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ASYMPTOTICS FOR THE EIGENVALUES OF

A FOURTH ORDER DIFFERENTIAL OPERATOR

IN A “DEGENERATE” CASE

KH.K. ISHKIN, KH. KH. MURTAZIN

Abstract. In the paper we consider the operator 𝐿 in 𝐿2[0,+∞) generated by the

differential expression ℒ(𝑦) = 𝑦(4) − 2(𝑝(𝑥)𝑦′)′ + 𝑞(𝑥)𝑦 and boundary conditions 𝑦(0) =
𝑦′′(0) = 0 in the “degenerate” case, when the roots of associated characteristic equation has
different growth rate at the infinity. Assuming a power growth for functions 𝑝 and 𝑞, under
some additional conditions of smoothness and regularity kind, we obtain an asymptotic
equation for the spectrum allowing us to write out several first terms in the asymptotic
expansion for the eigenvalues of the operator 𝐿.
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1. Introduction

The features of the spectral problems for ordinary differential operators allows one to employ
one of the most effective methods based on asymptotic estimates for a fundamental system of
solutions (FSS) of the equation

ℒ𝑦 = 𝜆𝑦, (1)

(see, for instance, [1, 2]). For example, if 𝐿 is some self-adjoint extension of the minimal operator
generated by the differential expression ℒ𝑦 in 𝐿2(𝑎, 𝑏) [1] and it has a discrete spectrum with
the counting function 𝑁(𝑟), in order to study the asymptotics of 𝑁(𝑟) (as 𝑟 → +∞), one can
employ the Tauberian technique, but first WKB-estimates [3, Ch. III, Sect. 2] for kernel of the
resolvent (𝐿 − 𝜆)−1 should be obtained for large 𝜆 far from the spectrum of 𝐿. This kernel
is expressed in terms of FSS for equation (1). But if we need to find several first terms in
the asymptotics for the eigenvalues 𝜆𝑛 taken in the ascending order counting multiplicities as
𝑛 → +∞, then the Tauberian technique can not be applied and one has to “descend” to the
spectrum and to study the asymptotics of the solutions to equation (1) as 𝜆 goes to infinity
along a set containing the spectrum of 𝐿 or a part of it. In the case, when the operator 𝐿 is
singular [1], this circumstance, as a rule, gives rise to the turning points [3, Ch. III, Sect. 1];
in their vicinities the WKB-estimates do not work anymore. The method of pattern equations
(Langer method) [4] allows one to obtain an approximate solution to equation (1) suitable both
in the vicinity of the turning point and far from this point becoming the WKB-solution. This
method is both effective for self-adjoint and non-self-adjoint spectral problems [5]. At present,
the spectral problems with a turning point are quite well studied for two-terms operators [6]–
[11].
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In the paper we consider the operator 𝐿 in 𝐿2[0,+∞) generated by the differential expression

ℒ(𝑦) = 𝑦(4) − 2(𝑝(𝑥)𝑦′)′ + 𝑞(𝑥)𝑦 (2)

and the boundary conditions
𝑦(0) = 𝑦′′(0) = 0 (3)

in the “degenerate” case, when the roots of the associated characteristic equation have different
growth rate at infinity [2, Ch. IX, Sect. 4]. Assuming a power growth for the functions 𝑝 and
𝑞, under some additional smoothness and regularity assumptions we obtain the asymptotic
equation for the spectrum, which allows us to write several terms in the asymptotic series for
the eigenvalues 𝐿.

2. Preliminary remarks

2.1. Main condition for the coefficients. We impose the following conditions for the
real-valued functions 𝑝 and 𝑞:

1. As 𝑥 > 𝑥0 (𝑥0 > 0 is a constant), the functions 𝑝 and 𝑞 have absolutely continuous
derivatives satisfying the inequalities

𝑎1𝑥
𝛼−1 6 𝑞′(𝑥) 6 𝐴1𝑥

𝛼−1, 𝑏1𝑥
𝛽−1 6 𝑝′(𝑥) 6 𝐵1𝑥

𝛽−1, (4)

where 𝑎1, 𝐴1, 𝑏1, 𝐵1, 𝛼, 𝛽 are positive constants and

𝛼 < 2𝛽; (5)

the second derivatives of the functions 𝑝 and 𝑞 are sign-definite almost everywhere.
2. The functions 𝑝 and 𝑞 are summable on [0, 𝑥0].

Remark 1. It follows from equation (4) that as 𝑥 > 𝑥1 (𝑥1 > 𝑥0),

𝑎𝑥𝛼 6 𝑞(𝑥) 6 𝐴𝑥𝛼, 𝑏𝑥𝛽 6 𝑝(𝑥) 6 𝐵𝑥𝛽, (6)

where 𝑎, 𝐴, 𝑏, 𝐵 are positive constants. Therefore [1, Sect. 24, Thm. 2], the spectrum of each
self-adjoint extension of the minimal operator generated by expression (2) is discrete.

In what follows, under additional restrictions for the functions 𝑝 and 𝑞, we obtain the double
asymptotics [3, Ch. 2, Sect. 7] of solutions to the equation 𝑙(𝑦) = 𝜆𝑦, which, in particular,
implies that the deficiency indices of the operator 𝐿0 are equal to (2, 2). The latter fact yields
the self-adjointness of the operator 𝐿.

Remark 2. The conditions under which the deficiency indices of the minimal operator gen-
erated by expression (2) are equal to (2, 2) were studied by many authors [12]–[18].

2.2. Reduction of the main equation to the canonical form. We introduce the nota-
tions. Let 𝜒(𝑥) be an infinitely differentiable function equalling to one on [0, 𝑥0] and vanishing
on [𝑥0 + 1,∞). We let

𝑝1(𝑥) = 𝑝(𝑥)(1 − 𝜒(𝑥)), 𝑞1(𝑥) = 𝑞(𝑥)(1 − 𝜒(𝑥)), 𝑓(𝑥, 𝜆, 𝜇) = 𝜇4 − 2𝑝1𝜇
2 + 𝑞1 − 𝜆,

𝐴1 =

⎛⎜⎝ 0 1 0 0
0 0 1 0
0 2𝑝1 0 −1

𝑞1 − 𝜆 0 0 0

⎞⎟⎠ , 𝐴2 = 𝜒

⎛⎜⎝ 0 0 0 0
0 0 0 0
0 2𝑝 0 0
𝑞 0 0 0

⎞⎟⎠ .

Let 𝑌 = (𝑦, 𝑦[1], 𝑦[2], 𝑦[3])𝑇 , where 𝑦[𝑘] stands for the 𝑘th quasi-derivative [1, Ch. V, Sect. 15].
Then the equation ℒ𝑦 = 𝜆𝑦 is equivalent to the system of the equations

𝑌 ′ = (𝐴1 + 𝐴2)𝑌. (7)

The characteristic polynomial of the matrix 𝐴1 coincides with the function 𝑓(𝑥, 𝜆, 𝜇). The
roots of the equation 𝑓(𝑥, 𝜆, 𝜇) = 0 form two pairs

𝜇1,2 = ±
√
𝜈1, 𝜇3,4 = ±

√
𝜈2,
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where 𝜈1,2 = 𝑝1 ±
√
𝐷, 𝐷 = 𝑝21 + 𝜆− 𝑞1, the branch of the root

√
𝑧 is chosen so that

√
𝑧 > 0 as

𝑧 > 0. Since 𝜈2 = (𝑞1 − 𝜆)/𝜈1, it follows from inequalities (4) and (5) that for each fixed 𝜆 > 0
and for each 1 6 𝑖, 𝑗 6 2

𝜇𝑗+2 = 𝑜(𝜇𝑖), 𝑥→ ∞,

that is, the “degenerate” case holds true.
Hereafter we assume that 𝛽 < 𝛼 + 2.
We introduce the matrices

𝐴0 = diag(𝐴01, 𝐴02),

𝐴01 =
√
𝜈1diag(1,−1), 𝐴02 =

(︂
0 1
𝜈2 0

)︂
, (8)

𝑇 = 𝐷−1/4

(︂
𝐼2 𝐼2
Λ1 Λ2

)︂
diag(𝑀𝑊, 𝐼2), (9)

𝐼2 is the unit matrix of second order,

Λ1 = diag(𝜈1,−𝜈2), Λ2 = diag(𝜈2,−𝜈1),

𝑊 =

(︂
1 1
1 −1

)︂
, 𝑀1 = diag(𝜈

−1/4
1 , 𝜈

1/4
1 ),

𝐵1 = −𝑇−1𝑇 ′, 𝐵2 = 𝑇−1𝐴2𝑇. (10)

The entries of the matrix 𝐵1 can be easily written:

𝐵1 =

(︂
𝐵11 𝐵12

𝐵21 𝐵22

)︂
, (11)

𝐵11 =

(︂
0 𝑏1
𝑏1 0

)︂
, 𝐵12 = 𝑊−1diag(𝑏2, 𝑏3),

𝐵21 = diag(𝑏3, 𝑏2)𝑊, 𝐵22 = diag(𝑏4,−𝑏4), (12)

𝑏1 = − 𝜈 ′1
4𝜈1

− 𝑝′

2
√
𝐷
, 𝑏2 = −𝜈

1/4
1 𝜈 ′2

2
√
𝐷
,

𝑏3 =
𝜈 ′1

2
√
𝐷𝜈

1/4
1

, 𝑏4 =
𝑝′

2
√
𝐷
.

Let

𝑋 =

(︂
𝑋11 𝑋12

𝑋21 𝑋22

)︂
,

𝑋11 = −1

2
𝐴−1

01 𝐵11, (13)

𝑋12 = − 1

2
√
𝐷

(𝐴01(𝐵12 +𝐵12𝐴02) , (14)

𝑋21 = − 1

2
√
𝐷

(𝐵21𝐴01 + 𝐴02𝐵21) ,

𝑋22 =

(︂
0 0

−𝑏4 0

)︂
.

One can check easily the relations

𝑇−1𝐴𝑇 = 𝐴0, 𝑋𝐴0 − 𝐴0𝑋 = 𝐵1.

Then the substitution

𝑌 = 𝑇 (𝐼4 +𝑋)𝑉
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transforms equation (7) to the form

𝑉 ′ = (𝐴0 + 𝑍1)𝑉, (15)

where
𝑍1 = (𝐼4 +𝑋)−1(𝐵1𝑋 −𝑋 ′ +𝐵2(𝐼4 +𝑋)). (16)

3. Equation for the spectrum

3.1. Formulation of the main result. We introduce the notations:

𝜉(𝑥, 𝜆) =

⃒⃒⃒⃒
3

2

∫︁ 𝑥

𝑎𝜆

|𝜈2|1/2 𝑑𝑡
⃒⃒⃒⃒2/3

sgn(𝑥− 𝑎𝜆),

𝑆 = (𝜉′(𝑥, 𝜆))−1/2, 𝐾(𝑥, 𝜆) =
𝑆 ′′

𝑆
,

̃︀𝐾(𝑡, 𝜆) = 𝑎2𝜆

[︂
|𝐾(𝑎𝜆𝑡, 𝜆)| +

(︂
|𝑝′′1| + |𝑞′′1 |√

𝐷

)︂
(𝑎𝜆𝑡, 𝜆)

]︂
;

𝑎𝜆 is the root of the equation 𝑞(𝑎𝜆) = 𝜆.
The main result of this section is the following theorem.

Theorem 1. Assume that for 𝛽 < 𝛼 + 2, Conditions 1), 2) hold and moreover,

3. The function ̃︀𝐾(𝑡, 𝜆) is bounded in some vicinity of the point 𝑡 = 1 of the form (1−𝛿, 1+𝛿)
(𝛿 > 0 is independent of 𝜆) uniformly in 𝜆 > Λ0, Λ0 > 0 is a constant.
Then the eigenvalues of the operator 𝐿 are determined by the equation

sin Φ(𝜆) +𝐾(𝜆) cos Φ(𝜆) +𝑂(𝑏(𝜆) + 𝜆−𝛿) = 0, (17)

where

Φ(𝜆) =

∫︁ 𝑎𝜆

0

|𝜈2(𝑡, 𝜆)|1/2 𝑑𝑡+
𝜋

4
,

𝐾(𝜆) = − 5

72

(︁
Φ(𝜆) − 𝜋

4

)︁−1

+
1

2

∫︁ 𝑎𝜆

0

|𝜈2|−1/2

(︂
𝑏24 + 𝑏′4 −𝐾(𝑡, 𝜆) +

𝜈 ′2(𝜈2𝜈
′
1 − 𝜈1𝜈

′
2)

8𝐷3/2

)︂
𝑑𝑡, (18)

𝑏(𝜆) =

∫︁ 𝑎𝜆

0

|𝜈2|−1/2 exp

(︂
𝑖

∫︁ 𝑡

0

|𝜈2|1/2 𝑑𝑡
)︂[︂

(𝑝′1)
2 + |𝑞′′1 |
𝐷

+
|𝑝′′1|√
𝐷

+ |𝜒| |𝑝|
]︂
𝑑𝑡, (19)

𝛿 = min

{︂
1

2
,
𝛼 + 2 − 𝛽

𝛼
,
𝛼 + 2 − 𝛽

3𝛼
+

1

𝛼

}︂
.

If the function 𝑝 has an absolutely continuous derivative on the entire half-line [0,∞), then the
number 1/2 in the definition of 𝛿 can be replaced by 3/2, while in the integral 𝑏(𝜆) the term |𝜒𝑝|
can be replaced by 0.

3.2. Pattern equation. Let

𝑄1(𝑥, 𝜆) =

∫︁ 𝑥

0

𝜈
1/2
1 𝑑𝑡, 𝑄2(𝑥, 𝜆) =

∫︁ 𝑥

𝑎𝜆

|𝜈2|1/2𝑑𝑡.

We choose pattern equations as

𝑉0 = diag(𝑉01, 𝑉02),

𝑉01 = exp (diag(𝑄1,−𝑄1)) ,

𝑉02 =

(︂
𝑣1 𝑣2
𝑣′1 𝑣′2

)︂
,

𝑣1 = 𝐵𝑣(𝜉(𝑥, 𝜆)), 𝑣2 = 𝐵𝑢(𝜉(𝑥, 𝜆)),

where 𝑣(𝜉), 𝑢(𝜉) are real Airy functions [19, Sect. 7.4.3].
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It is easy to check that 𝑉0 satisfies the equation

𝑉 ′
0 = 𝐴0𝑉0 + 𝑍2𝑉0,

𝑍2 = diag

(︂
0,
𝑆 ′′

𝑆
𝐽0

)︂
, (20)

where

𝐽0 =

(︂
0 0
1 0

)︂
,

0 is the zero matrix of second order.
We introduce the notations

𝐽 = diag(1,−1),

𝑑(𝑥, 𝜆) =

{︂
1, 𝑥 > 𝑎𝜆,
0, 𝑥 < 𝑎𝜆,

(21)

𝐷(𝑥, 𝜆) = exp[diag(𝑄1𝐽, − 𝑑𝑄2𝐽)], (22)

𝑇0(𝑥, 𝜆) = diag
(︁

1, 1, |𝜈2|−𝜎(𝑥,𝜆)/4 , |𝜈2|𝜎(𝑥,𝜆)/4
)︁
, (23)

where 𝜎(𝑥, 𝜆) is the characteristic function of a set, [0,∞), (𝑎𝜆(1 − 𝛿1), 𝑎𝜆(1 + 𝛿2)), 𝛿1, 𝛿2 are
determined by the relations

−𝑄2(𝑎𝜆(1 − 𝛿1), 𝜆) = 𝑄2(𝑎𝜆(1 + 𝛿2), 𝜆) = 1. (24)

We let ̃︀𝑉0(𝑥, 𝜆) = 𝑇−1
0 𝑉0𝐷

−1. (25)

It follows from the asymptotic formulae for the Airy functions [3, Ch. 4, Sect. 1] that̃︀𝑉0 = diag(𝐼2, ̃︁𝑉02),̃︁𝑉02 =

(︂
1/2 1

−1/2 1

)︂[︀
𝐼2 +𝑂(𝑄−1

2 ) +𝑂(𝜈 ′2𝜈
−3/2
2 )

]︀
, 𝑄2 → +∞, (26)

̃︁𝑉02 =

(︂
sin Φ cos Φ

− cos Φ sin Φ

)︂[︂
𝐼2 −

5

72
𝑄−1

2

(︂
0 1
−1 0

)︂
+𝑂(𝑄−2

2 ) +𝑂(𝜈 ′2 |𝜈2|
−3/2)

]︂
, 𝑄2 → −∞,

(27)

Φ = −𝑄2(𝑥, 𝜆) +
𝜋

4
.

3.3. Integral equation. Applying the method of variation of constants, for FSS of system
(15) we obtain the equation

𝑉 = 𝑉0(𝑥, 𝜆) +

∫︁
Γ(𝑥)

𝑉0(𝑥, 𝜆)𝑉 −1
0 (𝑡, 𝜆)𝑍(𝑡, 𝜆)𝑉 (𝑡, 𝜆)𝑑𝑡, (28)

where
𝑍 = 𝑍1 − 𝑍2, (29)

Γ(𝑥) is the matrix of the integration intervals 𝛾𝑖𝑗(𝑥) = (𝛾𝑖𝑗, 𝑥), 0 6 𝛾𝑖𝑗 6 ∞; the meaning is
that each entry 𝑢𝑖𝑗 of matrix 𝑈 := 𝑉 −1

0 𝑍𝑉 is integrated over its own interval 𝛾𝑖𝑗(𝑥) in the
direction from 𝛾𝑖𝑗 to 𝑥. Let us show that under an appropriate choice of constants 𝛾𝑖𝑗, we can
apply the successive approximations method to equation (28) that will allows us to construct
the FSS of equation (15) with a known asymptotics for small 𝜆 > 0 uniformly in 𝑥 > 0.

We let ̃︀𝑉 = 𝑇−1
0 𝑉 𝐷.
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Then ̃︀𝑉 satisfies the equation ̃︀𝑉 = ̃︀𝑉0 + 𝐴(𝜆)̃︀𝑉 , (30)

where

(𝐴(𝜆)̃︀𝑉 )(𝑥, 𝜆) = ̃︀𝑉0(𝑥, 𝜆)

∫︁
Γ(𝑥)

𝐴(𝑥, 𝑡, 𝜆)(̃︀𝑉 𝐷)(𝑡, 𝜆)𝐷−1(𝑥, 𝜆)𝑑𝑡 ≡ ̃︀𝑉0(𝑥, 𝜆)𝐴1(𝜆)̃︀𝑉 , (31)

𝐴(𝑥, 𝑡, 𝜆) = 𝐷(𝑥, 𝜆)(𝐷−1 ̃︀𝑉0−1
𝑇−1
0 𝑍𝑇0)(𝑡, 𝜆).

Now we can define Γ(𝑥).
We let 𝛾𝑖𝑗 = +∞ as (𝑖, 𝑗) = (3, 2), (4, 2), (4, 3) and 𝛾𝑖𝑗 = 0 for other (𝑖, 𝑗). The definition

(22) of the matrix 𝐷 implies easily that under such choice all the exponential factors in (31)
are bounded.

We introduce the Banach space Z of matrix functions 𝐹 (𝑥) = (𝑓𝑖𝑗(𝑥))4𝑖,𝑗=1 such that 𝑓𝑖𝑗 are
measurable on (0,+∞) and

‖𝐹 (𝑥)‖Z = sup
𝑥>0

‖𝐹 (𝑥)‖ <∞,

where

‖𝐹‖ =

√︃ ∑︁
16𝑖,𝑗64

|𝑓𝑖𝑗|2.

It is clear that ̃︀𝑉0 ∈ Z for all 𝜆 > 0. Let us show that 𝐴(𝜆) is a contraction operator Z for
sufficiently large 𝜆 > 0. In order to do it, we shall need an estimate for the norm of the matrix
𝐺 = 𝑇−1

0 𝑍𝑇0. We have (see (16), (20), (29))

𝐺 = (𝐼4 +𝑋1)
−1𝑇−1

0 (𝐵1𝑋 −𝑋 ′)𝑇0 + 𝑇−1
0 𝐵2𝑇0(𝐼4 +𝑋1) − 𝑇−1

0 𝑍2𝑇0, (32)

where
𝑋1 = 𝑇−1

0 𝑋𝑇0.

Lemma 1. For large 𝜆 > 0

‖𝑋1‖Z = 𝑂(𝑎−1
𝜆 + 𝜆−3/4 + 𝜆−(2+𝛼−𝛽)/3𝛼).

Proof. By simple calculations and (10)–(14) we have

‖𝑋1(𝑥, 𝜆)‖ = 𝑂
[︁(︁

|𝜈2|−𝜎/2 |𝑝′1|𝐷−1/2
)︁

(𝑥, 𝜆)
]︁
, 𝜆≫ 1,

uniformly in 𝑥 > 0. Inequalities (4), (5) sohw that for all 𝑡 ∈ (−𝛿, 𝛿), where 𝛿 > 0 is independent
of 𝜆,

|𝜈2(𝑎𝜆(1 + 𝑡), 𝜆)| > 𝑐1𝜆
(𝛼−𝛽)/𝛼 |𝑡| ,

|𝑄2(𝑎𝜆(1 + 𝑡), 𝜆)| 6 𝑐2𝜆
(𝛼+2−𝛽)/2𝛼 |𝑡|

3
2 , (33)

where 𝑐1, 𝑐2 are constants independent of 𝜆. Then the functions 𝛿1(𝜆), 𝛿2(𝜆) defined by (24)
satisfy the estimates

|𝛿𝑖| > 𝑐−1
𝑖 𝜆−(𝛼+2−𝛽)/3𝛼.

By (33) it implies that

(𝜈
−𝜎/2
2 𝑝′1𝐷

−1/2)(𝑥, 𝜆) = 𝑂
(︀
𝑎−1
𝜆 + 𝜆−(𝛼+2−𝛽)/3𝛼

)︀
for all 𝑥 ∈ (𝑎𝜆(1− 𝛿), 𝑎𝜆(1 + 𝛿)). As 𝑥 /∈ (𝑎𝜆(1− 𝛿), 𝑎𝜆(1 + 𝛿)), we employ again inequality (4),
(5) to obtain

(𝜈
−1/2
2 𝑝′1𝐷

−1/2)(𝑥, 𝜆) = 𝑂
(︀
𝜆−(𝛼+2−𝛽)/2𝛼 + 𝜆−3/4 + 𝜆−(1/4+1/2𝛽)

)︀
.

The proof is complete.
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It follows from Lemma 1 that
‖𝐺‖ = 𝑂(‖𝐺0‖), (34)

where
𝐺0 = 𝑇−1

0 (𝐵1𝑋 −𝑋 ′ +𝐵2 − 𝑍2)𝑇0.

Let

𝑔(𝑡, 𝜆) =
(𝑝′1)

2 + |𝑞′1|
𝐷

+
|𝑝′′1|√
𝐷

+ |𝜒| (|𝑝| + 𝜆−1/2 |𝑞|). (35)

Lemma 2. For large 𝜆 > 0, the estimate

‖𝐺0(𝑥, 𝜆)‖ = 𝑂(|𝜈2(𝑥, 𝜆)|−
1
2 (|𝐾(𝑥, 𝜆)| + 𝑔(𝑥, 𝜆))) (36)

holds true uniformly in 𝑥 > 0.

Proof. Let

𝐺0 =

(︂
𝐺11 𝐺12

𝐺21 𝐺22

)︂
,

where 𝐺𝑖𝑗 are square matrices of second order. By relations (10)–(14), (16) and (29) we have

𝐺22 =

(︂
0 𝑔1
𝑔2 0

)︂
, (37)

𝑔1 = − 1

8
|𝜈2|𝜎/2𝐷−1/2(𝜈 ′1𝐷

′𝐷−3/2 + 8𝜒𝑝),

𝑔2 = |𝜈2|−𝜎/2

(︂
𝑏24 + 𝑏′4 −𝐾 +

𝜈 ′2(𝜈2𝜈
′
1 − 𝜈1𝜈

′
2)

8𝐷3/2
− 𝜒𝑞

2
√
𝐷

)︂
,

(38)

where

𝐾(𝑡, 𝜆) = − 5

36

|𝜈2|
𝑄2

2

+
5

16

(𝑞′1)
2

(𝑞1 − 𝜆)2
− 1

4

𝑞′′1
(𝑞1 − 𝜆)

− 1

8

𝑞′1𝜈
′
1

(𝑞1 − 𝜆)𝜈1
+

1

4

𝜈 ′′1
𝜈−1

− 3

16

(𝜈 ′1)
2

𝜈21
. (39)

Now we see that 𝐺22 satisfies estimate (36). Similar calculations show that

‖𝐺11‖ = 𝑂(𝜈
−1/2
1 𝑔(𝑡, 𝜆)), ‖𝐺12‖ + ‖𝐺12‖ = 𝑂(|𝑞1 − 𝜆|−𝜎/4 𝑔(𝑡, 𝜆)).

The proof is complete.

Lemma 3. Under the assumptions of Theorem 1, the operator 𝐴(𝜆) is bounded and its norm
‖𝐴(𝜆)‖* can be estimated as

‖𝐴(𝜆)‖* = 𝑂
(︀
𝜆−𝑚

)︀
, 𝜆→ +∞,

𝑚 = min

{︂
1

4
,
2 + 𝛼− 𝛽

2𝛼

}︂
.

If in addition we assume the existence of the derivative 𝑝 absolutely continuous on the half-line
𝑥 > 0, then

𝑚 = min

{︂
3

4
,
1

4
+

1

2𝛽
,
2 + 𝛼− 𝛽

2𝛼

}︂
.

Proof. By the choice of Γ(𝑥), all the exponentials factors in the kernel of the operator 𝐴(𝜆)
(see (31)) are bounded, therefore, (see (34), (36))

‖𝐴(𝜆)‖* = 𝑂

(︂∫︁ ∞

0

|𝜈2|−1/2 (|𝐾(𝑡, 𝜆)| + 𝑔(𝑡, 𝜆))𝑑𝑡

)︂
, 𝜆→ +∞.

Then, arguing as in the proof of Lemma 1 in [10] and employing expression (39), inequalities
(4), (6) and Condition 3), we obtain the desired estimate for ‖𝐴(𝜆)‖.

If the function 𝑝 has an absolutely continuous derivative, then at each place, where the
function 𝑝1 appears, it can be replaced by the function 𝑝 since the term |𝑋𝑝| disappears in
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expression (35). This implies easily the second statement of the theorem. The proof is complete.

3.4. Proof of Theorem 1. It follows from Lemma 3 that the FSS of system (7) satisfies
the asymptotic representation

𝑌 (𝑥, 𝜆) = 𝑇𝑇0(𝐼4 +𝑋1)( ̃︀𝑉0 + 𝐴𝜆
̃︀𝑉0 +𝑂

(︀
‖𝐴𝜆‖2*

)︀
)𝐷(𝑥, 𝜆),

where 𝑇 , 𝑇0, 𝐷 are defined by (9), (22), (24), and ̃︀𝑉0 satisfies relation (26), (27). Hence, we
concluce that the deficiency indices of the operator 𝐿0 are equal to (2.2) and the equation for
the eigenvalues of the operator 𝐿 is of the form:

det(𝐶0𝑌 (0, 𝜆)𝐶𝑇
1 ) = 0,

where

𝐶0 =

(︂
1 0 0 0
0 0 1 0

)︂
, 𝐶1 =

(︂
0 1 0 0
0 0 1 0

)︂
.

Since 𝑋1(0, 𝜆) = 0, 𝜈1,2(0, 𝜆) = ±
√
𝜆, then

𝐶0𝑌 (0, 𝜆)𝐶𝑇
1 = 𝜆−3/8diag(1,

√
𝜆)𝐶2

̃︀𝑉 (0, 𝜆)(𝐼4 + 𝐴1(𝜆)̃︀𝑉 )(0, 𝜆) +𝑂
(︀
‖𝐴𝜆‖2*

)︀
𝐶𝑇

1 , (40)

where

𝐶2 =

(︂
1 1 0 0
0 0 1 0

)︂
.

Since (︁
𝐴1(𝜆) ̃︀𝑉0)︁ (0, 𝜆)𝐶𝑇

1 =
(︁
𝐴1(𝜆) ̃︀𝑉0𝐶𝑇

1

)︁
(0, 𝜆),

by the definition of 𝐴1(𝜆) (see (31)) we get

(︁
𝐴1(𝜆) ̃︀𝑉0𝐶𝑇

1

)︁
(0, 𝜆) =

⎛⎜⎝ 0 0
0 0
𝛼31 0
𝛼41 𝛼42

⎞⎟⎠ , (41)

and

𝛼𝑖𝑗 = 𝑂

(︂∫︁ ∞

0

|𝜈2|−1/2 (|𝐾(𝑡, 𝜆)| + 𝑔(𝑡, 𝜆)) exp(−𝛿𝑄1)𝑑𝑡

)︂
, 𝜆→ +∞,

for all (𝑖, 𝑗) = (3, 1) and (4, 1). Here 𝛿 > 0 is a constant independent of 𝜆. Taking into
consideration that as 𝑡 < 𝑥0,

|𝐾(𝑡, 𝜆)| + 𝑔(𝑡, 𝜆) =
5

36
|𝜈2|𝑄−2

2 (𝑡, 𝜆) + |𝜒|
(︀
|𝑝| + 𝜆−1/2 |𝑞|

)︀
,

we obtain

𝛼𝑖𝑗 = 𝑂

(︂
𝜆−1/4

∫︁ 𝑥0+1

0

|𝜒𝑝| exp(−𝛿0𝑄1)𝑑𝑡

)︂
+𝑂

(︀
𝜆−3/4

)︀
+𝑂

(︀
𝑄−2

2 (0, 𝜆)
)︀
, (𝑖, 𝑗) ̸= (4, 2), (42)

where 𝛿0 is a positive constant. In order to calculate 𝛼42, we note that (see (27))

det(̃︁𝑉02(𝑥, 𝜆)) = det(̃︁𝑉02(∞, 𝜆)) = 1,

therefore, ̃︁𝑉02−1
=

(︂
𝜔22 −𝜔12

−𝜔21 𝜔11

)︂
,
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where 𝜔𝑖𝑗 are the entries of the matrix ̃︀𝑉02. Then (see (37), (38))

𝛼42 =

∫︁ ∞

0

(𝑔1𝜔12𝜔21 − 𝑔2𝜔
2
11) exp(−2𝑑(𝑡, 𝜆)𝑄1(𝑡, 𝜆))𝑑𝑡+𝑂(𝛼(𝜆)),

𝛼(𝜆) =

∫︁ ∞

0

‖𝐺−𝐺0‖ exp(−2𝑑(𝑡, 𝜆)𝑄2(𝑡, 𝜆))𝑑𝑡.

The straightforward calculations give

𝛼(𝜆) = 𝑂

(︂∫︁ ∞

0

|𝑞1 − 𝜆|−1/2 (︀(︀(𝑝′1)2 + |𝑞′′1 |
)︀
𝐷−1/2 + |𝑝′′1|

)︀
𝑝′1𝐷

−1/2𝑑𝑡

)︂
.

Employing inequalities (4), (6), Condition 3) and the sign-definiteness of the second derivatives
of 𝑝 and 𝑞, by simple calculations we obtain

𝛼42(𝜆) =
1

2

∫︁ 𝑎𝜆

0

(𝑔1 − 𝑔2)𝑑𝑡+𝑂(𝑏(𝜆)) +𝑂
(︀
𝜆−𝑚1

)︀
,

where 𝑏(𝜆) is defined by formula (19),

𝑚1 = min

{︂
2 + 𝛼− 𝛽

3𝛼
+

1

𝛼
,
3

2
,
1

2
+

2

𝛼

}︂
.

Then, taking into consideration (42), by (40), (41) we get

𝜆−1/8 det(𝐶0𝑌 (0, 𝜆)𝐶𝑇
1 ) = 𝜔11(0, 𝜆) + 𝛼42(𝜆)𝜔12(0, 𝜆) +𝑂

(︀
𝛽(𝜆) + ‖𝐴𝜆‖2* +𝑄−2

2 (0, 𝜆)
)︀
.

Replacing in the latter expression 𝜔11(0, 𝜆) and 𝜔12(0, 𝜆) by their asymptotics in accordance
with (27), we obtain (17). The proof is complete.

4. Asymptotics of the spectrum

In this section we obtain the asymptotics for the eigenvalues of the operator 𝐿, when 𝑝 and
𝑞 have the form

𝑝(𝑥) = 𝑥𝛽, 𝑞(𝑥) = 𝑥𝛼, 0 <
𝛼

2
< 𝛽 < 𝛼 + 2. (43)

We shall show that the leading term in the asymptotic series for 𝜆𝑘 depends on the value of
sgn(𝛽 − 2).

4.1. First approximation for the solution to equation (17). It follows from equation
(17) that

Φ(𝜆𝑘) = 𝜈𝑘𝜋 + 𝑜(1), 𝑘 → ∞
for each fixed pair (𝛼, 𝛽) satisfying (43). We shall show below (Lemma 6) that 𝜈𝑘 = 𝑘.

Lemma 4. The asymptotics of the spectrum of the operator 𝐿 in the case 𝑝(𝑥) = 𝑥, 𝑞(𝑥) = 𝑥2

is of the form

𝜆𝑘 =

[︂
3

2
𝜋

(︂
𝑘 − 1

4

)︂]︂4/3
− 1

16

[︂
3/2𝜋

(︂
𝑘 − 1

4

)︂]︂−2/3

+𝑂(𝑘−1).

Proof. It is easy to see that under the assumptions of the lemma, 𝐿 = 𝐿2
1, where 𝐿1 is the

Sturm-Liouville operator generated by the expression −𝑦′′ + 𝑥𝑦 and the boundary condition
𝑦(0) = 0 in 𝐿(0,+∞). The asymptotics of the eigenvalues of 𝐿1 is known [11, Lm. 5]. It
implies the statement of the lemma.
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Under the assumptions of Lemma 4,

lim
𝑥→∞

𝜇𝑖(𝑥, 𝜆)

𝜇𝑖+2(𝑥, 𝜆)
= 1, 𝑖 = 1, 2,

that is, we deal with the case of the asymptotically multiple roots [3, Ch. V, Sect. 4]. In this
case 𝐷(𝑥, 𝜆) = 𝜆 and the integral∫︁ ∞

0

|𝜈2|−1/2 (|𝐾(𝑡, 𝜆)| + 𝑔(𝑡, 𝜆))𝑑𝑡

diverges. Nevertheless, up to some minor changes, Theorem 1 can be extended to the case
𝑞(𝑥) = 𝑝2(𝑥).

Lemma 5. Let 𝑞(𝑥) = 𝑥𝛼, 𝑝(𝑥) = 𝑥𝛽, where (𝛼, 𝛽) ∈ Ω,

Ω = {(𝛼, 𝛽) : 0 < 𝛼/2 < 𝛽 < 𝛼 + 2 or 0 < 𝛼/2 = 𝛽 < 2} .

Then

sin Φ(𝜆) = 𝑜(1), 𝜆→ ∞, (44)

uniformly over each compact set 𝐾 ⊂ Ω.

Proof. Let 𝑏𝜆 = (1 + 𝛿)𝑎𝜆, 𝛿 > 0 be independent of 𝜆. Under the mentioned 𝛼, 𝛽, Theorem 7
remains true if in the definition of the space Z and operator 𝐴(𝜆) the half-line [0,∞) is replaced
by the segment [0, 𝑏𝜆]. Therefore, the FSS of system (7) has the asymptotics

𝑌 = 𝑇𝑇0 ̃︀𝑉0(𝐼4 + 𝑜(1))𝐷(𝑥, 𝜆), 𝜆→ ∞, (45)

uniformly in 𝑥 ∈ [0, 𝑏𝜆].
By the WKB-method one can show easily that as 0 < 𝛼 < 4, relation (45) is true on the

half-line [𝑏𝜆,∞). It implies (44). The proof is complete.

Lemma 6. Let 𝑝 and 𝑞 are of form (43). Then

Φ(𝜆𝑘) = 𝑘𝜋 + 𝑜(1), 𝑘 → ∞. (46)

Proof. By Lemma 5 we have

Φ(𝜆𝑘) = 𝜈𝑘𝜋 + 𝑜(1), 𝑘 → ∞.

But 𝜆𝑘 = 𝜆𝑘(𝛼, 𝛽) is continuous on Ω [20, Example 1]. Therefore, 𝜈𝑘(𝛼, 𝛽) is also continuous
on Ω. Since 𝜈𝑘(2, 1) = 𝑘 (Lemma 9), then 𝜈𝑘(𝛼, 𝛽) = 𝑘 on Ω. The proof is complete.

Remark 3. In the proof of Lemma 4 we have employed a special form of boundary conditions
(2.2). In the case of arbitrary self-adjoint boundary conditions one can proceed as in the proof
of Lemma 5 in [11] observing that as 𝑝(𝑥) = 𝑥, 𝑞(𝑥) = 𝑥2, the substitution

𝑌 = 𝑇𝑈,

𝑇 =

(︂
1 1
1 −1

)︂
, 𝑌 = (𝑦1, 𝑦2)

𝑇 , 𝑦1 =
√
𝜆𝑦, 𝑦2 = −𝑦′′ + 𝑥𝑦,

transforms the equation ℒ(𝑦) = 𝜆𝑦 to the system −𝑉 ′′+𝑥𝑉 =
√
𝜆diag(1,−1)𝑉, whose solutions

are expressed directly in terms of the Airy functions.
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4.2. Asymptotics of the spectrum.

Theorem 2. Assume that the functions 𝑝 and 𝑞 are of form (2.40). Then as 1 < 𝛽 < 2, the
eigenvalues of the operator 𝐿 have the asymptotics

𝜆𝑘 = 𝑚
2𝛼

2+𝛼−𝛽

𝑘 − 2𝛼

2 + 𝛼− 𝛽
𝐶0

{︂
𝐶1𝑚

2𝛼
2+𝛼−𝛽

− (2𝛽−𝛼)(2−𝛽)
2𝛽(2+𝛼−𝛽)

𝑘 + 𝐶2𝑚
− (𝛼+2𝛽)(2−𝛽)

2𝛽(2+𝛼−𝛽)

𝑘

}︂
+𝑂

(︁
𝑘−

4(𝛽−𝛼)
2+𝛼−𝛽

)︁
,

where

𝑚𝑘 = 𝐶0𝜋

(︂
𝑘 − 1

4

)︂
, 𝐶0 =

√
2𝛼Γ

(︀
3
2

+ 2−𝛽
2𝛼

)︀
Γ
(︀
3
2

)︀
Γ
(︀−𝛽+2

2𝛼

)︀ ,
𝐶1 =

1√
2

∫︁ ∞

0

𝑡−𝛽/2
(︁
𝑡𝛽 +

√︀
𝑡2𝛽 + 1

)︁−3/2
(︂√

2𝑡𝛽/2 +
(︁
𝑡𝛽 +

√︀
𝑡2𝛽 + 1

)︁1/2)︂−1

𝑑𝑡,

𝐶2 =
𝛽

8

∫︁ 1

0

𝑡−1/𝛽(1 − 𝑡)−5/4+1/2𝛽(1 + 𝑡)−3/4+1/2𝛽
(︀
(𝛽 − 1)/𝛽 + 3𝑡/4 − 2𝑡3 + 𝑡4

)︀
𝑑𝑡.

As 0 < 𝛽 6 1, similar formulae hold true.

In order to obtain the asymptotics for 𝜆𝑘 by (46) and (17), we need to study the behavior of
the functions 𝑄2(0, 𝜆), 𝐾(𝜆), 𝛽(𝜆) for large 𝜆 > 0, where 𝑝 and 𝑞 are of form (43).

Lemma 7. If 0 < 𝛽 < 2, then

−𝑄2(0, 𝜆) = 𝜆(2+𝛼−𝛽)/2𝛼

(︃
𝐶−1

0 +
𝑛−1∑︁
𝑘=1

𝑎𝑘𝜆
−(2𝛽−𝛼)𝑘/𝛼

)︃
+𝑂

(︀
𝜆−(2𝛽−𝛼)𝑛/𝛼𝜌(𝜆)

)︀
,

as 𝜆 → +∞, where 𝑛 = 𝑛(𝛽) ∈ N are defined by inequalities (48), 𝑎𝑘 = 𝑓𝑘𝐼𝑘, 𝑓𝑘 and 𝐼𝑘 are
determined by the formulae (47) and (50),

𝜌(𝜆) =

{︂
ln𝜆, 𝛽 = 2/(4𝑛+ 1),
𝜆−{1/4−1/2𝛽}, for other 𝛽,

{𝑥} denotes the fractional part of a number 𝑥.

Proof. The substitution 𝑥 = 𝑎𝜆𝑡 transforms 𝑄2(0, 𝜆) to the form

−𝑄2(0, 𝜆) = 𝜆(2+𝛼−𝛽)/2𝛼

∫︁ 1

0

(1 − 𝑡𝛼)1/2
[︁
𝑡𝛽 +

(︀
𝑡2𝛽 + 𝜀(1 − 𝑡𝛼)

)︀1/2]︁−1/2

𝑑𝑡 ≡ 𝜆(2+𝛼−𝛽)/2𝛼𝐼(𝜀).

where 𝜀 = 𝜆−(2𝛽−𝛼)/𝛼.
Since the function

𝑓(𝑧) =
(︀
1 + (1 + 𝑧)1/2

)︀−1/2

in analytic in the unit circle, then

𝑓(𝑧) =
∞∑︁
𝑘=1

𝑓𝑘𝑧
𝑘, |𝑧| < 1, (47)

and 𝑓0 = 1/
√

2. Let 𝑛 be a natural number satisfying the inequalities

1

2𝛽
− 1

4
6 𝑛 <

1

2𝛽
+

3

4
. (48)

We let

𝑅𝑛(𝜀) = 𝐼(𝜀) −
𝑛−1∑︁
𝑘=0

𝑓𝑘𝐼𝑘𝜀
𝑘, (49)

where

𝐼𝑘 =

∫︁ 1

0

(1 − 𝑥𝛼)𝑘+1/2𝑥−(4𝑘+1)𝛽/2𝑑𝑥.
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We have [22, Ch. XII, No. 855.42]

𝐼𝑘 =
Γ
(︀
2𝑘+3
2

)︀
Γ
(︁

−(4𝑘+1)𝛽+2
2𝛼

)︁
𝛼Γ
(︁

2𝑘+3
2

+ 2−(4𝑘+1)𝛽
2𝛼

)︁ . (50)

Since [︁
𝑡𝛽 +

√︀
𝑡2𝛽 + 𝜀(1 − 𝑡𝛼)

]︁−1/2

= 𝑡−𝛽/2𝑓
(︀
𝜀(1 − 𝑡𝛼)/𝑡2𝛽

)︀
,

by the uniform convergence of series (47) in the circle |𝑧| 6 𝑟 < 1, the function

𝑟𝑛(𝑡, 𝜀) =
[︁
𝑡𝛽 +

√︀
𝑡2𝛽 + 𝜀(1 − 𝑡𝛼)

]︁−1/2

−
𝑛−1∑︁
𝑘=0

𝑓𝑘 · (1 − 𝑡𝛼)𝑘𝑡−(2𝑘+1/2)𝛽𝜀𝑘

satisfies the estimate

|𝑟𝑛(𝑡, 𝜀)| 6 𝐶𝑛𝜀
𝑛𝑡−(2𝑛+1/2)𝛽, 𝑡 ∈ [(1 + 𝛿)𝜀1/2𝛽, 1],

where 𝑀 , 𝛿 are positive constants independent of 𝜀. Then, since as 𝑡 ∈ (0, (1 + 𝛿)𝜀1/2𝛽),

|𝑟𝑛(𝑡, 𝜀)| 6𝑀 ′
𝑛𝜀

𝑛−1𝑡−(2𝑛−3/2)𝛽,

where 𝑀 ′ > 0 is independent of 𝑡 and 𝜀, then

𝑅𝑛(𝜀) 6𝑀𝜀𝑛
∫︁ 1

(1+𝛿)𝜀1/2𝛽
𝑡−(2𝑛+1/2)𝛽𝑑𝑡+𝑀 ′𝜀𝑛−1

∫︁ (1+𝛿)𝜀1/2𝛽

0

𝑡−(2𝑛−3/2)𝛽𝑑𝑡.

According to (48),

−2𝛽 < −(2𝑛+ 1/2)𝛽 + 1 6 0, 0 < −(2𝑛− 3/2)𝛽 6 2𝛽,

so that

𝑅𝑛(𝜀) =

{︂
𝑂 (𝜀𝑛 ln 𝜀) , 𝛽 = 2/(4𝑛+ 1),
𝑂
(︀
𝜀𝑛−{1/4−1/2𝛽})︀ , 1/2𝛽 − 1/4 /∈ N, 𝜀→ +0.

By relations (49), (50) it implies the statement of the lemma.

Lemma 8. As 1 < 𝛽 < 2 and 𝜆→ +∞, the estimate

𝐾(𝜆) = 𝐶2𝜆
−(𝛽+2)/4𝛽 +𝑂

(︀
𝜆−(2+𝛼−𝛽)/2𝛼 + 𝜆−3/4

)︀
(51)

holds true.

Proof. Since 𝛽 > 1, then 𝑝′ is absolutely continuous on [0,+∞) and this is why in expressions
(18) and (12) we can take 𝑝 and 𝑞 instead of 𝑝1 and 𝑞1, respectively, and 𝜒 ≡ 0. Hence, by (18)
and (12) we obtain

𝐾(𝜆) = 𝐾1(𝜆) +𝐾2(𝜆) +𝑂
(︀
𝜆−3/4

)︀
,

𝐾1(𝜆) = −1

2

∫︁ 𝑎𝜆

0

𝜈
−1/2
2 𝐾(𝑡, 𝜆)𝑑𝑡,

𝐾2(𝜆) =
1

16

∫︁ 𝑎𝜆

0

𝜈
−1/2
2

(︂
2𝑝′2

𝐷
+ 4

(︂
𝑝′√
𝐷

)︂′

+
𝜈 ′2(𝜈2𝜈

′
1 − 𝜈1𝜈

′
2)

8𝐷3/2

)︂
𝑑𝑡.

By straightforward calculations we confirm that (see (39))

𝐾1(𝜆) = − 1

8

∫︁ 𝑎𝜆

0

𝜈
−1/2
2

𝜈 ′′1
𝜈1
𝑑𝑡+

3

32

∫︁ 𝑎𝜆

0

𝜈
−1/2
2

(︂
𝜈 ′1
𝜈1

)︂2

𝑑𝑡+𝑂(𝜆−(2+𝛼−𝛽)/2𝛼)

=𝐾11(𝜆) +𝐾12(𝜆) +𝑂(𝜆−(2+𝛼−𝛽)/2𝛼).
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The integrals 𝐾11(𝜆), 𝐾12(𝜆), 𝐾2(𝜆) are of the same nature and one can find easily their
asymptotics. We have

𝐾11(𝜆) = −𝛽
8
𝜆−1/2

∫︁ 𝑎𝜆

0

𝑘(𝑡, 𝜆)𝑑𝑡+𝑂
(︀
𝜆−(2+𝛼−𝛽)/2𝛼

)︀
,

𝑘(𝑡, 𝜆) = 𝑡𝛽/2
(︁
𝑡𝛽 +

√︀
𝑡2𝛽 + 𝜆

)︁−1/2 [︀
𝛽 − 1 + (2𝛽 − 1)𝑡𝛽(𝑡2𝛽 + 𝜆)−1/2 − 𝛽𝑡2𝛽(𝑡2𝛽 + 𝜆)−1

]︀
.

Making the change of the variables 𝑡 ↦−→ 𝑠 = (1 + 𝑡−2𝛽)−1/2, we obtain

𝐾11(𝜆) = −𝛽
8
𝜆−(𝛽+2)/4𝛽

∫︁ 𝑎𝜆

0

𝑠−1/𝛽(1−𝑠)−(5𝛽+2)/4𝛽 ((𝛽 − 1)/𝛽 + 𝑠(1 − 𝑠)) 𝑑𝑠+𝑂
(︀
𝜆−(2+𝛼−𝛽)/2𝛼

)︀
.

Making similar calculations for 𝐾12(𝜆), 𝐾2(𝜆) as 1 < 𝛽 < 2, we obtain (51). The proof is
complete.

Completion of the proof of Theorem 2. According to (19),

𝑏(𝜆) = 𝑏1(𝜆) + exp

(︂
𝑖

∫︁ 𝑎𝜆

0

|𝜈2|1/2 𝑑𝑡
)︂
𝑏2(𝜆),

where

𝑏1(𝜆) =

∫︁ 𝑎𝜆/2

0

exp

(︂
𝑖

∫︁ 𝑡

0

|𝜈2|1/2 𝑑𝑡
)︂
𝐵(𝑡, 𝜆)𝑑𝑡,

𝑏2(𝜆) =

∫︁ 𝑎𝜆

𝑎𝜆/2

exp

(︂
−𝑖
∫︁ 𝑎𝜆

𝑡

|𝜈2|1/2 𝑑𝑡
)︂
𝐵(𝑡, 𝜆)𝑑𝑡,

𝐵(𝑡, 𝜆) = |𝜈2|−1/2

[︃(︂
𝑝′√
𝐷

)︂2

+
𝑝′′ + |𝑞′′1 |√

𝐷

]︃
.

Integrating by parts, we have

𝑏1(𝜆) = 𝑂
(︀
𝜆−𝛿1

)︀
, 𝜆→ +∞,

where

𝛿1 = min

{︂
𝛼 + 2 − 𝛽

2𝛼
,
4 − 𝛽

4𝛽
,
4 + 2𝛽 − 𝛼

2𝛼

}︂
.

Let us estimate 𝑏2. We let 𝑄(𝑥, 𝜆) =
∫︀ 𝑎𝜆
𝑡

|𝜈2|1/2 𝑑𝑡. Since

𝑄(𝑥, 𝜆) = −3/2

∫︁ 𝑎𝜆

𝑡

(𝑞′)−1𝜈
−1/2
1 𝑑

(︀
(𝜆− 𝑞)3/2

)︀
,

and the functions 𝑞′ and 𝜈1 are monotonous, then

𝐴1𝑎
1−𝛼−𝛽/2
𝜆 6

𝑄(𝑥, 𝜆)

(𝜆− 𝑞(𝑥))3/2
6 𝐴2𝑎

1−𝛼−𝛽/2
𝜆 , 𝑥 ∈ [𝑎𝜆/2, 𝑎𝜆], 𝜆≫ 1, (52)

where 𝐴1, 𝐴2 are positive constants independent of 𝜆. For each 𝑘 = 0, 1, . . .

𝜕𝑘

𝜕𝑥𝑘

[︃(︂
(𝑝′)2 + 𝑞′′1√

𝐷

)︂2

+
𝑝′′√
𝐷

]︃
(𝑥, 𝑎𝜆) = 𝑂

(︀
𝑥−2−𝑘

)︀
, 𝑥 > 𝑎𝜆/2,

uniformly in 𝜆 > Λ0 ≫ 1. Then

(𝜆− 𝑞(𝑡))−1𝐵(𝑡, 𝜆) = 𝑄(𝑡, 𝜆)−2/3𝜆−𝛾𝜓(𝑡, 𝜆), 𝑥 ∈ [𝑎𝜆/2, 𝑎𝜆], 𝜆≫ 1,

where 𝛾 = 2(𝛼 + 2 − 𝛽)/3𝛼, the function 𝜓 and its derivatives in 𝑥 satisfy the estimates

𝜓(𝑘)(𝑥, 𝜆) = 𝑂(𝑥−𝑘), 𝑥 > 𝑎𝜆/2, (53)
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uniformly in 𝜆 > Λ0 ≫ 1. Making the change 𝑥 ↦→ 𝑄 = 𝑄(𝑥, 𝜆) in the integral 𝑔2, we obtain

𝑏2(𝜆) = 𝜆−𝛾

∫︁ 𝐴(𝜆)

0

𝑒−𝑖𝑄𝑄−2/3Ψ(𝑄, 𝜆)𝑑𝑄,

where 𝐴(𝜆) = 𝑄(𝑎𝜆/2, 𝜆), and by (53) the function Ψ(𝑄, 𝜆) = 𝜓(𝑡(𝑄), 𝜆) satisfies the estimates⃒⃒⃒⃒
𝜕𝑘

𝜕𝑄𝑘
Ψ(𝑄(𝑡, 𝜆), 𝜆)

⃒⃒⃒⃒
6

𝐵𝑘

|𝜈2(𝑡, 𝜆)|𝑘/2𝑎𝑘𝜆
, 𝑡 ∈ [𝑎𝜆/2, 𝑎𝜆], 𝜆≫ 1, (54)

𝐵𝑘 > 0, 𝑘 ∈ N, are independent of 𝑡, 𝜆. It follows that

𝑏21(𝜆) :=

∫︁ 1

0

𝑒−𝑖𝑄𝑄−2/3
(︀
𝜆−𝛾Ψ(𝑄, 𝜆)

)︀
𝑑𝑄 = 𝑂

(︀
𝜆−𝛾
)︀
, 𝜆→ +∞.

By inequalities (52) we see that as 𝑄(𝑡, 𝜆) > 1, |𝜈2(𝑡, 𝜆)𝑡| > 𝐶𝜆(𝛼+2−𝛽)/3𝛼, where 𝐶 > 0 is
independent of 𝑡, 𝜆. By (54) it follows that for some 𝑛 ∈ N∫︁ 𝐴(𝜆)

1

𝑞−2/3

⃒⃒⃒⃒
𝜕𝑛

𝜕𝑄𝑛
Ψ(𝑄(𝑡, 𝜆), 𝜆)

⃒⃒⃒⃒
𝑑𝑄 = 𝑂

(︀
𝜆−𝛾
)︀
, 𝜆→ +∞, 𝑖 = 1, 2.

This is why, integrating by parts 𝑛 times in 𝑏22 := 𝑏2 − 𝑏21 and taking into consideration
inequalities (54), we obtain

𝑏2(𝜆) = 𝑂
(︀
𝜆−𝛾
)︀
, 𝜆→ +∞,

𝑏(𝜆) = 𝑂
(︀
𝜆−(2+𝛼−𝛽)/2𝛼 + 𝜆−1+𝛽/4

)︀
, 𝜆→ +∞. (55)

Substituting the obtained expression for 𝐾(𝜆), 𝑄2(0, 𝜆), 𝑏(𝜆) into equation (17), solving it
w.r.t 𝜆𝑘 and taking into consideration (46), we arrive at the statement of the theorem.

Remark 4. In the case 0 < 𝛽 6 1, we can not neglect the terms in formulae (18) and
(12) involving the cut-off function 𝜒. It produces additional terms in formulae (51) and (55).
Moreover, additional difficulties arise related to the non-integrability of the functions 𝑝′2 and
𝑝′′ at zero and this is why the expansions like (49) for the integrals in the expression for 𝐾(𝜆)
depend on a particular value of 𝛽. This is exactly the reason why we have restricted ourselves
by the case 1 < 𝛽 < 2 in Theorem 1.

As 𝛽 > 2, the asymptotics of the integrals 𝑄2(0, 𝜆), 𝐾(𝜆) can be studied in the same way as
for 𝛽 < 2. As 𝛽 > 2, the formulae for the mentioned integrals are similar to the case 𝛽 < 2, a
formal difference is due to the fact that

𝛽 + 2

4𝛽
− 2 + 𝛼− 𝛽

2𝛼
=

(𝛽 − 2)(2𝛽 − 𝛼)

4𝛼𝛽
> 0

as 𝛽 > 2. In the case 𝛽 = 2, the formulae for 𝑄2(0, 𝜆) and 𝐾(𝜆) has its own features. Omitting
intermediate steps similar to the case 𝛽 < 2, we provide the final form of the asymptotic
formulae as 𝜆→ +∞:

−𝑄2(0, 𝜆) =

{︂ ̃︀𝐶1𝜆
(𝛽+2)/4𝛽 − ̃︀𝐶2𝜆

(2+𝛼−𝛽)/2𝛼 +𝑂
(︀
𝜆(2𝛼+2−3𝛽)/4𝛽

)︀
, 𝛽 > 2,̃︀𝐶3𝜆

1/2 ln𝜆+ ̃︀𝐶4𝜆
1/2 +𝑂

(︀
𝜆(𝛼−2)/4

)︀
+𝑂

(︀
𝜆(3𝛼−8)/2𝛼

)︀
, 𝛽 = 2,

(56)

𝐾(𝜆) =

{︂
𝑂
(︀
𝜆(𝛼+2−𝛽)/2𝛼

)︀
, 𝛽 > 2,

𝑂(𝜆−1/2 ln𝜆), 𝛽 = 2,
(57)

𝑏(𝜆) = 𝑜(𝐾(𝜆)),
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where

̃︀𝐶1 =

∫︁ ∞

0

𝑑𝑡√
𝑡𝛽 +

√
𝑡2𝛽 + 1

, ̃︀𝐶2 =

√
2

𝛽 − 2
+

1√
2

∫︁ 1

0

𝑡𝛼−𝛽/2𝑑𝑡

1 +
√

1 − 𝑡𝛼
, ̃︀𝐶3 =

4 − 𝛼

4
√

2𝛼
, (58)

̃︀𝐶4 =

∫︁ ∞

0

[︃
1√︀

𝑡2 +
√
𝑡4 + 1

− 1√
2(𝑡+ 1)

]︃
𝑑𝑡− 1√

2

∫︁ 1

0

𝑡𝛼−1𝑑𝑡

1 +
√

1 − 𝑡𝛼
. (59)

Theorem 3. Assume that the functions 𝑝 and 𝑞 are of form (43). Then the spectrum of the
operator 𝐿 has the asymptotics

a) as 𝛽 > 2,

𝜆𝑘 = 𝑚
4𝛽
2+𝛽

𝑘 +
4𝛽

2 + 𝛽

̃︀𝐶2̃︀𝐶1

𝑚
4𝛽𝛼−(𝛽−2)(2𝛽−𝛼)

(2+𝛽)𝛼

𝑘 +𝑂(𝑘𝛿),

𝛿 = max

{︂
(𝛽 − 2)(2𝛽 + 𝛼)

𝛼(𝛽 + 2)
,

2𝛼

𝛽 + 2

}︂
,

b) as 𝛽 = 2,

𝜆𝑘 = exp

(︃
−
̃︀𝐶4̃︀𝐶3

)︃
Ψ2(𝜇𝑘)

[︃
1 +𝑂

(︃
𝑘−

4−𝛼
2 (ln 𝑘)−1+ 4−𝛼

2 +

(︂
𝑘

ln 𝑘

)︂− 8
𝛼
+2
)︃]︃

,

where

𝑚𝑘 =
𝜋 (4𝑘 − 1)

4 ̃︀𝐶1

, 𝜇𝑘 =
𝜋 (4𝑘 − 1) exp

(︁ ̃︀𝐶4/2 ̃︀𝐶3

)︁
8 ̃︀𝐶3

,

the constants ̃︀𝐶𝑖, 𝑖 = 1, 4, are defined by (58), (59), Ψ(𝜇) is the inversion function for 𝜙(𝜇) =
𝜇 ln𝜇 satisfying asymptotic expansion (60) for large 𝜇.

Proof. Let 𝛽 = 2. In view of (56), (57), by equations (17), (46) we find

̃︀𝐶3𝜆
1/2
𝑘 ln𝜆𝑘 + ̃︀𝐶4𝜆

1/2
𝑘 +𝑂

(︁
𝜆
𝛼−2/4
𝑘 + 𝜆

(3𝛼−8)/2𝛼
𝑘

)︁
= 𝜋

(︂
𝑘 − 1

4

)︂
,

which implies

𝜆𝑘 = exp

(︃
−
̃︀𝐶4̃︀𝐶3

)︃
Ψ2

(︃
𝜇𝑘

(︃
1 +𝑂

(︃
𝜆
(𝛼−4)/4
𝑘

ln𝜆𝑘
+
𝜆
(𝛼−4)/𝛼
𝑘

ln𝜆𝑘

)︃)︃)︃
.

For large 𝜇 > 0, the function Ψ(𝜇) has asymptotic expansion [21, Ch. I, Sect. 5]:

Ψ(𝜇) =
𝜇

ln𝜇

(︃
1 +

∑︁
𝑚=0, 𝑘=1

𝑐𝑘𝑚(ln ln𝜇)𝑘(ln𝜇)−𝑘−𝜇

)︃
, (60)

where the coefficients 𝑐𝑘𝑚 can be found explicitly. It implies Statement b).
Statement a) can be proved in the same way.
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19. A. Erdélyi, W. Magnus, F. Oberhettinger, F.G. Tricomi. Higher transcendental functions. Vol.
II.. Bateman Manuscript Project. McGraw-Hill Book Co., New York (1953).

20. Kh.K. Ishkin. On continuity of the spectrum of a singular quasi-differential operator with respect
to a parameter// Eurasian Math. J. 2:3, 67–81 (2011).

21. M.V. Fedoryuk. Asymptotics: integrals and series. Nauka, Moscow (1987). (in Russian).
22. H.B. Dwight. tables of integrals and other mathematical data. The Macmillan Company, New

York (1961).

Khabir Kabirovich Ishkin,
Bashkir State University,
Zaki Validi str. 32,
450074, Ufa, Russia
E-mail: Ishkin62@mail.ru

Khairulla Khabibulovich Murtazin,
Bashkir State University,
Zaki Validi str. 32,
450074, Ufa, Russia
E-mail: Murtazin@mail.ru


	to1. Introduction
	to2. Preliminary remarks
	to3. Equation for the spectrum
	to4. Asymptotics of the spectrum
	 References

