒢.

We assume that the diagonal blocks of the matrices 𝑇𝑘 and 𝑇 𝑘 are zero for all 𝑘 > 0. We

expand each of the matrices 𝑇𝑘 and 𝑇 𝑘 into the sum of a lower block triangular matrix and an
upper block triangular matrices with zero diagonal blocks

𝑇𝑘 = 𝑇𝑘𝐿 + 𝑇𝑘𝑈 , 𝑇 𝑘 = 𝑇 𝑘𝐿 + 𝑇 𝑘𝑈 . (5.12)

The matrices 𝑇1𝑈 and 𝑇 1𝐿 can be found easily. Indeed, employing (5.7), we have 𝑇1,1,2 = 𝑇 0,1,2,

𝑇 1,2,1 = 𝑇0,2,1. That is, there elements were found at the previous step. In order to find the

unknowns 𝑇1𝐿 and 𝑇 1𝑈 , we employ equation (5.10) written as

ℎ̃1ℎ̃
−1
0 +𝐷𝑛(𝑇−1

0 𝑇1𝐿) − ℎ̃0𝑇
−1

0 𝑇 1𝑈 ℎ̃
−1
0 = 𝐻1,

where the right hand side 𝐻1 = 𝐷𝑛(𝑇−1
0 )𝑃1𝑇 0ℎ̃

−1
0 −𝐷𝑛(𝑇−1

0 𝑇1𝑈) + ℎ̃0𝑇
−1

0 𝑇 1𝐿ℎ
−1
0 involves the

known matrices. At that, 𝐻1 ∈ ℛ. In order to find the unknowns ℎ̃1, 𝑇1𝐿, 𝑇 1𝑈 , we need to
expand 𝐻1 into the sum of three terms, a block diagonal matrix ℎ̃1ℎ̃

−1
0 , a block lower triangular

matrix 𝐷𝑛(𝑇−1
0 𝑇1𝐿), and a block upper triangular matrix −ℎ0𝑇

−1

0 𝑇 1𝑈ℎ
−1
0 . And since this

problem is solved in the ring ℛ, the sought terms also belong to ℛ, and therefore, the matrices

𝑇1 ℎ̃1 and 𝑇 1 also belong to ℛ. Continuing this procedure, we find all coefficients 𝑇𝑘 and ℎ̃𝑘 by
the equation

ℎ̃𝑘ℎ̃
−1
0 +𝐷𝑛(𝑇−1

0 𝑇𝑘𝐿) − ℎ̃0𝑇
−1

0 𝑇 𝑘𝑈 ℎ̃
−1
0 = 𝐻𝑘,

where the term 𝐻𝑘 contains the terms found at the previous step. Thus, we have proved that
all the coefficients of the series 𝑇 belong to the ring ℛ.

Let us write out explicitly the first elements of the formal series 𝑇 and ℎ̃:

𝑇 =

(︂
𝐼 0

− 𝑝𝑛−1,𝑚

𝑝𝑛+1,𝑚−𝑝𝑛−1,𝑚
𝐼

)︂
+

(︃
0 − 1

𝑝𝑛+1,𝑚(𝑝𝑛+2,𝑚−𝑝𝑛,𝑚)

− 𝑝𝑛+1,𝑚

(𝑝𝑛+1,𝑚−𝑝𝑛−1,𝑚)2(𝑝𝑛,𝑚−𝑝𝑛−2,𝑚)
0

)︃
𝜆−1 + · · · ,

ℎ̃ =

(︂
𝑝𝑛,𝑚 − 𝑝𝑛+2,𝑚 0

0 − 𝑝𝑛+2,𝑚

𝑝𝑛+1,𝑚(𝑝𝑛+2,𝑚−𝑝𝑛,𝑚)

)︂
+

(︃
1

𝑝𝑛+1,𝑚−𝑝𝑛−1,𝑚
0

0 −𝑝𝑛+2,𝑚𝑝𝑛+3,𝑚−𝑝𝑛+2,𝑚𝑝𝑛+1,𝑚+𝑝𝑛,𝑚𝑝𝑛+1,𝑚

𝑝2𝑛+1,𝑚(𝑝𝑛+3,𝑚−𝑝𝑛+1,𝑚)(𝑝𝑛+2,𝑚−𝑝𝑛,𝑚)2

)︃
𝜆−1 + · · · .
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We note that 𝑝 is a diagonal matrix of the size 2 × 2, this is why using here the division sign
to denote the operation of the inverting a matrix for reducing the formulae length, we do not
spoil the meaning of the expressions.

The operator 𝑀̃ = 𝐷−1
𝑚 𝐺̃ can be diagonalized as follows: 𝑀̃0 = 𝐷−1

𝑚 𝑆, where

𝑆 = 𝐷𝑚(𝑇−1𝛽)𝐺̃𝛽−1𝑇 . We write out explicitly first terms of the series 𝑆:

𝑆 =

(︃
− 𝛿2−𝜎2

𝑝𝑛,𝑚+1−𝑝𝑛+1,𝑚
0

0 − 𝛿2−𝜎2+𝑝𝑛,𝑚(𝑝𝑛,𝑚+1−𝑝𝑛+1,𝑚)

𝑝𝑛+1,𝑚

)︃

+

(︃
1

𝑝𝑛+1,𝑚−𝑝𝑛−1,𝑚
0

0 𝛿2−𝜎2+𝑝𝑛,𝑚+1𝑝𝑛,𝑚+𝑝𝑛+2,𝑚𝑝𝑛+1,𝑚−𝑝𝑛+1,𝑚𝑝𝑛,𝑚

𝑝2𝑛+1,𝑚(𝑝𝑛,𝑚−𝑝𝑛+2,𝑚)

)︃
𝜆−1 + · · · .

We write out explicitly three conservation laws in the infinite sequence obtained as a result of
the diagonalization

(𝐷𝑛 − 1) log
1

𝑝𝑛+1,𝑚 − 𝑝𝑛,𝑚+1

= (𝐷𝑚 − 1) log(𝑝𝑛,𝑚 − 𝑝𝑛+2,𝑚),

(𝐷𝑛 − 1)
𝑝𝑛+1,𝑚 − 𝑝𝑛,𝑚+1

(𝑝𝑛+1,𝑚 − 𝑝𝑛−1,𝑚)(𝛿2 − 𝜎2)
= (𝐷𝑚 − 1)

1

(𝑝𝑛+1,𝑚 − 𝑝𝑛−1,𝑚)(𝑝𝑛,𝑚 − 𝑝𝑛+2,𝑚)
,

(𝐷𝑛 − 1)

[︂
− 𝛿2 − 𝜎2 + 𝑝𝑛,𝑚(𝑝𝑛,𝑚+1 − 𝑝𝑛+1,𝑚) + 𝑝𝑛+2,𝑚𝑝𝑛+1,𝑚

𝑝𝑛+1,𝑚(𝑝𝑛,𝑚 − 𝑝𝑛+2,𝑚)(𝛿2 − 𝜎2 + 𝑝𝑛,𝑚(𝑝𝑛,𝑚+1 − 𝑝𝑛+1,𝑚))

]︂
= (𝐷𝑚 − 1)

𝑝𝑛+2,𝑚𝑝𝑛+3,𝑚 − 𝑝𝑛+2,𝑚𝑝𝑛+1,𝑚 + 𝑝𝑛+1,𝑚𝑝𝑛,𝑚
𝑝𝑛+1,𝑚𝑝𝑛+2,𝑚(𝑝𝑛,𝑚 − 𝑝𝑛+2,𝑚)(𝑝𝑛+1,𝑚 − 𝑝𝑛+3,𝑚)

.

Passing to the original variables 𝑢 and 𝑣, we obtain

(𝐷𝑛 − 1) log
1

(𝑢0,1 − 𝑢1,0)(𝑣0,1 − 𝑣1,0)
= (𝐷𝑚 − 1) log(𝑢− 𝑢2,0)(𝑣 − 𝑣2,0),

(𝐷𝑛 − 1)

[︂
𝑢0,1 − 𝑢1,0

(𝑝2 − 𝑞2)(𝑢−1,0 − 𝑢1,0)
+

𝑣0,1 − 𝑣1,0
(𝑝2 − 𝑞2)(𝑣−1,0 − 𝑣1,0)

]︂
= (𝐷𝑚 − 1)

[︂
−(𝑣 − 𝑣2,0)(𝑢−1,0 − 𝑢1,0)

(𝑢−1,0 − 𝑢1,0)(𝑣 − 𝑣2,0)
− (𝑢− 𝑢2,0)(𝑣−1,0 − 𝑣1,0)

(𝑣−1,0 − 𝑣1,0)(𝑢− 𝑢2,0)

]︂
,

(𝐷𝑛 − 1)

[︂
−(𝑝2 − 𝑞2 + 𝑢𝜈 + 𝑣1,0𝑢2,0)

𝑣1,0𝜌(𝑝2 − 𝑞2 + 𝑢𝜈)
− (𝑝2 − 𝑞2 + 𝑣𝜇+ 𝑢1,0𝑣2,0)

𝑢1,0𝜎(𝑝2 − 𝑞2 + 𝑣𝜇)

]︂
= (𝐷𝑚 − 1)

[︂
𝑣3,0

𝑣1,0𝜌𝜎1,0
+

1

𝑢2,0𝜎1,0
+

𝑢3,0
𝑢1,0𝜎𝜌1,0

+
1

𝑣2,0𝜌1,0

]︂
.

Here we employ the notations 𝜌 = 𝑢− 𝑢2,0, 𝜎 = 𝑣 − 𝑣2,0, 𝜇 = 𝑢0,1 − 𝑢1,0, 𝜈 = 𝑣0,1 − 𝑣1,0.
We proceed to constructing the symmetries for system (5.1). The scheme of constructing the

higher symmetries of a discrete dynamical system by means of the diagonalization algorithm
was exposed in details in work [6].

We return back to the first of the linear equations in Lax pair (5.3) for system (5.1) and by
employing the discrete operator ℒ̃ = 𝐷−1

𝑛 𝐹 we rewrite it as

𝜙 = ℒ̃𝜙.

As it was shown above, the change of the variables 𝜓 = 𝛽𝜙 reduces this equation to the special
form

𝜓 = 𝐿̃𝜓
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with the operator 𝐿̃ = 𝐷−1
𝑛 𝑃𝑍. Then the formal series

𝑇 =
∞∑︁
𝑘=0

𝑇(𝑘)𝜆
−𝑘, ℎ̃ =

∞∑︁
𝑘=0

ℎ̃(𝑘)𝜆
−𝑘 (5.13)

“diagonalizing” the mentioned equation in the vicinity of 𝜆 = ∞ wre found, that is, they
are such that the operator 𝐿̃0 := 𝑇−1𝐿̃𝑇 is an operator with (block) diagonal coefficients

𝐿̃0 = 𝐷−1
𝑛 ℎ̃𝑍.

Following the lines of work [6], we construct the formal series

𝐵̃0 =
∞∑︁

𝑘=−𝑀

(𝐵̃0)(𝑘)𝜆
−𝑘,

with the coefficients (𝐵̃0)(𝑘) having the same block diagonal structure as the elements of the

series ℎ̃ and being independent of 𝑛 and such that [𝐿̃0, 𝐵̃0] = 0. It was proved in work [6] that in
this case the formal series 𝐵̃′ =

∑︀∞
𝑘=−𝑀 𝐵̃′

(𝑘)𝜆
−𝑘 given by the formula 𝐵̃′ = 𝑇𝐵̃0𝑇

−1 commutes

with the operator 𝐿̃. Then the formal series 𝐵̃ =
∑︀∞

𝑘=−𝑀 𝐵̃(𝑘)𝜆
−𝑘 defined by the formula

𝐵̃ = 𝛽−1𝑇𝐵̃0(𝛽
−1𝑇 )−1 (5.14)

commutes with the operator ℒ̃.

Theorem 3. The coefficients 𝐵̃(𝑘) of series (5.14) belong to the ring ℛ, that is, for each 𝑘,

they satisfy the relation 𝜎𝐵̃(𝑘)𝜎
−1 = 𝐵̃(𝑘), where 𝜎 = diag(1,−1, 1,−1).

It was shown above that the coefficients 𝑇(𝑘) of the series 𝑇 lie in the ring ℛ for each 𝑘 and

𝛽 ∈ 𝑅̃ by the construction. Thus, the statement of Theorem 3 is implied by formula (5.14).
We choose 𝐵̃0 as

𝐵̃0 = 𝐵̃(−𝑀)𝜆
−𝑀 , 𝐵̃(−𝑀) = diag(1, 1,−1,−1). (5.15)

Then by straightforward calculations we prove that for each 𝑘, the coefficients 𝐵̃(𝑘) of the series

𝐵̃ satisfy the condition

𝐵̃𝑘
22 = −𝐵̃𝑘

11.

Here by 𝐵̃𝑘
𝑖𝑗 we denote 2 × 2 blocks of the matrix 𝐵̃(𝑘):

𝐵̃(𝑘) =

(︂
𝐵̃𝑘

11 𝐵̃𝑘
12

𝐵̃𝑘
21 𝐵̃𝑘

22

)︂
. (5.16)

Then we expand the series 𝐵̃ into the sum 𝐵̃ = 𝐴 + (𝐵̃ − 𝐴), where 𝐴 =
∑︀𝑀

𝑘=1𝐴(𝑘)𝜆
𝑘 =∑︀−1

𝑘=−𝑀 𝐵̃(𝑘)𝜆
−𝑘. Then

[ℒ̃, 𝐵̃] = [ℒ̃, 𝐴] + [ℒ̃, 𝐵̃ − 𝐴] = 0.

The potential 𝐹 of the first equation in Lax pair (5.3) is a rational function of the form
𝐹 = 𝜆−1𝐹1 + 𝐹0, where

𝐹1 =

(︂
0 0
−𝐼 0

)︂
, 𝐹0 =

(︂
−𝑝𝑛+1,𝑚 𝐼

−𝑝𝑛+1,𝑚𝑝𝑛,𝑚 𝑝𝑛,𝑚

)︂
.

Let us find out the form of the commutator [ℒ̃, 𝐴]:

[ℒ̃, 𝐴] = [𝐷−1𝐹 ,𝐴] = [𝐷−1(𝜆−1𝐹1 + 𝐹0),
𝑀∑︁
𝑘=1

𝐴(𝑘)𝜆
𝑘] = [𝐷−1𝐹1, 𝐴(1)] +

𝑀∑︁
𝑘=1

𝑎𝑘𝜆
𝑘.
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On the other hand,

[ℒ̃, 𝐴] = −[ℒ̃, 𝐵̃ − 𝐴] = −[𝐷−1(𝜆−1𝐹1 + 𝐹0),
∞∑︁
𝑘=0

𝐵̃(𝑘)𝜆
−𝑘] = −[𝐷−1𝐹0, 𝐵̃(0)] +

∞∑︁
𝑘=0

𝑎′𝑘𝜆
−𝑘.

It follows from the latter identities that

[ℒ̃, 𝐴] = 𝑅,

where
𝑅 = −[𝐷−1

𝑛 𝐹0, 𝐵̃(0)] = [𝐷−1
𝑛 𝐹1, 𝐴(1)]. (5.17)

It follows from the second identity in (5.17) that

𝐷𝑛(𝑅) = 𝐹1𝐴(1) −𝐷𝑛(𝐴(1))𝐹1 =

(︂
−𝐷𝑛

(︀
𝐴1

12

)︀
0

𝐴1
11 −𝐷𝑛

(︀
𝐴1

11

)︀
𝐴1

12

)︂
. (5.18)

Thus, 𝐷𝑛(𝑅) is a (block) lower triangular matrix. Employing this fact, by the first identity in
(5.17), we obtain that 𝐷𝑛(𝑅) is of the form

𝐷𝑛(𝑅) = −𝐹0𝐵̃(0) +𝐷𝑛

(︀
𝐵̃(0)

)︀
𝐹0 =

(︂
𝑅11 0

−𝑝𝑛+1,𝑚𝑅22 + 𝑝𝑛,𝑚𝑅11 𝑅22

)︂
. (5.19)

We let d
d𝑡
𝐷−1

𝑛 𝐹 = 𝑅 or d
d𝑡
𝐹0 = 𝐷𝑛(𝑅). This relation introduces a differential-difference

equation. Indeed, the left hand side is of the form(︃
−d𝑝𝑛+1,𝑚

d𝑡
0

−
(︁

d𝑝𝑛+1,𝑚

d𝑡
𝑝𝑛,𝑚 + 𝑝𝑛+1,𝑚

d𝑝𝑛,𝑚

d𝑡

)︁
d𝑝𝑛,𝑚

d𝑡

)︃
and by (5.18) and (5.19) the right hand side is

𝐷𝑛(𝑅) =

(︃
−𝐷𝑛

(︀
𝐴1

12

)︀
0

−
(︁
𝑝𝑛+1,𝑚𝐴

1
12 + 𝑝𝑛,𝑚𝐷𝑛

(︀
𝐴1

12

)︀)︁
𝐴1

12

)︃
.

Therefore,
d𝑝𝑛,𝑚

d𝑡
= 𝐴1

12. (5.20)

In what follows we provide explicitly two higher symmetries. We choose the initial series 𝐵̃0

as 𝐵̃0 = diag(1, 1,−1,−1)𝜆. Now the formal series 𝐵̃ is of the form

𝐵̃ = 𝛽−1𝑇𝐵̃0𝑇
−1𝛽 = 𝐵̃(−1)𝜆+ 𝐵̃(0) + 𝐵̃(1)𝜆

−1 + · · · .

By construction, the formal series 𝐴 consists of the elements of the series 𝐵̃ at the positive
coefficients of the spectral parameter and in this case it has the form 𝐴 = 𝐴(1)𝜆, where 𝐴(1) =

𝐵̃(−1) = 𝒜 and 𝒜 stands for the following matrix:

𝒜 =

(︃
𝑝𝑛+1,𝑚+𝑝𝑛−1,𝑚

𝑝𝑛+1,𝑚−𝑝𝑛−1,𝑚
− 2

𝑝𝑛+1,𝑚−𝑝𝑛−1,𝑚
2𝑝𝑛−1,𝑚𝑝𝑛+1,𝑚

𝑝𝑛+1,𝑚−𝑝𝑛−1,𝑚
−𝑝𝑛+1,𝑚+𝑝𝑛−1,𝑚

𝑝𝑛+1,𝑚−𝑝𝑛−1,𝑚

)︃
.

Employing (5.20), we write out the symmetries

d𝑝𝑛,𝑚
d𝑡

= − 2

𝑝𝑛+1,𝑚 − 𝑝𝑛−1,𝑚

.

Returning back to the original variables 𝑢 and 𝑣, we obtain the symmetries

d𝑢𝑛,𝑚
d𝑡

= − 2

𝑣𝑛+1,𝑚 − 𝑣𝑛−1,𝑚

,
d𝑣𝑛,𝑚

d𝑡
= − 2

𝑢𝑛+1,𝑚 − 𝑢𝑛−1,𝑚

for system (5.1).
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In order to find the symmetry of the next order, we choose the initial series 𝐵̃0 as 𝐵̃0 =
diag(1, 1,−1,−1)𝜆2. Now the sought formal series is

𝐵̃ = 𝛽−1𝑇𝐵̃0𝑇
−1𝛽 = 𝐵̃(−2)𝜆

2 + 𝐵̃(−1)𝜆+ · · · .

Then the formal 𝐴 is of the form 𝐴 = 𝐴(2)𝜆
2 + 𝐴(1)𝜆,

where 𝐴(2) = 𝐵̃(−2) = 𝒜,

𝐴(1) = 𝐵̃(−1) =

(︂
𝑎11 𝑎12
𝑎21 −𝑎11

)︂
,

and

𝑎11 =
2(𝑝𝑛+2,𝑚𝑝𝑛+1,𝑚 − 𝑝𝑛,𝑚𝑝𝑛+1,𝑚 + 𝑝𝑛−1,𝑚𝑝𝑛,𝑚 − 𝑝𝑛−1,𝑚𝑝𝑛−2,𝑚)

(𝑝𝑛+2,𝑚 − 𝑝𝑛,𝑚)(𝑝𝑛,𝑚 − 𝑝𝑛−2,𝑚)(𝑝𝑛+1,𝑚 − 𝑝𝑛−1,𝑚)2
,

𝑎12 = − 2(𝑝𝑛+2,𝑚 − 𝑝𝑛−2,𝑚)

(𝑝𝑛+2,𝑚 − 𝑝𝑛,𝑚)(𝑝𝑛,𝑚 − 𝑝𝑛−2,𝑚)(𝑝𝑛+1,𝑚 − 𝑝𝑛−1,𝑚)2
,

𝑎21 =
2(𝑝2𝑛+1,𝑚𝑝𝑛+2,𝑚 − 𝑝2𝑛+1,𝑚𝑝𝑛,𝑚 + 𝑝2𝑛−1,𝑚𝑝𝑛,𝑚 − 𝑝2𝑛−1,𝑚𝑝𝑛−2,𝑚)

(𝑝𝑛+2,𝑚 − 𝑝𝑛,𝑚)(𝑝𝑛+1,𝑚 − 𝑝𝑛−1,𝑚)2(𝑝𝑛,𝑚 − 𝑝𝑛−2,𝑚)
.

Employing (5.20), we obtain

d𝑝𝑛,𝑚
d𝑡

= − 2(𝑝𝑛+2,𝑚 − 𝑝𝑛−2,𝑚)

(𝑝𝑛+2,𝑚 − 𝑝𝑛,𝑚)(𝑝𝑛,𝑚 − 𝑝𝑛−2,𝑚)(𝑝𝑛+1,𝑚 − 𝑝𝑛−1,𝑚)2

or, in terms of the original variables, we write the symmetries

d𝑢𝑛,𝑚
d𝑡

= − 2(𝑢𝑛+2,𝑚 − 𝑢𝑛−2,𝑚)

(𝑢𝑛+2,𝑚 − 𝑢𝑛,𝑚)(𝑢𝑛,𝑚 − 𝑢𝑛−2,𝑚)(𝑣𝑛+1,𝑚 − 𝑣𝑛−1,𝑚)2
,

d𝑣𝑛,𝑚
d𝑡

= − 2(𝑣𝑛+2,𝑚 − 𝑣𝑛−2,𝑚)

(𝑣𝑛+2,𝑚 − 𝑣𝑛,𝑚)(𝑣𝑛,𝑚 − 𝑣𝑛−2,𝑚)(𝑢𝑛+1,𝑚 − 𝑢𝑛−1,𝑚)2

of system (5.1).
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transformations for known Volterra and Toda type semidiscrete equations // J. Phys. Conf. Series
621, id 012005 (2015).



SYMMETRIES AND CONSERVATION LAWS FOR CDPKDV. . . 121

9. R.N. Garifullin, I.T. Habibullin, R.I. Yamilov. Peculiar symmetry structure of some known discrete
nonautonomous equations // J. Phys. A: Math. Theor. 48:23, id 235201 (2015).

10. A.V. Mikhailov. Darboux transformations and symmetries of partial difference equations // in
Proceedings of International Workshop “Geometric Structures in Integrable Systems, International
Workshop”, Moscow, (2012).

11. Da-jun Zhang, Jun-wei Cheng, Ying-ying Sun. Deriving conservation laws for ABS lattice equa-
tions from Lax pairs // J. Phys. A: Math. Theor. 46:26, id 265202 (2013).

12. Jun-wei Cheng, D-j Zhang. Conservation laws of some lattice equations // Front. Math. China.
8:5, 1001–1016 (2013).

13. T. Bridgman, W. Hereman, G.R.W. Quispel and P.H. van der Kamp. Symbolic computation of
Lax Pairs of partial difference equations using consistency around the cube // Foundat. Comp.
Math. 13:4, 517–544 (2013).

14. Fu Wei, Zhang Da-Jun, Zhou Ru-Guang. A Class of Two-Component Adler-Bobenko-Suris Lattice
Equations // Chinese Phys. Lett. 31:9, id 090202 (2014).

15. R. Hirota and S. Tsujimoto. Conserved quantities of a class of nonlinear difference-difference
equations // J. Phys. Soc. Jpn. 64:9, 3125–3127 (1995).

16. F. Nijhoff and H. Capel. The discrete Korteweg-de Vries equation // Acta Applicandae Math.
39:1–3, 133–158 (1995).

17. V.E. Adler, A.I. Bobenko, Yu.B. Suris. Classification of integrable equations on quad-graphs. The
consistency approach // Commun. Math. Phys. 233:3, 513–543 (2003).

18. A.G. Rasin, J. Schiff. Infinitely many conservation laws for the discrete KdV equation // J. Phys.
A: Math. Theor. 42:17, id 175205 (2009).

19. D. Levi, M. Petrera. Continuous symmetries of the lattice potential KdV equation // J. Phys. A:
Math. Theor. 40:15, 4141–4159 (2007).

20. D. Levi, M. Petrera, C. Scimiterna. The lattice Schwarzian KdV equation and its symmetries //
J. Phys. A: Math. Theor. 40:42, 12753–12761 (2007).

21. O.G. Rasin and P.E. Hydon. Symmetries of Integrable Difference Equations on the Quad-Graph
// Stud. Appl. Math. 119:3, 253–269 (2007).

22. A. Tongas, D. Tsoubelis, P. Xenitidis. Affine linear and 𝐷4 symmetric lattice equations: symmetry
analysis and reductions // J. Phys. A: Math. Theor. 40:44, 13353–13384 (2007).

Mariya Nikolaevna Poptsova,
Institute of Mathematics, Ufa Scientific Center, RAS,
Chenryshevsky str. 112,
450008, Ufa, Russia
E-mail: mnpoptsova@gmail.com

Ismagil Talgatovich Habibullin,
Institute of Mathematics, Ufa Scientific Center, RAS,
Chenryshevsky str. 112,
450008, Ufa, Russia
E-mail: habibullinismagil@gmail.com


	to1. Introduction
	to2. Singularities of pole kind for discrete linear system
	to3. Asymptotic diagonalization of the discrete operator in the vicinity of a singular point
	to4. Asymptotic diagonalization of Lax operator and conservation laws
	to5. Conservation laws of two-component discrete potential Korteweg-de Vries equation
	 References

