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THE ASYMPTOTIC FORMULAE IN THE PROBLEM ON
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REGIONS OF DYNAMICAL SYSTEMS
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Abstract. The paper proposes a new general method allowing us to study the problem
on constructing hyperbolicity and stability regions for nonlinear dynamical systems. The
method is based on a modification of the method by M. Rozo for studying the stability
of linear systems with periodic coefficients depending on a small parameter and on the
asymptotic formulae in the perturbation theory of linear operators. We obtain approximate
formulae describing the boundary of hyperbolicity and stability regions. As an example,
we provide the scheme for constructing the stability regions for Mathieu equation.
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1. Introduction

We consider the equation

𝑑𝑥

𝑑𝑡
= 𝐴(𝜇, 𝑡)𝑥 + 𝑎(𝑥, 𝑡, 𝜇), 𝑥 ∈ R𝑁 , 𝜇 ∈ R𝑘, (1)

where the matrix 𝐴(𝜇, 𝑡) and the vector-function 𝑎(𝑥, 𝑡, 𝜇) are continuous and 𝑇 -periodic in
𝑡 being smooth (continuously differentiable) w.r.t. scalar or vector parameter 𝜇. At that,
𝑎(𝑥, 𝑡, 𝜇) depends smoothly on 𝑥 and satisfies the condition

‖𝑎(𝑥, 𝑡, 𝜇)‖ = 𝑂(‖𝑥‖2) as ‖𝑥‖ → 0

uniformly in 𝑡 and 𝜇. Hereinafter the symbol ‖ · ‖ stands for the Euclidean norms of vectors
and matrices.

For all values of the parameter 𝜇, equation (1) has the equilibrium point 𝑥 = 0. We denote by
𝑝−, 𝑝0 and 𝑝+ the number of the multiplicators (counting multiplicities) of the linear 𝑇 -periodic
system

𝑑𝑥

𝑑𝑡
= 𝐴(𝜇, 𝑡)𝑥, 𝑥 ∈ R𝑁 , (2)

whose absolute value is less than, equal to or greater than 1, respectively; then 𝑝−+𝑝0+𝑝+ = 𝑁 .
The triple (𝑝−, 𝑝0, 𝑝+) is called [1]–[4] a topological type of the equilibrium point 𝑥 = 0 of system
(1). We also say that the equilibrium point 𝑥 = 0 is hyperbolic if 𝑝0 = 0; otherwise it is called
non-hyperbolic.

An open connected set 𝐺 in the space of the parameters R𝑘 is called a hyperbolicity region
of the equilibrium point 𝑥 = 0 of system (1) if for each 𝜇 ∈ 𝐺 the equilibrium point 𝑥 = 0 is
hyperbolic with the same topological type (𝑝−, 0, 𝑝+). The set 𝐺 is called a stability region of the
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equilibrium point 𝑥 = 0 of system (1) if for each 𝜇 ∈ 𝐺 the equilibrium point 𝑥 = 0 is stable. In
a natural way we introduce the notions of asymptotic stability region and an instability region.

In what follows by ℬ(𝜇0, 𝛿0) we denote an open ball of radius 𝛿0 > 0 centered at a point 𝜇0

in the space of the parameters 𝜇 ∈ R𝑘.
If the equilibrium point 𝑥 = 0 of system (1) is hyperbolic for some 𝜇 = 𝜇0 and (𝑝−, 0, 𝑝+) is

its topological type, there exists a ball ℬ(𝜇0, 𝛿0) such that for all 𝜇 ∈ ℬ(𝜇0, 𝛿0) the equilibrium
point 𝑥 = 0 is hyperbolic with the same topological type (𝑝−, 0, 𝑝+).

If as 𝜇 = 𝜇0, the equilibrium point 𝑥 = 0 is non-hyperbolic, as a rule, its topological type
changes as 𝜇 passes 𝜇0. Namely, as a rule, in the space R𝑘 of parameters 𝜇, one or several
manifolds 𝛾𝑗 (𝑗 = 1, . . . , 𝑚) of codimension 1 pass the point 𝜇0, and these manifolds partition
some ball ℬ(𝜇0, 𝛿0) into 2𝑚 hyperbolicity subregions ℬ𝑘.

In particular, if as 𝜇 = 𝜇0, the equilibrium point 𝑥 = 0 has a topological type (𝑝−, 𝑝0, 0),
where 𝑝0 > 1, then the hyperbolicity regions ℬ𝑘 can be stability regions ℬ𝑠

𝑗 and instability
regions ℬ𝑛

𝑗 (alternating in a natural sense) for the solution 𝑥 = 0 of system (1).
The problem on constructing hyperbolicity regions and, in particular, the stability and in-

stability regions of solutions to differential equations is one of the important and interesting
problems in linear and nonlinear dynamics and the applications. Here effective methods of
studying were proposed, a series of important from the theoretical and practical points of views
problems were solved (see, for instance, [4]–[7] and the references therein). It should be noted
that most of known works concern autonomous equations [8]-[12]. These problems are much
less studied for non-autonomous equations with periodic coefficients, although many important
theoretical and practical issues lead one to such problems. The main point is a complicated
problem of constructing multiplicators; they can be constructed explicitly only in simplest cases.
Here the known results concern studying particular equations (see [6, 7], [13]-[15]).

In the present paper we propose a new general approach allowing us to obtain approximate
formulae in the problem of constructing the manifolds 𝛾𝑗 and the hyperbolicity regions ℬ𝑘 of
system (1). The approach is based on a modification of a method by M. Roseau [16] and on
asymptotic formulae in the perturbation theory of linear operators [17, 18]. The main results
are obtained under the assumption that the following conditions hold:

a) as 𝜇 = 𝜇0, the matrix 𝐴0 ≡ 𝐴(𝜇0, 𝑡) is independent of 𝑡;
b) the matrix 𝐴0 has a simple zero eigenvalue or a pair of simple eigenvalues ±𝑖𝜔0, 𝜔0 > 0,

while its other eigenvalues have non-zero real parts.
Then, as 𝜇 = 𝜇0, the equilibrium point 𝑥 = 0 of system (1) is non-hyperbolic and has

a topological type (𝑝−, 𝑝0, 𝑝+), where 𝑝−, 𝑝0 and 𝑝+ is the number of the eigenvalues of the
matrix 𝐴0 with negative, zero and positive real parts, respectively. At that, 𝑝0 = 1 or 𝑝0 = 2.

The approach proposed in the paper can be modified for the stated problems under conditions
more general than a) and b). For example, for the situations, when the matrix 𝐴0 has several
pairs of pure imaginary eigenvalues or when the matrix 𝐴0 has pure imaginary degenerate
eigenvalues and so forth.

Under an appropriate modification, we can obtain the analogues of the below results for the
equations of form (1) defined in the complex plane C𝑁 with complex matrix 𝐴(𝜇, 𝑡), complex
vector-function 𝑎(𝑥, 𝑡, 𝜇) and complex parameter 𝜇.

2. Main results

Condition b) can be realized in one of the following cases:

10. 𝐴0 has a simple zero eigenvalue;

20. 𝐴0 has a pair of simple eigenvalues ±𝑖𝜔0, where 𝜔0 > 0 and 𝜔0 ̸= 𝜋𝑘

𝑇
, 𝑘 is a natural

number;

30. 𝐴0 has a pair of simple eigenvalues ±𝑖𝜔0, where 𝜔0 =
𝜋𝑘0
𝑇

for some natural 𝑘0.



60 L.S. IBRAGIMOVA, I.ZH. MUSTAFINA, M.G. YUMAGULOV

Here in all three cases we assume that other eigenvalues of the matrix 𝐴0 have non-zero real
parts.

From the point of view of the general bifurcation theory (see, for instance, [1, 2, 19]), in
all aforementioned cases, the equilibrium point 𝑥 = 0 of equation (1) is non-hyperbolic, while
the value 𝜇0 of the parameter 𝜇 is a bifurcation point. At that, in the cases 10 and 20, the
codimension of the bifurcation is equal to one, while in the case 30 it is two. This is why, in
the first two cases, the parameter 𝜇 is scalar, while in the third case it is two-dimensional.

Hereinafter (where it will produce no ambiguity), for the sake of brevity, we shall employ the
same notation for a square matrix of order 𝑁 and the associated linear operator acting in the
standard basis of the 𝑁 -dimensional real space R𝑁 or the 𝑁 -dimensional complex space C𝑁 .

In what follows we shall make use of the following notions corresponding to the above def-
initions. A square matrix 𝐴 is called hyperbolic if it has no pure imaginary eigenvalues and a
non-hyperbolic otherwise. Let a matrix 𝐴 has 𝑝−, 𝑝0 and 𝑝+ eigenvalues counting multiplicities
with a negative, zero and positive real parts, respectively. Then the triple (𝑝−, 𝑝0, 𝑝+) is called
a topological type of the matrix 𝐴. These notions also concern a linear operator acting in a
finite-dimensional linear space.

In the below constructions we employ essentially the following auxiliary statement.
Consider the equation

𝑑𝑥

𝑑𝑡
= 𝐴(𝑡)𝑥 + 𝑎(𝑥, 𝑡), 𝑥 ∈ C𝑁 , (3)

where 𝐴(𝑡) is a continuous 𝑇 -periodic matrix and the function 𝑎(𝑥, 𝑡) is continuous in 𝑡, contin-
uously differentiable in 𝑥 and satisfies the relations: 𝑎(𝑥, 𝑡 + 𝑇 ) ≡ 𝑎(𝑥, 𝑡), ‖𝑎(𝑥, 𝑡)‖ = 𝑂(‖𝑥‖2)
as ‖𝑥‖ → 0. Let 𝑈(𝑡) be a non-degenerate continuous 𝑇 -periodic matrix. The matrices 𝐴(𝑡)
and 𝑈(𝑡), as well as the function 𝑎(𝑥, 𝑡) can be both real and complex.

The change 𝑦 = 𝑈(𝑡)𝑥 reduces equation (3) to

𝑑𝑦

𝑑𝑡
= 𝐵(𝑡)𝑦 + 𝑏(𝑦, 𝑡), 𝑦 ∈ C𝑁 , (4)

where

𝐵(𝑡) = 𝑈 ′(𝑡)𝑈−1(𝑡) + 𝑈(𝑡)𝐴(𝑡)𝑈−1(𝑡) , 𝑏(𝑦, 𝑡) = 𝑈(𝑡)𝑎(𝑈−1(𝑡)𝑦, 𝑡) .

Lemma 1. A non-degenerate 𝑇 -periodic transformation 𝑦 = 𝑈(𝑡)𝑥 keeps the topological type
of the equilibrium point 𝑥 = 0 of system (3), that is, the topological types of the zero equilibrium
points of systems (3) and (4) are same.

The proof of this and others statements are provided in the end of the paper.

2.1. Case 10. Assuming that 𝜇 is a scalar parameter (that is, 𝜇 ∈ R) and letting for the
sake of simple notations 𝜇0 = 0, we rewrite equation (1) as

𝑑𝑥

𝑑𝑡
= [𝐴0 + 𝜇𝐴1(𝑡) + 𝐴2(𝜇, 𝑡)]𝑥 + 𝑎(𝑥, 𝑡, 𝜇). (5)

where 𝐴1(𝑡) = 𝐴′
𝜇(0, 𝑡), and the matrix 𝐴2(𝜇, 𝑡) satisfies the relation ‖𝐴2(𝜇, 𝑡)‖ = 𝑂(𝜇2) as

𝜇 → 0 uniformly in 𝑡. Equation (5) can be considered as an equation with a scalar parameter
𝜇 and a 𝑇 -periodic in 𝑡 right hand side.

Since in the considered case the space of the parameters 𝜇 is one-dimensional, the aforemen-
tioned manifolds 𝛾𝑗 degenerate into the point 𝜇0 = 0. At that, the hyperbolicity regions ℬ𝑘 are
the intervals of the form (−𝛿0, 0) or (0, 𝛿0) for some 𝛿0 > 0.

We denote by 𝑒0 and 𝑔0 the eigenvectors of the matrix 𝐴0 and the transposed matrix 𝐴*
0,

respectively, associated with the eigenvalue 0. These vectors can be normalized: ‖𝑒0‖ = 1 and
(𝑒0, 𝑔0) = 1. Hereinafter the symbol (·, ·) stands for the scalar product in the spaces R𝑁 and
C𝑁 .
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We let

𝜆1 =

∫︁ 𝑇

0

(𝐴1(𝑡)𝑒0, 𝑔0) 𝑑𝑡. (6)

Theorem 1. Let a matrix 𝐴0 has a simple zero eigenvalue and the topological type of this
matrix is (𝑝−, 1, 𝑝+). Let 𝜆1 ̸= 0. Then the topological type of the zero equilibrium of system
(5) is equal to (1 + 𝑝−, 0, 𝑝+) for all sufficiently small |𝜇| such that 𝜇𝜆1 < 0; it is equal to
(𝑝−, 0, 1 + 𝑝+) if 𝜇𝜆1 > 0.

This statement implies

Theorem 2. Let the matrix 𝐴0 has a simple zero eigenvalue and other eigenvalues of the
matrix 𝐴0 have negative real parts. Let 𝜆1 ̸= 0. Then the solution 𝑥 = 0 of equation (5) is
asymptotically stable for all small |𝜇| such that 𝜇𝜆1 < 0; it is unstable if 𝜇𝜆1 > 0.

Corollary 1. Let 𝜆1 ̸= 0. Then under the assumptions of Theorem 1, for some 𝛿0 > 0, the
intervals (−𝛿0, 0) and (0, 𝛿0) are hyperbolicity regions of the solution 𝑥 = 0 to equation (5) (with
different topological type). Let 𝜆1 > 0 (𝜆1 < 0). Then under the assumptions of Theorem 2 the
interval (−𝛿0, 0) ((0, 𝛿0)) is an asymptotic stability region, while the interval (0, 𝛿0) ((−𝛿0, 0)))
is an instability region of the solution 𝑥 = 0 to equation (5).

2.2. Case 20. As in the case 10, here it is natural to assume that 𝜇 is a scalar parameter
and for the sake of simplicity of notations 𝜇0 = 0. In other words, here equation (1) can be
also represented as (5), while the hyperbolicity region ℬ𝑘 are the intervals of the form (−𝛿0, 0)
or (0, 𝛿0) for some 𝛿0 > 0.

Since the matrix 𝐴0 has eigenvalues ±𝑖𝜔0, there exist non-zero vectors 𝑒, 𝑔, 𝑒*, 𝑔* ∈ R𝑁

satisfying the identities:

𝐴0(𝑒 + 𝑖𝑔) = 𝑖𝜔0(𝑒 + 𝑖𝑔), 𝐴*
0(𝑒

* + 𝑖𝑔*) = −𝑖𝜔0(𝑒
* + 𝑖𝑔*). (7)

These vectors can be normalized:

‖𝑒‖ = ‖𝑔‖ = 1 , (𝑒, 𝑒*) = (𝑔, 𝑔*) = 1, (𝑒, 𝑔*) = (𝑔, 𝑒*) = 0 . (8)

We let

𝜒1 =

∫︁ 𝑇

0

[(𝐴1(𝑡)𝑒, 𝑒
*) + (𝐴1(𝑡)𝑔, 𝑔

*)] 𝑑𝑡. (9)

Theorem 3. Let the matrix 𝐴0 has a pair of simple eigenvalues ±𝑖𝜔0, where 𝜔0 > 0 and

𝜔0 ̸=
𝜋𝑘

𝑇
(𝑘 is a natural number) and let the topological type of this matrix is equal to (𝑝−, 2, 𝑝+).

Let 𝜒1 ̸= 0. Then the topological type of the zero equilibrium point of system (5) is equal to
(2 + 𝑝−, 0, 𝑝+) for all small |𝜇| such that 𝜇𝜒1 < 0; it is equal to (𝑝−, 0, 2 + 𝑝+) if 𝜇𝜒1 > 0.

This statement implies

Theorem 4. Let the matrix 𝐴0 has a pair of simple eigenvalues ±𝑖𝜔0, where 𝜔0 > 0 and

𝜔0 ̸= 𝜋𝑘

𝑇
(𝑘 is a natural number), while other eigenvalues of the matrix 𝐴0 have negative real

parts. Let 𝜒1 ̸= 0. Then the solution 𝑥 = 0 of system (5) is asymptotic stable for all small |𝜇|
such that 𝜇𝜒1 < 0; it is unstable if 𝜇𝜒1 > 0.

Corollary 2. Let 𝜒1 ̸= 0. Then under the assumptions of Theorem 3 for some 𝛿0 > 0 the
intervals (−𝛿0, 0) and (0, 𝛿0) are hyperbolicity regions of the solution 𝑥 = 0 to equation (5) (with
different topological types). Let 𝜒1 > 0 (𝜒1 < 0). Then under the assumptions of Theorem 4 the
interval (−𝛿0, 0) ((0, 𝛿0)) is an asymptotic stability region, while the interval (0, 𝛿0) ((−𝛿0, 0)))
is an instability region of the solution 𝑥 = 0 of equation (5).
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Figure 1. Hyperbolicity regions in the plane of the parameters (𝛼, 𝛽)

2.3. Case 30. The case 30 is the most complicated. Here it is natural to assume that 𝜇 is
a two-dimensional parameter. Let 𝜇 = (𝛼, 𝛽), where 𝛼 and 𝛽 are scalar real parameters and
𝜇0 = (𝛼0, 𝛽0). Then equation (1) becomes

𝑑𝑥

𝑑𝑡
= 𝐴(𝛼, 𝛽, 𝑡)𝑥 + 𝑎(𝑥, 𝑡, 𝛼, 𝛽) , 𝑥 ∈ R𝑁 . (10)

We assume that the entried of the matrix 𝐴(𝛼, 𝛽, 𝑡) are twice continuously differentiable in 𝛼
and 𝛽. Then it can be represented as

𝐴(𝛼, 𝛽, 𝑡) =𝐴0 + (𝛼− 𝛼0)𝐵1(𝑡) + (𝛽 − 𝛽0)𝐵2(𝑡) + (𝛼− 𝛼0)
2𝐵11(𝑡)

+ (𝛽 − 𝛽0)
2𝐵22(𝑡) + (𝛼− 𝛼0)(𝛽 − 𝛽0)𝐵12(𝑡) + 𝐵3(𝛼, 𝛽, 𝑡) ,

(11)

where 𝐴0 is a constant matrix (we recall the assumption that the matrix 𝐴(𝛼0, 𝛽0, 𝑡) is inde-
pendent of 𝑡), the matrices 𝐵𝑗(𝑡), 𝐵𝑖𝑗(𝑡) and 𝐵3(𝛼, 𝛽, 𝑡) are 𝑇 -periodic in 𝑡 and the matrix
𝐵3(𝛼, 𝛽, 𝑡) satisfies the relation

‖𝐵3(𝛼, 𝛽, 𝑡)‖ = 𝑂((𝛼− 𝛼0)
2 + (𝛽 − 𝛽0)

2)3/2 as (𝛼, 𝛽) → (𝛼0, 𝛽0),

uniformly in 𝑡. Since in the considered case the space R2 of the parameters 𝜇 is two-dimensional,
the aforementioned manifolds 𝛾𝑗 are, as a rule, smooth curves passing the point 𝜇0 = (𝛼0, 𝛽0),
while the hyperbolicity regions ℬ𝑘 of the solution 𝑥 = 0 of equation (10) are open subregions
of some ball ℬ(𝜇0, 𝛿0) ⊂ R2 and the curves 𝛾𝑗 form the boundaries of the regions ℬ𝑘 (see a
corresponding example in Figure 1).

In what follows, we define the boundary of a hyperbolicity region in the vicinity of the point
(𝛼0, 𝛽0) as a smooth curve 𝛶 passing the point 𝜇0 = (𝛼0, 𝛽0) such that:

– for each (𝛼, 𝛽) ∈ 𝛶 , the solution 𝑥 = 0 of the equation (10) is non-hyperbolic with the
same topological type;

– for each point (𝛼, 𝛽) ∈ 𝛶 , (𝛼, 𝛽) ̸= (𝛼0, 𝛽0), there exists an open ball ℬ centered at the
point (𝛼, 𝛽) such that the curve 𝛶 splits this ball into two open subregions ℬ′ and ℬ′′ and in
each of them the solution 𝑥 = 0 of the equation (10) is hyperbolic; for instance, if (𝛼′, 𝛽′) ∈ 𝐵′,
then the solution 𝑥 = 0 of the equation (10) is hyperbolic as 𝛼 = 𝛼′ and 𝛽 = 𝛽′).

Let us provide a scheme allowing one to identify approximately the boundaries of the hyper-
bolicity regions. The curve 𝛶 defining the boundary of a hyperbolicity region can be described
by some smooth function of 𝛽 = 𝑓(𝛼), 𝛼 = 𝑔(𝛽) or it can be defined parametrically. We restrict
ourselves by considering the first option, i.e., we construct the boundary of a hyperbolicity re-
gion for equation (10) as a curve described by a smooth function 𝛽 = 𝑓(𝛼) defined in some
interval |𝛼− 𝛼0| < 𝛿 such that 𝑓(𝛼0) = 𝛽0. Namely, we construct the function 𝛽 = 𝑓(𝛼) as

𝑓(𝛼) = 𝛽0 + 𝛽1(𝛼− 𝛼0) + 𝛽2(𝛼− 𝛼0)
2 + 𝜂(𝛼− 𝛼0) , (12)

in which the coefficients 𝛽1 and 𝛽2 are to be determined, while the nonlinearity 𝜂(𝜀) satisfies
the relation 𝜂(𝜀) = 𝑂(𝜀3) as 𝜀 → 0. In fact, the matter is to find the derivatives 𝑓 ′(𝛼0) = 𝛽1
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and 𝑓 ′′(𝛼0) = 2𝛽2. Because of this, we shall call the function

̂︀𝑓(𝛼) = 𝛽0 + 𝛽1(𝛼− 𝛼0) + 𝛽2(𝛼− 𝛼0)
2 (13)

the asymptotic approximation of order 2 for the function 𝛽 = 𝑓(𝛼) at the point 𝛼 = 𝛼0. We
proposed scheme can be developed also for constructing the asymptotic approximations for the
function 𝛽 = 𝑓(𝛼) of higher order.

2.3.1. Preliminary transformations. Letting 𝛿 = 𝛼 − 𝛼0 and substituting (12) into (10), we
obtain the equation

𝑑𝑥

𝑑𝑡
= [𝐴0 + 𝛿𝐴1(𝛽1, 𝑡) + 𝛿2𝐴2(𝛽1, 𝛽2, 𝑡) + 𝐴3(𝑡, 𝛿)]𝑥 + 𝑎(𝑥, 𝑡, 𝛼, 𝛽) , 𝑥 ∈ R𝑁 , (14)

where we denote

𝐴1(𝛽1, 𝑡) = 𝐵1(𝑡) + 𝛽1𝐵2(𝑡) , 𝐴2(𝛽1, 𝛽2, 𝑡) = 𝐵11(𝑡) + 𝛽1𝐵12(𝑡) + 𝛽2
1𝐵22(𝑡) + 𝛽2𝐵2(𝑡) ,

while the matrix 𝐴3(𝛿, 𝑡) satisfies the relation ‖𝐴3(𝛿, 𝑡)‖ = 𝑂(𝛿3) as 𝛿 → 0 uniformly in 𝑡.
Hereinafter in all transformations, while denoting nonlinear terms (in equation (14), it is the

function 𝑎(𝑥, 𝑡, 𝛼, 𝛽)), for the sake of brevity we keep the notations of the parameters 𝛼 and 𝛽.
As in the case 20, there exist non-zero vectors 𝑒, 𝑔, 𝑒*, 𝑔* ∈ R𝑁 such that identities (7) and

(8) hold true, in which 𝜔0 =
𝜋𝑘0
𝑇

. We let

𝑒1 =
𝑒 + 𝑖𝑔√

2
, 𝑒2 =

𝑒− 𝑖𝑔√
2

, 𝑒*1 =
𝑒* + 𝑖𝑔*√

2
, 𝑒*2 =

𝑒* − 𝑖𝑔*√
2

. (15)

By the definition, these functions are normalized by the identities

(𝑒1, 𝑒
*
1) = (𝑒2, 𝑒

*
2) = 1 , (𝑒1, 𝑒

*
2) = (𝑒2, 𝑒

*
1) = 0 .

The matrix 𝐴0 and the transposed matrix 𝐴*
0 have a pair of simple eigenvalues ±𝜔0𝑖. At that,

the vectors 𝑒1, 𝑒
*
1 ∈ C𝑁 defined by identities (15) are the eigenvectors of the operators 𝐴0 and

𝐴*
0 associated with the eigenvalues 𝜔0𝑖 and −𝜔0𝑖, respectively. We introduce a linear operator

in C𝑁 by the formula 𝑄1𝑧 = −2𝜔0𝑖𝑃1𝑧, where 𝑃1𝑧 = (𝑧, 𝑒*1)𝑒1; 𝑃1 is the spectral projector of
a subspace in C𝑁 on the one-dimensional eigenspace 𝐸1 associated with the eigenvalues 𝜔0𝑖 of
the operator 𝐴0.

Equation (14) can be considered in the complex space C𝑁 . We make the change 𝑦 = 𝑒𝑄1𝑡𝑥
in (14) with a non-degenerate 𝑇 -periodic matrix 𝑒𝑄1𝑡. By Lemma 1 this change preserves the
topological type of the equilibrium point and transforms (14) to the form:

𝑑𝑦

𝑑𝑡
= [𝐴 + 𝛿𝐴1(𝛽1, 𝑡) + 𝛿2𝐴2(𝛽1, 𝛽2, 𝑡) + 𝐴3(𝑡, 𝛿)]𝑦 + 𝑎̃(𝑦, 𝑡, 𝛼, 𝛽) , 𝑦 ∈ C𝑁 , (16)

where

𝐴 = 𝐴0 + 𝑄1 , 𝐴𝑗 = 𝑒𝑄1𝑡𝐴𝑗𝑒
−𝑄1𝑡 (𝑗 = 1, 2, 3) , 𝑎̃(𝑦, 𝑡, 𝛼, 𝛽) = 𝑒𝑄1𝑡𝑎(𝑒−𝑄1𝑡𝑦, 𝑡, 𝛼, 𝛽) .

The operator 𝐴 has a semi-simple eigenvalue −𝜔0𝑖 of multiplicity 2, while its other eigenvalues
have non-zero real parts. We denote by 𝐸0 the spectral (two-dimensional) subspace of the
operator 𝐴 associated with the eigenvalue −𝜔0𝑖, and let 𝑃0 : C𝑁 → 𝐸0 be the spectral projector
of the space C𝑁 on the subspace 𝐸0. The operator 𝑃0 can be defined by the identity 𝑃0𝑧 =
(𝑧, 𝑒*1)𝑒1 + (𝑧, 𝑒*2)𝑒2 . We let 𝑃 0 = 𝐼 − 𝑃0 and 𝐸0 = 𝑃 0C𝑁 ; the subspace 𝐸0 is invariant for the
operator 𝐴 and the operator 𝐴 : 𝐸0 → 𝐸0 is hyperbolic.
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2.3.2. Calculation of the coefficient 𝛽1. First we provide a scheme allowing us to calculate the
coefficient 𝛽1 for function (12). At the first step we consider the matrix equation∫︁ 𝑇

0

𝑒−𝐴𝑡𝑆𝑒𝐴𝑡 𝑑𝑡 =

∫︁ 𝑇

0

𝑒−𝐴𝑡𝐴1(𝜉, 𝑡)𝑒
𝐴𝑡 𝑑𝑡 (17)

depending on an auxiliary spectral parameter 𝜉, where the unknown is a square matrix 𝑆.

Lemma 2. Equation (17) has the unique solution 𝑆 = 𝑆(𝜉) and the matrix 𝑆(𝜉) depends
smoothly on 𝜉.

We let
𝑆0(𝜉) = 𝑃0𝑆(𝜉)𝑃0 (18)

and consider a two-dimensional linear operator 𝑆0(𝜉) : 𝐸0 → 𝐸0. The matrix 𝑆0(𝜉) of this
operator is two-dimensional.

Theorem 5. Assume that there exist 𝜉* and 𝛿0 > 0 such that the matrix 𝑆0(𝜉
*) is non-

hyperbolic and matrix 𝑆0(𝜉) is hyperbolic as 𝜉 ∈ (𝜉* − 𝛿0, 𝜉
*) and 𝜉 ∈ (𝜉*, 𝜉* + 𝛿0) with different

topological type on thee intervals. Then there exists a boundary 𝛶 of the hyperbolicity regions
of the solution 𝑥 = 0 to equation (10) described by function (12), where 𝛽1 = 𝜉*.

Let us consider a particular case, when the matrix 𝑆0(𝜉) has a simple zero eigenvalue for
some 𝜉 = 𝜉*.

Then it follows from the perturbation theory of linear operators [17] that for 𝜉 close to 𝜉*,
the matrix 𝑆0(𝜉) has a simple real eigenvalue 𝜆(𝜉) and the function 𝜆(𝜉) depends smoothly on
𝜉 and the identity 𝜆(𝜉*) = 0 holds true.

Theorem 6. Let the matrix 𝑆0(𝜉
*) has a simple eigenvalue 𝜆1 = 0, while its other eigenvalue

𝜆2 is a real non-zero number. Let 𝜆′(𝜉*) ̸= 0. Then there exists a boundary 𝛶 of the hyperbolicity
regions of the solution 𝑥 = 0 to equation (10) described by function (12) with 𝛽1 = 𝜉*.

Remark 1. If there exist 𝑘 different 𝜉* satisfying the assumptions of Theorem 5 or 6, in
the plane of the parameters (𝛼, 𝛽), at least 𝑘 different curves 𝛶 passthe point (𝛼0, 𝛽0) and these
curves are described by the functions of the form (12).

Let us note the following useful fact. In the space C𝑁 we choose a basis formed by the vectors

𝑒1, 𝑒2, 𝑒3, . . . , 𝑒𝑁 , (19)

where 𝑒1, 𝑒2 are the vectors in (15), while the vectors 𝑒3, . . . , 𝑒𝑁 form a basis in 𝐸0. Then the
matrix of the linear operator 𝐴 : C𝑁 → C𝑁 is of the form:

𝐴 =

[︂
−𝜔0𝑖𝐼2 𝑂12

𝑂21 𝐴22

]︂
, (20)

where 𝐼2 is the unit 2 × 2 matrix, 𝐴22 is a square matrix of order 𝑁 − 2, while 𝑂12 and 𝑂21

are zero matrices of appropriate sizes. In this case the solution to equation (17), that is, the
matrix 𝑆(𝜉) can be represented as

𝑆(𝜉) =

[︂
𝑆0(𝜉) 𝑆12(𝜉)
𝑆21(𝜉) 𝑆22(𝜉)

]︂
, (21)

where 𝑆0(𝜉) is matrix (18), 𝑆22(𝜉) is a square matrix of size 𝑁 − 2, while 𝑆12(𝜉) and 𝑆21(𝜉) are
rectangular matrices of appropriate sizes.

Together with the matrix 𝑆(𝜉), we shall also consider the matrix

𝑆1(𝜉) =

[︂
𝑆0(𝜉) 𝑂12

𝑂21 𝑆22(𝜉)

]︂
, (22)

For the sake of the convenience of the exposition, in what follows we suppose that as a basis in
the space C𝑁 , vectors (19) are chosen and therefore, identities (20) and (21) hold true.
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2.3.3. Calculation of the coefficient 𝛽2. Assume that the constant 𝛽1 is found in accordance
with Theorem 5 or 6, that is, 𝛽1 = 𝜉*. We proceed to calculating the coefficient 𝛽2 of function
(12). We consider system (16), where we let 𝛽1 = 𝜉*, and it is convenient to redenote the
unknown 𝛽2 by 𝜈:

𝑑𝑦

𝑑𝑡
= [𝐴 + 𝛿𝑃1(𝑡) + 𝛿2𝑃2(𝜈, 𝑡) + 𝐴3(𝑡, 𝛿)]𝑦 + 𝑎̃(𝑦, 𝑡, 𝛼, 𝛽) , 𝑦 ∈ C𝑁 , (23)

where

𝑃1(𝑡) = 𝐴1(𝜉
*, 𝑡) , 𝑃2(𝜈, 𝑡) = 𝐴2(𝜉

*, 𝜈, 𝑡) .

We let 𝑆1 = 𝑆1(𝜉
*), where 𝑆1(𝜉) is matrix (22). We then let

𝐻1(𝑡) = 𝑒𝐴𝑡

[︂∫︁ 𝑡

0

𝑒−𝐴𝜏 (𝑃1(𝜏) − 𝑆1)𝑒
𝐴𝜏𝑑𝜏

]︂
𝑒−𝐴𝑡 . (24)

Finally, we introduce the matrix

𝐹 (𝜈, 𝑡) = 𝑃2(𝜈, 𝑡) −𝐻1(𝑡)𝑃1(𝑡) + 𝑆1𝐻1(𝑡) (25)

and consider the matrix equation∫︁ 𝑇

0

𝑒−𝐴𝑡𝑍𝑒𝐴𝑡 𝑑𝑡 =

∫︁ 𝑇

0

𝑒−𝐴𝑡𝐹 (𝜈, 𝑡)𝑒𝐴𝑡 𝑑𝑡 (26)

depending on the parameter 𝜈, where the unknown is a square matrix 𝑍.

Lemma 3. Equation (26) has the unique solution 𝑍 = 𝑍(𝜈) which depends smoothly on 𝜈.

We let

𝑍0(𝜈) = 𝑃0𝑍(𝜈)𝑃0 (27)

and consider a two-dimensional linear operator 𝑍0(𝜈) : 𝐸0 → 𝐸0. The matrix 𝑍0(𝜈) of this
operator is two-dimensional.

By identities (20)–(22), the matrix 𝑍(𝜈) can be represented as

𝑍(𝜈) =

[︂
𝑍0(𝜈) 𝑍12(𝜈)
𝑍21(𝜈) 𝑍22(𝜈)

]︂
.

We recall that the number 𝜉* is chosen by the condition that a two-dimensional matrix
𝑆0 = 𝑆0(𝜉

*) is non-hyperbolic. Then, in an appropriate basis, the matrix 𝑆0 has one of the
following forms:

𝑎)

[︂
0 0
0 𝜆2

]︂
, 𝑏)

[︂
𝑖𝜔1 0
0 −𝑖𝜔1

]︂
, 𝑐)

[︂
0 1
0 0

]︂
, (28)

where 𝜆2 is a non-zero real number and 𝜔1 > 0.
We restrict ourselves by considering the case, when the matrix 𝑆0(𝜉

*) has the form a). Other
cases can be considered in the same way in accordance with the provided below method by
M. Roseau. In the case a) we write the two-dimensional matrix 𝑍0(𝜉) in the mentioned basis:

𝑍0(𝜈) =

[︂
𝑧11(𝜈) 𝑧12(𝜈)
𝑧21(𝜈) 𝑧22(𝜈)

]︂
.

Theorem 7. Suppose that under the assumptions of Theorem 6 the matrix 𝑆0(𝜉
*) is of the

form a). Let the function 𝜏(𝜈) = Re 𝑧11(𝜈) satisfy the relations 𝜏(𝜈*) = 0 and 𝜏 ′(𝜈*) ̸= 0 for
some 𝜈 = 𝜈*. Then the boundary 𝛶 of the hyperbolicity regions for the solution 𝑥 = 0 to the
equation (10) is described by function (12), where 𝛽1 = 𝜉* and 𝛽2 = 𝜈*.
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2.4. Linear and conservative systems. Consider the linear two-dimensional equation

𝑑𝑥

𝑑𝑡
= 𝐴(𝛼, 𝛽, 𝑡)𝑥 , 𝑥 ∈ R2 , (29)

where 𝐴(𝛼, 𝛽, 𝑡) can be represented as (11). Suppose that the assumptions of the case 30 hold.
Since equation (29) is a particular case of equation (10), Theorems 5–7 are true also for equa-

tion (29). However, linear equation (29) has its own features; in particular, the hyperbolicity
properties are completely determined by the properties of the matrix 𝐴(𝛼, 𝛽, 𝑡) that is not the
case for nonlinear equation (10) in the critical cases, when equation (29) has multiplicators,
whose absolute values are one. This is why the hyperbolicity regions for linear equation (29)
and their boundaries can be determined under weaker conditions than Theorems 5–7.

In this subsection we consider the systems appearing in studying linear conservative systems.
A linear autonomous system 𝑥′ = 𝐴𝑥 is conservative if tr𝐴 = 0 (see, for instance, [2, 3]). In this
case the matrix exponent 𝑒𝐴𝑡 conserves the phase volume. A linear non-autonomous system
𝑥′ = 𝐴(𝑡)𝑥 with a 𝑇 -periodic matrix 𝐴(𝑡) is conservative if the product of its multiplicators
is equal to 1. In this case the Poincaré mapping 𝑈(𝑇 ) of this system in time 𝑇 conserves the
phase volume.

Assume that linear system (29) is conservative in aforementioned sense for all 𝛼 and 𝛽.
Reproducing the same constructions as for (10) in Case 30 for this system, we obtain the
matrix 𝑆(𝜉) being a solution to system (17).

Since considered system (29) is two-dimensional, the issue on its hyperbolicity regions is
equivalent to the issue on its stability and instability regions.

Theorem 8. Assume that the matrix 𝑆(𝜉*) has the zero double eigenvalue, Let there exists
𝛿0 > 0 such that as 𝜉 ∈ (𝜉* − 𝛿0, 𝜉

* + 𝛿0), the matrix 𝑆(𝜉) has continuous branches of the
eigenvalues 𝜆1(𝜉) and 𝜆2(𝜉) and at that,
– for 𝜉 ∈ (𝜉*, 𝜉*+𝛿0) (𝜉 ∈ (𝜉*−𝛿0, 𝜉

*)) the eigenvalues 𝜆1(𝜉) and 𝜆2(𝜉) are real and 𝜆1(𝜉) < 0
and 𝜆2(𝜉) > 0;

– for 𝜉 ∈ (𝜉* − 𝛿0, 𝜉
*] (𝜉 ∈ [𝜉*, 𝜉* + 𝛿0)) the eigenvalues 𝜆1(𝜉) and 𝜆2(𝜉) are pure imaginary,

namely, 𝜆1,2 = ±𝑖𝜔(𝜉), where 𝜔(𝜉*) = 0, 𝜔(𝜉) > 0 as 𝜉 ̸= 𝜉*.
Then there exists a boundary 𝛶 of stability regions for equation (29) described by function

(12), where 𝛽1 = 𝜉*.

3. Auxiliary information

Here we provide some auxiliary information used in the proof of the statements of the present
paper.

3.1. The method by M. Roseau. In the work we employ the method by M. Roseau
proposed in [16] for linear differential equations

𝑧′ = [𝐴 + 𝜀𝑃1(𝑡) + 𝜀2𝑃2(𝑡) + . . . + 𝜀𝑘𝑃𝑘(𝑡) + 𝜀𝑘+1𝑄(𝑡, 𝜀)]𝑧 , 𝑧 ∈ C𝑁 , (30)

with periodic coefficients and constant matrix 𝐴. The method proposes a way of passing to an
equivalent equation of the form

𝑦′ = [𝐴 + 𝜀𝑆1 + 𝜀2𝑆2 + . . . + 𝜀𝑘𝑆𝑘 + 𝜀𝑘+1𝑄̃(𝑡, 𝜀)]𝑦 , 𝑦 ∈ C𝑁 , (31)

where 𝑆1, 𝑆2, . . . , 𝑆𝑘 are constant matrices and 𝑄̃(𝑡, 𝜀) is a continuous periodic matrix. Such
passage allows one to solve the problem on stability of the mentioned linear system by con-
structing the eigenvalues of the constant matrix 𝐴 + 𝜀𝑆1 + 𝜀2𝑆2 + . . . + 𝜀𝑘𝑆𝑘, for example, by
the methods of the perturbation theory, [17]; in what follows we shall discuss this issue in more
detaisl. In this section the method by M. Roseau is justified and developed for some nonlinear
equations.
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3.1.1. Use of the first corrector. We first consider the differential equation

𝑑𝑧

𝑑𝑡
= [𝐴 + 𝜀𝑃 (𝑡) + 𝜀2𝑄(𝑡, 𝜀)]𝑧 + 𝑎(𝑧, 𝑡, 𝜀), 𝑧 ∈ C𝑁 , (32)

depending on a small parameter 𝜀, where 𝐴 is a constant matrix, 𝑃 (𝑡) and 𝑄(𝑡, 𝜀) are continuous
matrices, 𝑎(𝑧, 𝑡, 𝜀) is a continuously differentiable in 𝑥 and continuous in 𝑡 and 𝜀 vector function
satisfying the condition ‖𝑎(𝑧, 𝑡, 𝜀)‖ = 𝑂(‖𝑧‖2) as 𝑧 → 0. At that, 𝑃 (𝑡), 𝑄(𝑡, 𝜀) and 𝑎(𝑧, 𝑡, 𝜀)
are 𝑇 -periodic in 𝑇 . The entries of matrices 𝐴, 𝑃 (𝑡) and 𝑄(𝑡, 𝜀), as well as the vector function
𝑎(𝑧, 𝑡, 𝜀) and parameter 𝜀 can be both real and complex.

Let the matrix 𝐴 has one or several eigenvalues with zero real part, while other eigenvalues
have negative real parts. In this case, for small |𝜀|, the stability properties of the solution 𝑧 = 0
to equation (32) depends on the multiplicators of a 𝑇 -periodic matrix 𝐴 + 𝜀𝑃 (𝑡). However,
these multiplicators can be found explicitly only in the simplest cases.

In order to study the stability of the solution 𝑧 = 0 to the nonlinear equation (32), we suggest
to pass to the equivalent equation

𝑑𝑦

𝑑𝑡
= [𝐴 + 𝜀𝑆 + 𝜀2𝑄̃(𝑡, 𝜀)]𝑦 + 𝑎̃(𝑦, 𝑡, 𝜀) , 𝑦 ∈ C𝑁 , (33)

where 𝑆 is a constant matrix. The passage can be made by the change

𝑦 = (𝐼 − 𝜀𝐻(𝑡))𝑧 , (34)

where 𝐻(𝑡) is a some non-degenerate 𝑇 -periodic matrix. The formula for 𝐻(𝑡) will be given
later. Here we note that there exist infinitely many such matrices, and therefore, infinitely
many matrices 𝑆 and that we do not need to know the matrix 𝐻(𝑡) in order to construct the
matrix 𝑆.

Let us provide the scheme of constructing the matrix 𝑆. In order to do it, we introduce the
following notion. We shall say that a square matrix 𝐴 is 𝑇 -resonance if it has at least one pair

of different eigenvalues 𝜆1 and 𝜆2 satisfying the relation: 𝜆1 − 𝜆2 =
2𝜋𝑞𝑖

𝑇
for some natural 𝑞.

In particular, a real matrix 𝐴 is 𝑇 -resonance if it has at least one pair of the eigenvalues of the

form ±𝜋𝑞𝑖

𝑇
for some natural 𝑞.

Let us consider the matrix equation∫︁ 𝑇

0

𝑒−𝐴𝜏𝑆𝑒𝐴𝜏𝑑𝜏 =

∫︁ 𝑇

0

𝑒−𝐴𝜏𝑃 (𝜏)𝑒𝐴𝜏𝑑𝜏 (35)

for an unknown matrix 𝑆; here 𝐴 and 𝑃 (𝑡) are the matrices in equation (32). The following
statements take place [16].

Lemma 4. Equation (35) has the unique solution 𝑆 = 𝑆0 if and only if the matrix 𝐴 is not
𝑇 -resonance.

Theorem 9. Assume that the matrix 𝐴 is not 𝑇 -resonance. Then change (34), where

𝐻(𝑡) = 𝑒𝐴𝑡

[︂∫︁ 𝑡

0

𝑒−𝐴𝜏 (𝑃 (𝜏) − 𝑆0)𝑒
𝐴𝜏𝑑𝜏

]︂
𝑒−𝐴𝑡, (36)

and 𝑆0 is the unique equation to equation (35), transforms equation (32) to (33) with 𝑆 = 𝑆0.

Theorem 10. The matrices 𝑆 and 𝐻(𝑡), for which change (34) transforms equation (32) to
(33), are not unique. Namely. let the matrix 𝐴 be not 𝑇 -resonance and let 𝑆0 be the solution
to equation (35). Then change (34), where

𝐻(𝑡) = 𝑒𝐴𝑡

[︂∫︁ 𝑡

0

𝑒−𝐴𝜏 (𝑃 (𝜏) − 𝑆)𝑒𝐴𝜏𝑑𝜏 + 𝐶0

]︂
𝑒−𝐴𝑡 , (37)
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and

𝑆 = 𝑆0 − 𝐶0𝐴 + 𝐴𝐶0, (38)

transforms equation (32) to (33) for each constant matrix 𝐶0.

Thus, if the matrix 𝐴 is not 𝑇 -resonance, change (34) reduces equation (32) to (33). Here
we note the following useful fact. By choosing a constant matrix 𝐶0 in formula (38) we can get
a “diagonal” matrix 𝑆 in equation (33). We provide an auxiliary statement in this direction.

Let the matrix 𝐴 has a semi-simple eigenvalue 𝜆0 of multiplicty 𝑘 and let 𝐸0 be the associated
eigenspace of the operator 𝐴 : C𝑁 → C𝑁 . Let 𝑃0 be the spectral projector on the subspace
𝐸0, that is, 𝑃0 : C𝑁 → 𝐸0, 𝐴𝑃0 = 𝑃0𝐴 and 𝑃0𝑥 = 𝑥 for each 𝑥 ∈ 𝐸0. We let 𝑃 0 = 𝐼 − 𝑃0.

Lemma 5. The identity

𝑃0(𝑆0 − 𝐶0𝐴 + 𝐴𝐶0)𝑃0 = 𝑃0𝑆0𝑃0

holds true for each matrix 𝐶0.

Thus, the matrix of the linear operator 𝑃0(𝑆0 −𝐶0𝐴 + 𝐴𝐶0)𝑃0 : 𝐸0 → 𝐸0 is independent of
the choice 𝐶0.

Lemma 6. In identity (38), the matrix 𝐶0 can be chosen so that the identities

𝑃0(𝑆0 − 𝐶0𝐴 + 𝐴𝐶0)𝑃
0 = 𝑃 0(𝑆0 − 𝐶0𝐴 + 𝐴𝐶0)𝑃0 = 0 , 𝑃 0(𝐶0𝐴− 𝐴𝐶0)𝑃

0 = 0

are satisfied.

These identities can be checked by straightforward calculations.
It follows from these Lemmata that by a choice of 𝐶0 we can get that matrix (38) has the

form

𝑆 =

[︂
𝑆11 𝑂12

𝑂21 𝑆22

]︂
in an appropriate basis in the space C𝑁 , where 𝑆11 is a square matrix of order 𝑘 of a linear
operator 𝑃0𝑆0𝑃0 : 𝐸0 → 𝐸0, 𝑆22 is a square matrix of order 𝑁 − 𝑘, while 𝑂12 and 𝑂21 are
zero rectangular matrices of appropriate sizes. At that, the matrices 𝑆11 and 𝑆22 coincide with
corresponding diagonal blocks of the matrix 𝑆0, which the solution to system (35) and moreover,
the matrix 𝑆11 is independent of the choice of 𝐶0. In particular, if the matrix 𝐴 is simple (i.e.,
it has exactly 𝑁 different eigenvalues 𝜆1, 𝜆2, . . . , 𝜆𝑁), by choosing 𝐶0 we can get that in the
basis of the eigenvectors of the matrix 𝐴, matrix (38) is of the form

𝑆 =

⎡⎢⎢⎣
𝑠11 0 · · · 0
0 𝑠22 · · · 0

. . .
0 0 · · · 𝑠𝑁𝑁

⎤⎥⎥⎦ ,

at that, numbers 𝑠𝑗𝑗 coincide with the corresponding diagonal elements of the matrix 𝑆0, which
is the solution to system (35).

Suppose now that the matrix 𝐴 is 𝑇 -resonance. In this case we need to make a preliminary
transformation 𝑥 = 𝑈(𝑡)𝑧 with a 𝑇 -periodic non-degenerate matrix 𝑈(𝑡), by means of which
original system (32) is reduced to the equivalent form

𝑑𝑥

𝑑𝑡
= [𝐴 + 𝜀𝑃 (𝑡) + 𝜀2𝑄̃(𝑡, 𝜀)]𝑥 + 𝑎̃(𝑥, 𝑡, 𝜀), 𝑥 ∈ C𝑁 , (39)

in which the matrix 𝐴 is no longer 𝑇 -resonance. Let, for instance, two different semi-simple
eigenvalues 𝜆1 and 𝜆2 of the matrix 𝐴 satisfy the identity 𝜆1 − 𝜆2 = 2𝜋

𝑇
𝑞𝑖 for some integer 𝑞.

We denote by 𝐸1 the spectral subspace of the operator 𝐴 associated with the eigenvalue 𝜆1,
while by 𝑃1 : C𝑁 → 𝐸1 we denote the spectral projector. Letting 𝑃1 = −2𝜋

𝑇
𝑞𝑖𝑃1, in (32) we
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make the change 𝑥 = 𝑒𝑃1𝑡𝑧 with a 𝑇 -periodic matrix 𝑒𝑃1𝑡. Then we obtain system (39) of the
required form, where 𝐴 = 𝐴 + 𝑃1.

Thus, given an arbitrary matrix 𝐴, there exist infinitely many changes (34) transforming
(32) to (33).

3.1.2. Use of the next approximations. Now we consider a more general problem, namely, we
consider equation (32) of the form:

𝑑𝑧

𝑑𝑡
= [𝐴 + 𝜀𝑃1(𝑡) + 𝜀2𝑃2(𝑡) + 𝜀3𝑄(𝑡, 𝜀)]𝑧 + 𝑎(𝑧, 𝑡, 𝜀), 𝑧 ∈ C𝑁 , (40)

where 𝐴, 𝑄(𝑡, 𝜀) and 𝑎(𝑧, 𝑡, 𝜀) have the same meaning as in equation (32), 𝑃1(𝑡) and 𝑃2(𝑡) are
continuous 𝑇 -periodic matrices.

Let us provide the scheme of transforming (40) to the equivalent equation

𝑑𝑦

𝑑𝑡
= [𝐴 + 𝜀𝑆1 + 𝜀2𝑆2 + 𝜀3𝑄̃(𝑡, 𝜀)]𝑦 + 𝑎̃(𝑦, 𝑡, 𝜀) , 𝑦 ∈ C𝑁 , (41)

where 𝑆1 and 𝑆2 are constant matrices. The passage can be made by using the change

𝑦 = (𝐼 − 𝜀𝐻1(𝑡) − 𝜀2𝐻2(𝑡))𝑧 , (42)

where 𝐻1(𝑡) and 𝐻2(𝑡) are some non-degenerate 𝑇 -periodic matrices.
We assume that the matrix 𝐴 is not 𝑇 -resonance; if this is not the case, it should be trans-

formed as above. Let the matrices 𝑆1 and 𝐻1(𝑡) be determined by the above scheme. Namely,
for the definiteness, let 𝑆1 be the unique solution to an analogue of matrix equation (35):∫︁ 𝑇

0

𝑒−𝐴𝜏𝑆𝑒𝐴𝜏𝑑𝜏 =

∫︁ 𝑇

0

𝑒−𝐴𝜏𝑃1(𝜏)𝑒𝐴𝜏𝑑𝜏 ; (43)

let 𝐻1(𝑡) be defined in accordance with identity (36):

𝐻1(𝑡) = 𝑒𝐴𝑡

[︂∫︁ 𝑡

0

𝑒−𝐴𝜏 (𝑃1(𝜏) − 𝑆1)𝑒
𝐴𝜏𝑑𝜏

]︂
𝑒−𝐴𝑡, (44)

We let

𝑃2(𝑡) = 𝑃2(𝑡) −𝐻1(𝑡)𝑃1(𝑡) + 𝑆1𝐻1(𝑡)

and consider the matrix equation∫︁ 𝑇

0

𝑒−𝐴𝜏𝑆𝑒𝐴𝜏𝑑𝜏 =

∫︁ 𝑇

0

𝑒−𝐴𝜏𝑃2(𝜏)𝑒𝐴𝜏𝑑𝜏 (45)

with an unknown matrix 𝑆. Since the matrix 𝐴 is not 𝑇 -resonance, equation (45) has the
unique solution, which can be used as matrix 𝑆2. Namely, we have the following theorem (see
[16]).

Theorem 11. Let the matrix 𝐴 be not 𝑇 -resonance, 𝑆1 and 𝑆2 be the unique solutions of
equations (43) and (45), respectively. Then change (42), where 𝐻1(𝑡) is matrix (44),

𝐻2(𝑡) = 𝑒𝐴𝑡

[︂∫︁ 𝑡

0

𝑒−𝐴𝜏 (𝑃2(𝜏) − 𝑆2)𝑒
𝐴𝜏𝑑𝜏

]︂
𝑒−𝐴𝑡, (46)

transforms equation (40) to (41).

As in Theorem 10, we can mention that matrices 𝑆1, 𝑆2, 𝐻1(𝑡) and 𝐻2(𝑡) are not uniquely
defined. We also note that by the same scheme one can study the next approximations.
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3.1.3. A non-semi-simple eigenvalue. Thus, the method by M. Roseau allows us to reduce
the issue on the stability of the zero solution to equation (30) to the similar issue for equation
(31), which, in its turn, can be studied by constructing the eigenvalues of the constant matrix
𝐴+𝜀𝑆1 +𝜀2𝑆2 + . . .+𝜀𝑘𝑆𝑘 depending on the small parameter 𝜀. This problem can be solved by
the methods of the perturbation theory of linear operators [17, 18] (see also the next subsection).
In view of this, we mention that the methods of the perturbation theory are especially effective
in the case, when the pure imaginary eigenvalues of the matrix 𝐴 are semi-simple. If the
matrix 𝐴 has a non-semi-simple pure imaginary eigenvalue, the situation becomes much more
complicated.

In this subsection we provide a way how to pass from a problem with non-semi-simple pure
imaginary eigenvalues to an equivalent problem with semi-simple eigenvalue in the method by
M. Roseau.

We restrict ourselves by consider the linear equation

𝑑𝑥

𝑑𝑡
= [𝐴 + 𝜇𝐵(𝑡)]𝑥 , 𝑥 ∈ C𝑁 , (47)

depending on small parameter 𝜇, where 𝐴 and 𝐵(𝑡) are square matrices and 𝐵(𝑡 + 𝑇 ) ≡ 𝐵(𝑡).
The matrices 𝐴 and 𝐵(𝑡) and the parameter 𝜇 in equation (47) can be real or complex.

Suppose that the matrix 𝐴 has a non-semi-simple double eigenvalue 𝜆0. Let 𝑒 and 𝑔 be an
eigenvector and adjoint vector so that

𝐴𝑒 = 𝜆0𝑒 , 𝐴𝑔 = 𝜆0𝑔 + 𝑒 .

The adjoint matrix 𝐴* has a non-semi-simple double eigenvalue 𝜆0. Let 𝑒* and 𝑔* be an
eigenvector and an adjoint vector of the matrix 𝐴*. The vectors 𝑒, 𝑔, 𝑒*, 𝑔* can be normalized
as

(𝑒, 𝑒*) = (𝑔, 𝑔*) = 0 , (𝑒, 𝑔*) = (𝑔, 𝑒*) = 1 .

We denote by 𝐸0 the two-dimensional spectral subspace of the operator 𝐴 associated with
the eigenvalue 𝜆0, while by 𝑃0 : C𝑁 → 𝐸0 we denote the spectral projector. This operator can
be defined by the identity

𝑃0𝑥 = (𝑥, 𝑔*)𝑒 + (𝑥, 𝑒*)𝑔 .

We let 𝑃 0 = 𝐼−𝑃0 and 𝐸0 = 𝑃 0C𝑁 . Then 𝐸0 is an invariant subspace for the operator 𝐴 such
that C𝑁 = 𝐸0 ⊕ 𝐸0, and 𝑃 0 is the spectral projector on 𝐸0.

We let

𝑄1𝑥 = (𝑥, 𝑔*)𝑒 , 𝑄2𝑥 = (𝑥, 𝑒*)𝑔 , 𝑄3𝑥 = (𝑥, 𝑒*)𝑒 ,

𝑄0(𝜀) = 𝑄1 + 𝜀𝑄2 , 𝑄(𝜀) = 𝑃 0 + 𝑄0(𝜀) ,

where 𝜀 is a real or complex parameter. It is easy to prove the following lemma.

Lemma 7. The operator 𝑄(𝜀) : C𝑁 → C𝑁 is invertible as 𝜀 ̸= 0 and

(𝑄(𝜀))−1 = 𝑃 0 + 𝑄1 +
1

𝜀
𝑄2 .

Assume that the parameters 𝜇 and 𝜀 are related by the identity 𝜇 = 𝜀2 so that 𝜀 = 𝜀(𝜇) is
one of the branches of the two-valued function 𝜀 = 𝜇1/2. Then equation (47) becomes

𝑑𝑥

𝑑𝑡
= [𝐴 + 𝜀2𝐵(𝑡)]𝑥 , 𝑥 ∈ C𝑁 . (48)

As 𝜀 ̸= 0, in equation (48) we make the change

𝑥 = 𝑄(𝜀)𝑦 or 𝑦 = (𝑄(𝜀))−1𝑥 . (49)

It is easy to confirm that change (49) transforms equation (48) to the form

𝑑𝑦

𝑑𝑡
= [𝐴0 + 𝜀𝐵1(𝑡) + 𝜀2𝐵2(𝑡) + 𝜀3𝐵3(𝑡)]𝑦 , 𝑦 ∈ C𝑁 , (50)
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where

𝐴0 = 𝐴𝑃 0 + 𝜆0𝑃0 ,

𝐵1(𝑡) = 𝑄3 + 𝑄2𝐵(𝑡)(𝑃 0 + 𝑄1) ,

𝐵2(𝑡) = (𝑃 0 + 𝑄1)𝐵(𝑡)(𝑃 0 + 𝑄1) + 𝑄2𝐵(𝑡)𝑄2 ,

𝐵3(𝑡) = (𝑃 0 + 𝑄1)𝐵(𝑡)𝑄2 .

By the definition, the operators 𝐴 : 𝐸0 → 𝐸0 and 𝐴0 : 𝐸0 → 𝐸0 coincide. The operators
𝐴 : 𝐸0 → 𝐸0 and 𝐴0 : 𝐸0 → 𝐸0 differ since 𝜆0 is a non-semi-simple double eigenvalue for the
former and is a semi-simple double eigenvalue for the latter.

Thus, as 𝜀 ̸= 0, equations (48) and (50) are equivalent in the sense that their solutions are
related by identity (49). In particular, as 𝜀 ̸= 0, the stability properties of these equations are
same. At that, in equation (50), the eigenvalue 𝜆0 of the matrix 𝐴0 is semi-simple.

Assume that Re𝜆0 = 0. For equation (50) we can employ the scheme by M. Roseau and in
particular, we can pass to the equation of the form

𝑑𝑧

𝑑𝑡
= [𝐴0 + 𝜀𝑆 + 𝜀2𝐵(𝑡, 𝜀)]𝑦 , 𝑦 ∈ C𝑁 , (51)

where 𝑆 is a constant matrix. Studying the stability of the obtained matrix w.r.t. the constant
matrix 𝐴0 + 𝜀𝑆, we obtain the solution for the problem on the stability of equation (48) as
𝜀 ̸= 0, and therefore, of the original equation (47) as 𝜇 ̸= 0.

3.2. Formulae of perturbation theory. Assume that the matrix 𝐴(𝜇) depends contin-
uously or smoothly on a scalar or vector parameter 𝜇 and the matrix 𝐴(𝜇0) has a simple
eigenvalue 𝜆0. Then for each 𝜇 close to 𝜇0, the matrix 𝐴(𝜇) has the unique simple eigenvalue
𝜆(𝜇) close to 𝜆0. We need to find this eigenvalue either analytically or approximately. Usually,
such problems are solved by means of the perturbation theory of linear operators [17]. In this
subsection we propose the formulae of the perturbation theory obtained in [18] by the method
of the functionalization of the parameter. These formulae are employed in the proof of some
statements in the present work. We shall assume that the matrix 𝐴(𝜇) is real and depends
smoothly on the real parameter. In the below statements we use the notation 𝐴′ = 𝐴′(𝜇0).

Suppose first that as 𝜇 = 𝜇0, the matrix 𝐴(𝜇) has a simple real eigenvalue 𝜆0. Let 𝑒0 and 𝑔0
be the eigenvectors of the matrix 𝐴0 = 𝐴(𝜇0) and the transposed matrix 𝐴*

0 associated with the
eigenvalue 𝜆0. The vectors 𝑒0 and 𝑔0 are assumed to be normalized by the identities ‖𝑒0‖ = 1
and (𝑒0, 𝑔0) = 1.

Theorem 12. As 𝜇 is close to 𝜇0, the matrix 𝐴(𝜇) has the unique simple real eigenvalue
𝜆(𝜇) close to 𝜆0 and this eigenvalue is represented as

𝜆(𝜇) = 𝜆0 + 𝛾(𝜇− 𝜇0) + 𝑂((𝜇− 𝜇0)
2). (52)

where 𝛾 = (𝐴′𝑒0, 𝑔0).

In particular, formula (52) implies the identity 𝜆′(𝜇0) = (𝐴′𝑒0, 𝑔0).
Assume that the matrix 𝐴0 = 𝐴(𝜇0) has a pair of simple eigenvalues ±𝜔0𝑖, where 𝜔0 > 0.

Then for small |𝜇− 𝜇0|, the matrix 𝐴(𝜇) has a pair of simple eigenvalues 𝜆(𝜇) = 𝛼(𝜇)± 𝑖𝜔(𝜇),
where 𝛼(𝜇0) = 0 and 𝜔(𝜇0) = 𝜔0. There exist non-zero eigenvectors 𝑒, 𝑔, 𝑒*, 𝑔* such that
identities (7) and (8) hold true.

Theorem 13. As 𝜇 is close to 𝜇0, the real and imaginary parts of the eigenvalue 𝜆(𝜇) =
𝛼(𝜇) ± 𝑖𝜔(𝜇) of the matrix 𝐴(𝜇) satisfy the representation

𝛼(𝜇) =
𝛾1
2

(𝜇− 𝜇0) + 𝑂((𝜇− 𝜇0)
2) , (53)

𝜔(𝜇) = 𝜔0 −
𝛾2
2

(𝜇− 𝜇0) + 𝑂((𝜇− 𝜇0)
2) , (54)
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where
𝛾1 = (𝐴′𝑒, 𝑒*) + (𝐴′𝑔, 𝑔*) , 𝛾2 = (𝐴′𝑒, 𝑔*) − (𝐴′𝑔, 𝑒*) .

4. Application: Mathieu equation

As an application, we consider the Mathieu equation

𝑢
′′

+ (𝛼 + 𝛽 cos 2𝑡)𝑢 = 0 , (55)

where 𝛼 and 𝛽 are real parameters. A huge amount of works were devoted to studying various
problems related to the Mathieu equation, see, for instance, [6, 13]). Here one of the main
problems is the stability of the solutions, in particular, the issue on constructing the stability
regions in the plane of the parameters (𝛼, 𝛽). It is known that if |𝛽| is small and 𝛼 < 0, then
the solution 𝑢 = 0 to equation (55) is unstable; if 𝛼 > 0, then, as a rule, for small |𝛽| the
solution 𝑢 = 0 is stable except the vicinities of the points (𝑛2, 0) in the space (𝛼, 𝛽). Namely,
the instability regions wedge themselves as thin tongues in the points (𝑛2, 0).

As an example, we provide the scheme of constructing one of such tongues for 𝑛 = 1. In
order to do it, we shall consider the problem on studying the stability of the solution 𝑢 = 0 to
equation (55) for the values of 𝛼 and 𝛽 close to 𝛼0 = 1 and 𝛽0 = 0, respectively.

By the standard change 𝑧1 = 𝑢, 𝑧2 = 𝑢′ we transform equation (55) to a system of the form
(10), namely, to the linear system

𝑥′ = 𝐴(𝛼, 𝛽, 𝑡)𝑥 , 𝑥 ∈ R2 , (56)

where

𝐴(𝛼, 𝛽, 𝑡) =

[︂
0 1

−(𝛼 + 𝛽 cos 2𝑡) 0

]︂
. (57)

In this example 𝑇 = 𝜋 and the identity

𝐴0 = 𝐴(1, 0, 𝑡) =

[︂
0 1
−1 0

]︂
(58)

holds true. The eigenvalue of this matrix are equal to ±𝑖, that is, in the considered example

we have 𝜔0 = 1. Finally, since 𝜔0 =
𝜋𝑘0
𝑇

as 𝑘0 = 1, for the equation (56), case 30 holds true as

𝛼0 = 1 and 𝛽0 = 0.
We seek a curve Υ0 bordering the stability and instability region of equation (56) and passing

through the point (1, 0) in the plane of the parameters (𝛼, 𝛽) as function (12):

𝛽 = 𝛽1𝛿 + 𝛽2𝛿
2 + 𝜂(𝛿) , (59)

where 𝛿 = 𝛼− 1, while 𝛽1 and 𝛽2 are coefficients to be determined.

4.0.1. Preliminary transformations. First we calculate the coefficient 𝛽1 in accordance with
the above scheme. In our example equation (14) has the form

𝑑𝑥

𝑑𝑡
= [𝐴0 + 𝛿𝐴1(𝛽1, 𝑡) + 𝛿2𝐴2(𝛽2, 𝑡) + 𝐴3(𝑡, 𝛿)]𝑥 , 𝑥 ∈ R2 , (60)

where 𝐴0 is matrix (58),

𝐴1(𝛽1, 𝑡) = −(1 + 𝛽1 cos 2𝑡)

[︂
0 0
1 0

]︂
, 𝐴2(𝛽2, 𝑡) = −1

2
𝛽2 cos 2𝑡

[︂
0 0
1 0

]︂
.

Before we transform equation (60) to (16), for the convenience of calculations, we reduce the
matrix 𝐴0 to the diagonal form choosing its eigenvectors as a basis C2. In other words, in (60)

we make the change 𝑥 = 𝑄𝑧, where 𝑄 =

[︂
1 𝑖
𝑖 1

]︂
. Then equation (60) has the form

𝑑𝑧

𝑑𝑡
= [𝐴00 + 𝛿𝐴10(𝛽1, 𝑡) + 𝛿2𝐴20(𝛽2, 𝑡) + 𝐴30(𝑡, 𝛿)]𝑧 , 𝑧 ∈ C2 , (61)
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where

𝐴00 =

[︂
𝑖 0
0 −𝑖

]︂
, 𝐴10(𝛽1, 𝑡) = −1

2
(1 + 𝛽1 cos 2𝑡)

[︂
−𝑖 1
1 𝑖

]︂
,

𝐴20(𝛽2, 𝑡) = −1

4
𝛽2 cos 2𝑡

[︂
−𝑖 1
1 𝑖

]︂
.

Let us transform obtained equation (61) to (16). In order to do it, we need to make the change
𝑦 = 𝑒𝑄1𝑡𝑧 in (61), where the operator 𝑄1 is determined by the identity 𝑄1𝑥 = −2𝜔0𝑖(𝑥, 𝑒

*
1)𝑒1. In

our case we have 𝑒1 = 𝑒*1 =

[︂
1
0

]︂
and, therefore, the matrix of the operators 𝑄1 is determined

by the identity 𝑄1 =

[︂
−2𝑖 0

0 0

]︂
. Then the change 𝑦 = 𝑒𝑄1𝑡𝑧 reduces equation (61) to the

form (16):
𝑑𝑦

𝑑𝑡
= [𝐴 + 𝛿𝐴1(𝛽1, 𝑡) + 𝛿2𝐴2(𝛽2, 𝑡) + 𝐴3(𝑡, 𝛿)]𝑦 , 𝑦 ∈ 𝐶2 ,

where

𝐴 = −𝑖

[︂
1 0
0 1

]︂
, 𝐴1(𝛽1, 𝑡) = −1

2
(1 + 𝛽1 cos 2𝑡)

[︂
−𝑖 𝑒−2𝑖𝑡

𝑒2𝑖𝑡 𝑖

]︂
,

𝐴2(𝛽2, 𝑡) = −1

2
𝛽2 cos 2𝑡

[︂
−𝑖 𝑒−2𝑖𝑡

𝑒2𝑖𝑡 𝑖

]︂
.

4.0.2. Calculation of coefficient 𝛽1. Finally, we proceed to considering matrix equation (17).
Since 𝐴 = −𝑖𝐼, where 𝐼 is the unit matrix, here equation (17) is of the form∫︁ 𝜋

0

𝑆 𝑑𝑡 =

∫︁ 𝜋

0

𝐴1(𝜉, 𝑡) 𝑑𝑡 ,

and its solution is the matrix

𝑆(𝜉) =
1

4

[︂
2𝑖 −𝜉
−𝜉 −2𝑖

]︂
. (62)

Since the eigenvalue of the matrix 𝑆(𝜉) solve the equation 𝜆2 =
𝜉2 − 4

16
, the assumptions of

Theorem 8 are satisfied as 𝜉 = ±2. Therefore, the coefficient 𝛽1 in representation of function
(59) can have two possible values: 𝛽1 = 2 and 𝛽1 = −2. These values determine the slope
𝜙 = ± arctan 2 of the tangents to the boundaries of the stability and instability regions for
Mathieu equation (55) at the point (1, 0) in the space of parameters (𝛼, 𝛽).

4.0.3. Calculation of coefficient 𝛽2. Let us find the coefficient 𝛽2 in the representation of
function (59). For the definiteness we let 𝛽1 = 2. We also let

𝑆1 = 𝑆(2) =
1

2

[︂
𝑖 −1
−1 −𝑖

]︂
. (63)

Then in system (23) we have

𝑃1(𝑡) = 𝐴1(2, 𝑡) = −1

2
(1 + 2 cos 2𝑡)

[︂
−𝑖 𝑒−2𝑖𝑡

𝑒2𝑖𝑡 𝑖

]︂
,

𝑃2(𝜈, 𝑡) = 𝐴2(𝜈, 𝑡) = −1

2
𝜈 cos 2𝑡

[︂
−𝑖 𝑒−2𝑖𝑡

𝑒2𝑖𝑡 𝑖

]︂
.

Since 𝐴 = −𝑖𝐼, matrix (24) is equal to

𝐻1(𝑡) =

∫︁ 𝑡

0

(𝑃1(𝜏) − 𝑆1) 𝑑𝜏 = −1

8

[︂
−4𝑖 sin 2𝑡 2𝑖𝑒−2𝑖𝑡 + 𝑖𝑒−4𝑖𝑡 − 3𝑖

−2𝑖𝑒2𝑖𝑡 − 𝑖𝑒4𝑖𝑡 + 3𝑖 4𝑖 sin 2𝑡

]︂
. (64)
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Then matrix (25) is equal to

𝐹 (𝜈, 𝑡) = 𝑃2(𝜈, 𝑡) −𝐻1(𝑡)𝑃1(𝑡) + 𝑆1𝐻1(𝑡) =

[︂
𝑓11(𝜈, 𝑡) 𝑓12(𝜈, 𝑡)
𝑓21(𝜈, 𝑡) 𝑓22(𝜈, 𝑡)

]︂
,

where

𝑓11(𝜈, 𝑡) =
1

2
𝜈𝑖 cos 2𝑡− 1

16
(−2𝑖 + 4𝑖 cos 2𝑡− 2𝑖 cos2 2𝑡 + 2 sin 2𝑡− sin 4𝑡) ,

𝑓12(𝜈, 𝑡) = −1

2
𝜈𝑒−2𝑖𝑡 cos 2𝑡− 1

16
(2 − 2𝑒−4𝑖𝑡 − 2𝑖𝑒−2𝑖𝑡 sin 4𝑡) ,

𝑓21(𝜈, 𝑡) = 𝑓12(𝜈,−𝑡) ,

𝑓22(𝜈, 𝑡) = −1

2
𝜈𝑖 cos 2𝑡− 1

16
(2𝑖− 4𝑖 cos 2𝑡 + 2𝑖 cos2 2𝑡 + 2 sin 2𝑡− sin 4𝑡) .

Finally, a solution to matrix equation (26) is of the form

𝑍(𝜈) =
1

𝜋

∫︁ 𝜋

0

𝐹 (𝜈, 𝑡) 𝑑𝑡 =

[︂
3
16
𝑖 −1

4
𝜈 − 1

8
−1

4
𝜈 − 1

8
− 3

16
𝑖

]︂
. (65)

Thus, in accordance with the method by M. Roseau, the stability of system (23) is equivalent
to the stability of system

𝑑𝑦

𝑑𝑡
= [−𝑖𝐼 + 𝛿𝑆1 + 𝛿2𝑍(𝜈) + 𝐴3(𝑡, 𝛿)]𝑦 , 𝑦 ∈ C2 . (66)

We note that since matrix 𝑆1 defined by identity (63) has a non-semi-simple double zero eigen-
value, we have case c) described in (28).

We make a non-degenerate periodic change 𝑥 = 𝑒𝑖𝑡𝑦 in system (66); then we obtain the
system

𝑑𝑥

𝑑𝑡
= [𝛿𝑆1 + 𝛿2𝑍(𝜈) + 𝐴3(𝑡, 𝛿)]𝑥 , 𝑥 ∈ C2 . (67)

For the sake of convenient calculations, we reduce the matrix 𝑆1 to the canonical form taking
its eigenvector and adjoint vector as a basis in C2. In other words, in (67), we make the change

𝑥 = 𝑄𝑧, where 𝑄 =

[︂
1 −𝑖
𝑖 −1

]︂
. Then we arrive at the system:

𝑑𝑧

𝑑𝑡
= [𝛿𝑆1 + 𝛿2𝑍 + 𝑄−1𝐴3(𝑡, 𝛿)𝑄]𝑧 , 𝑧 ∈ 𝐶2, (68)

where 𝑆1 = 𝑄−1𝑆1𝑄 =

[︂
0 1
0 0

]︂
, 𝑍 = 𝑄−1𝑍𝑄 =

[︂
0 1

4
𝜈 + 5

16
1
4
𝜈 − 1

16
0

]︂
.

By the scheme described in Subsection 3.1.3 we let

𝑒 =

[︂
1
0

]︂
, 𝑔 =

[︂
0
1

]︂
, 𝑒* =

[︂
0
1

]︂
, 𝑔* =

[︂
1
0

]︂
,

𝑄1𝑥 = (𝑥, 𝑔*)𝑒 , 𝑄2𝑥 = (𝑥, 𝑒*)𝑔 , 𝑄3𝑥 = (𝑥, 𝑒*)𝑒 , 𝑄0(𝜀) = 𝑄1 + 𝜀𝑄2 ,

where 𝜀 is a small parameter. As 𝜀 ̸= 0, the operator 𝑄0(𝜀) is invertible and

(𝑄0(𝜀))
−1 = 𝑄1 +

1

𝜀
𝑄2 .

Since 𝛽1 = 2, without loss of generality, in (59) we can assume that 𝛿 > 0. From 𝛿, we pass

to a new real parameter 𝜀 related with 𝛿 by the identity 𝜀 =
√
𝛿. And for 𝜀 > 0 in equation

(68) we make the change 𝑧 = 𝑄0(𝜀)𝑥. Then obtain the equation:

𝑑𝑥

𝑑𝑡
= [𝜀3 ̂︀𝑆1 + 𝜀5 ̂︀𝑍 + (𝑄0(𝜀))

−1𝑄−1𝐴3(𝑡, 𝜀)𝑄𝑄0(𝜀)]𝑥 , 𝑥 ∈ C2 ,
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Figure 2. Stability regions of the Mathieu equation.

where ̂︀𝑆1 =

[︂
0 1

1
4
𝜈 − 1

16
0

]︂
, ̂︀𝑍 =

[︂
0 1

4
𝜈 + 5

16
0 0

]︂
.

The matrix ̂︀𝑆1 is stable as 𝜈 < 1/4 and unstable as 𝜈 > 1/4. Therefore, in accordance with an

analogue of Theorem 7 we can let 𝜈* =
1

4
.

In the same way, if we take 𝛽1 = −2 in the representation of function (59), we obtain

𝜈* = −1

4
.

Thus, the desired boundaries of the stability regions are described by functions (59) of the
form:

𝛽 = 2(𝛼− 1) +
1

4
(𝛼− 1)2 + 𝜂1(𝛼− 1) ,

𝛽 = −2(𝛼− 1) − 1

4
(𝛼− 1)2 + 𝜂2(𝛼− 1) ,

where the functions 𝜂𝑗(𝛿) satisfy the relations 𝜂𝑗(𝛿) = 𝑜(𝛿2) as 𝛿 → 0. In Figure, the curves
bordering the stability and instability regions of the Mathieu equation are shown; the stability
regions are shaded.

5. Proofs of the main statements

5.1. Proof of Lemma 1. We consider the matrix Cauchy problems:{︃
𝑋 ′ = 𝐴(𝑡)𝑋 ,

𝑋(0) = 𝐼 ,

{︃
𝑌 ′ = 𝐵(𝑡)𝑌 ,

𝑌 (0) = 𝐼 ,

where 𝐴(𝑡) and 𝐵(𝑡) are the matrices in (3) and (4). Let 𝑋(𝑡) and 𝑌 (𝑡) be the solutions of
these problems. Then the matrices 𝑋(𝑇 ) and 𝑌 (𝑇 ) are the monodromy matrices for the linear
systems 𝑥′ = 𝐴(𝑡)𝑥 and 𝑦′ = 𝐵(𝑡)𝑦, that is, the eigenvalues of these matrices, the multiplicators,
determine the topological types of the zero equilibrium points of systems (3) and (4). The proof
of Lemma 1 will be completed if we show that the matrices 𝑋(𝑇 ) and 𝑌 (𝑇 ) are similar.

In order to do it, we consider one more Cauchy problem{︃
𝑍 ′ = 𝐵(𝑡)𝑍 ,

𝑍(0) = 𝑈0 ,
(69)

where 𝑈0 = 𝑈(0), and 𝑈(𝑡) is the matrix in the formula 𝑦 = 𝑈(𝑡)𝑥 describing the transform of
(3) to (4). Let 𝑍(𝑡) be the solution to problem (69). It is easy to see that the matrices 𝑋(𝑡) and
𝑍(𝑡) are related by the identity 𝑍(𝑡) = 𝑈(𝑡)𝑋(𝑡), and the matrices 𝑌 (𝑡) and 𝑍(𝑡) are related
by the identity 𝑌 (𝑡) = 𝑍(𝑡)𝑈−1

0 . It yields the identity 𝑌 (𝑇 ) = 𝑈0𝑋(𝑇 )𝑈−1
0 that completes the

proof.
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5.2. Proof of Theorem 1. Equation (5) has the form (32). Since the matrix 𝐴0 is real
and its topological type is equal to (𝑝−, 1, 𝑝+), the matrix 𝐴0 is not 𝑇 -resonance. This is why
we can apply the scheme by M. Roseau, namely, Theorem 9 can be applied to equation (5).
In other words, there exists a change 𝑦 = (𝐼 − 𝜀𝐻(𝑡))𝑥 with a non-degenerate and 𝑇 -periodic
matrix 𝐻(𝑡) reducing (5) to the form (33):

𝑑𝑦

𝑑𝑡
= [𝐴0 + 𝜇𝑆0 + 𝜇2𝑂̃(𝜇, 𝑡)]𝑦 + 𝑎̃(𝑦, 𝑡, 𝜇), 𝑦 ∈ C𝑁 , (70)

where the matrix 𝑆 = 𝑆0 is the unique solution to the equation∫︁ 𝑇

0

𝑒−𝐴0𝜏𝑆𝑒𝐴0𝜏𝑑𝜏 =

∫︁ 𝑇

0

𝑒−𝐴0𝜏𝐴1(𝜏)𝑒𝐴0𝜏𝑑𝜏. (71)

According to Theorem 12, the matrix 𝐴(𝜇) = 𝐴0 + 𝜇𝑆0 has the unique eigenvalue close to
zero for small |𝜇| and it satisfies the representation

𝜆(𝜇) = (𝑆0𝑒0, 𝑔0)𝜇 + 𝑂(𝜇2) . (72)

Here 𝑒0 and 𝑔0 are the eigenvectors of the matrix 𝐴0 and the transposed matrix 𝐴*
0 associated

with the zero eigenvalue.
Letting 𝑆 = 𝑆0 in (71) and multiplying both sides of the obtained identity first by the vector

𝑒0 and calculating the scalar product with the vector 𝑔0, we obtain the identity:

(𝑆𝑒0, 𝑔0) =
1

𝑇

∫︁ 𝑇

0

(𝐴1(𝜏)𝑒0, 𝑔0)𝑑𝜏 =
1

𝑇
𝜆1 , (73)

where 𝜆1 is number (6).
By Lemma 1, the topological types of the zero equilibrium points of systems (5) and (70) have

the same topological type for small |𝜇|. For small 𝜇 the topological type of the zero equilibrium
point of system (70) is determined by the properties of the matrix 𝐴(𝜇) = 𝐴0 + 𝜇𝑆0. But by
the assumption of the theorem the topological type of matrix 𝐴0 is equal to (𝑝−, 1, 𝑝+). This
is why it follows from the identities (72) and (73) that for small |𝜇| the topological type of the
zero equilibrium point of system (70) is equal to (1 + 𝑝−, 0, 𝑝+) if 𝜇𝜆1 < 0 and it is equal to
(𝑝−, 0, 1 + 𝑝+) if 𝜇𝜆1 > 0. The proof is complete.

5.3. Proof of Theorem 3. The proof of Theorem 3 follows the same scheme as the proof
of Theorem 1. At that we use asymptotic formulae (53) and (54) from Theorem 13.

5.4. Proof of Lemma 2. The proof of the existence and uniqueness of the solution 𝑆(𝜉) to
equation (17) can be found in [16]. The fact that the function 𝑆(𝜉) is smooth is implied by the
assumption that in equation (10), the entries of the matrix 𝐴(𝛼, 𝛽, 𝑡) are twice continuously
differentiable in 𝛼 and 𝛽.

5.5. Proofs of Theorems 5 and 6. We restrict ourselves by showing the scheme of the
proof of Theorem 6. The general statement (i.e., Theorem 5) can be proved by the same
scheme but the proof is more cumbersome since we have to consider various cases; one of these
cases is contained in Theorem 6. For the sake of simplicity we assume that equation (10) is
two-dimensional, i.e., 𝑁 = 2.

We consider the linear system corresponding to (10):

𝑑𝑥

𝑑𝑡
= 𝐴(𝛼, 𝛽, 𝑡)𝑥 , 𝑥 ∈ R2 , (74)

the properties of its Floquet exponents determine the hyperbolicity regions and their bound-
aries for the zero solution to equation (10). We recall the assumption that the matrix
𝐴0 = 𝐴(𝛼0, 𝛽0, 𝑡) is independent of 𝑡 and the matrix 𝐴0 has a pair of simple eigenvalues ±𝑖𝜔0,

where 𝜔0 =
𝜋𝑘0
𝑇

for some natural 𝑘0.
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By the perturbation theory of linear operators (see, for instance, [17]), system (74) has two
Floquet exponents 𝜆1(𝛼, 𝛽) and 𝜆2(𝛼, 𝛽) for (𝛼, 𝛽) close to (𝛼0, 𝛽0) and the real parts of these
exponents are determined uniquely. We let 𝑢𝑗(𝛼, 𝛽) = Re𝜆𝑗(𝛼, 𝛽), 𝑗 = 1, 2; then 𝑢𝑗(𝛼0, 𝛽0) = 0.

Employing the condition 𝜆′(𝜉*) ̸= 0 of Theorem 6 and the fact that by Lemma 1, the non-
degenerate 𝑇 -periodic transformations of equation (10) made in Subsection 2.3 conserves the
topological type of its zero solution, one can show that one of the functions 𝑢𝑗(𝛼, 𝛽) satisfies the
identity 𝑢′

𝑗𝛽(𝛼0, 𝛽0) = 𝜆′(𝜉*). For the sake of definiteness, we assume that this identity holds
for 𝑗 = 1.

We consider the equation
𝑢1(𝛼, 𝛽) = 0 . (75)

By the implicit function theorem, equation (75) determines the unique function 𝛽 = 𝑓(𝛼)
defined in some interval (𝛼0 − 𝛿0, 𝛼0 + 𝛿0) such that 𝑓(𝛼0) = 𝛽0. At that, function 𝛽 = 𝑓(𝛼) is
continuously differentiable. By a straightforward calculation we can make sure that 𝑓 ′(𝛼0) = 𝜉*.
The curve 𝛶 described by the function 𝛽 = 𝑓(𝛼) is the sought boundary of the hyperbolicity
region for the zero solution to equation (10). The proof is complete.

5.6. Proof of Theorem 7. The proof of Theorem 7 follows the same scheme as for Theo-
rem 6.

5.7. Proof of Theorem 8. Letting for simplicity of the notations 𝛼0 = 0 and 𝛽0 = 0, we
rewrite equation (29) as

𝑑𝑥

𝑑𝑡
= [𝐴0 + 𝛼𝐴1(𝑡) + 𝛽𝐵1(𝑡) + 𝐵3(𝛼, 𝛽, 𝑡)]𝑥 , 𝑥 ∈ R2 , (76)

where the matrix 𝐵3(𝛼, 𝛽, 𝑡) satisfies the relation: max
𝑡

‖𝐵3(𝛼, 𝛽, 𝑡)‖ = 𝑂(𝛼2 + 𝛽2) as (𝛼, 𝛽) →
(0, 0).

By transformations similar to that made for equation (10), we transform linear equation (76)
to (16):

𝑑𝑦

𝑑𝑡
= [𝐴 + 𝛼𝐴1(𝑡) + 𝛽𝐵̃1(𝑡) + 𝐵̃3(𝛼, 𝛽, 𝑡)]𝑦 ,

and by the change 𝑧 = 𝑒𝑖𝜔0𝑡𝑦 it is reduced to

𝑑𝑧

𝑑𝑡
= [𝛼𝐴1(𝑡) + 𝛽𝐵̃1(𝑡) + 𝐵̃3(𝛼, 𝛽, 𝑡)]𝑧 . (77)

We denote by 𝑋(𝛼, 𝛽) the monodromy matrix of system (77). Then 𝑋(0, 0) = 𝐼, where 𝐼 is
the unit matrix. The boundary of the stability region for equation (29) is determined by the
equation

det(𝑋(𝛼, 𝛽) − 𝐼) = 0 . (78)

To complete the proof of Theorem 8, it remains to observe that under its assumptions, equation
(78) has a solution of the form 𝛽 = 𝜉*𝛼+𝑂(𝛼2) determining the stability boundary for equation
(76).
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